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Abstract. We propose CHOSEN, a simple yet flexible, robust and effective multi-
view depth refinement framework. It can provide significant improvement in
depth and normal quality, and can be integrated in existing multi-view stereo
pipelines with minimal modifications. Given an initial depth estimation, CHOSEN
iteratively re-samples and selects the best hypotheses. The key to our approach
is the application of contrastive learning in an appropriate solution space and
a carefully designed hypothesis feature, based on which positive and negative
hypotheses can be effectively distinguished. We integrated CHOSEN in a basic
multi-view stereo pipeline, and show that it can deliver impressive quality in terms
of depth and normal accuracy compared to many other top deep learning based
multi-view stereo pipelines.

1 Introduction

Geometry acquisition through multi-view imagery is a crucial task in 3D computer
vision. In the multi-view stereo matching (MVS) framework, image patches or features
are matched and triangulated to find 3D points [8, 11]. The dense geometry is usually
represented as a depth map for each view. Due to view dependent appearance, occlusion
and self-similarity in the real world scenarios, the matching signal is often too noisy
to directly give accurate and complete geometry. Traditionally, this problem have been
attacked by some carefully designed optimization and filtering scheme [2, 35], directly
on the depth map or indirectly inside a matching cost volume, where they impose certain
priors on the smoothness of the resulting geometry, making use of the confidence of
matching and appearance in a larger spatial context.

With the advancement of deep learning, many research works have combined the
ideas with traditional MVS. Early works [43, 44] typically involve extracting convo-
lutional features from the images, building one cost volume (indexed by a sequence
monotone depth hypotheses di for each pixel), or several in a multi-resolution hierarchy,
and transform these cost volumes using 3D convolutions into a "probability volume" so
that depth map can be obtained by taking the expectation

d̂ =
∑
i

pidi (1)

* Work done while at Google.
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Fig. 1: CHOSEN’s hypotheses sampling and ranking mechanism. Assuming an initial depth
estimation, we gather depth hypotheses from its perturbations or its spatial neighbors. For each
hypothesis, we combine the matching cost, a second order smoothness term and a context feature
to form the input of a learned score function represented by an MLP. The one with the highest
score will be selected to update refined depth. The process is performed iteratively.

More recent works have more complicated designs regarding cost computation and
aggregation [40], visibility and uncertainty estimation [7,48], loss functions [30], feature
backbones [4], feature fusion [50], and consequently have yielded impressive progress
on various benchmarks. The evaluation has been limited to point cloud reconstruction,
and little attention was paid to, and thus the lack thereof, the raw output’s quality in
terms of depth and normal accuracy. Looking closely at the predicted depth and its
associated normals, we can often find quantization-like artifacts. Moreover, the fixed
training and testing benchmarks also result in limited discussion on the learning and
inference task under the variance of the multi-view acquisition setups, including different
metric scales, camera relative positioning and lenses (focal lengths). Therefore, for a new
capture setup substantially different from the training set, one may need to determine
what hyper-parameters to use, especially the number of depth proposals to sample from
a certain depth range, and retrain the model of choice to get the optimal performance.

To some extent, the problem can be attributed to the approach of using Eq.(1) to
obtain depth estimations: the distribution of depths hypotheses at different pixels, or
across different datasets, can be arbitrary. It is thus difficult to guarantee the learned
probability weights to produce consistent results: in a smooth spatial neighborhood,
small perturbations in the di results in non-smoothness in the predicted depth and normal;
across different datasets, the inappropriately spaced di that are too sparse or too coarse
results in poor generalization.

In this work, we turn our attention to the problem of learning to refine depth with
multi-view images while keeping in mind that they can be from very different setups,
and how to best sample hypotheses for depth refinement. We will discuss in Sec.3.1
the proper solution space to perform the learning task, and present an alternative to the
approach of Eq.(1) in Sec.3.2. Much as inspired by the PatchMatch [1, 3] methodology,
our framework, named CHOSEN, learns to refine the depth by iteratively re-sampling
and selecting the best hypotheses, thus eliminating the need of a "probability volume".
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In the following we identify and underline the core design elements that enable
CHOSEN to produce significantly improved depth and normal quality:

– Transformation of the depth hypotheses into a solution space defined by the acquisi-
tion setup.

– The use of first order approximation to sample spatial hypotheses to propagate good
hypotheses to their neighborhood.

– A carefully designed hypothesis feature so that it’s informative for contrastive
learning.

– Each hypothesis is evaluated independently so that the refinement is robust to
arbitrary hypothesis samples.

An overview of CHOSEN is illustrated in Fig.1.
To demonstrate the effectiveness of CHOSEN, in Sec.3.3 we describe how we

embed it in a minimalist MVS pipeline where the only extra learnable part is the
feature extraction using light-weight U-Nets [31]. We perform comprehensive ablation
experiments to justify our design, and compare the quality of our refined depths with
various recent deep learning based MVS pipelines. Without bells and whistles, our
baseline model is easy to train, fast to converge, and already delivers impressive depth
estimation quality.

2 Related work

MVS algorithms are often categorized by the representation used to reconstruct the
output scene, e.g. volume [18,19,24], point cloud [11,16,25,26], depth map [13,33,38],
etc. However, depth map is probably the most flexible and efficient representation among
existing ones. While depth map can be considered as a particular case of point cloud
representation, (e.g., pixel-wise point), it reduces the reconstruction task to a per-view
(2D) depth map estimation. These MVS approaches can be further grouped in hand-
crafted (traditional) methods or learning based solutions. Traditional MVS pipelines
extend the two-view case [32] by introducing a view-selection step that aggregates
the cost from multiple images to a given reference view. The view selection can be
performed per-camera [12] or per-pixel [33]. These approaches [12, 13, 33, 38] then rely
on well engineered photometric cost functions (ZNCC, SSD, SAD, etc.) to estimate
the scene 3D geometry, by selecting the best depth hypothesis that leads to the lowest
aggregated cost. However these cost functions usually perform poorly on texture-less or
occluded areas, and under complex lighting environments where photometric consistency
is unreliable. Hence further post-processing and propagation steps are used to improve
the final estimate [12, 33]. We refer readers to [10] for additional details regarding
traditional multi-view stereo pipelines.

Recently, MVS algorithms have showed impressive quality of 3D reconstructions
in terms of accuracy and completeness, mostly thanks to the increase popularity of
deep learning based solutions [4, 14, 40, 43, 44, 46, 50]. These methods often make
use of multi-scale feature extractors [6, 7, 36], cost-volumes [20, 21, 49], and guided
refinement [21, 29, 43] to retrieve the final 3D estimate. Typically, they leverage U-
Nets [31] to build a single or a hierarchy of cost volumes with predetermined depth
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hypotheses. Then, these cost volumes are regularized using 3D convolutions and the final
depth map is regressed from the regularized probability volume. However, to achieve
high resolution depth accuracy, it requires sampling a large number of depth planes,
which is limited by memory consumption.

Researchers are also opening other frontiers in deep learning based MVS. UCS-
Net [7] and Vis-MVSNet [48] use some uncertainty estimate for an adaptive generation
of cost volumes. PVSNet [42] and PatchmatchNet [40] learn to predict visibility for
each source image. The approach of Eq.(1) is considered critically in [30], although
it was only considered from the loss function perspective. GeoMVSNet [50] proposes
a geometry fusion mechanism in the MVS pipline. Most recently, transformer based
methods [4, 5, 9] exploits the attention mechanism for more robust matching and context
awareness. In particular, MVSFormer [4] has combined this approach with the powerful
pre-trained DINO features [28].

It is worth mentioning that existing methods usually need to hand-tune hyper-
parameters such as the depth range, hypotheses spacing, and number of hypotheses
to ensure sufficient and accurate coverage for the new application. Some of these meth-
ods adopt 2D convolutional neural networks to obtain final depth estimations, using
RGB image to guide depth up-sampling and refinement [15, 21, 40]. Consequently, these
methods often generalize poorly to new camera setups or new scenes.

3 Framework

There are two important aspects in our CHOSEN framework. In Sec.3.1 we discuss how
to define a suitable solution space for the depth hypotheses and how to sample them.
This has to accommodate the fact that input depths can be of arbitrary scale, and are
computed from different multi-view systems. Then in Sec.3.2 we detail our design of a
ranking module that is able to process arbitrarily sampled hypotheses, and how it can be
trained to effectively and robustly distinguish the good hypotheses from the bad ones.

3.1 Hypothesis representation and sampling

Pseudo disparity representation We find it crucial to operate in a transformed inverse
depth representation, which we call pseudo disparity - akin to disparity for rectified
stereo pairs. Denoting the metric depth as D, the pseudo disparity writes

d =
f ∗ b
D

(2)

where we choose f to be the focal length (unit in pixels) of the reference camera, and b
the metric distance between the reference camera and the closest source camera. The
scaling factor f ∗ b converts the inverse depth into the pixel space, and approximates the
correct accuracy level of the capture setup in use, granted that the cameras have sufficient
frustum overlap and similar focal lengths. This representation not only allows us to
build hypothesis feature insensitive to the variance in metric or intrinsic scales, but also
defines the correct granularity in the solution space where we distinguish the positive
and negative samples for contrastive learning, thus enabling our depth refinement model
to learn and infer across various acquisition setups.



CHOSEN: Contrastive Hypothesis Selection for Multi-View Depth Refinement 5

Fig. 2: Overview of the baseline MVS with our CHOSEN depth refinement. The winner hypothesis
is from the initial full range cost volume, followed by applying the hypotheses sampling and best
hypothesis selection. Initial sampling and spatial sampling are applied in an alternating fashion.
Spatial sampling is facilitated through first order propagation as defined in Eq.(3). Key to this
pipeline is the design of the hypothesis feature, defined in Sec.4.2. The refined depth is upsampled
to the higher resolution using nearest neighbor, and the same refinement procedure will be applied.

Initial hypotheses sampling The initial depth hypotheses are constructed as a H ×
W × N volume where we will look for the optimal hypothesis per pixel that has the
lowest matching cost. In case there is no initial depth available, we initialize the volume
using uniformly spaced slices in the range [dmin, dmax], where the number of slices can
be chosen so that the slices sit 1-px apart from each other, and initialize the depth d̂ to be
the one with lowest matching cost. We refer to the corresponding cost volume as the full
cost volume. In case an previous depth d̂ is available, the volume will be restricted to be
uniformly spaced in [d̂−M, d̂+M ]. A cost volume built using this set of hypotheses
is referred to as a local cost volume, and d̂ will be updated to be the one with lowest
matching cost in the local volume. In addition, we apply uniform random perturbation in
U [−0.5, 0.5] to each hypothesis at each pixel for both volumes to robustify the training
and estimation. Note that there are no other particular restrictions on choices of N or M
as long as the spacing is appropriate and the coverage is sufficient, and in particular they
can be changed without re-training.

Spatial hypothesis sampling Inspired by the PatchMatch framework [1, 3], we use
spatial hypotheses to expand good solutions into their vicinity. Specifically, we sample
a set of hypotheses for each pixel by collecting the propagated depths from its spatial
neighbors. The propagation is facilitated through first order approximation. Denote
∂d = (∂xd, ∂yd) to be gradient of the depth d, p′ = p +∆p be a spatial neighbor of
the pixel p. The propagated depth from p′ to p is defined as

dp′→p = dp′ − ∂dp′ ·∆p (3)

In practice we use a fixed set of ∆p’s for each pixel, though it is more of a conve-
nience than requirement. We conduct sampling and best hypothesis selection in multiple
iterations and resolutions.
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3.2 Contrastive learning for hypothesis ranking

It is crucial to keep in mind that we don’t assume any structure in the sampled set of
hypotheses. In fact, many among them can be wildly bad samples, especially if the
initial depth is too noisy. Hence it implies that each hypothesis should be evaluated
independently, and our task is to learn to distinguish the good hypotheses from the bad
ones.

To achieve our objective, we designate the ranking model to be a small MLP that
takes a hypothesis feature and its context feature, and outputs a score for the input
hypothesis. Among all the hypotheses at a particular pixel, the one with the highest score
will be selected to be the updated depth estimation d̂. The ranking and selection goes on
iteratively to refine the depth estimation, where the new d̂ will be used to generate better
hypotheses with the updated context feature.

Our design for the hypothesis feature and context update mechanism is illustrated
in Fig.1. There are three general guidelines we have followed when we design the
hypothesis feature: (1) It should inform how well the matching is given by the hypothesis;
(2) It should inform how well the hypothesis fits into the current spatial context; (3)
It should be robust to different camera setups and resolutions. With these in mind, we
propose to use the concatenation of the following three simple quantities computed from
a hypothesis di:

[c(di), e(di), f(d̂)] (4)

The first term c(di) consists of the matching costs linearly interpolated from the cost
volume for a fixed set of perturbations

c(di) = [c(di + ε) for ε ∈ {−1, 0, 1}] (5)

Note that ε is defined in the pseudo disparity space.
The second term e(di) is a "tamed" version of the second-order error in the one-ring

neighborhood N of the pixel p. Note that the error is computed against d̂ in the pseudo
disparity space so that it can work across different metric and intrinsic scales.

e(di) = [tanh(d̂p+∆p − ∂d̂p′ ·∆p− di) for ∆p ∈ N ] (6)

Finally, f(d̂) is a learned context feature of the previous refined depth, whose inputs
are the concatenation of c(d̂), e(d̂) and the feature from a U-Net describing the reference
view’s high level appearance. We use a two-layer convolution network to initialize f(d̂),
and subsequently we use a convolutional gated recurrent unit (GRU) to update f(d̂) given
the updated d̂. We remark that the overall iterative update is similar to the RAFT [37]
framework, with the addition of the geometric error term e(d). We will discuss its crucial
contribution in our ablation study in Sec.4.2.

We use a contrastive loss to supervise the ranking module. Let dgt be the ground
truth depth and D = di be the set of input hypotheses. We define the positive sample
group to be those within 1-pseudo disparity of the ground truth

D+ = {di ∈ D : |di − dgt| <= 1} (7)
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Fig. 3: Evolution of the refined depth in our baseline MVS model. The first row shows the ground
truth and input images, and we mark each row with the cost volume pyramid configuration. As
one can see, the winner-take-all initialization from the cost volume is usually very noisy, but
nevertheless contain some accurate estimations. By iteratively re-sample and selecting the best
hypotheses, the depth and quality are significantly improved.

Denote the score of di to be s(di). Our contrastive loss is defined as

Lcl = − log(
∑
di∈D+

exp(s(di))∑
di∈D exp(s(di))

) (8)

As result, the ranking module will learn to put most of the weight on the set D+. We
found this formulation most effective in training, and much superior compared to learning
to put all weight on the closest sample to the ground truth. We believe it’s due to that
during spatial propagation, many samples will be already close to the ground truth and
supervising on the closest sample introduces unnecessary competition among good
samples.

3.3 Baseline MVS design

Here we will demonstrate the design of a simple end-to-end MVS pipeline with our depth
refinement method. We have deliberately designed it such that there are no learnable
components for cost volume construction, depth refinement, or confidence prediction.
The only learnable parts are the ranking MLP, context update convolutional layers,
the light-weight U-Nets used for extracting matching feature as well as the high level
appearance of the reference view. Hence our cost volume construction should be inferior
and more noisy compared to many existing MVS models that are equipped with cost
volume filtering. Even with our simple pipeline, we show in Sec.4.3 that it can achieve
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much more superior quality in depth and normal compared to many state-of-art MVS
works on the DTU dataset.

Feature extraction We use a two-stream feature extraction architecture similar to [37].
First, we use a matching feature network extracts distinctive features that are then used
to evaluate the cost of depth hypotheses between the reference and other source views.
Second, we use a context feature network that learns high-level spatial cues for learnable
hypothesis selection, applied only on the reference image. Both networks are based on a
light-weight U-Net architecture [31] which extracts features from coarse to fine.

Matching cost aggregation We choose the negative correlation as the matching cost:

cv(d) = −corr(fv→ref(d), fref) (9)

where fv→ref(d) denotes the v-th source view feature warped to the reference view
through the hypothesis d. We aggregate the costs from all source views to have a single
cost volume simply as

c(d) =
1

Σvwv(d)
Σiwv(d)cv(d) (10)

where
wi(d) = Sigmoid(α(δ − ci(d))3) (11)

computes the weighting for each view and hypothesis, and α is chosen so that it down-
plays the contribution from higher cost, increases the importance of lower cost, and not
sensitive if the cost is close to δ, thanks to the cubic exponent.

Cost volume pyramid As an optional benefit, we observe that it’s possible to compute
the matching costs for lower resolution depth using higher resolution feature. Specifically,
we construct a grid (xp, yp)p, indexed by lower resolution pixels, which samples the
corresponding locations in the higher resolution feature. We can then compute the
warped pixel location and the matching costs using the camera intrinsics and features
corresponding to the higher resolution.

In practice, we typically compute one additional cost volume using higher resolution
features. The new hypotheses are centered around the hypothesis of lowest cost in the
coarse cost volume, spaced according the scale defined by the higher resolution pseudo
disparity space. These two cost volumes now form a cost volume pyramid, which will
be used to provide both coarse and fine matching information to the our ranking module
through c(d) in Eq.(5). We will demonstrate in Sec.4.2 that using the higher resolution
feature can unblock a higher level of accuracy even at lower resolution output, but it’s
otherwise not crucial to the success of our hypothesis ranking module.

Overall pipeline Our baseline MVS pipeline, as depicted in Figure 2, starts by extract-
ing features from a reference view and multiple source views. The first depth estimation
d̂ is obtained as the lowest cost hypothesis from the full cost volume. A cost volume
pyramid is then constructed around the previous depth estimation. The refinement is
performed on a hierarchy of resolutions. The refined depth from lower resolution will
be upsampled using nearest-neighbor and set to be the initial depth for the next higher
resolution.
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Training Similar to the contrastive loss used in [36], we supervise the feature matching
using a simple contrastive loss

Lfm = c(dgt)− clip(c(d−), [α, β]) (12)

where c(dgt) is the ground truth depth, and d− is the negative sample that is at least
1-pseudo disparity away from the ground truth and has the lowest matching cost

d− = arg min
|d−dgt|>1

c(d) (13)

The loss will not penalize cost of d− already lower than α or higher than β. We choose
β = 1 in lower resolution and α = 0 for all resolution, so that the learned features will
be as distinctive as possible. We found it better to choose a lower β in higher resolution
(e.g. 0.8) due to the frequent appearance of local texture-less regions. Note that there is
no any kind of cost volume regularization. Furthermore, we enforce the matching feature
network to be only trained by the above loss, meaning it will not be influenced by the
depth refinement. Therefore, the total loss of this baseline model is simply

Lfm + Lcl (14)

where Lfm only updates the matching feature U-Net, and Lcl updates the context feature
U-Net in the reference view, the ranking MLP and the convolutional layers that initialize
and update f(d̂) in Eq.(4).

3.4 Integration in MVS pipeline

It’s clear to see that CHOSEN can be embedded end-to-end in existing deep learning
based MVS framework with little modification needed, since CHOSEN only needs the
cost, second order error term and context feature to rank the depth hypotheses. One
may substitute our simplistic yet noisy cost volume construction in the baseline with
the techniques proposed in recent works, such as cost volume filtering [43] and other
feature backbones [4], etc. The main thing to consider for the integration is that the
depth hypotheses must be converted to the pseudo disparity representation in order to
be processed by CHOSEN. Since the spacing of the hypotheses in the cost volume is
crucial for contrastive learning, it might be necessary to retrain the model with CHOSEN
from scratch since the original model might be sensitive to different spacing. In Sec4.5
We illustrate the some results demonstrating the further improvement CHOSEN by
introducing cost volume filtering based on MVSNet [43].

4 Experiments

4.1 Implementation details

We evaluate our depth refinement method using the baseline MVS pipeline described
in Sec.3.3. Typically, we extract matching features at 1/8, 1/4, 1/2 and 1 of the original
resolution, and context features at 1/8 and 1/4 of the original resolution. The depth is
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Method % < 1mm ↑ MAE(@< 1mm) ↓ % < 5◦(@< 1dsp) ↑ % < 10◦(@< 1dsp) ↑
baseline: (1/8,1/4,1/4)-(1/4,1/2,1) 70.16 0.3669 45.53 73.34
baseline: (1/8,1/4,1/4)-(1/4,1/2,1) + BlendedMVS 67.01 0.3992 43.77 71.73

baseline: (1/8,1/8,1/8)-(1/4,1/2,1) 71.03 0.3558 68.16 84.01
baseline: (1/8,1/8,1/8)-n.a. 63.62 0.3978 57.31 79.64

baseline w/o selection: (1/8,1/8,1/8)-(1/4,1/2,1) 59.33 0.4282 45.38 74.41

baseline w/o e(d) term: (1/8,1/8,1/8)-(1/4,1/2,1) 55.26 0.4223 41.51 66.63

baseline w/o CHOSEN: (1/8,1/8,1/8)-(1/4,1/2,1) 46.46 0.4653 20.90 49.00

MVSFormer [4] 61.92 0.4248 18.96 44.17
GeoMVSNet [50] 63.93 0.4089 15.18 38.40
GBi-Net [27] 34.01 0.4531 13.78 33.41
IterMVS [39] 51.09 0.4524 16.67 37.50
PatchMatchNet [40] 56.19 0.4260 18.03 41.82
UCSNet [14] 59.03 0.3942 31.31 54.39

Table 1: Comparison for estimated depths and normals on DTU testing set. The metric is computed
on all the valid ground truth pixels. We mark our best results separately for 1/8 and 1/4 resolutions.
The results from other methods are evaluated at 1/4 resolutions with nearest neighbor down-
sampling. Notice that so long as the finest resolution matching features are used, the final depth
accuracy metrics for these two output resolutions are very similar. Our simple baselines offer
significant improvement in terms of depth quality even compared to the strongest state-of-art MVS
pipelines.

initialized by winner-take-all from the full cost volume at 1/8 resolution that hasN = 128
slices, and a cost volume pyramid is built on 1/8& 1/4 resolution matching features. One
refinement stage consists of 4 iterations, where twice on initial sampled hypotheses
and twice on spatially sampled hypotheses, in an alternating fashion. After upsampling
the refined depth using nearest neighbor, we repeat the same refinement stage at 1/4
resolution, with a 1/4& 1/2 pyramid. Finally, the last refinement stage is performed with
a 1/4&1 pyramid with output at 1/4 resolution. Each refinement stage has their own
parameters for the ranking MLP and context update networks. We denote this default
configuration as (1/8, 1/4, 1/4)& (1/4, 1/2, 1). Different choices for cost volume pyramid
configurations and their effects will be discussed in Sec 4.2.

We set M = 4 in the initial hypotheses sampling, giving 2M + 1 = 9 hypotheses.
For spatial sampling, we use a set of offsets {∆p} consists of dilated 3 × 3 regular
patches with dilation rate of 1 and 3, without repeating the patch center, giving in total
17 hypotheses for each pixel. This offset configuration is the same as the one illustrated
in the spatial sampling part of Fig.1.

Our baseline model is trained and tested on a single NVIDIA A100 GPU (40G).
The total trainable parameter count is about 1.1 million, including the matching and
context U-Nets. Our selection module’s learnable parameter count is about 781k. We
first train with batch size 4, at input resolution 600× 800, up to 200k iterations using
the default Adam optimizer [22] at a learning rate of 0.001. We then fine-tune for up
to 50k iterations at input resolution 1200 × 1600 at a learning rate of 0.0005. During
training, we fix the closest source view and randomly sample two from the remaining
source views, which is the only data augmentation we used. For testing, it takes around
0.6 seconds to run at 1200 × 1600 with 5 source views, with a total of 12 iterations
of hypotheses ranking (4 iterations for each cost volume config). We provide results
both from models trained on DTU [17] training set only, and on DTU mixed with the
BlendedMVS [45] dataset, which will be tagged specifically.
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Depth & normal metrics We use the following metrics to measure the quality of
depth and its induced normal map on the DTU evaluation dataset:

– % < xmm: the percentage of pixels that have less than x-mm of absolute error.
– MAE(@< xmm): the mean absolute error on pixels that have less than x-mm of

absolute error.
– % < x◦(@< y-dsp): the percentage of pixels where the normal is within x◦ of

angular error out of all pixels whose absolute error is less than y-pseudo disparity.

The ground truth depth are resized to the same resolution of the outputs using nearest
neighbor. The normals are computed from the 3D coordinate’s gradients using the Sobel
filter. All the above metrics are computed only on the valid pixels where the ground-truth
is available.

4.2 Ablation studies

Cost volume pyramid design Here we study the effects of different cost volume
pyramid configurations. We choose the following variants of the configuration:

– (1/8,1/4,1/4)-(1/4,1/2,1): There are 3 stages of refinement with 1/8& 1/4, 1/4& 1/2 and
1/4&1 cost volume pyramids, and output refined depth at 1/4 resolution. This is
our default configuration and we also include the results trained on data mixed
BlendedMVS.

– (1/8,1/8,1/8)-(1/4,1/2,1): There are 3 stages of refinement with 1/8& 1/4, 1/8& 1/2 and
1/8&1 cost volume pyramids, and output refined depth at 1/8 resolution.

– (1/8,1/8,1/8)-n.a: Only the coarsest resolution matching feature is used. There are
3 stages of refinement with 1/8 resolution feature, and output refined depth at 1/8
resolution.

Quantitative results on DTU testing set are reported in the first four rows in Tab.1. First of
all, notice that even without cost volume pyramid, our method performs reasonably well,
indicating that the pyramid design mainly unblocks higher accuracy at lower resolution
output, but otherwise is an optional feature. Second, we can observe from the first and
third rows in Tab.1 that the % < 1mm metrics are similar for the outputs at 1/8 resolution
and 1/4 resolution, so long as the full resolution matching features are used. Comparing
1/8 (third and fourth rows) and 1/4 (first and second rows) output resolution, we can
observe that it becomes more difficult to get accurate normals at higher resolution. This
is due to the fact that high frequency details only emerge in higher resolution, which may
be impossible to obtain without a photometric appearance model. Lastly, we remark that
the worse results from mixed data training is likely due to that BlendedMVS contains
images with severe aliasing artifacts, which could hurt our model training with Lfm.

Selection v.s. expectation The ability to rank arbitrary hypotheses is essential to the
success of our depth refinement. Here we illustrate the point by comparing with an
approach where the learned score si for each hypothesis di is used for taking a weighted
average. In this ablated approach, the refined depth is obtained by

d̂ =
1∑

i exp(si)

∑
i

exp(si) · di
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Fig. 4: Normal quality comparisons on DTU. Our simple baseline MVS trained only on DTU
produces significantly more accurate normals.

and we use smoothed L1 loss between d̂ and dgt in place of Lcl. Everything else in
the pipeline stays the same. Quantitative results are reported in the fifth row of Tab.1.
We note that this alternative approach based on weighted average is much less accurate
than the our approach based on ranking and selection. This can be attributed to the
difficult task of learning the weights for arbitrary hypotheses, while learning to classify
the hypotheses is a much easier task.
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Fig. 5: Direct application of our DTU + BlendedMVS trained baseline model on instances from
MultiFace [23], Tanks & Temples and ETH3D [34] datasets. Our simple baseline achieves
consistent generalization ability even though trained on substantially different data.

Hypothesis feature design The "tamed" second order error term e(d) in Eq.(4) can
be viewed as an extra component compared to the input feature design in the RAFT [37]
framework for optical flow estimation. Here we show that it is a vital component
in the hypothesis ranking model that improves the overall smoothness and accuracy.
Quantitative results on DTU testing set are reported in the sixth row of Tab.1. Since
each hypothesis is evaluated independently, without the information about how well a
particular hypothesis fits in the local geometry, the model struggles to select the best
hypothesis solely based on matching and context information.

4.3 Comparisons on depths and normals

We collect the testing results from various recent deep learning based MVS works in the
last part of Tab.1. The outputs for the candidate models and ground truths are resized
to 1/4 of input resolution using nearest neighbor. Our simple baseline MVS pipeline
significantly outperforms the strongest state-of-art in terms depth and normal quality.
Visual comparisons are shown in Fig.4.

4.4 Qualitative results for baseline

We demonstrate the excellent generalization ability of our simple baseline on various
datasets including MultiFace [41], Tanks & Temples [23] and ETH3D [34]. Results in
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Fig. 6: From left to right: The reference view, CHOSEN in baseline MVS, and CHOSEN in
baseline w/ 3D-CNN. 3D-CNN is applied to the full range cost volume. The improvement is most
significant in large texture-less or repetitive regions.

Fig.5 use the same baseline model trained on mixture of DTU and BlendedMVS reported
in Tab.1.

4.5 A simple extension of the baseline MVS with cost volume filtering

We explore a very simple extended setting to our baseline MVS, where we apply an MVS-
Net [43] style 3D-CNN on our full range cost volume, while other components remains
unchanged. The 3D-CNN is applied on the 1-channel correlation volume computed
according to Eq.(10). The 3D-CNN then outputs the logit for each depth hypothesis, and
the logits per pixel are further normalized by the soft-max function. This provides more
global matching information to CHOSEN.

Compared to the correlation volume in the baseline, the 3D-CNN and the normal-
ization allow CHOSEN benefit from the higher quality matching signal. Thus we can
use just Lcl loss to supervise the whole pipeline, without the loss Lfm in our baseline
MVS. We found that this model produces performs much better on inputs with large
texture-less regions, such as from the ETH3D datasets shown in Figure 6. We thus be-
lieve our formulation of CHOSEN will present mutual benefit with many of the current
MVS frameworks that focus on cost volume and feature quality.

5 Limitations and Conclusion

One limitation of CHOSEN is that it becomes more expensive to sample and select from
a large number of hypotheses at high resolution. This is part of the reason why we settled
at 1/4 resolution to arrive at a sweet spot of both performance and run time. Another
limitation is that we did not focus on bundle adjustment and joint filtering of depths
for point cloud and surface reconstruction, which we believe should be a subject of its
own interests, especially considering the proliferation of volumetric based methods such
as [47].

We have demonstrated that CHOSEN is simple yet effective for multi-view depth
refinement. It iteratively re-samples and select the best hypotheses, and is applicable to
a wide range of multi-view capture setup. We have integrated CHOSEN into a simple
MVS baseline that delivers impressive quality in terms of depth and normal accuracy.
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