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Abstract

Automated knowledge extraction from scientific literature can potentially accelerate1

materials discovery. We have investigated an approach for extracting synthesis2

protocols for reticular materials from scientific literature using large language3

models (LLMs). To that end, we introduce a Knowledge Extraction Pipeline (KEP)4

that automatizes LLM-assisted paragraph classification and information extraction.5

By applying prompt engineering with in-context learning (ICL) to a set of open-6

source LLMs, we demonstrate that LLMs can retrieve chemical information from7

PDF documents, without the need for fine-tuning or training and at a reduced risk8

of hallucination. By comparing the performance of five open-source families of9

LLMs in both paragraph classification and information extraction tasks, we observe10

excellent model performance even if only few example paragraphs are included in11

the ICL prompts. The results show the potential of the KEP approach for reducing12

human annotations and data curation efforts in automated scientific knowledge13

extraction.14

1 Introduction15

Reticular materials are a class of crystalline, porous materials made of molecular building blocks16

that are linked by strong chemical bonds [1]. They exhibit exceptional properties due to their highly17

porous structure, high surface area, tunable pore sizes and morphologies [2]. Their versatility is18

evidenced by a broad range of industrial applications, among them heterogeneous catalysis [3], energy19
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storage [4], water treatment [5], chemical sensing [6], heat transfer [7], gas capture [8] and drug20

delivery [9].21

Following recent advances in generative AI, several models have been proposed to explore the large22

chemical space covered by reticular materials [10–14]. These models aim to generate reticular23

structures with optimized properties. Such structures are hypothetical as they have not yet been24

synthesised and tested in the lab. Devising a synthesis protocol for computationally generated25

structures requires a subject matter expert (SME). This is, however a challenging task given the large26

number of possible structures. An AI model that correlates a computationally discovered material27

with a lab synthesis protocol is, therefore, highly desirable. A first step towards the creation of such a28

model is building a database of existing synthesis protocols.29

One approach for creating such database is applying information extraction techniques to the existing30

body of scientific literature. A large number of reticular materials have been reported in the literature31

alongside their respective synthesis protocols [15, 16]. It is worth noting, however, that overlapping32

discoveries are common, given that the same material can be produced by means of different synthesis33

protocols [17]. Transfer learning has been suggested as means to improve information extraction on34

existing corpora of scientific texts related to materials [18]. For example, fine-tuning techniques allow35

for adapting existing general-purpose AI models to specific tasks in domains for which comparatively36

little data exists. However, recent developments in LLMs have enabled information extraction based37

on prompt engineering and few-shot learning tasks [19].38

In this paper, we propose using large language models (LLMs), without the need for additional training39

or fine-tuning, for extracting synthesis protocols of reticular materials from scientific literature, i.e.,40

unstructured PDF documents. We use prompt engineering with in-context learning (ICL) [20] for41

providing in the prompt all the context needed by the LLM to process the instructions. Together42

with instructions and input data, we provide examples that guide the LLM output production. This43

technique reduces the risk of hallucination, since all the context needed to execute the instruction is44

provided within the prompt. Also, it accelerates the process of information extraction because it does45

not require SME-based annotation of thousands of sentences/paragraphs for fine-tuning the models.46

Our domain-independent Knowledge Extraction Pipeline (KEP) uses LLMs for extracting relevant47

information from PDF documents. The pipeline is composed of four main modules: (i) PDF extractor:48

processes the PDF to extract the text; (ii) Paragraph classification: processes the text in order to select49

only the relevant paragraphs (i.e., paragraphs that have the information the user is interested in); (iii)50

Information extraction: processes the relevant paragraphs and extract the relevant information; and51

(iv) Knowledge representation: interprets and assigns meaning to the information while representing52

the related knowledge. The pipeline uses LLMs with prompt-engineering and ICL in two modules,53

namely paragraph classification and information extraction, which are the focus of this paper. In54

addition, for identifying the best set of examples to be used in the prompts of these two modules,55

we propose the Examples selection phase. This phase measures the performance of the LLMs in a56

given task and, by using different sets of examples, identifies the set to be used for optimal LLM57

performance.58

We have used five families of LLMs in both paragraph classification and information extraction59

modules and have compared their performance. We note that these open-source LLMs are not60

domain-specific and were not fine-tuned for our tasks. Our experiments indicate that: (i) even without61

fine-tuning or training, some of these models have achieved high performance in case ICL was used62

to provide examples in the prompt; (ii) the examples used in the prompt affect model performance63

and, hence, must be chosen carefully; and (iii) the same set of examples may lead to varying results if64

used in different models.65

Some recent papers share our work’s objectives, however, they differ methodologically [19, 21–23].66

For example, Polak et al. (2024) [19] reported a pipeline for extracting information from unstructured67

text in the material discovery domain using language models. However, the cited work focused68

on simple extraction tasks, e.g., material, value and unit, while our pipeline is aimed at complex69

information associated with synthesis protocols that require additional classification. Unlike in our70

approach which is based on few-shot prompts providing examples for facilitating the information71

extraction, the cited work applies zero-shot methods for determining the relevance of sentences or72

paragraphs. Huo et al. (2019) [21] introduced a semi-supervised machine learning approach for73

classifying inorganic materials synthesis steps in scientific papers. The authors used the Latent74

Dirichlet Allocation (LDA) unsupervised topic modeling algorithm for clustering terms that are75
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typically used in synthesis descriptions. A random forest classifier, based on annotations of hundreds76

of paragraphs, categorized the occurring synthesis types. This approach also used a Markov chain for77

modeling the sequence of steps, creating flowcharts of synthesis procedures.78

In Kononova et al. (2019) [22], the authors generated a dataset with “codified recipes” for solid-state79

synthesis which was automatically extracted from scientific publications using traditional text mining80

and natural language processing approaches. The authors used the two-step paragraph classification81

approach described in Huo et al. (2019) [21] for finding paragraphs on solid-state synthesis. The ex-82

traction pipeline consisted of several algorithms (BiLSTM-CRF, Material Parser, etc.) for identifying83

materials related information, including synthesis steps and conditions. Compared to our method, the84

cited work required considerable annotation effort and employed a less straightforward extraction85

pipeline. We note that our method relies primarily on the LLM capabilities for text understanding,86

without specialized tokenizers or entity recognizers. Finally, Park et al. (2022) [23] created a four-step87

pipeline, with text extraction from XML/HTML or PDF files and classifying relevant paragraphs,88

performing named entity recognition and, a fully connected multi-layer with dropout as classifier.89

Another promising, less related approach is using “AI chatbot agents” for assisting materials scientists90

in specific pipeline tasks. In reference [24], the authors used prompt engineering for guiding91

a ChatGPT-based bot to extract MOF synthesis information from various sources. The authors92

leveraged a bot-like interface for answering questions about synthesis procedures and chemical93

reactions. In reference [25], the authors leveraged multiple AI assistants, such as LLMs and specific94

ML algorithms, as lab assistants to support a human SME, enabling productivity levels similar95

to those of an entire research team. While the approach was not fully automated, it provided a96

proof-of-concept of how language models can be leveraged for accelerating materials discovery.97

The remainder of this paper is organized as follows. Section 2 introduces the use case, Section 398

describes in details the pipeline applied to the use case and Section 4 presents our experiments.99

Section 5 concludes and presents some future work.100

2 Use Case: Synthesis Protocols of Reticular Materials101

With the goal of extracting knowledge about the synthesis of reticular materials, i.e., MOFs, ZIFs,102

COFs and zeolites, we have searched the scientific literature by using Elsevier’s API1 and downloaded103

full-text PDFs from the SCOPUS database.2. Our approach is based on extracting information from104

PDFs, and not XMLs, since not always a XML file will be available for a given document. Notice105

that our extraction pipeline (see Section 3) was not created to manipulate only documents available in106

Elsevier, where their XML files are also provided, but to process any PDF document (including those107

that are images).108

Our search employed the following keywords and wildcard terms to capture relevant references:109

‘MOF’, ‘metal organic framework’, ‘metal-organic framework’, ‘metal-organic-framework’, ‘COF’,110

‘covalent organic’, ‘covalent-organic’, ‘ZIF’, and ‘zeolit* imidazol*’. We further limited the search111

to articles published in journals within Chemistry, Chemical Engineering, Materials Science, Energy,112

Engineering, Environmental Science, Physics and Astronomy, and Biochemistry, Genetics, and113

Molecular Biology, retrieving 6,669 articles.114

The results were then filtered, by using the filter provided in the Elsevier API, to include only115

open-access articles with DOI identifiers from the following publishers: Elsevier (10.1016), Wiley116

Blackwell (10.1002), The Royal Society of Chemistry (10.1039), American Chemical Society117

(10.1021), Springer-Verlag (10.1007), Nature Publishing Group (10.1038), and MDPI (10.3390).118

To create a public dataset, we finally kept only articles under the CC-BY-4.0 or CC-BY-3.0 licenses,119

resulting in 2,032 CC-BY-4.0 articles and 255 CC-BY-3.0 articles. These CCBY license papers120

were selected by performing web-scrapping from the list of DOIs provided by the Elsevier API. Since121

we are considering only papers with CCBY 3.0 and 4.0 licenses, everyone can retrieve the PDFs.122

1https://github.com/ElsevierDev/elsapy
2https://www.scopus.com
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After collecting the data, we randomly selected 305 articles in PDF format 3. We then extracted123

from these PDFs 188 paragraphs describing synthesis protocols, and 137 examples of paragraphs not124

describing synthesis protocols (a total of 325 paragraphs). This curated set of paragraphs constitutes125

our golden collection of classified paragraphs. For details about how those paragraphs were extracted,126

see Section 3.127

Subsequently, a team of eleven research scientists (composed of 2 SMEs) annotated each of the128

synthesis-related paragraphs on a case-by-case basis for extracting the following information: (i) the129

description of the synthesis product; (ii) the equipment used as an energy source; (iii) the conditions130

under which the synthesis occurred (e.g., reaction time, reaction temperature, current density); and131

(iv) the reactants and solvents used, including their descriptions, quantities, and units of measurement.132

Intentionally, some paragraphs were selected for annotation by multiple SMEs, leading to some133

inconsistencies. These inconsistencies were then used to refine the annotation guidelines. The data134

was reviewed on a case-by-case basis by SMEs using a custom-built graphical interface and compiled135

in a final set of 131 syntheses descriptions encoded in a JSON format, thereby creating our golden136

dataset of annotated synthesis information. Table 1 summarizes the data in our golden dataset.137

Table 1: Overview of golden dataset
Synthesis Not Synthesis

paragraphs classified 188 137
annotated paragraphs 131 -

3 Knowledge Extraction Pipeline (KEP)138

KEP is a domain-independent pipeline that helps extract knowledge from unstructured data. It is139

composed of four main modules: PDF extractor, Paragraph classification, Information extraction140

and Knowledge representation, as shown in Figure 1. The PDF extractor processes the PDF to extract141

paragraphs, since we assume that SMEs are interested in paragraphs containing specific information.142

The Paragraph classification classifies the extracted paragraphs into relevant or irrelevant, according143

to the task the SME is interested in. When applying this module to our use case, relevant paragraphs144

are those describing synthesis protocols of reticular materials.145

Information extraction processes the relevant paragraphs and extracts the relevant information. When146

applying this module to our use case, the relevant information is the synthesis details such as the de-147

scription of the synthesis product, the experimental conditions (such as reaction time and temperature),148

and the reagents and solvents used in the synthesis. The final module, Knowledge representation,149

interprets and assigns meaning to the extracted information while creates the knowledge represen-150

tation. In the synthesis protocol use case, the knowledge representation is characterized by (i) the151

normalization of the unities; (ii) by the instantiation of entities of different kinds (such as productions,152

reactants and solvents), and (iii) by the instantiation of the relationships (such as used-reactant and153

used-solvent) that link the entities to the synthesis where they take part. For instance, it is possible to154

represent that the same reactant is being used in syntheses of two different products and that same155

product can be synthesized by two different synthesis.156

The PDF extractor was implemented using the DS4SD open-source tool4 that converts unstructured157

PDF documents into JSON files containing the document elements such as section titles, paragraphs,158

footnotes, headers, figure captions and tables, etc. DS4SD is also able to process PDFs that are159

indeed images since it uses an OCR engine to extract text-snippets from those images. The Para-160

graph classification and Information extraction modules, which are the focus of this paper, were161

implemented by using open source LLMs of the Flan, Granite, LLaMa, Mistral and Mixtral families.162

As detailed in Section 4, we compare the performance of these five families of LLMs when used in163

both the Paragraph classification and Information extraction modules. The LLMs were used without164

fine-tuning or training for the extraction of synthesis related information or on any task defined165

specifically for the Material Discovery domain. We only used prompt-engineering and ICL.166

3171 articles with at least one paragraph describing a synthesis protocol and 134 articles without any synthesis
protocol description.

4https://ds4sd.github.io/
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Figure 1: Knowledge Extraction Pipeline (KEP) with the four KEP modules highlighted in gray color.
Also shown are the respective inputs and outputs

To select the best set of examples to be provided in the prompt, the pipeline adds an additional step167

to each of the LLM’s modules, namely Paragraph classification and Information extraction. The168

Examples selection step aims to select the best set of examples to be used in each tested LLMs for169

each one of the tasks, paragraph classification and information extraction, see Section 3.3.170

3.1 Paragraph classification171

Since the goal of this module is the classification of paragraphs as relevant or irrelevant, the prompt172

to be used in this model should describe the difference between a relevant and an irrelevant paragraph.173

In addition, a sentence explicitly instructing the LLM that it should not provide an explanation174

together with the classification may be required.175

Since we are not using zero-shot prompting but ICL prompting, we not only provide the LLM with the176

aforementioned instructions, but also give it several examples of paragraphs and their corresponding177

classifications. In Section 4 we demonstrate that, by providing just a few examples in the prompt, the178

performance of the LLMs tends to increase significantly. Below is an example of instructions used,179

along with an example of paragraph5 and its corresponding classification, also provided in the prompt.180

This paragraph was classified as "S" meaning it is a paragraph describing a synthesis protocol.181

Instruction: You are assisting a chemist in classifying paragraphs from scientific articles. Mark182

the paragraph as ’S’ if it describes the components of synthesis protocols for reticular materials,183

or ’I’ if it does not include a synthesis description. After reviewing the examples, classify the given184

paragraph. Do not add any information or explanation besides ’S’ or ’I’ in the answer.185

Example: "Synthesis of Zn-MOF: Bis(imidazole-1-yl)methane was synthesized analogously to a186

the procedure reported in [43]. All other materials were obtained from commercial sources and were187

used as received. {[Zn(bim)(bdc)]0.8DMF0.4EtOH0.1H2O}n (Zn-MOF). Bis(imidazol-1-yl)methane188

(bim) (3.0 mg, 0.02 mmol), terephthalic acid (6.6 mg, 0.04 mmol), and Zn(NO3)2·6H2O (7.6 mg, 0.02189

mmol) were dissolved in DMF/EtOH/H2O (2:1:1, vol.) mixture (1 mL), placed in a 4 mL screw-cap190

vial, and heated to 100 °C for 24 h."191

192

Classification: S193

3.2 Information extraction194

The prompt used in the Information extraction module should inform to the LLM the kind of195

knowledge that should be extracted. In case of a complex structure, the prompt should suggest to the196

LLM to represent the extracted information following a given schema in well-known format, such197

as JSON [27]. It is reasonable to assume that the LLM will be able to parse this format since it is198

a commonly used data format that appeared in several documents used to train the LLM. In order199

to exemplify, find below the instruction we used and the JSON annotation related to the synthesis200

paragraph presented in Section 3.1.201

5Paragraph extracted from [26].
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Instruction: You are assisting a chemist in identifying and extracting descriptions of the synthesis202

of reticular materials from paragraphs. For each synthesis described in a paragraph, your task203

is to produce a JSON object that encodes the components involved in the synthesis, following the204

format provided in the examples. After reviewing the examples, carefully analyze the last paragraph205

and create a JSON object for each synthesis you find, ensuring that it adheres to the structure and206

conventions demonstrated.207

Example: "Synthesis of Zn-MOF: Bis(imidazole-1-yl)methane was synthesized analogously to a208

. . . screw-cap vial, and heated to 100 °C for 24 h."209

{"output": {210

"product": {211

"description": "Zn−MOF",212

"material_type": "MOF",213

"conditions": [214

{"description": "reaction temperature", "value": 100 , "unit": "oC"},215

{"description": "reaction time", "value": 24, "unit": "h"}216

]217

},218

"reactants": [219

{"description": "Bis(imidazol−1−yl)methane (bim)", "value": 0.02, "unit": "mmol"},220

{"description": "terephthalic acid", "value": 0.04, "unit": "mmol"},221

{"description": "Zn(NO3)2−6H2O", "value": 0.02, "unit": "mmol"}222

],223

"solvents": [224

{"description": "DMF/EtOH/H2O (2:1:1, vol)", "value": 1.0, "unit": "mL"}225

]226

}}227

3.3 Examples selection228

It is well-known that the performance of LLMs to execute a given task is significantly influenced by229

the set of examples provided in the prompt. In addition, due to the different characteristics of how230

the LLMs were trained, it is expected that different LLMs will require different sets of examples to231

achieve their highest performance when executing the same task.232

Therefore, the Examples selection step was included and associated with each KEP module that uses233

LLMs to help on the selection of the best set of prompt examples to be used. Examples selection234

receives as input the model to be tested, a golden dataset and the number of examples to be selected as235

examples. It randomly selects from the dataset some instances to be used as examples in the prompt,236

and all other instances are used to measure the performance of the model. This step is executed for237

all possible combinations of examples or until the user is satisfied with the performance of the model238

in one of the executions. The set of examples that leads the LLM to achieve the highest performance239

is the one selected to be used in the associated KEP module.240

4 Experiments241

This section presents the experiments we ran with 5 families of open-source LLMs. None of them242

were trained or fine-tuned to extract synthesis details from paragraphs or to execute any specific task243

in the Material Discovery domain. We selected 2 models of each family6 , prioritized the models244

that have been fine-tuned using a collection of instructions (not related to our tasks) and chosen the245

last released ones7. Ultimately, the selected models were: (i) flan: flan-t5-xxl-11b, flan-ul2-20b;246

(ii) granite: granite-20b-code-instruct, granite-34b-code-instruct; (iii) llama: llama-3-70b-instruct,247

llama-3.1-405b-instruct; (iv) mistral: mistral-large; and (v) mixtral: mixtral-8x7b-instruct-v01. See248

the description of each model in Appendix A.249

6Exceptions: mistral and mixtral
7Exception: llama-3-70b-instruct selected instead of llama-3-1-70b-instruct since it has a highest performance

in the tasks we are testing.
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4.1 Examples selection250

Paragraph classification: From the original set of 325 classified paragraphs, we reduced the golden251

dataset by downselecting only 50 paragraphs to demonstrate that, even when testing the prompt252

examples selection in a small dataset, it is possible to achieve a good performance on a majority of253

the tested models. In addition, the use of a small dataset helps demonstrate that the approach does not254

require the manual classification/annotation of thousands or hundreds of examples.255

In the set of 50 paragraphs we ensure that 25 paragraphs are relevant (i.e., classified with "S" and256

mentioning synthesis protocol) and 25 are irrelevant (i.e., classified with "I" and not mentioning257

synthesis protocols). We fixed the number of examples to be provided in the prompt to 5, since258

paragraphs describing synthesis protocols are typically very large and the prompts have a limited259

number of tokens. Our goal is to find the best set of 5 examples used in the prompt that helps the260

models achieve their highest performance. The accuracy of each model was measured by using the261

F1 metric.262

For each model, we executed 100 runs by providing in the prompt the instruction mentioned in263

Section 3.1 and 5 examples randomly selected from 50 possibilities. We tested the output with the264

remaining 45 paragraphs not provided in the prompt. Table 2 presents the result of our experiments.265

For each one of the models, the table indicates the number of paragraphs mentioning synthesis266

protocols ("S") and the number of irrelevant paragraphs ("I") used in both the worst and best prompt267

together with the F1 value for each case.268

Table 2: The best-case (highlighted in bold) and worst-case (underlined) scenarios in the selection of
examples to be used in the prompt of the Paragraph classification module.

Model Worst Best
#S #I F1 #S #I F1

flan-t5-xxl-11b 1 4 0.93 3 2 1.0
flan-ul2-20b 3 2 0.0 1 4 0.98
granite-34b-code-instruct 1 4 0.30 2 3 0.92
granite-20b-code-instruct 2 3 0.32 2 3 0.74
llama-3-70b-instruct 1 4 0.71 4 1 1.0
llama-3.1-405b-instruct 3 2 0.0 3 2 0.95
mistral-large 2 3 0.76 4 1 1.0
mixtral-8x7b-instruct-v01 3 2 0.61 3 2 1.0

The models with highest performance were flan-t5-xxl-11b, llama-3-70b-instruct, mistral-large and269

mixtral-8x7b-instruct-v01. Although llama-3-70b-instruct and mistral-large used the same number of270

relevant paragraphs and the same number of irrelevant paragraphs in their best cases, their prompts271

share only one paragraph (see Table 6 in Appendix B). When testing the best prompt for mistral-large272

in llama-3-70b-instruct by using the same 45 testing examples, the performance of the model did not273

achieve F1=1.0, but F1=0.98. Although it is a small difference, it demonstrate that, different LLMs274

may need different examples in their prompts to achieve their highest performance. The models275

with worst performance were flan-ul2-20b and llama-3.1-405b-instruct. Although we included in the276

prompt a sentence stating that the answer should only include "S" or "I", their answers often also277

include an explanation; which we considered to be a hallucination and, thus, an incorrect answer.278

Information extraction: The golden dataset used in this step is the 25 paragraphs mentioning279

synthesis protocols used in the previous step together with their coresponding JSON annotations.280

Different from the previous step, here we fixed the number of examples used in the prompt to 2, since281

the JSON annotation is being provided together with the paragraph, which significantly increases the282

number of tokens. Even with only 2 examples, flan-t5-xxl and flan-ul2 could not be tested since their283

prompt+result do not accept so many tokens 8.284

The experiment begun by randomly selecting 2 paragraphs+JSON to be used in the prompt for285

each one of the 6 models. For each model, we executed 100 runs by providing in the prompt the286

instructions mentioned in Section 3.2 and the 2 examples of paragraph+JSON randomly selected287

from 25 possibilities. We tested the performance of the model with each prompt by using the 23288

8Both flan models accept only 4,096 when comparing to llama that accepts 8,192
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paragraphs that were not provided as examples in the prompt. The results are presented in Table 3.289

To compare the JSON annotations provided by the LLM with the JSON annotations included in the290

golden dataset, a structure analysis based on each JSON key (i.e., name/value pair) was defined9.291

Table 3: The best-case and worst-case scenarios in the selection of examples of the Information
extraction module. The best results are highlighted in bold and the worst results are underlined.

Model Worst accuracy Best accuracy
granite-34b-code-instruct 0.70 0.93
granite-20b-code-instruct 0.65 0.84
llama-3-70b-instruct 0.54 0.95
llama-3.1-405b-instruct 0.53 0.94
mistral-large 0.22 0.94
mixtral-8x7b-instruct-v01 0.70 0.93

The models that achieved the highest accuracy were llama-3-70b-instruct, llama-3.1-405b-instruct292

and mistral-large. However, it is important to notice that all of them achieved an accuracy higher than293

0.84 even using only two examples in the prompt. Similar to what happened in the previous step, the294

experiments illustrate the influence of the examples in the accuracy of the model (E.g. llama-3.1-405b-295

instruct worst case was 0.53 and best case was 0.94). In addition, one of the paragraphs presented in296

the worst case of mistral-large appeared in the best case of mixtral-8x7b-instruct-v01 (see Table 7 in297

Appendix B). Two related models that have the same example in opposite scenarios. Moreover, it is298

important to highlight that the two granites, the two llamas, and mixtral-8x7b-instruct-v01 included299

in their worst scenarios the same paragraph (see Table 7 in Appendix B). It may indicate that there300

are examples that really do not help the models on executing their tasks.301

4.2 Paragraph classification302

After selecting the final set of five examples that maximize the performance of each model, the303

paragraph classification module was tested by using the entire golden dataset of 275 paragraphs304

(325 minus the 50 used for prompt selection). For each model, the prompt was composed of the305

instructions mentioned in Section 3.1 and the best set of examples selected for that model, as presented306

in Section 4.1. Table 4 summarizes the results for each model in terms of Precision, Recall, and F1307

achieved with the best prompt. Llama-3-70b-instruct and mistral-large achieved F1=0.98. Although308

llama-3.1-405b-instruct and flan-ul2-20b have more parameters than the other model of their families,309

their performances were worse. It occurred due the hallucination mentioned in the Example section310

step. Excluding granite-20b-code-instruct, all the models achieved F1>0.84, which is very good311

accuracy given that only five examples were provided in the prompt to these models.312

Table 4: Experiments for the Paragraph classification module (best results highlighted in bold).
Model Precision Recall F1
flan-t5-xxl-11b 0.98 0.96 0.97
flan-ul2-20b 0.96 0.96 0.96
granite-34b-code-instruct 0.87 0.83 0.84
granite-20b-code-instruct 0.75 0.70 0.72
llama-3-70b-instruct 0.98 0.98 0.98
llama-3.1-405b-instruct 0.98 0.83 0.88
mistral-large 0.98 0.98 0.98
mixtral-8x7b-instruct-v01 0.95 0.93 0.94

4.3 Information extraction313

This module was tested by using the golden dataset of 106 annotated paragraphs (131 minus the 25314

used for prompt selection). For each model, the prompt was composed of the instructions mentioned315

in Section 3.2 and the best set of examples selected for that model, as presented in Section 4.1.316

9To create a more fine-grained comparison between the JSONs, it would be necessary to compare their
semantics and not only their structures, as different structures could have the same meaning.
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Table 5 summarizes the results of our experiments. The model that achieved the highest accuracy317

(0.96) was llama-3.1-405b-instruct, which is the biggest one. Other four models also achieved a318

very similar and high performance (mixtral-8x7b-instruct-v01, mistral-large, llama-3-70b-instruct319

and granite-34b-code-instruct). Notice that the smallest model (granite-20b-code-instruct) was the320

one that achieved the lower performance. The high accuracy achieved by the biggest models when321

compared to the smallest one is expected due to the complex of the task that involves the creation322

of a correct JSON. When considering both the Paragraph classification and Information extraction323

modules, the three models with highest performance and, thus, those that should be considered to324

be used in KEP to process all the selected papers mention in Section 2 are: llama-3-70b-instruct,325

mistral-large and mixtral-8x7b-instruct-v01.326

Table 5: Experiments for the Information extraction module (best results highlighted in bold).
Model Accuracy
granite-34b-code-instruct 0.93
granite-20b-code-instruct 0.84
llama-3-70b-instruct 0.93
llama-3.1-405b-instruct 0.96
mistral-large 0.95
mixtral-8x7b-instruct-v01 0.94

5 Conclusions and Future Research327

In summary, we present a knowledge extraction pipeline for synthesis protocols of reticular materials328

that significantly reduces SME based classification and annotation tasks related to the training or fine-329

tuning of machine learning models. Our experimental results indicate that LLMs can achieve high330

performance with a limited set of examples within the prompt, even without training or fine-tuning331

the models for the specific domain. For example, by including five representative paragraphs in the332

prompt, we have reproducibly achieved F1=0.98 in paragraph classification tasks. In information333

extraction tasks, we have used two paragraphs + JSON and llama-3.1-405b-instruct for achieving334

Accuracy=0.96.335

Our results highlight the necessity of testing different examples to be used in the prompt as this336

variation strongly influences model performance. For instance, in the Paragraph classification337

module, the performance of mixtral-8x7b-instruct-v01, one of the best models in our study, ranges338

from F1=0.61 to F1=1.0. In addition, the experiments show that different LLMs may require different339

sets of examples for achieving top performance. Although both llama-3-70b-instruct and mistral-large340

included four synthesis paragraphs and one irrelevant paragraph in their best set of examples, llama-341

3-70b-instruct has not achieved its highest performance with the best prompt chosen for mistral-large.342

Finally, a huge number of parameters in the model does not necessarily guarantee a superior model343

performance. Both flan-ul2 and llama-3.1-405b-instruct failed to achieve top performance in the344

classification of paragraphs if compared to other models of the same family.345

Future research work should include comparative analyses with nonLLM methods in view of extrac-346

tion time and quality, as well as measuring LLMs’ performance for different materials applications.347

For creating a dataset of synthesis protocols for reticular materials, future research should address the348

following: (i) refine JSONs comparison: The creation of metrics for semantically comparing JSONs349

is needed to validate if the output of the model is structurally comparable with the golden dataset, and350

if it should be considered a valid JSON; (ii) workflow extraction: The extension of the Information351

extraction module for extracting the synthesis workflow step-by-step; and (iii) increase use case352

coverage: The application of KEP to all paragraphs extracted from the selected 2,287 papers. Once353

processed, the resulting data set should be explored for analyzing the distributions of synthesis details354

made available in the scientific literature.355
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A Models Description461

Flan-T5 [28]is a variant of the T5 (Text-to-Text Transfer Transformer) model, further fine-tuned using462

a mixture of instruction-based learning tasks. Like the original T5, Flan-T5 leverages a transformer463

architecture, specifically designed for text-to-text tasks, which means it treats both the input and464

output as text sequences, regardless of the task (e.g., translation, summarization, question-answering).465

The “Flan” component (Fine-tuned LAnguage Net) introduces instruction tuning, where the model466

is exposed to a variety of natural language instructions during its fine-tuning phase. This method467

allows the model to generalize better across tasks by learning to follow explicit human instructions.468

In essence, Flan-T5 adapts the standard pre-training and fine-tuning methods of T5 but adds an469

additional layer of task diversity through its instruction-based training. This approach enhances its470

performance on zero-shot and few-shot learning tasks, making it more versatile for a wide range of471

NLP applications.472

Flan-UL2 (Unified Language Learner) [29] is a variant of the UL2 architecture, designed for improved473

instruction-based fine-tuning similar to Flan-T5. UL2 is an advanced architecture that introduces a474

novel pre-training method utilizing a mixture of denoising tasks with different difficulty levels. This475

approach allows the model to adapt to a wider range of NLP tasks by balancing between simple and476

complex learning objectives. In the case of Flan-UL2, this model takes UL2 and further enhances it477

with instruction tuning, similar to the Flan-T5 approach. It is trained on a large variety of instruction478

tasks, making it highly proficient at zero-shot and few-shot learning across many tasks, such as479

summarization, translation, and question answering. The model’s ability to generalize across these480

tasks is further improved by the fine-tuning process with diverse datasets of instructions, allowing it to481

better understand human-like queries and execute complex tasks. This makes Flan-UL2 particularly482

powerful for applications requiring high versatility and adaptability in natural language understanding.483

Granite-20B-Code-Instruct and Granite-34B-Code-Instruct [30] are part of the Granite family of484

large language models (LLMs) designed specifically for code-related tasks. Both models are fine-485

tuned versions of their respective base models, Granite-20B-Code-Base and Granite-34B-Code-Base,486

using instruction-based datasets to improve their ability to follow natural language instructions.487

These models, developed by IBM Research, are built for tasks such as code generation, bug fixing,488

code explanation, and translation across a wide range of programming languages, making them489

versatile tools for code-centric applications. Granite-20B-Code-Instruct, with 20 billion parameters,490

was trained on trillions of tokens from various sources, including high-quality code, mathematical491

data, and instructional prompts. Its fine-tuning emphasizes logical reasoning and problem-solving,492

with a focus on generating and explaining code, alongside supporting tasks like API calling and493

debugging . Granite-34B-Code-Instruct, with 34 billion parameters, extends these capabilities by494

being a more computationally powerful model, trained on a larger and more diverse dataset of code495

instructions. It can handle more complex coding tasks and demonstrates state-of-the-art performance496

across benchmarks for code synthesis, explanation, and debugging . Both models are decoder-only497

architectures, optimized for generating human-readable code outputs from natural language inputs,498

and are trained with instruction tuning to improve their accuracy in code-based applications.499

Llama-3-70B-Instruct [31] is part of Meta’s Llama 3 family of large language models, specifically500

designed for instruction-following tasks. The model contains 70 billion parameters and is optimized501

for generating text in response to user prompts. It is a decoder-only model, which uses an optimized502

transformer architecture. The instruction-tuned version of Llama-3-70B benefits from Supervised503

Fine-Tuning (SFT) and Reinforcement Learning with Human Feedback (RLHF) to align its outputs504

with human preferences for helpfulness and safety. This fine-tuning process makes it particularly505

suitable for assistant-like applications, such as chatbots and task-oriented dialogue systems. Llama-3-506

70B-Instruct was trained on an extensive corpus of 15 trillion tokens from publicly available datasets507

and supports a wide range of use cases, including multilingual text generation and code-related508

tasks. It incorporates improvements like Grouped-Query Attention (GQA) for faster inference and an509
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expanded 8,192 token context window, allowing it to handle longer inputs effectively. The model510

has been tested extensively for safety, and Meta has integrated safeguards to limit misuse, including511

rigorous red teaming and cybersecurity assessments. The model is available under the Meta Llama 3512

Community License for both commercial and research applications. It’s praised for outperforming513

other models in several benchmarks, demonstrating significant advancements in multilingual dialogue514

capabilities and code generation.515

Llama 3.1-405B-Instruct [32] is the largest model in the Llama 3.1 series by Meta, designed to provide516

state-of-the-art performance in multilingual dialogue and complex instruction-following tasks. With517

405 billion parameters, it utilizes a transformer-based, decoder-only architecture optimized for518

extensive text generation tasks. It introduces enhancements in context handling, supporting up519

to 128,000 tokens, which makes it ideal for tasks like document summarization and long-context520

conversation . This model is fine-tuned using a combination of Supervised Fine-Tuning (SFT) and521

Reinforcement Learning with Human Feedback (RLHF), enabling it to align better with human522

preferences and improve the safety and helpfulness of its outputs . Llama 3.1-405B was trained on a523

mixture of publicly available datasets containing approximately 15 trillion tokens, and its fine-tuning524

included more than 25 million synthetically generated instruction-based examples . Furthermore,525

it offers improved multilingual support beyond English, covering languages like German, French,526

Italian, Portuguese, Hindi, Spanish, and Thai . The model is open-source and available under Meta’s527

custom open model license, encouraging use in both research and commercial applications .528

Mistral AI’s large language models, particularly Mistral Large 2 [33], represent significant advance-529

ments in both computational efficiency and reasoning capabilities. This model, featuring 123 billion530

parameters, is designed for tasks that require extensive reasoning, such as multilingual text processing,531

code generation, and mathematical problem-solving. With support for over 80 coding languages and532

a context window of 128,000 tokens, it excels in handling large documents and long, complex inputs.533

Mistral Large 2 is particularly strong in benchmarks like MMLU (Massive Multitask Language534

Understanding), where it achieves an accuracy of 84535

Mixtral-8x7B-Instruct-v0.1 [34] is an advanced sparse mixture-of-experts (SMoE) model developed536

by Mistral AI. It incorporates a unique architecture where each layer contains eight experts (feedfor-537

ward blocks), but only two are activated for each token during inference. This selective processing538

allows the model to manage a large number of parameters—47 billion in total—while only using 13539

billion active parameters per token, which significantly reduces computation costs during inference.540

Mixtral-8x7B-Instruct has been fine-tuned for instruction-following tasks through a combination541

of supervised fine-tuning (SFT) and Direct Preference Optimization (DPO). This model excels in542

benchmarks such as MMLU and GSM8K, matching or outperforming larger models like GPT-3.5543

Turbo and Llama 2 70B in several areas, particularly code generation, reasoning, and multilingual544

tasks. Its ability to handle long sequences with a 32k token context window makes it highly effective545

for long-range information retrieval and complex prompts.546

B Examples selection547

Paragraph classification Table 6 shows excerpts of JSONs with best and worst paragraphs selected548

as examples for each model. It is possible to see that few paragraphs appear in more than one prompt.549
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Table 6: Partial JSONs with the best and worse examples for Paragraph classification module.
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Table 6: (continued)

Information extraction Table 7 shows the JSONs that include the best and worst paragraphs550

selected as examples for each model.551
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Table 7: Partial JSON with the best and worse examples for Information extraction module.
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