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Abstract

We study LLMs for tabular prediction with mixed text, numeric, and categorical
fields. We introduce TabGemma, a schema-agnostic in-context learner that treats
rows as sequences and tackles two practical hurdles when adapting pretrained LLMs
for tabular predictions: unstable numeric tokenization and limited context size.
We propose to canonicalize numbers via signed scientific notation and continue
pretraining of a 12B Gemma 3 model with a target imputation objective using
a large-scale real world dataset. For inference, we use a compact n-gram—based
retrieval to select informative exemplars that fit within a 128k-token window.

On semantically rich benchmarks, TabGemma establishes a new state of the art
on classification across low- and high-data regimes and improves monotonically
with more context rows. For regression, it is competitive at small sample sizes
but trails conventional approaches as data grows. Our results show that LLMs
can be effective tabular in-context learners on highly semantic tasks when paired
with dedicated numeric handling and context retrieval, while motivating further
advances in numeric modeling and long-context scaling.

1 Introduction

Many real-world tabular prediction tasks include rich textual information such as descriptive column
headers, semantically meaningful categoricals or free-text columns alongside numeric and date-like
features. Classical tabular predictive models such as gradient-boosted trees excel on structured inputs
but typically lack fine-grained semantic understanding of such text. In practice, this gap is bridged
with hand-crafted features, bag-of-words or TF-IDF vectors, or separate text encoders glued to tabular
pipelines, all of which add complexity and reduce portability across schemas and domains [[L1].

While recent advances in tabular deep learning achieved impressive performance via end-to-end
trained in-context learning (ICL), outperforming conventional approaches in some domains, as
pioneered by TabPFN [13| [14] and extended in other works [22l [18]], most of these methods also
do not make explicit use of the semantic content within the data and rely on conventional feature
encodings. Only the recent ConTextTab approach integrates semantic embeddings into a table-native
ICL architecture [23] but compresses potentially large free-text cells into a single embedding vector,
potentially limiting its semantic expressivity at scale.

Large language models (LLMs) offer a compelling alternative: they can consume heterogeneous data
types by serializing tables as text and perform classification or regression via in-context learning,
bringing strong semantic capabilities to the textual fields while handling mixed data types through
a single interface. However, two hurdles hinder practical deployment for tabular prediction: raw
decimals tokenize poorly and inconsistently [27]], and the finite context window limits how many
relevant exemplars can be provided as context, especially in large datasets. In the past, this has severly
limited performance of LLM-based tabular predictors.
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Building on prior work that serializes tables for LLMs and using retrieval-augmented generation
to scale ICL, we present TabGemma, a schema-agnostic method that treats tabular prediction as
sequence modeling, improves numeric tokenization, and selects informative exemplars via efficient re-
trieval at inference. Rows are serialized with dedicated separators and numerics are canonicalized into
signed base-10 scientific notation, yielding stable token patterns. We continue pretraining of a 12B
Gemma 3 [24]] model on a column-imputation objective that applies loss only to target-column tokens
while conditioning on all feature tokens, aligning next-token prediction with classification/regression.
To fit task-relevant support within the context window at inference, we perform nearest-neighbour
retrieval using compact hashed character n-gram embeddings per cell, concatenated into row em-
beddings and indexed with FAISS [3]: at inference, we retrieve k similar rows, serialize them as
exemplars, and append the query row with an empty target for the model to decode.

2 Related Work

Tabular deep learning: Prediction on tabular data has long been dominated by boosted trees such
as XGBoost, LightGBM, and CatBoost [1,116} 21]. While strong, these models need to be trained per
dataset, cannot benefit from cross-task pretraining, and often require manual feature engineering and
extensive hyperparameter optimization. Early deep learning architectures like FT-Transformer [8]]
and XTab [28] explored transformer-based encoders, while only more recent methods, e.g. TabR,
RealMLP, CARTE, TabM, or ModernNCA [9, [15} [17| [10, [26l], report consistently competitive,
sometimes superior results to boosted trees.

In-context learning for tabular data: TabPFNv1 [13] demonstrated that row-level ICL pretrained
on synthetic tasks can outperform boosted trees on small classification problems, eliminating per-task
training and hyperparameter tuning. Using real data and retrieval to select context examples, TabDPT
achieved similarly strong results and extended the setting to regression, building on ideas also
investigated in TabR. Moving beyond row-level encodings, cell-based ICL, as used in TabPFNv2 [14]],
TabICL [22], and ConTextTab [23]] scale to larger datasets and report state-of-the-art results.

Semantics and real data: Capturing fine-grained semantics in real-world tables is key for transfer
beyond statistical patterns. CARTE [17] pretrains across diverse sources to model table semantics
and achieves state of the art on its benchmark, but requires task-specific fine-tuning. Modern LLMs
bring stronger semantic understanding and world knowledge but lack native table support. Several
works adapt LLMs to tabular ICL, for example TabLLM, LIFT, and TabuLa-8B [[12, 2| [7], which
also curates the T4 dataset — a collection of 3M tables derived from TabLib [4]] — and show excellent
performance in the very low-data regimes.

3 Methodology

Similar to TabuLa, we cast tabular classification and regression as sequence modeling: the input
table is serialized into tokens, and a long-context LLM is trained to predict a designated target
column causally conditioned on feature tokens. The method is schema-agnostic and centers on three
components: canonical row serialization, continued pre-training with a target-imputation objective,
and similarity-based retrieval to fit task-relevant exemplars within the context window at inference.
An overview of our proposed approach is depicted in Figure[I}

Table serialization: We serialize each table row into a linear token sequence. Every cell is first cast
to a canonical string, tokenized, and concatenated in column order. Cells are separated by a dedicated
cell-separator token. Each row is terminated with an end-of-row token, which conditions the model to
stop decoding once the target has been produced. The input to the model is the concatenation of such
row sequences. In particular, we do not prepend a task-specific natural-language instruction for the
LLM. Numeric values are normalized before tokenization using signed, base-10 scientific notation
with four significant digits. For example, 3141.592 becomes +3.1416e+03. This canonicalization is
locale-independent and reduces variability. In subword tokenizers, scientific notation induces reusable
subpatterns (e.g., "+", "e+0"), which improves the learning of token-based numeric embeddings
compared to raw decimals, whose lengths and delimiters vary widely.

Continued pretraining: We initialize from the pretrained Gemma 3 12B checkpoint (without
instruction-tuning), which supports a 128k-token context window, and continue pretraining the model
on a tabular imputation objective tailored to classification and regression over tables using the large-
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Figure 1: Illustration of our proposed LLM-based tabular prediction architecture with table serializa-
tion and target-imputation objective at training, and local context retrieval at inference.
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scale T4 table corpus [7]]. For each training step, we draw a table from the corpus, uniformly sample
256 rows, and designate one column as the prediction target while using the remaining columns as
conditioning features. The input consists of all selected rows with their full feature columns and the
target column values present in the text for teacher forcing. We compute token-level cross-entropy
only over the tokens belonging to the target column, masking out loss contributions from feature
columns. The prompt format scales naturally to different numbers of rows at inference time, allowing
the model to condition on variable-sized contexts. Note that, due to the autoregressive nature of
LLMs and the use of causal attention masking, every target cell is used as a training sample and the
approach does not require a fixed context-query split unlike table-native approaches such as TabPFN —
practically increasing the effective batch size as well as conditioning the model on different effective
context lengths within a single training step.

Inference & Retrieval: Scaling in-context learning to larger tables is constrained by the model’s
context window. As compared to table-native architectures, this becomes even more pronounced
when adapting LLMs for tabular ICL due to the relatively less efficient tokenization scheme. To
mitigate this limitation, we employ similarity-based context retrieval to select a small, task-relevant
support set for each query at inference. Our approach is similar to that of TabR and TabDPT but note
that we use it during inference only while we found it sufficient to randomly sample context during
training. We use nearest-neighbour retrieval by constructing compact row embeddings via hashing:
Each table row is serialized as a sequence of cells, and each cell is independently vectorized using
a bag of character n-grams. The n-grams are hashed into a fixed 256-dimensional vector per cell.
The per-cell vectors are concatenated to form the row embedding. This representation is stateless,
memory-efficient, and offers parallelization over rows, enabling streaming ingestion and scaling to
millions of training rows. For similarity search, we L2-normalize embeddings and index them with
FAISS [3]]. The retrieved rows are then formatted as ICL exemplars and provided to the LLM.

4 [Experiments

Training: We train for 2,500 steps with a batch size of 64, corresponding to roughly 41 million row
predictions in total. We uses Adam with a learning rate of 10~°. We do not apply dropout or weight
decay. To balance throughput and context utilization, we cap inputs at 16k tokens during training and
truncate sequences that exceed this limit. We trained the model for 20 days on 2 H100 GPUs.

Evaluation: We evaluate our approach on several benchmarks: the CARTE benchmark [[17], the
recently proposed TextTab benchmark [19], as well as the recent TabArena benchmark [6] in its “lite”
variant (evaluating a single fold). All benchmarks are mixed classification and regression benchmarks.
Whereas CARTE and TextTab are constructed to emphasize semantic features and are thus our focus,
TabArena is a more conventional, numerics-heavy benchmark which we include for completeness.



Table 1: Evalation results on the investitated benchmarks sorted by classification performance on
CARTE. We report accuracy (Acc) and (soft-clipped) R2 for classification and regression, respectively.

All CARTE TextTab TabArena
Model Acc R? Acc R? Acc R? Acc R?
TabGemma (ours) 83.6 60.7 793 703 84.1 316 848 578
AutoGluon 859 705 789 734 839 51.8 885 789

ConTextTab [bagging=8] 85.0 703 769 724 843 550 876 779
ConTextTab [bagging=1] 849 69.6 764 715 841 544 875 1716
RealMLP [HPO-CV,ens.] 84.6 676 736 682 819 522 885 798

LGBM [HPO-CV] 844 663 734 675 815 486 882 789
TabPFN 832 632 723 650 81.6 419 867 770
Random Forest 833 625 715 633 798 453 876 763
Naive 70.1  -35 530 -18 704 -50 750 -73

We compare against a range of extensively tuned conventional as well as deep learning and ICL
baselines, including LGBM, RealMLP, TabPFN, ConTextTab, Random Forest, and a naive predictor.
Additionally, we include results of the AutoML framework AutoGluon [5]. The details about the
used baselines can be found in Appendix [C.2] Unfortunately, despite much effort spent, we were not
able to run LLM-based baselines such as TabuLa [7]] or GTL [25]] due to non-functional reference
implementations or problems to evaluate them at scale.

Results: The main results are summarized in Table[I] Here, we report TabGemma results using
k = 128 retrieved context examples by default. To confirm the efficacy of our approach, we also
evaluated an off-the-shelf Gemma 3 model on CARTE. In the absence of prompt engineering,
performance is poor, 4.6% accuracy and —98.4 R2, and was hence excluded. On the semantically
rich CARTE and TextTab benchmarks, TabGemma matches or surpasses state-of-the-art baselines
in classification performance. To the best of our knowledge, this is the first time an LLM-based
approach outperforms extensively tuned baselines, as well as AutoGluon, which stacks a multitude of
per-dataset tuned predictors. Note that evaluation is done at the full scale of the available datasets.

However, TabGemma lags behind on regression and on TabArena generally. However, on CARTE,
regression performance of TabGemma still surpasses extensively tuned LGBM, as well as tuned and
ensembled RealMLP. The poor regression performance on TextTab is surprising and needs to be
investigated more closely in the future. As TabArena focuses on conventional, numerically dominated
tasks, this underscores current limitations of language models in this regime and highlights further
potential in tokenization. While weaker regression performance is expected, our rank-based analysis
further indicates that retrieval and long-context handling degrade as the number of rows and columns
increases. We investigate this in more detail in the Appendix [A]

5 Discussion and Conclusion

We presented TabGemma: an LLM-based in-context learner that combines improved numeric
representation, retrieval, and continued pretraining over a large corpus of real-world tables. On
semantically rich benchmaks, TabGemma delivers strong classification in both low- and high-data
regimes, outperforming extensively tuned baselines and AutoML solutions, while revealing gaps on
regression and on wide or very large tables due to context and retrieval constraints. While shining
in the few-shot regime, to the best of our knowledge, this is the first time an LLM-based tabular
predictor outperforms baselines also at full dataset evaluation.

There are a several limitations of our current approach opening a multitude of future research
directions: first, we observe that TabGemma is very effective at classification but underperforms
in regression as well as tasks with numeric-heavy features. This motivates further research into
numerics-adapted tokenization. Second, performance on very large and wide tables degredates.
Further research into more compact tokenization schemes as well as even more efficient retrieval
approaches may mitigate this. And last, note that the proposed table serialization and autoregressive
modeling breaks the natural column and row order permutation equivariance inherent to many tabular
prediction problems. The effect of this on tabular language modeling needs to be investigated more
closely openining potential gains when ensembling over permuted inputs.
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A Additional results

A.1 Critical difference diagrams

We provide critical difference (CD) diagrams in Figure To this end, we use the autorank package{ﬂ
We calculate CD-diagrams on the full benchmark as well as on classification- and regression-only
subsets. Note that, since the support set for classification tasks on CARTE and TextTab were too
small to calculate the CD, we show a joined evaluation on the two instead.

We observe that TabGemma performs SOTA on semantic classification tasks within CARTE and Text-
Tab, on par with AutoGluon. While its regression performance lags behind here, it is not statistically
significantly worse then other state-of-the-art approaches such as ConTextTab or RealMLP.

On Tabarena, the performance of TabGemma is noticeably worse, statistically on par with a non-tuned
Random Forest predictor. This shortcoming on non-semantic tasks opens future research directions.
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Figure 2: Critical difference diagrams on the investigated benchmarks, including all datasets (“all””)
as well as classification- and regression-only subsets. Note that, due to the limited support of
classification tasks on CARTE and TextTab, evaluation was performed over the union of tasks in this
case.
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A.2 Sample efficiency and few-shot domain

Figure [3examines performance as a function of available training data. To this end, using the CARTE
benchmark datasets, we subsample each training set to 128, 256, ..., 8192 rows and evaluate each
model under the same subset: baselines are trained on that subset, whereas TabGemma receives
the same subset as its retrieval pool and in-context exemplars. In low-data regimes, TabGemma is
highly competitive on classification and surpasses the baselines by a notable margin. This observation
is in line with previous LLM-based results such as TabuLa [7] but stretches to much larger shot
examples, whereas Tabula reported results only in the very few-shot domain of up to 32 samples. In
the few-shot domain and particularly for highly semantic tasks, LLMs likely benefit most from their
world knowledge obtained during their extensive pretraining.

For regression, TabGemma keeps pace up to roughly 1024 training examples but lags behind Auto-
Gluon and CARTE once more data are available.
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Figure 3: Results on the CARTE benchmark for varying train subsets.

A.3 Scalability with context size

Next, we studiey how TabGemma scales as we increase the number of context rows, i.e., the number of
retrieved training examples included in the prompt. The results are depicted in Figure[d Dashed lines
denote baselines trained on the full training split (or, for ICL-style baselines, using the full training
pool as their retrieval source). Solid lines denote TabGemma with varying number of k& context rows
and no gradient updates. As k grows, TabGemma improves monotonically and establishes a new
state-of-the-art on classification within CARTE. On regression, however, AutoGluon, CARTE and
ConTextTab remain ahead, highlighting a current limitation of our numeric handling for continuous
targets. Nevertheless, TabGemma still outperforms an extensivly tuned and ensembled LGBM
predictor.
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Figure 4: Results on the CARTE benchmark for varying context rows.



B Limitations across task scale and dimensionality

Figure [5] reports mean rank (lower is better) for TabGemma versus AutoGluon across CARTE,
TextTab, and TabArena, stratified by training-set size and the number of columns. AutoGluon
consistently leads in regimes with more training rows and wider tables, and the gap widens as scale
increases. These trends suggest two main bottlenecks for TabGemma: (1) retrieval precision declines
as the candidate pool grows, reducing the quality of in-context examples; and (2) the 128k-token
context window limits how many rows and columns can be represented without lossy compression,
weakening long-context modeling.
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Figure 5: Dependence of mean rank (lower is better) of AutoGluon (blue) vs. TabGemma (orange)
on the number of rows (left) and number of columns (right) across different evaluated benchmarks.



C Evaluation datasets and baselines

C.1 Datasets

As previously discussed, we evaluate all methods on the CARTE, TextTab, and TabArena-Lite bench-
mark covering 123 tasks in total. We use the CARTE data from the official reference implementatiorﬂ
CARTE contains 51 tasks in total, 11 exclusively binary classification tasks and 40 regression tasks.
We create custom 80:20 train target splits using the target column for stratification. TextTab contains
21 tasks in total, 9 mostly binary classification tasks and 12 regression tasks. We use all tasks from
the original publication [[19] as well as the “extra datasets” given in the reference implementatiorﬂ
Again, we create custom stratified 80:20 train test splits. TabArena contains 51 tasks in total, 38
mostly binary classification tasks and 13 regression tasks. We use the splits as defined in the official
OpenML releas of the benchmark’s lite variant covering the first fold only.

The task size distribution of all evaluated benchmarks is depicted in Figure [6]

C.2 Baselines

Throughout, we follow the evaluation protocol of [23]. That is, we use a AutoGluon-based standard-
ized feature encoder for all baselines that do not provide a custom one. In particular, the encoder
natively handles categorical data, free text (via conventional NLP features), as well as datetime
encoding. In particular, we evaluate the following model versions.

Pytabkit models: We use the pytabkit [15]] for evaluating RealMLP, and LightGBM. We evaluate
LightGBM with ensembled hyperparameter optimization across 5-fold inner cross-validation (HPO-
CV). For ReaMLP, we do the same but combine it with the recently introduced learned ensemble,
further pushing its performance (HPO-CV, Ens.). For the HPO variants, we use the recently added
tabarena search spaces proposed in [6].

TabPFN: We use the model from the official tabpfn package at version 2.1.0 with the
tabpfn-extensions package version 0.1.0. For datasets larger than the native 10 k limit of TabPFN,
we sample a random 10k subset of the training split. For datasets with more than the 500 feature
limit, we select a random subsample of 500 features.

ConTextTab: We evaluate ConTextTab v1.0.1 using the reference implementation and checkpoimﬂ
We set a context size of 8k samples and evaluate variants without and with 8-fold bagging.

CARTE: We use the model provided in the official carte-ai package with version 0.0.26. We use
CARTEClassifier and CARTERegressor with default parameters for classification and regression
tasks, respectively.

Sklearn models: We evaluate the Random Forest and Naive baseline models from
scikit-learn [20], combining them with the default preprocessor as outlined above. Evalua-
tion is performed using scikit-learn v1.5.2.

For the naive predictor, we use the DummyClassifier and DummyRegressor to predict the most
frequent, respectively mean value of the train splits as the naive majority baseline.

For the random forest predictor, we wuse the RandomForestClassifier and
RandomForestRegressor for classification and regression tasks, respectively, using default
hyperparameters. The model handles missing values natively.

AutoGluon: We evaluate using AutoGluon v1.4 with its native feature encoder. We use the
best_quality preset with a per-dataset time limit of 4 h. (We have found the “extreme” preset to
only yield slightly better results at the expense of much higher compute requirements).

Zgithub.com/soda-inria/carte
3github.com/mrazmartin/TextTabBench
4openml.org/search?type=study&study_type=task&id=457
>github.com/S AP-samples/contexttab
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Figure 6: Dataset statistics of the evaluated benchmarks.

11

#Classes
8

2

Task type
® Regression



	Introduction
	Related Work
	Methodology
	Experiments
	Discussion and Conclusion
	Additional results
	Critical difference diagrams
	Sample efficiency and few-shot domain
	Scalability with context size

	Limitations across task scale and dimensionality
	Evaluation datasets and baselines
	Datasets
	Baselines


