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Abstract

Advancements in dataset analysis methods001
have led to the development of ways to an-002
alyze and categorize training data instances.003
These methods categorize the data based on004
specific features like "difficulty". We propose005
a framework that categorizes data from a view-006
point of similarity. This framework quantifies007
the similarities between subsets of training in-008
stances by comparing the models trained on009
them. This approach addresses the limitations010
of existing methodologies that focus on individ-011
ual instances and are confined to single-dataset012
analyses. Our method enables the evaluation013
of similarities among arbitrary subsets of in-014
stances, facilitating both dataset-dataset and015
instance-dataset analyses. To compare two016
models efficiently, we leverage the Low-Rank017
Adaptation (LoRA) method. The effectiveness018
of our method has been validated across various019
NLP tasks, datasets, and models. The method020
can be used to compare datasets, find a smaller021
subset that outperforms a randomly selected022
subset of the same size, and successfully un-023
covers heuristics used in the construction of a024
challenge dataset.025

1 Introduction026

Contemporary machine learning models are deeply027

influenced by the datasets on which they are trained.028

The characteristics of a dataset, encompassing the029

quality and diversity of its instances, are critical030

in shaping a model’s learning effectiveness and its031

capability to generalize. Recent advancements in032

the field have led to the development of methodolo-033

gies that facilitate the analysis and categorization of034

data instances based on specific attributes, notably035

“difficulty” (Ethayarajh et al., 2022; Siddiqui et al.,036

2022; Swayamdipta et al., 2020), as well as other037

attributes, such as noisiness, atypicality, prototyp-038

icality, and distributional outliers (Siddiqui et al.,039

2022). These methodologies typically involve rank-040

ing or categorizing training instances according041

to these attributes, identifying specific types that 042

may require specialized processing or treatment. 043

One intuitive objective would be to identify misla- 044

beled or noisy examples, pruning of which from 045

the training data can lead to more effective training 046

(Mirzasoleiman et al., 2020; Pleiss et al., 2020). 047

Additionally, these studies are instrumental in an- 048

alyzing and uncovering dataset artifacts (Gardner 049

et al., 2021; Ethayarajh et al., 2022). 050

However, despite their contributions, these meth- 051

ods are often limited by their focus on individual 052

instances without the capacity to evaluate subsets of 053

data as a whole. Moreover, they are generally con- 054

fined to analyses within a single dataset and lack the 055

capability to conduct comparisons across different 056

datasets or to perform comprehensive cross-dataset 057

evaluations. 058

In response to these limitations, we introduce a 059

novel framework that offers a refined lens for the 060

analysis: quantifying the similarities between sub- 061

sets of training instances from the perspective of 062

the models trained on them. Specifically, we mea- 063

sure the similarity between two subsets, S ⊆ D and 064

S ′ ⊆ D′ of the training datasets D and D′ (where 065

D and D′ could be the same dataset), by comparing 066

the models trained exclusively on each subset. The 067

subsets are deemed similar if the representation 068

space learned by the model trained on S closely 069

aligns with that learned by the model trained on 070

S ′. This re-formulation addresses previous limi- 071

tations by enabling the analysis and evaluation of 072

similarities among arbitrary subsets of instances, 073

from individual examples to entire datasets, from 074

varied sources. Specifically, it facilitates: 075

• Dataset-dataset analysis: Compare similari- 076

ties in task and dataset characteristics from a 077

model’s perspective, both within and beyond 078

their original domains. 079

• Instance-dataset analysis: Identify the most 080

“informative” instances for the target dataset 081

1



(or others), using which a more effective train-082

ing can be performed. Similarly, identify083

those with the least information, suggesting084

out-of-distribution or noisy outliers.085

The challenge lies in comparing two models,086

particularly within the context of modern, heav-087

ily parameterized models with expansive weight088

matrices. To constrain the set of trainable param-089

eters, i.e., the updates in the representation space,090

we leverage low-rank adaptation Hu et al. (2021,091

LoRA). LoRA efficiently captures changes in a092

weight matrix through a low-rank matrix, primarily093

to expedite the fine-tuning process. Having all the094

significant training-induced changes captured in a095

low-rank matrix allows us to quantify the similarity096

of two models by a direct comparison of the corre-097

sponding changes in their low-rank representation098

spaces.099

The efficacy of the proposed method has been100

validated through a set of experiments across dif-101

ferent NLP tasks, datasets, and models. The results102

demonstrate that LoRA matrices exhibit signifi-103

cant similarities across similar tasks. Additionally,104

for each model, a compact yet informative sub-105

set within any dataset has been identified; models106

trained on this subset consistently outperform those107

trained on a comparably sized random subset. In108

a definitive demonstration of cross-dataset utility,109

the approach successfully uncovers heuristics used110

in the automatic construction of a challenge dataset111

(HANS).112

2 Related Work113

The process of quantifying the similarity between114

two distinct datasets is a thoroughly researched115

topic. The theoretical concept of data similarity can116

be linked to the traditional KL-divergence (Kull-117

back and Leibler, 1951), a non-symmetric mea-118

sure that quantifies the dissimilarity between two119

probability distributions. For ‘shallow’ datasets,120

empirical measures such as the Maximal Mean Dis-121

crepancy (MMD) (Borgwardt et al., 2006) are often122

employed. This measure compares the means of123

samples drawn from two distributions in a high-124

dimensional feature space.125

Tran et al. (2019) utilized an information-126

theoretic approach to estimate task difficulty,127

demonstrating a strong correlation between their in-128

troduced hardness measure and empirical hardness129

and transferability. Alvarez-Melis and Fusi (2020)130

proposed a distance measure to quantify similarity131

between datasets, thereby assessing transfer learn- 132

ing hardness. 133

In a more empirical setting, Hwang et al. (2020) 134

presented a method to predict inter-dataset similar- 135

ity using a set of pre-trained autoencoder. Their 136

approach involves inputting unknown data samples 137

into these pre-trained autoencoders and evaluat- 138

ing the difference between the reconstructed out- 139

put samples and their original input samples. Our 140

method, while empirical, requires no additional 141

computation beyond regular fine-tuning by LoRA 142

and is robust to the randomness of the training en- 143

vironment. 144

Our method does not impose constraints on the 145

size of the subsets it compares, thus it can be catego- 146

rized under data selection research. Swayamdipta 147

et al. (2020) used training dynamics to divide a 148

dataset into subsets of easy-to-learn, hard-to-learn, 149

and ambiguous instances. However, their method 150

has limitations in analyzing individual instances or 151

performing cross-dataset analysis. 152

A stream of prior research has aimed to find a 153

subset of training examples that achieves close per- 154

formance to training on the full dataset by using 155

gradient information (Mirzasoleiman et al., 2020; 156

Wang et al., 2021; Yu et al., 2020; Killamsetty 157

et al., 2021). Recently, Xia et al. (2024) proposed 158

a method to estimate the influence function of a 159

training data point to identify influential data in an 160

instruction tuning setting. 161

Ethayarajh et al. (2022) presented a metric that 162

quantifies the complexity of individual instances 163

relative to a specific distribution, which is useful 164

for comparing datasets or subsets within a single 165

dataset. Our approach can be extended to facili- 166

tate comparisons of instances or segments across 167

different datasets. 168

3 Methodology 169

We introduce a method designed to assess the sim- 170

ilarity between subsets of data instances, where 171

subsets can be anything from individual instances 172

to entire datasets. We define two subsets, S1 and 173

S2, as similar if a model trained on S1 (denoted as 174

MS1) exhibits a representation space akin to that 175

of a model trained on S2 (MS2). 176

During standard fine-tuning, alterations to a spe- 177

cific weight matrix Wj
i (the jth weight matrix 178

in layer i) are captured by ∆Wj
i , also known 179

as the adaptation matrix. After fine-tuning, the 180

updated model weights are then represented as 181
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(a) (b)
Figure 1: Grassmann distance of LoRA matrices for each layer of two BERTbase models fine-tuned on SST-2 but
(a) with different seeds, and (b) with random baseline (axes are i and j of the corresponding Grassmann distance).

(a) (b)
Figure 2: Grassmann distance of LoRA matrices for each layer of two BERTbase models fine-tuned on (a) a single
training instance of SST-2 with different seeds, and (b) the instance from part a and another random instance (axis
are i and j in Grassmann distance).

Ŵj
i = Wj

i + ∆Wj
i . These adaptation matrices182

are responsible for extracting task-specific features183

from the input and incorporating them into the184

pre-trained weight matrices. Since the pre-trained185

weights Wj
i remain constant across both models,186

comparing the representation spaces of MS1 and187

MS2 effectively boils down to analyzing the differ-188

ences in ∆Wj
i .189

The challenge in comparing models arises from190

the substantial size and high dimensionality of the191

weight matrices, particularly in modern language192

models. To manage this complexity, we propose193

using the LoRA method to encapsulate the ∆Wj
i194

matrices in a low-rank format. In the following195

sections, we will provide a brief introduction to196

the LoRA method and explain how it facilitates the197

comparison of adaptation matrices between mod-198

els.199

3.1 Background: LoRA 200

In the Low-rank Adaptation (Hu et al., 2021, 201

LoRA) method, a model M with a pre-trained 202

weight matrix Wj
i is efficiently fine-tuned on a spe- 203

cific dataset. the goal in LoRA is to efficiently fine- 204

tune the model on a given dataset. LoRA achieves 205

this by keeping the pre-trained weights (Wj
i ) frozen 206

and allowing only the injected low-reank matri- 207

ces, ∆Wj
i , to be updated during the fine-tuning 208

process. To ensure parameter efficiency, LoRA re- 209

stricts these ∆W matrices to be low-rank. Specifi- 210

cally, if Wj
i is a d× d matrix, instead of updating 211

this full-rank matrix directly, LoRA introduces two 212

low-rank matrices (Aj
i )d×r and (Bj

i )r×d for each 213

layer j. The product Aj
iB

j
i then forms the adap- 214

tation matrix ∆Wj
i . While Wj

i retains the dimen- 215

sions d× d, its rank is limited to r, where r << d, 216

effectively reducing the number of parameters from 217

d2 to 2rd. The authors of LoRA demonstrated that 218
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Dataset SST-2 SST-5 IMDB MNLI SNLI SQuAD

Random 68.1 35.3 69.4 56.2 55.9 24.3
RepMatch 83.4 39.5 83.9 60.5 60.7 25.1

Table 1: The accuracy of BERT on different datasets when fine-tuned on a subset of 100 instances selected randomly
(Random) or based on the highest RepMatch scores (RepMatch). For SQuAD, F1 score have been used since only
F1 and EM (Exact Match) are used as a metric for this task.

setting r to be significantly smaller than d does not219

generally result in substantial performance degra-220

dation across most NLP tasks *(interestingly, they221

observed that in some cases, the performance of222

the model actually improved).223

3.2 Constraining Model Updates using LoRA224

While maintaining the pre-trained weights frozen,225

we follow Hu et al. (2021) and apply LoRA matri-226

ces specifically to attention matrix updates. Here,227

∆Wj
i is formed by the product of Aj

i and Bj
i –the228

LoRA matrices. Given the multiplicity of possi-229

ble A and B combinations that can yield the same230

∆Wj
i , our focus remains solely on their resultant231

product rather than the individual matrices.232

The low-rank nature of the ∆Wj
i matrices in233

LoRA facilitates the efficient comparison of mod-234

els. Since models trained on similar tasks are ex-235

pected to extract analogous features, the LoRA236

matrices associated with a consistent pre-trained237

model should display similarities across compa-238

rable tasks and datasets. This insight drives our239

proposal to use these task-specific features, as iden-240

tified by LoRA, to analyze both datasets and indi-241

vidual data instances.242

Models MS1 and MS2 are considered repre-243

sentationally similar if their corresponding LoRA244

matrices exhibit resemblance. Specifically, we245

compare the changes in the weight matrices,246

∆Wj
i (MS1) and ∆Wj

i (MS2), across each layer247

i and for each weight matrix type j within the set248

query, key, value, output. This method allows us to249

assess the similarity in their representation spaces250

by examining the modifications captured in these251

matrices.252

3.3 Computing RepMatch253

To quantify the similarity of the subspaces formed254

by the two corresponding matrices from MS1 and255

MS2 , we adopt the Grassmann distance. Hu et al.256

(2021) used the distance to discern subspace sim-257

ilarities across different ranks within the same258

dataset, in order to verify the efficacy of low-rank259

matrices. In contrast, we leverage the distance to 260

measure similarities across varying datasets and 261

tasks. The overall similarity score, i.e., RepMatch, 262

is computed as the average similarity across all 263

matrices. 264

3.3.1 Grassmann Similarity 265

Given two matrices Wr and W ′
r, the Grassmann 266

distance computes the similarity (distance) between 267

the subspaces they form as follows: 268

ϕ(Wr,Wr′ , i, j) =
||U i⊤

Wr
U j
Wr′

||2F
min(i, j)

∈ [0, 1] (1) 269

where both Wr and Wr′ are d × d matrices. The 270

matrix U is usually taken as the right singular uni- 271

tary matrix, although the same can be achieved 272

with left unitary matrices. 273

A high similarity implies that the subspace 274

formed by the matrix of rank r should predomi- 275

nantly reside within the subspace formed by Wr′ . 276

The matrices denoted by U can be interpreted as 277

facilitating a change of basis. When these sub- 278

spaces are in close proximity, the product of their 279

corresponding U matrices tends toward unity, in- 280

dicating a high degree of similarity between the 281

subspaces. This proximity of subspaces is quantita- 282

tively expressed by the Grassmann distance, which 283

approaches zero as the alignment between the sub- 284

spaces decrease. 285

4 Analysis Possibilities using RepMatch 286

The RepMatch similarity metric is unconstrained 287

by the size or origin of the subsets, thus facilitating 288

its application in a multitude of scenarios. For in- 289

stance, it enables comparisons between individual 290

instances and an entire dataset, or between subsets 291

from distinct datasets. In the following sections, 292

we demonstrate the reliability of this method for 293

both dataset-level and instance-level analyses. To 294

establish this, it is necessary to show that Rep- 295

Match is robust against the stochastic nature of the 296
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training environment. Specifically, alterations in297

the training seed should not significantly affect the298

similarity score.299

4.1 Dataset-level Analysis300

For dataset-level analysis, we consider the scenario301

where two identical models are fine-tuned on the302

same dataset under the same conditions, with the303

only difference being the random seed. We would304

expect these models to exhibit very similar charac-305

teristics. Figure 1a shows the Grassmann distance306

between the changes in the value matrix, ∆Wvalue
i ,307

for each layer i of two BERTbase models fine-tuned308

on the SST-2 sentiment analysis dataset using dif-309

ferent seeds. Notably, there exists at least one vec-310

tor in the corresponding matrix of each model that311

closely resembles its counterpart. We set the rank312

of LoRA to 4 and applied it specifically to the313

query and value matrices, which also demonstrated314

similar patterns.315

To demonstrate that the observed similarity is316

not due to chance, Figure 1b presents a random317

baseline for comparison. This figure compares the318

LoRA matrices of the fine-tuned model with those319

of the same model, but with 10% of its entries shuf-320

fled. This alteration creates a matrix that, while321

not drastically different, is distinct from one gen-322

erated through a standard fine-tuning process. The323

analysis shown in the figure reveals that the high-324

est similarity score across different seeds exceeds325

0.8. In contrast, for the baseline, the similarity326

score falls below 0.02, highlighting a significant327

difference.328

The Grassmann distance yields an r × r table329

delineating the similarity between any subspaces of330

the two matrices of rank r. To make the RepMatch331

produce a ranking, we only need one number, se-332

lecting the maximum as a representative of the333

utmost similarity.334

Figure 1 also indicates that the greatest similarity335

typically manifests in a single vector within each336

matrix. Consequently, setting the rank of LoRA337

matrices to one incurs minimal data loss. This is338

supported by the findings of Hu et al. (2021), which339

suggest that employing LoRA at a rank of one340

negligibly affects the model’s efficacy across many341

NLP tasks. For these reasons, and to efficiently342

compute the Grassmann distance, we opted for a343

rank of one in our experiments detailed in Section344

5.345

4.2 Instance-level Analysis 346

We have established that subset size imposes no 347

limitations, thereby enabling the identification of 348

particularly informative instances. We call an 349

instance more informative if the RepMatch be- 350

tween that single instance and the whole dataset is 351

higher than another instance. Figure 2 affirms the 352

method’s reliability at the instance-level. Figure 2a 353

displays the Grassmann distance for two BERTbase 354

models fine-tuned on a randomly selected instance 355

from SST-2 with two different seeds. Moreover, 356

Figure 2b depicts the Grassmann distance between 357

two BERTbasemodels: one fine-tuned on the afore- 358

mentioned instance and the other on a different ran- 359

dom instance from the dataset (selected 10 random 360

instances from the dataset, the figure highlights the 361

most analogous one). 362

It is evident that the Grassmann distance for two 363

models trained on the same instance but with differ- 364

ent seeds is above 0.8, while for disparate instances, 365

it hovers around 0.2. Therefore, RepMatch can be 366

confidently employed in various contexts. 367

Section 5 offers empirical evidence supporting 368

our proposed method. Our findings reveal that 369

datasets related to specific tasks exhibit LoRA ma- 370

trices with significant similarities, which are dis- 371

tinctly different from those associated with unre- 372

lated tasks. Furthermore, our methodology effec- 373

tively isolates a compact subset of informative in- 374

stances with the highest RepMatch scores within 375

a dataset. Notably, a model trained on this curated 376

subset consistently outperforms one trained on a 377

randomly selected subset of the same size. Addi- 378

tionally, our approach proves versatile, capable of 379

being applied across various datasets to identify 380

heuristic patterns. 381

5 Experiments 382

5.1 Experimental Setup 383

Datasets. To demonstrates the adaptability of 384

our methodology to various scenarios, we exper- 385

imented with five dataset across two tasks: senti- 386

ment analysis (SST-2, SST-5, and IMDB) and tex- 387

tual entailment (MNLI and SNLI). The method’s 388

efficacy was further assessed on the SQuAD v1 389

dataset for question answering. 390

Models and hyperparameters. While the major- 391

ity of experiments were conducted on BERTbase, 392

with additional trials on LLaMA2-7B to verify that 393
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Figure 3: Grassmann distance of LoRA matrices for
two BERTbase models. The first row compares the first
four layers of a model trained on SST-2 and the other
trained on IMDB. The second row, compares SST-2 and
SST-5. The SST datasets are more similar as expected
(axis are i and j in Grassmann distance).

our findings are robust across different models.1394

Both of these models were sourced from Hugging395

Face. Unless specified otherwise, our default fine-396

tuning setup involves integrating LoRA modules397

exclusively to the query and value matrices, while398

keeping all other model weights frozen. We em-399

ployed a batch size of 40, conducting 10 epochs400

for sentiment analysis tasks and 5 epochs for other401

tasks. The rank of the LoRA matrices was set at402

one. For dataset-level analysis, we used a learning403

rate of 10−5, while instance-level experiments were404

conducted with a learning rate of 10−3 for speedup.405

Due to limited resources, no hyperparameter tuning406

was done for any of the settings.407

5.2 Dataset-level Similarity408

In Section 3, we presented heatmaps to illustrate409

the similarities between subspaces created by the410

value matrix of a model trained on the same dataset411

but with differing training seeds. Also, we argued412

that tasks of a similar nature should exhibit com-413

parable LoRA matrices. To substantiate this claim,414

experiments were conducted demonstrating that415

representation similarities between two datasets416

from the same task are greater than those from417

different tasks.418

As depicted in Figure 3, the similarity between419

the SST-2 and IMDB datasets is quantified by a420

RepMatch score of approximately 0.3 across each421

layer. While additional heatmaps for other datasets422

are included in the appendix, only their RepMatch423

scores are reported here. The RepMatch between424

1Due to limited access to GPUs, we were constrained in
our ability to test additional models, datasets, and configura-
tions.

SST-2 and SST-5 is roughly 0.45 at each layer, 425

aligning with expectations of higher similarity com- 426

pared to the IMDB dataset. In contrast, the Rep- 427

Match between SST-2 and MNLI is around 0.1, 428

indicative of their distinct task natures. Notably, 429

this score is still significantly higher than that of 430

a random matrix, which has a RepMatch of 0.02 431

as detailed in Section 3. Finally, the RepMatch be- 432

tween the SNLI and MNLI datasets stands at about 433

0.2, suggesting a closer relationship than with SST- 434

2, yet highlighting considerable differences. 435

The argument presented is that the notably low 436

random baseline can be attributed to the high di- 437

mensionality of the matrices. Where even a min- 438

imal random shuffling, such as 10%, could dras- 439

tically alter the space, resulting in almost no sim- 440

ilarities. Consequently, it is concluded that these 441

low-rank matrices encode valuable task-related fea- 442

tures, which facilitate the comparison of subsets of 443

instances. 444

5.3 Instance-level Similarity 445

We propose utilizing RepMatch for instance-level 446

analysis , where RepMatch is calculated between 447

an instance x ∈ X and the entire training set X 448

to identify instances with representations closely 449

resembling the final model. 450

In this experiment, we selected 100 samples with 451

the highest RepMatch scores to fine-tune a model, 452

comparing its performance against another model 453

fine-tuned on 100 randomly selected samples. The 454

results demonstrated that the model trained on the 455

100 most representative samples consistently out- 456

performed the randomly selected sample model, as 457

detailed in Table 1. 458

The process for calculating individual RepMatch 459

scores involves running a pre-trained model with 460

a batch size of one to update the LoRA matrices. 461

This model is then compared to a model previously 462

fine-tuned on the entire dataset. To ensure a fair 463

comparison, the model is reset to its original pre- 464

trained state before processing each subsequent in- 465

stance. It’s noted that fine-tuning on 100 instances 466

was performed without LoRA, as detailed in Table 467

1. However, the experiment was also replicated 468

with LoRA, resulting in a performance decline of 469

3 to 5 percent for both Random and RepMatch 470

groups, yet the gap between them largely remained 471

the same. 472

The comparisons between random selection and 473

selection based on the highest score subset of Rep- 474
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Figure 4: This figure illustrates the performance varia-
tion of a BERTbase model, fine-tuned on different subset
sizes of SST-2. The blue line represents the scenario
where the subset is selected using the RepMatch method,
while the other line corresponds to a randomly chosen
subset. Evidently, the RepMatch method has success-
fully identified a smaller subset that achieves superior
performance compared to a random selection.

Match, have been conducted using 100 instances.475

Additionally,experiments were carried out with476

varying subset sizes using the SST-2 and BERTbase477

model. As depicted in Figure 4, a subset smaller478

than 400, selected using RepMatch, consistently479

outperforms a randomly selected subset of the same480

size, although the performance gap decreases.481

According to the table, SST-2 and IMDB ex-482

hibit the most significant gap. We attribute this to483

the limited matrix rank, which might be less re-484

stricting for simpler tasks. Increasing the matrix485

rank could potentially enhance this disparity across486

other datasets, albeit possibly hitting a performance487

ceiling.488

Additionally, the methodology was tested us-489

ing the LLaMA2-7B model on the SST-5 dataset490

with LoRA, resulting in performance scores of 30%491

for the Random group and 34% for the RepMatch492

group. This test, notably time-intensive due to the493

model’s complexity, was conducted to validate that494

the effectiveness of the RepMatch method is con-495

sistent across different models.496

5.3.1 Detecting out-of-distribution instances497

The RepMatch method has no limitations on the498

size or domain of the considered set, thus mak-499

ing it applicable in various analytical contexts.500

To demonstrate this, an experiment was designed501

to showcase the cross-dataset capabilities of the502

method. Specifically, we opted for detecting out-of-503

distribution instances. Previous studies have identi- 504

fied certain superficial artifacts in widely used tex- 505

tual entailment datasets, such as MNLI and SNLI 506

(Rajaee et al. (2022) inter alia). Models often lever- 507

age these artifacts (which usually arise as a result 508

of decisions made during dataset construction) to 509

achieve high performance without truly learning 510

the task. One such artifact in textual entailment 511

datasets is that high overlap between the premise 512

and the hypothesis is likely indicative of an entail- 513

ment label. 514

To address this issue, challenge sets like HANS 515

(McCoy et al., 2019) were created to test the mod- 516

els’ genuine understanding of the task. This dataset 517

includes examples that counter the heuristics in the 518

NLI datasets. For instance, in the case of over- 519

lap bias, a high overlap between the premise and 520

the hypothesis results in a non-entailment label in 521

HANS, contrasting with MNLI and SNLI. Hence- 522

forth, we will refer to these two datasets as NLI 523

datasets. 524

We hypothesize that non-entailment instances 525

in the training set of NLI datasets with high over- 526

laps will be more similar to the HANS dataset than 527

other instances. To validate our hypothesis, we 528

leveraged our instance-level analysis setting. The 529

only difference is that here we measure the simi- 530

larity across datasets, i.e., between each instance 531

of the NLI datasets and the entire set of HANS in- 532

stances (rather than to the dataset from which they 533

originate). 534

To this end, we extracted three sets from each 535

NLI dataset, all with non-entailment labels but 536

varying in the overlap between the premise and 537

hypothesis. All instances in the first set have full 538

overlap, the second set have overlap between 60% 539

and 80%, and the third set have no overlap. We 540

then calculated the RepMatch using BERTbase for 541

each instance with respect to a model trained on 542

HANS. Table 2 shows the number of instances in 543

each set. As the number of instances in each set 544

varies, we selected 300 samples randomly (without 545

replacement) from each overlap subset for a fair 546

comparison. We then took the average RepMatch 547

score for the 300 instances in the newly selected 548

subset. We repeated the experiment multiple times 549

for different subsets and reported the average of 550

all experiments in table 3. For a clearer compari- 551

son, all scores were multiplied by 1
learning rate , which 552

does not affect the comparison since we are com- 553

paring the numbers. 554
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Dataset Full Mid No

MNLI 1,016 43K 8,600
SNLI 940 53K 900

Table 2: The number of instances in each set. The
different sets are extracted from NLI datasets based
on the degree of overlap between the premise and the
hypothesis. The “Full” set encompasses instances with
full overlap, the “Mid” set contains instances where
the overlap between the premise and the hypothesis
ranges from 60% to 80%, and the “No” set, as the name
suggests, includes instances where there is no overlap.
All sets have non-entailment label.

Dataset Full Mid No

MNLI 37 13 8
SNLI 24 7 9

Table 3: The average RepMatch score calculated for
10 subsets, each randomly selected and consisting of
300 instances from the corresponding set. For every
instance within a set, the RepMatch score is computed
using BERTbase in relation to the HANS dataset.

As expected, the set containing full overlap in-555

stances with non-entailment labels showed the high-556

est average similarity to the HANS dataset, sug-557

gesting similarities between the two. This demon-558

strates that the RepMatch method can be used to559

find or analyze bias or heuristics with respect to560

another dataset, which could be useful for out-of-561

distribution generalization purposes562

6 Conclusion563

In this study, we approached the problem of dataset564

analysis from a unique perspective. We proposed565

a method to identify similarities between subsets566

of training instances by examining the similarities567

within the representation space of models trained568

on different subsets. We overcame the challenges569

of complexity and heavy parameters of language570

models by utilizing the LoRA method to constrain571

changes in the representation space.572

Our findings suggest that RepMatch can be em-573

ployed to compare similar tasks and datasets, con-574

duct instance-level analysis to discover heuristics575

in a dataset, and perform subset analysis to identify576

a smaller subset that achieves reasonable perfor-577

mance and outperforms a randomly selected subset578

of the same size. The experiments demonstrated579

that the proposed method can be utilized in a va-580

riety of situations and is not limited by the size of 581

the subset or its domain. 582

Limitations 583

In the instance-level setting, the relationship be- 584

tween instances within a training batch is not taken 585

into account. There exists a possibility that a model 586

might exhibit better performance when trained with 587

two less informative instances in a batch, rather 588

than two highly similar ones. This presents a poten- 589

tial avenue for enhancing the experimental setup. 590

Furthermore, while we demonstrated that the entire 591

dataset and individual instances are robust to the 592

random seed of the training environment, the ran- 593

domness of training and instances in a batch can 594

have a non-negligible effect. 595

The majority of our experiments were conducted 596

on BERTbase, with one experiment on LLaMA2. 597

Due to GPU limitations, further experiments were 598

not viable. Although our focus was on Transformer 599

models with a textual modality and our evaluations 600

were based on three different classification tasks, 601

we believe this method is applicable to other modal- 602

ities and settings 603
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