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Abstract
A key technique of machine learning is to embed
discrete weighted graphs into continuous spaces
for further downstream analysis. Embedding dis-
crete hierarchical structures in hyperbolic geome-
try has proven very successful since it was shown
that any weighted tree can be embedded in that
geometry with arbitrary low distortion. Various
optimization methods for hyperbolic embeddings
based on common models of hyperbolic geometry
have been studied. In this paper, we consider the
Hilbert geometry of the standard simplex which
is isometric to a vector space equipped with a
symmetric polytope norm. We study the repre-
sentation power of this Hilbert simplex geometry
by embedding distance matrices of graphs using
a fast differentiable approximation of the Hilbert
metric distance. Our findings demonstrate that
Hilbert simplex geometry is competitive to alter-
native geometries such as the Poincaré hyperbolic
ball or the Euclidean geometry for embedding
tasks while being fast and numerically robust.

1. Introduction
Since Sarkar (Sarkar, 2011) proved that any weighted tree
graph can be embedded as a Delaunay subgraph of points in
hyperbolic geometry embedding nodes with arbitrary small
distortions, hyperbolic embeddings have become widely
popular in machine learning (Sala et al., 2018) and com-
puter vision (Khrulkov et al., 2020) to represent various
hierarchical structures (Surı́s et al., 2021). Various mod-
els of hyperbolic geometry have been considered from the
viewpoint of time efficiency and numerical stability (Son-
thalia & Gilbert, 2020) (e.g., Poincaré model (Nickel &
Kiela, 2017), Minkowski hyperboloid model (Sun et al.,
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2015; Wang et al., 2020), Klein model (Feng et al., 2020),
Lorentz model (Nickel & Kiela, 2018), etc.) and extensions
to symmetric matrix spaces (Lopez et al., 2021) have also
been considered recently.

In this work, we consider Hilbert geometry (Papadopoulos
& Troyanov, 2014b) which can be seen as a generaliza-
tion of Klein model of hyperbolic geometry where the unit
ball domain is replaced by an arbitrary open bounded con-
vex domain Ω. When the boundary ∂Ω is smooth, Hilbert
geometry is of hyperbolic type (e.g., Cayley-Klein geome-
try (Richter-Gebert, 2011) when Ω is an ellipsoid). When
the domain is a polytope, Hilbert geometry is bilipschitz
quasi-isometric to a normed vector space (Vernicos, 2014),
and isometric to a vector space with a polytope norm only
when Ω is a simplex (de la Harpe, 1991). It is thus interest-
ing to consider Hilbert simplex geometry for embeddings
and compare its representation performance to hyperbolic
embeddings. Hilbert simplex geometry has been used in
machine learning for clustering histograms (Nielsen & Sun,
2019).

The paper is organized as follows: In §2, we present the
Hilbert distance as a symmetrization of the oriented Funk
weak distances, describe some properties of the Hilbert sim-
plex distance, and illustrate qualitatively the ball shapes for
the Funk and Hilbert distances (Nielsen & Shao, 2017). We
first consider Hilbert simplex linear embeddings and prove
that Hilbert simplex distance is a non-separable monotone
distance (Theorem 1 in §2.3). Monotonicity of distances
is an essential property: It states that the distance can only
decrease by linear embeddings into smaller dimensional
spaces. In information geometry, separable monotone di-
vergences are exactly the class of f -divergences (Amari,
2016). Aitchison non-separable distance used in composi-
tional data analysis was proven monotone (Erb & Ay, 2021)
only recently. We explain a connection between Aitchison
distance and Hilbert distance by using the variation semi-
norm in §2.4. Section 3 presents our experiments which
demonstrates that in practice Funk and Hilbert non-linear
embeddings outperforms or is competitive compared to var-
ious other distances (namely, Euclidean/Aitchison distance,
ℓ1-distance, hyperbolic Poincaré distance) while being fast
and robust to compute. Section 4 concludes this work.
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Figure 1. Funk distance defined in the open standard simplex.

2. Hilbert simplex geometry
2.1. Definition

Let Ω be any open bounded convex set of Rd. The Hilbert
distance (Hilbert, 1895; Lemmens & Nussbaum, 2014; Pa-
padopoulos & Troyanov, 2014b) ρΩHG(p, q) between two
points p, q ∈ Ω induced by Ω is defined as the symmetriza-
tion of the Funk distance ρΩFD(p, q). The Funk distance (Pa-
padopoulos & Troyanov, 2014a) is defined by

ρΩFD(p, q) :=

{
log
(

∥p−q̄∥
∥q−q̄∥

)
≥ 0, p ̸= q,

0 p = q.

where q̄ denotes the intersection of the affine ray R(p, q)
emanating from p and passing through q with the domain
boundary ∂Ω. See Figure 1 for an illustration. The Funk
distance is a weak metric distance since it satisfies the tri-
angle inequality of metric distances but is an asymmetric
dissimilarity measure: ρΩFD(p, q) ̸= ρΩFD(q, p).

Thus the Hilbert distance ρΩHG(p, q) between any two points
p, q ∈ Ω is:

ρΩHG(p, q) := ρΩFD(p, q) + ρΩFD(q, p),

=

{
log ∥p−q̄∥ ∥q−p̄∥

∥p−p̄∥ ∥q−q̄∥ , p ̸= q,

0 p = q.

where p̄ and q̄ are the two intersection points of the line (pq)
with ∂Ω, and the four collinear points are arranged in the
order p̄, p, q, q̄. The d-dimensional Hilbert distance can also
be interpreted as a 1D Hilbert distance induced by the 1D
interval domain Ωpq := Ω ∩ (pq):

ρΩHG(p, q) = ρ
Ωpq

HG (p, q).

This highlights that the quantity ∥p−q̄∥ ∥q−p̄∥
∥p−p̄∥ ∥q−q̄∥ does not de-

pend on the chosen norm ∥ · ∥ because we can consider the
absolute value | · | on the domain Ωpq. For any x, y ∈ R,
∥x∥ = c|x| and ∥x − y∥ = c|x − y| where c > 0 is a
constant. Thus we can express the Hilbert distance as the

logarithm of the cross-ratio:

ρΩHG(p, q) =

{
log CR(p̄, p; q, q̄), p ̸= q,
0 p = q,

where CR(p̄, p; q, q̄) := ∥p−q̄∥ ∥q−p̄∥
∥p−p̄∥ ∥q−q̄∥ denotes the cross-

ratio. The Hilbert distance is a metric distance, and it fol-
lows from the properties of the cross-ratio (Richter-Gebert,
2011) that straight lines are geodesics in Hilbert geometry:

∀r ∈ [pq], ρΩHG(p, q) = ρΩHG(p, r) + ρΩHG(r, q),

where [pq] is the closed line segment connecting p and q.

Another property is that the Hilbert distance is invariant
under homographies (Hartley & Zisserman, 2003) H (also
called collineations):

ρHΩ
HG (Hp,Hq) = ρΩHG(p, q),

where HΩ := {Hp : p ∈ Ω}. The Hilbert geometry of
the complex Siegel ball generalizing the Klein ball has been
studied in (Nielsen, 2020).

2.2. Hilbert simplex distance

We shall consider Ω = ∆d, the open (d− 1)-dimensional
simplex:

∆d :=

{
(x1, . . . , xd) ∈ Rd

++ :

d∑
i=1

xi = 1

}
,

where R++ := (0,∞).

In that case, we write ρFD(p, q) := ρ∆d

FD(p, q), and we have

ρFD(p, q) = logmaxi∈{1,...,d}
pi
qi
. (1)

Thus the Hilbert distance induced by the standard simplex
is

ρHG(p, q) = ρFD(p, q) + ρFD(q, p)

= logmaxi∈{1,...,d}
pi
qi
maxi∈{1,...,d}

qi
pi

= log
maxi∈{1,...,d}

pi

qi

mini∈{1,...,d}
pi

qi

. (2)

Property 1. We can compute efficiently the Hilbert simplex
distance in ∆d in optimal O(d) time.

As depicted in Figure 2, the geodesics are not unique in the
Hilbert simplex geometry.

Figure 3 displays the shapes of balls with respect to the
oriented Funk distances and the symmetrized Hilbert dis-
tance. Balls in the Hilbert simplex geometry have Euclidean
polytope shapes of constant combinatorial complexity (e.g.,
hexagons in 2D). Since at infinitesimal scale, balls have
polygonal shapes, it shows that the Hilbert simplex geome-
try is not Riemannian.

2



p
q

Geo(p, q)

r

r′

ρHG(p, q) = ρHG(p, r) + ρHG(q, r)

ρHG(p, q) = ρHG(p, r′) + ρHG(q, r′)

Figure 2. Non-uniqueness of geodesics in the Hilbert simplex ge-
ometry: The quadrilateral region Geo(p, q) denotes the set of
points r satisfying the triangle equality with respect to p and q:
ρHG(p, q) = ρHG(p, r)+ρHG(q, r). The purple paths connecting
p and q are examples of geodesics.

2.3. Monotone distance

Let X = {X1, . . . , Xm} be a partition of {1, . . . , d} into
m ≤ d pairwise disjoint subsets Xi’s. For p ∈ ∆d,
let p|X ∈ ∆m denote the reduced dimension point with
p|X [i] =

∑
j∈Xi

p[i]. A distance D(p, q) is said mono-
tone (Amari, 2016) iff

D
(
p|X , q|X

)
≤ D(p, q), ∀X ,∀p, q ∈ ∆d.

A distance is said separable iff it can be expressed as a
sum of scalar distances. For example, the Euclidean dis-
tance is not separable but the squared Euclidean distance
is separable. The only separable monotone distances are f -
divergences (Amari, 2016) when d > 2. The special curious
case d = 2 is dealt in (Jiao et al., 2014). We can interpret
points in the simplex ∆d as categorical distributions on a
sample space of d outcomes. Hence, the Hilbert statistical
distance can also be said information monotone (Amari,
2016).

We shall prove that the Funk oriented distance and the
Hilbert distance are non-separable monotone distances.

Lemma 1. Let p, q ∈ ∆d. Let p̃ = (p1 + p2, p3, · · · , pd)
and q̃ = (q1 + q2, q3, · · · , qd) denote their coarse-grained
points on ∆d−1. We have 0 ≤ ρFD(p̃, q̃) ≤ ρFD(p, q).

Proof. Denote ι = max{p1/q1, p2/q2}. As q1, q2 > 0, we
have p1 ≤ ιq1 and p2 ≤ ιq2. Therefore

p1 + p2
q1 + q2

≤ ιq1 + ιq2
q1 + q2

= ι.
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Figure 3. Balls centered at c ∈ ∆2 with constant radius increment
step. The last column also shows the distance color maps (dark
color means long distance).

It follows that

max

{
p1 + p2
q1 + q2

,
p3
q3

, · · · , pd
qd

}
≤ max

{
p1
q1

,
p2
q2

,
p3
q3

, · · · , pd
qd

}
.

Hence

logmax

{
p1 + p2
q1 + q2

,
p3
q3

, · · · , pd
qd

}
≤ logmaxi

pi
qi
.

By the definition of the Funk distance, we get ρFD(p̃, q̃) ≤
ρFD(p, q).

Theorem 1. The Funk distance ρFD and the Hilbert dis-
tance ρHG in ∆d satisfy the information monotonicity.

The proof is straightforward from Lemma 1 by noting that
any coarse-grained point can be recursively defined by merg-
ing two bins. Since the sum of two information monotone
distances is monotone, we get the proof that Hilbert distance
as the sum of the forward and reverse Funk (weak) metric
is monotone.

In fact, we can also prove this result by using Birkhoff’s
contraction mapping theorem (Birkhoff, 1957). We can
represent the coarse-graining mapping p 7→ p|X by a linear
application with a m× d matrix A with columns summing
up to one (i.e., positive column-stochastic matrix):

p|X = Ap.

Then we have (Birkhoff, 1957):

ρHG(Ap,Aq) ≤ tanh

(
1

4
∆(A)

)
ρHG(p, q),
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where ∆(A) is called the projective diameter of the positive
mapping A: ∆(A) := sup{ρHG(Ap,Aq) : p, q ∈ Rd

++}.

Since 0 ≤ tanh(x) ≤ 1 for x ≥ 0, we get the property that
Hilbert distance on the probability simplex is a monotone
non-separable distance: ρHG(p|X , q|X ) ≤ ρHG(p, q). Note
that Birkhoff’s contraction theorem is also used to prove
the convergence of Sinkhorn’s algorithm (Peyré & Cuturi,
2019).

Hilbert distance of Eq. 2 can be extended to the positive
orthant cone Rd

++ which can be foliated by homothetic
simplices λ∆d: Rd

++ = ∪λ>0λ∆d:

ρHG(p̃, q̃) = log
maxi∈{1,...,d}

p̃i

q̃i

mini∈{1,...,d}
p̃i

q̃i

, p̃, q̃ ∈ Rd
++. (3)

This extended Hilbert distance is projective because
ρHG(αp̃, βq̃) = ρHG(p̃, q̃). Thus the Hilbert distance is
a projective distance between rays p̃ and q̃ and a metric
distance on λ∆d for any prescribed value of λ > 0.

The Aitchison distance (Pawlowsky-Glahn & Buccianti,
2011) is also a non-separable distance in the standard sim-
plex defined as follows:

ρAitchison(p, q):=

√√√√ d∑
i=1

(
log

pi
G(p)

− log
qi

G(q)

)2

, (4)

where G(p) denotes the geometric mean of the coordinates
of p ∈ ∆d:

G(p) =

(
d∏

i=1

pi

) 1
d

= exp

(
1

d

d∑
i=1

log pi

)
.

The Aitchison distance satisfies the monotonicity prop-
erty (Erb & Ay, 2021).

2.4. Isometry to a normed vector space

Hilbert geometry is never a Hilbert space (i.e., complete
metric space induced by the inner product of a vector space)
because the convex domain Ω is bounded. It can be shown
that the only domains Ω yielding an isometry of the Hilbert
geometry to a normed vector space are simplices (Colbois
& Verovic, 2008).

We recall the isometry (de la Harpe, 1991) of the standard
simplex to a normed vector space (Vd, ∥ · ∥NH). Let Vd =

{v ∈ Rd :
∑d

i=1 vi = 1} denote the (d− 1)-dimensional
vector space sitting in Rd. Map a point p = (p1, . . . , pd) ∈

Standard simplex ∆2

R2

R2

p

q

̂log q

̂log p

V2

R2

v(p) = log p
G(p)

v(q) = log q
G(q)

0
log q′ = β + log q

l(p) = log p

log representation

de Harpe isometric embedding

ρHG(p, q)

‖v(p)− v(q)‖NH

‖ log p− log q‖var = ‖ log p′ − log q′‖var

normed vector space (V2, ‖ · ‖NH)

geometric mean normalization

ρHG(p, q) = ‖ log p− log q‖var = ‖v(p)− v(q)‖NH

log p′ = α+ log p

Projective space

p̃ = αp

q̃ = βq

ρHG(p̃, q̃)λ∆2

embedded in R2

Projective

Metric

Figure 4. Different representations of the simplex and positive or-
thant cone.

∆d to a point v(p) = (v1, . . . , vd) ∈ Vd as follows:

vi =
1

d

(d− 1) log pi −
∑
j ̸=i

log pj

 ,

= log pi −
1

d

d∑
j=1

log pj .

We define the corresponding norm ∥ · ∥NH in Vd by consid-
ering the shape of its unit ball BV = {v ∈ Vd : |vi−vj | ≤
1,∀i ̸= j}. The unit ball BV is a symmetric convex set con-
taining the origin in its interior, and thus yields a polytope
norm ∥ · ∥NH (Hilbert norm) with 2

(
d
2

)
= d(d− 1) facets.

Norms ℓ1 and ℓ∞ yield hypercube balls with 2d facets and
2d vertices. Reciprocally, let us notice that a norm induces a
unit ball centered at the origin that is convex and symmetric
around the origin. The distance in the normed vector space
between v ∈ Vd and v′ ∈ Vd is defined by:

ρV (v, v
′) = ∥v − v′∥NH = inf {τ : v′ ∈ τ(BV ⊕ {v})} ,

where A⊕B = {a+ b : a ∈ A, b ∈ B} is the Minkowski
sum. Figure 5 illustrates the balls centered at the origin with
respect to the polytope norm ∥ · ∥NH.

Let l(p) = (log p1, . . . , log pd) ∈ Rd be the logarithmic
mapping and Ld = {l(p) : p ∈ ∆d}. We have

ρHG(p, q) = ∥l(p)− l(q)∥var = ∥l(p̃)− l(q̃)∥var,

for any α, β ∈ R with p̃ = αp, q̃ = βq, and where
∥x∥var := maxixi − minixi = ∥x∥+∞ − ∥x∥−∞ is the
variation semi-norm. ∥ · ∥var is only a semi-norm because
∥(λ, ..., λ)∥var = 0 for any λ ∈ R.

Thus to convert from L to ∆d, we need to find the repre-
sentative element of the equivalence class l̂ of l: normalize
l ∈ L by p(l) = l̂ = exp(l)/

∑d
i=1 e

li . Then we convert l̂
to v(l̂) by choosing translation − logG(l̂), where G is the
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Figure 5. Polytope balls BV and the Euclidean unit ball BE shown
on the 2D slanted plane V 3 = {v ∈ R3 :

∑3
i=1 v

i = 0} of R3.

geometric mean:

v(l) =(
l1 − logG

(
el∑d

i=1 eli

)
, . . . , ld − logG

(
el∑d

i=1 eli

))
.

Thus we have

ρHG(p, q) = ρHG(p̃, q̃) = ∥ log p̃− log q̃∥var
= ∥v(p)− v(q)∥NH = ∥l(p̂)− l(q̂)∥NH.

Therefore

∥l − l′∥var = ∥v(l̂)− v(l̂′)∥NH.

Figure 4 illustrates different transformations of the simplex
space included in the positive orthant cone.

The reverse map from the normed space Vd to the standard
simplex ∆d is given by the softmax function:

pi =
exp(vi)∑
j exp(vj)

.

Thus we have (∆d, ρHG) ∼= (Vd, ∥ · ∥NH). In 1D, (V 2, ∥ ·
∥NH) is isometric to the Euclidean line.

Now, let us notice that coordinate vi can be rewritten as

vi = log
pi

G(p)
,

where G(p) is the coordinate geometric means. Recalling
that the Hilbert simplex distance is a projective distance on
the positive orthant cone domain:

ρHG(p, q) = log
maxi∈{1,...,d}

pi

qi

minj∈{1,...,d}
pj

qj

,

= ρHG(λp, λ
′q), ∀λ > 0, λ′ > 0.

Figure 6. Voronoi diagram in the probability simplex with respect
to the Aitchison distance (left), Hilbert simplex distance (middle)
and equivalent variation-norm induced distance on normalized
logarithmic representations.

Thus we have:

ρHG(p, q) = ∥ log p− log q∥var,
= ∥ log(λp)− log(λ′q)∥var, ∀λ > 0, λ′ > 0.

Choose λ = 1
G(p) and λ′ = 1

G(q) to get

ρHG(p, q) =

∥∥∥∥log p

G(p)
− log

q

G(q)

∥∥∥∥
var

.

This highlights a nice connection with the Aitchison distance
of Eq. 4:

ρHG(p, q) =

∥∥∥∥log p

G(p)
− log

q

G(q)

∥∥∥∥
var

, (5)

ρAitchison(p, q) =

∥∥∥∥log p

G(p)
− log

q

G(q)

∥∥∥∥
2

. (6)

Thus both the Aitchison distance and the Hilbert simplex
distance are normed distances on the representation p 7→
log p

G(p) =
(
log p1

G(p) , . . . ,
pd

G(p)

)
.

Figure 6 displays the Voronoi diagram of n = 16 points
in the probability simplex with respect to the Aitchison
distance (Figure 6, left), and the Hilbert simplex distance
(Figure 6, middle) and its equivalent variation norm space by
logarithmic embedding (Figure 6, right). See also (Gezalyan
& Mount, 2021).

The Hilbert simplex bisectors are piecewise linear in the nor-
malized logarithmic representation since they are induced
by the polyhedral semi-norm ∥.∥var, and thus are more com-
plex than the Aitchison bisectors which are linear/affine
in the log x/G(x) representation: Aitchinson Voronoi dia-
gram can be derived from an ordinary Euclidean Voronoi
diagram (Boissonnat et al., 1998).

2.5. Differentiable approximation

The Hilbert simplex distance is not differentiable because of
the max operations. However, since the logarithm function
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Figure 7. Histograms of Hilbert distances and the relative errors on 106 pairs of uniform random points in ∆d.

is strictly increasing, we can rewrite the Funk distance as

ρFD(p, q) = logmaxi
pi
qi

= maxi log
pi
qi
.

In machine learning, the log-sum-exp function

LSE(x1, . . . , xd) := log

(
d∑

i=1

exp(xi)

)
is commonly used to differentiably approximate the maxi-
mum operator. In fact, one can use the general approxima-
tion formula

LSET (x1, . . . , xd) :=
1

T
LSE(Tx1, . . . , Txd)

=
1

T
log

(
d∑

i=1

exp(Txi)

)
,

where T > 0. For any x ∈ Rd, we have the approximation
bounds

maxixi + ε1(x, T ) ≤ LSET (x1, . . . , xd)

≤ maxixi + ε2(x, T ), (7)

where

ε1(x, T ) :=
1

T
log [1 + (d− 1) exp(−T∥x∥var)] ,

ε2(x, T ) :=
1

T
log [d− 1 + exp(−T∥x∥var)] .

Obviously, 0 < ε1(x, T ) ≤ ε2(x, T ) ≤ 1
T log d and both

ε1(x, T ) and ε2(x, T ) tend to 0 as T increases, making the
approximation LSET (x1, . . . , xd) accurate.

Because ∀i, xi ≥ maxixi − ∥x∥var, we have(
d∑

i=1

exp(Txi)

)
≥ (d− 1) exp(Tmaxixi − T∥x∥var)

+ exp(Tmaxixi)

= ((d− 1) exp(−T∥x∥var) + 1) exp(Tmaxixi).

Taking the logarithm on both sides gives the first “≤” in
Eq. (7). The proof of the second “≤” is similar.

Thus we have

ρFD(p, q) + ε1(r, T ) ≤
1

T
log

(∑
i

(
pi
qi

)T
)

≤ ρFD(p, q) + ε2(r, T ), (8)

where ri = log pi − log qi.

Hence, we may define a differentiable pseudo-distance by
symmetrizing the LSET function:

ρ̃LSET (p, q) =

1
T log

(∑
i

(
pi

qi

)T)(∑
i

(
qi
pi

)T)
. (9)

We have ρ̃LSET (p, q) ≥ 0 and ρ̃LSE(p, p) =
2
T log d. Simi-

lar to Eq. (8), we have

ρHG(p, q) + 2ϵ1(r, T ) ≤ ρ̃LSET (p, q)

≤ ρHG(p, q) + 2ϵ2(r, T ).

The maximum deviation from the approximation
ρ̃LSET (p, q) to the true Hilbert distance ρHG(p, q) is
bounded by 2

T log d.

Figure 7 shows the histogram of Hilbert distances on uni-
form random points drawn from ∆d, and the relative error

errT (p, q):=
ρ̃LSET (p, q)− ρHG(p, q)

ρHG(p, q)

from the differentiable approximation ρ̃LSET (p, q) to the
true Hilbert distance ρHG(p, q). We can verify empirically
that ρ̃LSET (p, q) is always larger than ρHG(p, q). We ob-
serve the approximation becomes more accurate when T
increases from 1 to 5. The approximation error tends to be
large at a small dimensionality d.
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3. Comparing different geometries
We empirically compare the representation power of dif-
ferent geometries for embedding the input data as a set of
points on the manifold. Our objective is not to build a full-
fledged embedding method, but to have simple well-defined
measurements to compare different geometries. Notice that
if (M1, ρ1) is isometric to (M2, ρ2) then these geometries
have the same representation power. We prefer to choose
model geometries with unconstrained domains for optimiza-
tion. Thus the Poincaré hyperbolic ball and the Aitchi-
son simplex embeddings are considered via the equivalent
Minkowski hyperboloid and Euclidean models, respectively.

We consider embedding two different types of data onto a
manifold Md of dimensionality d, which we also denote
as M. The first is given by a distance matrix Dn×n. The
representation loss associated with Md is

ℓ(D,Md) := inf
Y ∈(Md)n

1

n2

n∑
i=1

n∑
j=1

(Dij − ρM(yi,yj))
2
,

where Y = {yi}ni=1 is a set of n free points on Md, and
ρM is the distance on M. The infimum means the error
associated with the best representation of the given distance
matrix. A smaller value of ℓ(D,Md) means Md can better
represent the distance matrix D. We set D to be ➀ the
distance matrix between n random points in Rn (n = 100);
or ➁ the pairwise shortest path between any two nodes on
an Erdős–Rényi graph G(n, p) (n = 200, p = 0.2); or
➂ the node distance on a Barabási–Albert graph G(n,m)
(n = 200, m = 2).

On the other hand, we can evaluate the geometries based
on a given probability matrix Pn×n, meaning some non-
negative pair-wise similarities. P is row-normalized so that
each row sums to 1. We consider the loss

ℓ(P,Md) := inf
Y ∈(Md)n

1

n

n∑
i=1

∑
j:j ̸=i

Pij log
Pij

qij(Y )
,

qij(Y ) :=
exp(−ρ2M(yi,yj)∑

j:j ̸=i exp(−ρ2M(yi,yj))
,

where ℓ(P,Md) is the empirical average of the KL diver-
gence between the probability distributions Pi· and qi·. No-
tice that ℓ is abused to denote both the loss associated with
a distance matrix D and a probability matrix P . Using the
same datasets as in embedding D, we set P to be ➀ pairwise
similarities of n random points in Rn measured by the heat
kernel after normalization; ➁ the random walk similarity
starting from node i and ending at any other node j after
5 steps on an Erdős–Rényi graph, or ➂ a Barabási–Albert
graph.

The embedding losses ℓ(D,Md) and ℓ(P,Md) are approx-
imated based on the Adam optimizer (Kingma & Ba, 2015).

We minimize the function whose infimum is to be taken with
respect to Y , starting from some randomly initialized points
Y0, until converging to a local optimum. The loss ℓ(D,Md)
is similar to the stress function in multi-dimensional scal-
ing (Borg & Groenen, 2005), while ℓ(P,Md) is similar to
the losses in manifold learning (Hinton & Roweis, 2003)
or graph embedding (Perozzi et al., 2014). Our losses do
not depend on many practical techniques such as negative
sampling, and are helpful to measure the fitness of the man-
ifold Md to the input D or P regardless of these practical
aspects. The detailed experimental protocols and more ex-
tensive results are in (Nielsen & Sun, 2022).

Figure 8 shows ℓ(D,Md) (in log scale) against d for six
different choices of M: ➀ Rd with Euclidean norm; ➁ Rd

with L1 norm; ➂ Poincaré/Minkowski hyperboloid; ➃ ∆d

with Aitchison distance; ➄ ∆d with Hilbert distance; ➅ ∆d

with Funk distance. For each configuration, we generate
10 different instances of the random points/graphs, and the
standard deviation is shown as color bands. We observe
that in general, as d grows, all manifolds have decreasing
ℓ(D,Md). The jitters and large deviations are due to that
the optimizer stopped at a bad local optimum in some of
the experiments. The Hilbert simplex and the Poincaré
hyperboloid are observed as the best geometries which can
preserve the input distance matrix. The Funk distance is
asymmetric and is not as good as the other baselines.

Figure 9 shows ℓ(P,Md) (in log scale) against d for the
investigated geometries. On the random points dataset, the
L1 distance presents an increasing loss with d. This could
be due to its mismatch with the geometry of the dataset
and that the optimizer stopped at a local optimum. Overall,
the proposed Hilbert simplex geometry can better represent
pairwise similarities in Rd and graph random walk similarity
matrix, as compared with the baselines. Funk geometry also
achieves good score in representing the Erdős–Rényi graphs.

4. Conclusion
We presented the Hilbert simplex geometry with its closed
form distance (Eq. 2) and its differentiable approximation
(Eq. 9). We provided a simple proof that the Funk and
Hilbert distances both satisfy the information monotonicity.
We made use of an isometry between the Hilbert simplex
and a normed vector space well-suited to carry optimization.
We highlighted a connection between the Aitchinson
distance and the Hilbert projective distance. By comparing
with commonly-used geometries in machine learning, we
showed experimentally that the Hilbert simplex geometry
can better embed a given distance matrix or graph random
walk similarities.

7



2 5 10 20 50

d

10−2

10−1

100

101

`(
D
,
M

d
)

Euclidean

Hyperboloid

L1

Aitchison

Hilbert

Funk

(a) 100 random points in R100

2 5 10 20 50

d

10−1

`(
D
,
M

d
)

Euclidean

Hyperboloid

L1

Aitchison

Hilbert

Funk
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Figure 8. Embedding loss ℓ(D,Md) against the number of dimen-
sions d on three random datasets.
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Figure 9. Embedding loss ℓ(P,Md) against the number of dimen-
sions d.
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A. Experimental Configurations
We rewrite the loss as

ℓ(D,Md) := inf
Y ∈(Md)n

L(D,Md,Y )

L(D,Md,Y ) =
1

n2

n∑
i=1

n∑
j=1

(Dij − ρM(yi,yj))
2
.

ℓ(P,Md) := inf
Y ∈(Md)n

L(P,Md,Y )

L(P,Md,Y ) =
1

n

n∑
i=1

n∑
j=1

Pij log
Pij

qij(Y )
.

The functions to be minimized, L(D,Md,Y ) and
L(P,Md,Y ), are both expressed in the form of a sam-
ple average. Therefore they can be optimized based on
stochastic gradient descent (SGD).

In the experiments, we use PyTorch to minimize
L(D,Md,Y ) and L(P,Md,Y ) with respect to the co-
ordinate matrix Y . The initial Y0 is based on a multivariate
Gaussian distribution so that the trace of the covariance
matrix equals 1.

The optimizer is Adam in its default settings except the
learning rate. The learning rate is based on a log-uniform
distribution (logarithm of the learning rate is uniform) in
the range [10−3, 1]. The mini-batch size is simply set to
16. We observed that reducing the mini-batch size can
generally achieve a smaller loss for all the methods. For each
configuration of (dataset, manifold Md, dimensionality d),
the optimal learning rate is selected based on a Tree Parzen
estimator with 20 trials. The maximum number of epochs is
3000. We use early stopping to terminate the optimization
process if convergence is detected.

Each dataset is generated independently for 10 times, based
on different random seeds. The loss for each of these gen-
erated dataset is computed independently. The average and
standard deviation are reported.

For all simplex embeddings (Hilbert, Funk, Aitchison), we
represent the embedding in the log-coordinates l(p) =
(log p1, . . . , log pd). Because ρHG(p, q) = ∥l(p) −
l(q)∥var = ∥l(p̃) − l(q̃)∥var, we can directly optimize the
Hilbert simplex embedding on the coordinates l(p̃) which
are free points in Rd. For Funk and Aitchison embeddings,
we need to ensure that the embedding to be optimized can
be mapped back into the simplex domain.

B. Experimental Results
Figure 10 shows ℓ(D,Md) (left) and ℓ(P,Md) (right)
against d on the Erdős–Rényi random graph dataset with
p = 0.05 and p = 0.5 (in the main text we studied the case
when p = 0.2), where p is the probability for any pair of
nodes i and j to be connected by an edge.

Figure 11 shows ℓ(D,Md) (left) and ℓ(P,Md) (right)
against d on the Barabási–Albert graphs G(n,m) with
m = 1 and m = 3 (in the main text we only studied the case
when m = 2), where m is the number of edges to attach
when a new node is created.

In both figures, P is random walk similarities on these graph
datasets. We do not simulate real random walks as in graph
embedding methods. Instead, we use the graph adjacency
matrix to construct the transition probability matrix, whose
matrix power gives the random walk similarity matrix P .
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Figure 10. Embedding losses against d (Erdős–Rényi random graph G(n, p)).
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Figure 11. Embedding losses against d (Barabási–Albert graphs G(n,m)).
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