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Abstract

Advancements in dataset analysis methods
have led to the development of ways to an-
alyze and categorize training data instances.
These methods categorize the data based on
specific features like "difficulty”. We propose
a framework that categorizes data from a view-
point of similarity. This framework quantifies
the similarities between subsets of training in-
stances by comparing the models trained on
them. This approach addresses the limitations
of existing methodologies that focus on individ-
ual instances and are confined to single-dataset
analyses. Our method enables the evaluation
of similarities among arbitrary subsets of in-
stances, facilitating both dataset-dataset and
instance-dataset analyses. To compare two
models efficiently, we leverage the Low-Rank
Adaptation (LoRA) method. The effectiveness
of our method has been validated across various
NLP tasks, datasets, and models. The method
can be used to compare datasets, find a smaller
subset that outperforms a randomly selected
subset of the same size, and successfully un-
covers heuristics used in the construction of a
challenge dataset.

1 Introduction

Contemporary machine learning models are deeply
influenced by the datasets on which they are trained.
The characteristics of a dataset, encompassing the
quality and diversity of its instances, are critical
in shaping a model’s learning effectiveness and its
capability to generalize. Recent advancements in
the field have led to the development of methodolo-
gies that facilitate the analysis and categorization of
data instances based on specific attributes, notably
“difficulty” (Ethayarajh et al., 2022; Siddiqui et al.,
2022; Swayamdipta et al., 2020), as well as other
attributes, such as noisiness, atypicality, prototyp-
icality, and distributional outliers (Siddiqui et al.,
2022). These methodologies typically involve rank-
ing or categorizing training instances according

to these attributes, identifying specific types that
may require specialized processing or treatment.
One intuitive objective would be to identify misla-
beled or noisy examples, pruning of which from
the training data can lead to more effective training
(Mirzasoleiman et al., 2020; Pleiss et al., 2020).
Additionally, these studies are instrumental in an-
alyzing and uncovering dataset artifacts (Gardner
et al., 2021; Ethayarajh et al., 2022).

However, despite their contributions, these meth-
ods are often limited by their focus on individual
instances without the capacity to evaluate subsets of
data as a whole. Moreover, they are generally con-
fined to analyses within a single dataset and lack the
capability to conduct comparisons across different
datasets or to perform comprehensive cross-dataset
evaluations.

In response to these limitations, we introduce a
novel framework that offers a refined lens for the
analysis: quantifying the similarities between sub-
sets of training instances from the perspective of
the models trained on them. Specifically, we mea-
sure the similarity between two subsets, S C D and
S’ C D’ of the training datasets D and D’ (where
D and D’ could be the same dataset), by comparing
the models trained exclusively on each subset. The
subsets are deemed similar if the representation
space learned by the model trained on S closely
aligns with that learned by the model trained on
S'. This re-formulation addresses previous limi-
tations by enabling the analysis and evaluation of
similarities among arbitrary subsets of instances,
from individual examples to entire datasets, from
varied sources. Specifically, it facilitates:

* Dataset-dataset analysis: Compare similari-
ties in task and dataset characteristics from a
model’s perspective, both within and beyond
their original domains.

* Instance-dataset analysis: Identify the most
“informative” instances for the target dataset



(or others), using which a more effective train-
ing can be performed. Similarly, identify
those with the least information, suggesting
out-of-distribution or noisy outliers.

The challenge lies in comparing two models,
particularly within the context of modern, heav-
ily parameterized models with expansive weight
matrices. To constrain the set of trainable param-
eters, i.e., the updates in the representation space,
we leverage low-rank adaptation Hu et al. (2021,
LoRA). LoRA efficiently captures changes in a
weight matrix through a low-rank matrix, primarily
to expedite the fine-tuning process. Having all the
significant training-induced changes captured in a
low-rank matrix allows us to quantify the similarity
of two models by a direct comparison of the corre-
sponding changes in their low-rank representation
spaces.

The efficacy of the proposed method has been
validated through a set of experiments across dif-
ferent NLP tasks, datasets, and models. The results
demonstrate that LoRA matrices exhibit signifi-
cant similarities across similar tasks. Additionally,
for each model, a compact yet informative sub-
set within any dataset has been identified; models
trained on this subset consistently outperform those
trained on a comparably sized random subset. In
a definitive demonstration of cross-dataset utility,
the approach successfully uncovers heuristics used
in the automatic construction of a challenge dataset
(HANS).

2 Related Work

The process of quantifying the similarity between
two distinct datasets is a thoroughly researched
topic. The theoretical concept of data similarity can
be linked to the traditional KL-divergence (Kull-
back and Leibler, 1951), a non-symmetric mea-
sure that quantifies the dissimilarity between two
probability distributions. For ‘shallow’ datasets,
empirical measures such as the Maximal Mean Dis-
crepancy (MMD) (Borgwardt et al., 2006) are often
employed. This measure compares the means of
samples drawn from two distributions in a high-
dimensional feature space.

Tran et al. (2019) utilized an information-
theoretic approach to estimate task difficulty,
demonstrating a strong correlation between their in-
troduced hardness measure and empirical hardness
and transferability. Alvarez-Melis and Fusi (2020)
proposed a distance measure to quantify similarity

between datasets, thereby assessing transfer learn-
ing hardness.

In a more empirical setting, Hwang et al. (2020)
presented a method to predict inter-dataset similar-
ity using a set of pre-trained autoencoder. Their
approach involves inputting unknown data samples
into these pre-trained autoencoders and evaluat-
ing the difference between the reconstructed out-
put samples and their original input samples. Our
method, while empirical, requires no additional
computation beyond regular fine-tuning by LoRA
and is robust to the randomness of the training en-
vironment.

Our method does not impose constraints on the
size of the subsets it compares, thus it can be catego-
rized under data selection research. Swayamdipta
et al. (2020) used training dynamics to divide a
dataset into subsets of easy-to-learn, hard-to-learn,
and ambiguous instances. However, their method
has limitations in analyzing individual instances or
performing cross-dataset analysis.

A stream of prior research has aimed to find a
subset of training examples that achieves close per-
formance to training on the full dataset by using
gradient information (Mirzasoleiman et al., 2020;
Wang et al., 2021; Yu et al., 2020; Killamsetty
et al., 2021). Recently, Xia et al. (2024) proposed
a method to estimate the influence function of a
training data point to identify influential data in an
instruction tuning setting.

Ethayarajh et al. (2022) presented a metric that
quantifies the complexity of individual instances
relative to a specific distribution, which is useful
for comparing datasets or subsets within a single
dataset. Our approach can be extended to facili-
tate comparisons of instances or segments across
different datasets.

3 Methodology

We introduce a method designed to assess the sim-
ilarity between subsets of data instances, where
subsets can be anything from individual instances
to entire datasets. We define two subsets, &7 and
So, as similar if a model trained on Sp (denoted as
M s,) exhibits a representation space akin to that
of a model trained on Sz (Mg,).

During standard fine-tuning, alterations to a spe-
cific weight matrix Wf (the j** weight matrix
in layer ¢) are captured by AWZ , also known
as the adaptation matrix. After fine-tuning, the
updated model weights are then represented as
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Figure 1: Grassmann distance of LoRA matrices for each layer of two BERT},s. models fine-tuned on SST-2 but
(a) with different seeds, and (b) with random baseline (axes are ¢ and j of the corresponding Grassmann distance).
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le = WZJ + AWg . These adaptation matrices
are responsible for extracting task-specific features
from the input and incorporating them into the
pre-trained weight matrices. Since the pre-trained
weights WZ remain constant across both models,
comparing the representation spaces of Mg, and
M s, effectively boils down to analyzing the differ-
ences in AW/,

The challenge in comparing models arises from
the substantial size and high dimensionality of the
weight matrices, particularly in modern language
models. To manage this complexity, we propose
using the LoRA method to encapsulate the AW/
matrices in a low-rank format. In the following
sections, we will provide a brief introduction to
the LoORA method and explain how it facilitates the
comparison of adaptation matrices between mod-
els.
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Figure 2: Grassmann distance of LoRA matrices for each layer of two BERT}, s models fine-tuned on (a) a single
training instance of SST-2 with different seeds, and (b) the instance from part a and another random instance (axis
are i and j in Grassmann distance).

3.1 Background: LoRA

In the Low-rank Adaptation (Hu et al., 2021,
LoRA) method, a model M with a pre-trained
weight matrix W is efficiently fine-tuned on a spe-
cific dataset. the goal in LoRA is to efficiently fine-
tune the model on a given dataset. LoRA achieves
this by keeping the pre-trained weights (W) frozen
and allowing only the injected low-reank matri-
ces, AW/, to be updated during the fine-tuning
process. To ensure parameter efficiency, LoORA re-
stricts these AWV matrices to be low-rank. Specifi-
cally, if W/ is a d x d matrix, instead of updating
this full-rank matrix directly, LoRA introduces two
low-rank matrices (A})qx, and (B}),q for each
layer j. The product .Ag Bf then forms the adap-
tation matrix AWij . While WZJ retains the dimen-
sions d X d, its rank is limited to 7, where r << d,
effectively reducing the number of parameters from
d? to 2rd. The authors of LoRA demonstrated that



Dataset SST-2 SST-5 IMDB MNLI SNLI SQuAD
Random 68.1 35.3 69.4 56.2 55.9 24.3
RepMatch 83.4 39.5 83.9 60.5 60.7 25.1

Table 1: The accuracy of BERT on different datasets when fine-tuned on a subset of 100 instances selected randomly
(Random) or based on the highest RepMatch scores (RepMatch). For SQuAD, F1 score have been used since only
F1 and EM (Exact Match) are used as a metric for this task.

setting r to be significantly smaller than d does not
generally result in substantial performance degra-
dation across most NLP tasks *(interestingly, they
observed that in some cases, the performance of
the model actually improved).

3.2 Constraining Model Updates using LoRA

While maintaining the pre-trained weights frozen,
we follow Hu et al. (2021) and apply LoRA matri-
ces specifically to attention matrix updates. Here,
AWZJ is formed by the product of Ag and Bf —the
LoRA matrices. Given the multiplicity of possi-
ble A and B combinations that can yield the same
AW/, our focus remains solely on their resultant
product rather than the individual matrices.

The low-rank nature of the AWij matrices in
LoRA facilitates the efficient comparison of mod-
els. Since models trained on similar tasks are ex-
pected to extract analogous features, the LoRA
matrices associated with a consistent pre-trained
model should display similarities across compa-
rable tasks and datasets. This insight drives our
proposal to use these task-specific features, as iden-
tified by LoRA, to analyze both datasets and indi-
vidual data instances.

Models M., and Mg, are considered repre-
sentationally similar if their corresponding LoRA
matrices exhibit resemblance. Specifically, we
compare the changes in the weight matrices,
AW! (Ms,) and AW/ (Ms,), across each layer
¢ and for each weight matrix type j within the set
query, key, value, output. This method allows us to
assess the similarity in their representation spaces
by examining the modifications captured in these
matrices.

3.3 Computing RepMatch

To quantify the similarity of the subspaces formed
by the two corresponding matrices from Mg, and
Ms,, we adopt the Grassmann distance. Hu et al.
(2021) used the distance to discern subspace sim-
ilarities across different ranks within the same
dataset, in order to verify the efficacy of low-rank

matrices. In contrast, we leverage the distance to
measure similarities across varying datasets and
tasks. The overall similarity score, i.e., RepMatch,
is computed as the average similarity across all
matrices.

3.3.1 Grassmann Similarity

Given two matrices W, and W, the Grassmann
distance computes the similarity (distance) between
the subspaces they form as follows:

il g2
SOV Wi ) = LoDl gy
min(i, j)
where both W, and W, are d x d matrices. The
matrix U is usually taken as the right singular uni-
tary matrix, although the same can be achieved
with left unitary matrices.

A high similarity implies that the subspace
formed by the matrix of rank r should predomi-
nantly reside within the subspace formed by W,.
The matrices denoted by U can be interpreted as
facilitating a change of basis. When these sub-
spaces are in close proximity, the product of their
corresponding U matrices tends toward unity, in-
dicating a high degree of similarity between the
subspaces. This proximity of subspaces is quantita-
tively expressed by the Grassmann distance, which
approaches zero as the alignment between the sub-
spaces decrease.

4 Analysis Possibilities using RepMatch

The RepMatch similarity metric is unconstrained
by the size or origin of the subsets, thus facilitating
its application in a multitude of scenarios. For in-
stance, it enables comparisons between individual
instances and an entire dataset, or between subsets
from distinct datasets. In the following sections,
we demonstrate the reliability of this method for
both dataset-level and instance-level analyses. To
establish this, it is necessary to show that Rep-
Match is robust against the stochastic nature of the



training environment. Specifically, alterations in
the training seed should not significantly affect the
similarity score.

4.1 Dataset-level Analysis

For dataset-level analysis, we consider the scenario
where two identical models are fine-tuned on the
same dataset under the same conditions, with the
only difference being the random seed. We would
expect these models to exhibit very similar charac-
teristics. Figure 1a shows the Grassmann distance
between the changes in the value matrix, AW} alue
for each layer ¢ of two BERT}, s, models fine-tuned
on the SST-2 sentiment analysis dataset using dif-
ferent seeds. Notably, there exists at least one vec-
tor in the corresponding matrix of each model that
closely resembles its counterpart. We set the rank
of LoRA to 4 and applied it specifically to the
query and value matrices, which also demonstrated
similar patterns.

To demonstrate that the observed similarity is
not due to chance, Figure 1b presents a random
baseline for comparison. This figure compares the
LoRA matrices of the fine-tuned model with those
of the same model, but with 10% of its entries shuf-
fled. This alteration creates a matrix that, while
not drastically different, is distinct from one gen-
erated through a standard fine-tuning process. The
analysis shown in the figure reveals that the high-
est similarity score across different seeds exceeds
0.8. In contrast, for the baseline, the similarity
score falls below 0.02, highlighting a significant
difference.

The Grassmann distance yields an r x r table
delineating the similarity between any subspaces of
the two matrices of rank r. To make the RepMatch
produce a ranking, we only need one number, se-
lecting the maximum as a representative of the
utmost similarity.

Figure 1 also indicates that the greatest similarity
typically manifests in a single vector within each
matrix. Consequently, setting the rank of LoRA
matrices to one incurs minimal data loss. This is
supported by the findings of Hu et al. (2021), which
suggest that employing LoRA at a rank of one
negligibly affects the model’s efficacy across many
NLP tasks. For these reasons, and to efficiently
compute the Grassmann distance, we opted for a
rank of one in our experiments detailed in Section
5.

4.2 Instance-level Analysis

We have established that subset size imposes no
limitations, thereby enabling the identification of
particularly informative instances. We call an
instance more informative if the RepMatch be-
tween that single instance and the whole dataset is
higher than another instance. Figure 2 affirms the
method’s reliability at the instance-level. Figure 2a
displays the Grassmann distance for two BERTp ¢
models fine-tuned on a randomly selected instance
from SST-2 with two different seeds. Moreover,
Figure 2b depicts the Grassmann distance between
two BERT},,s.models: one fine-tuned on the afore-
mentioned instance and the other on a different ran-
dom instance from the dataset (selected 10 random
instances from the dataset, the figure highlights the
most analogous one).

It is evident that the Grassmann distance for two
models trained on the same instance but with differ-
ent seeds is above 0.8, while for disparate instances,
it hovers around 0.2. Therefore, RepMatch can be
confidently employed in various contexts.

Section 5 offers empirical evidence supporting
our proposed method. Our findings reveal that
datasets related to specific tasks exhibit LORA ma-
trices with significant similarities, which are dis-
tinctly different from those associated with unre-
lated tasks. Furthermore, our methodology effec-
tively isolates a compact subset of informative in-
stances with the highest RepMatch scores within
a dataset. Notably, a model trained on this curated
subset consistently outperforms one trained on a
randomly selected subset of the same size. Addi-
tionally, our approach proves versatile, capable of
being applied across various datasets to identify
heuristic patterns.

5 Experiments

5.1 Experimental Setup

Datasets. To demonstrates the adaptability of
our methodology to various scenarios, we exper-
imented with five dataset across two tasks: senti-
ment analysis (SST-2, SST-5, and IMDB) and tex-
tual entailment (MNLI and SNLI). The method’s
efficacy was further assessed on the SQuAD vl
dataset for question answering.

Models and hyperparameters. While the major-
ity of experiments were conducted on BERT} .,
with additional trials on LLaMA2-7B to verify that



Layer O

Layer 3

Layer 1 Layer 2

Figure 3: Grassmann distance of LoRA matrices for
two BERT},s. models. The first row compares the first
four layers of a model trained on SST-2 and the other
trained on IMDB. The second row, compares SST-2 and
SST-5. The SST datasets are more similar as expected
(axis are 1 and j in Grassmann distance).

our findings are robust across different models.!
Both of these models were sourced from Hugging
Face. Unless specified otherwise, our default fine-
tuning setup involves integrating LoRA modules
exclusively to the query and value matrices, while
keeping all other model weights frozen. We em-
ployed a batch size of 40, conducting 10 epochs
for sentiment analysis tasks and 5 epochs for other
tasks. The rank of the LoORA matrices was set at
one. For dataset-level analysis, we used a learning
rate of 1075, while instance-level experiments were
conducted with a learning rate of 10~ for speedup.
Due to limited resources, no hyperparameter tuning
was done for any of the settings.

5.2 Dataset-level Similarity

In Section 3, we presented heatmaps to illustrate
the similarities between subspaces created by the
value matrix of a model trained on the same dataset
but with differing training seeds. Also, we argued
that tasks of a similar nature should exhibit com-
parable LoRA matrices. To substantiate this claim,
experiments were conducted demonstrating that
representation similarities between two datasets
from the same task are greater than those from
different tasks.

As depicted in Figure 3, the similarity between
the SST-2 and IMDB datasets is quantified by a
RepMatch score of approximately 0.3 across each
layer. While additional heatmaps for other datasets
are included in the appendix, only their RepMatch
scores are reported here. The RepMatch between

"Due to limited access to GPUs, we were constrained in
our ability to test additional models, datasets, and configura-
tions.

SST-2 and SST-5 is roughly 0.45 at each layer,
aligning with expectations of higher similarity com-
pared to the IMDB dataset. In contrast, the Rep-
Match between SST-2 and MNLI is around 0.1,
indicative of their distinct task natures. Notably,
this score is still significantly higher than that of
a random matrix, which has a RepMatch of 0.02
as detailed in Section 3. Finally, the RepMatch be-
tween the SNLI and MNLI datasets stands at about
0.2, suggesting a closer relationship than with SST-
2, yet highlighting considerable differences.

The argument presented is that the notably low
random baseline can be attributed to the high di-
mensionality of the matrices. Where even a min-
imal random shuffling, such as 10%, could dras-
tically alter the space, resulting in almost no sim-
ilarities. Consequently, it is concluded that these
low-rank matrices encode valuable task-related fea-
tures, which facilitate the comparison of subsets of
instances.

5.3 Instance-level Similarity

We propose utilizing RepMatch for instance-level
analysis , where RepMatch is calculated between
an instance x € & and the entire training set X’
to identify instances with representations closely
resembling the final model.

In this experiment, we selected 100 samples with
the highest RepMatch scores to fine-tune a model,
comparing its performance against another model
fine-tuned on 100 randomly selected samples. The
results demonstrated that the model trained on the
100 most representative samples consistently out-
performed the randomly selected sample model, as
detailed in Table 1.

The process for calculating individual RepMatch
scores involves running a pre-trained model with
a batch size of one to update the LoRA matrices.
This model is then compared to a model previously
fine-tuned on the entire dataset. To ensure a fair
comparison, the model is reset to its original pre-
trained state before processing each subsequent in-
stance. It’s noted that fine-tuning on 100 instances
was performed without LoRA, as detailed in Table
1. However, the experiment was also replicated
with LoRA, resulting in a performance decline of
3 to 5 percent for both Random and RepMatch
groups, yet the gap between them largely remained
the same.

The comparisons between random selection and
selection based on the highest score subset of Rep-
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Figure 4: This figure illustrates the performance varia-
tion of a BERT}, . model, fine-tuned on different subset
sizes of SST-2. The blue line represents the scenario
where the subset is selected using the RepMatch method,
while the other line corresponds to a randomly chosen
subset. Evidently, the RepMatch method has success-
fully identified a smaller subset that achieves superior
performance compared to a random selection.

Match, have been conducted using 100 instances.
Additionally,experiments were carried out with
varying subset sizes using the SST-2 and BERT s
model. As depicted in Figure 4, a subset smaller
than 400, selected using RepMatch, consistently
outperforms a randomly selected subset of the same
size, although the performance gap decreases.

According to the table, SST-2 and IMDB ex-
hibit the most significant gap. We attribute this to
the limited matrix rank, which might be less re-
stricting for simpler tasks. Increasing the matrix
rank could potentially enhance this disparity across
other datasets, albeit possibly hitting a performance
ceiling.

Additionally, the methodology was tested us-
ing the LLaMA2-7B model on the SST-5 dataset
with LoRA, resulting in performance scores of 30%
for the Random group and 34% for the RepMatch
group. This test, notably time-intensive due to the
model’s complexity, was conducted to validate that
the effectiveness of the RepMatch method is con-
sistent across different models.

5.3.1 Detecting out-of-distribution instances

The RepMatch method has no limitations on the
size or domain of the considered set, thus mak-
ing it applicable in various analytical contexts.
To demonstrate this, an experiment was designed
to showcase the cross-dataset capabilities of the
method. Specifically, we opted for detecting out-of-

distribution instances. Previous studies have identi-
fied certain superficial artifacts in widely used tex-
tual entailment datasets, such as MNLI and SNLI
(Rajaee et al. (2022) inter alia). Models often lever-
age these artifacts (which usually arise as a result
of decisions made during dataset construction) to
achieve high performance without truly learning
the task. One such artifact in textual entailment
datasets is that high overlap between the premise
and the hypothesis is likely indicative of an entail-
ment label.

To address this issue, challenge sets like HANS
(McCoy et al., 2019) were created to test the mod-
els’ genuine understanding of the task. This dataset
includes examples that counter the heuristics in the
NLI datasets. For instance, in the case of over-
lap bias, a high overlap between the premise and
the hypothesis results in a non-entailment label in
HANS, contrasting with MNLI and SNLI. Hence-
forth, we will refer to these two datasets as NLI
datasets.

We hypothesize that non-entailment instances
in the training set of NLI datasets with high over-
laps will be more similar to the HANS dataset than
other instances. To validate our hypothesis, we
leveraged our instance-level analysis setting. The
only difference is that here we measure the simi-
larity across datasets, i.e., between each instance
of the NLI datasets and the entire set of HANS in-
stances (rather than to the dataset from which they
originate).

To this end, we extracted three sets from each
NLI dataset, all with non-entailment labels but
varying in the overlap between the premise and
hypothesis. All instances in the first set have full
overlap, the second set have overlap between 60%
and 80%, and the third set have no overlap. We
then calculated the RepMatch using BERT}, s for
each instance with respect to a model trained on
HANS. Table 2 shows the number of instances in
each set. As the number of instances in each set
varies, we selected 300 samples randomly (without
replacement) from each overlap subset for a fair
comparison. We then took the average RepMatch
score for the 300 instances in the newly selected
subset. We repeated the experiment multiple times
for different subsets and reported the average of
all experiments in table 3. For a clearer compari-
son, all scores were multiplied by m, which
does not affect the comparison since we are com-
paring the numbers.



Dataset Full Mid No
MNLI 1,016 43K 8,600
SNLI 940 53K 900

Table 2: The number of instances in each set. The
different sets are extracted from NLI datasets based
on the degree of overlap between the premise and the
hypothesis. The “Full” set encompasses instances with
full overlap, the “Mid” set contains instances where
the overlap between the premise and the hypothesis
ranges from 60% to 80%, and the “No” set, as the name
suggests, includes instances where there is no overlap.
All sets have non-entailment label.

Dataset Full Mid No
MNLI 37 13 8
SNLI 24 7 9

Table 3: The average RepMatch score calculated for
10 subsets, each randomly selected and consisting of
300 instances from the corresponding set. For every
instance within a set, the RepMatch score is computed
using BERT}, s in relation to the HANS dataset.

As expected, the set containing full overlap in-
stances with non-entailment labels showed the high-
est average similarity to the HANS dataset, sug-
gesting similarities between the two. This demon-
strates that the RepMatch method can be used to
find or analyze bias or heuristics with respect to
another dataset, which could be useful for out-of-
distribution generalization purposes

6 Conclusion

In this study, we approached the problem of dataset
analysis from a unique perspective. We proposed
a method to identify similarities between subsets
of training instances by examining the similarities
within the representation space of models trained
on different subsets. We overcame the challenges
of complexity and heavy parameters of language
models by utilizing the LoRA method to constrain
changes in the representation space.

Our findings suggest that RepMatch can be em-
ployed to compare similar tasks and datasets, con-
duct instance-level analysis to discover heuristics
in a dataset, and perform subset analysis to identify
a smaller subset that achieves reasonable perfor-
mance and outperforms a randomly selected subset
of the same size. The experiments demonstrated
that the proposed method can be utilized in a va-

riety of situations and is not limited by the size of
the subset or its domain.

Limitations

In the instance-level setting, the relationship be-
tween instances within a training batch is not taken
into account. There exists a possibility that a model
might exhibit better performance when trained with
two less informative instances in a batch, rather
than two highly similar ones. This presents a poten-
tial avenue for enhancing the experimental setup.
Furthermore, while we demonstrated that the entire
dataset and individual instances are robust to the
random seed of the training environment, the ran-
domness of training and instances in a batch can
have a non-negligible effect.

The majority of our experiments were conducted
on BERT},., with one experiment on LLaMA?2.
Due to GPU limitations, further experiments were
not viable. Although our focus was on Transformer
models with a textual modality and our evaluations
were based on three different classification tasks,
we believe this method is applicable to other modal-
ities and settings
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