EvalSVA: Multi-Agent Evaluators for Next-Gen Software Vulnerability
Assessment

Anonymous ACL submission

Abstract

Software Vulnerability (SV) assessment is a
crucial process of determining different aspects
of SVs (e.g., attack vectors and scope) for devel-
opers to effectively prioritize efforts in vulnera-
bility mitigation. It presents a challenging and
laborious process due to the complexity of SVs
and the scarcity of labeled data. To mitigate
the above challenges, we introduce EvalSVA,
a multi-agent evaluators team to autonomously
deliberate and evaluate various aspects of SV
assessment. Specifically, we propose a multi-
agent-based framework to simulate vulnerabil-
ity assessment strategies in real-world scenar-
ios, which employs multiple Large Language
Models (LLMs) into an integrated group to en-
hance the effectiveness of SV assessment in
the limited data. We also design diverse com-
munication strategies to autonomously discuss
and assess different aspects of SV. Furthermore,
we construct a multi-lingual SV assessment
dataset based on the new standard of CVSS,
comprising 699, 888, and 1,310 vulnerability-
related commits in C++, Python, and Java, re-
spectively. Our experimental results demon-
strate that EvalSVA averagely outperforms the
44.12% accuracy and 43.29% F1 for SV assess-
ment compared with the previous methods. It
shows that EvalSVA offers a human-like pro-
cess and generates both reason and answer for
SV assessment. EvalSVA can also aid human
experts in SV assessment, which provides more
explanation and details for SV assessment.

1 Introduction

Software Vulnerabilities (SVs) are mostly caused
by insecure code that can be exploited to attack
software systems (Dissanayake et al., 2022; Khan
and Parkinson, 2018), and further cause security
issues such as systems susceptible to cyber-attacks,
and data leakage problems (Le et al., 2023). Over
the past decade, the number of SVs has been in-
creasing rapidly (Smyth, 2017), rising from 5,697

in 2013 to 29,065 in 2023 (Statista, 2024). There-
fore, SV assessment is a crucial yet challenging
problem in security.

The expert-based Common Vulnerability Scor-
ing System (CVSS) (CVS, 2024a) is a widely
adopted framework for assessing SVs, which pro-
vides metrics to quantify the exploitability, impact,
and severity metrics of SVs (CVS, 2024c; Fore-
man., 2019). Such procedures are labor-intensive
and suffer from inefficiencies due to the complex-
ity of vulnerabilities (Bilge and Dumitras, 2012;
Feutrill et al., 2018). Traditional automated ap-
proaches for SV assessment, primarily reliant on
user-submitted reports, are hampered by substantial
delays—over 82% of reports are filed more than
30 days post initial detection (Thung et al., 2012).
Recent studies aim to automate assess SV via com-
mits (Le et al., 2021; Zhou et al., 2021), greatly
reducing reliance on manual expert evaluations and
accelerating the assessment process.

However, the existing methods still pose sev-
eral major challenges that need to be addressed:
Firstly, the existing methods depend on extensive
labeled data, which is difficult to evolve in practice.
Specifically, the CVSS framework updates rapidly,
evolving from CVSS v2 to v3, and subsequently to
v3.1 (CVS, 2024d,b,c). It is time-consuming for
experts to furnish high-quality assessments in new
standards. For instance, the National Vulnerability
Database (NVD) (NIST, 2024) and the Common
Vulnerabilities and Exposures (CVE) (CVE, 2024)
lists maintained by Mend (WhiteSource, 2023)
only contains 699 complete vulnerability entries
for C++ from 2013 to 2023. Consequently, the
labeled data presents difficulties in industry and
limits practical value in real-world scenarios, po-
tentially leading to unreliable performance. Second,
the previous commit-level SV assessment studies
have not started to use the new standards (CVS,
2024c), which incorporate additional metrics (e.g.,
Scope and User Interaction) to enhance the com-

plexity of vulnerability and become the current
standard in industry. Additionally, most of the ex-
isting techniques solely predict SV scores of CVSS.
They provide no idea about how the vulnerability
assessment is derived from the input, making the
results difficult to interpret and verify.

To mitigate the above challenges, we propose a
multi-agent EVALuators team to autonomously de-
liberate and evaluate various aspects for Software
Vulnerability Assessment, called EvalSVA. Specif-
ically, we propose a multi-agent-based frame-
work to simulate vulnerability assessment strate-
gies in real-world scenarios, which employs mul-
tiple Large Language Models (LLMs) into an in-
tegrated group to enhance the effectiveness of SV
assessment in limited data. We also design diverse
communication strategies to autonomously discuss,
which conduct comprehensive processes and as-
sess different aspects of SV. Moreover, to verify
our multi-agent framework in the real-world sce-
nario, we construct the first multi-lingual vulner-
ability assessment dataset based on the new stan-
dard of CVSS, comprising 699, 888, and 1,310
vulnerability-related commits in C++, Python, and
Java, respectively. Our case study also shows that
EvalSVA offers a human-like process and generates
both reason and answer for SV assessment.

We summarize our major contributions as:

* We are the first to propose the multi-agent eval-
uators with autonomously deliberating for next-
gen software vulnerability assessment. Our ex-
perimental results demonstrate that EvalSVA av-
eragely outperforms the 44.12% accuracy and
43.29% F1 compared with the single agent.

* We construct the first multi-lingual vulnerabil-
ity assessment dataset based on the new stan-
dard of CVSS, comprising 699, 888, and 1,310
vulnerability-related commits in C++, Python, and
Java, respectively.

* We explore the performance of different communi-
cation strategies. The results show that EvalSVA
can aid human experts in many aspects of SV
assessment.

2 Methodology

In this section, we elaborate on the overview of
EvalSVA by first introducing SV assessment task
formulation and then explaining our evaluators.

2.1 Software Vulnerability Assessment
Formulation

Common vulnerability scoring system. The
CVSS has emerged as the definitive framework
for evaluating the severity of SVs. In this paper, we
first employ CVSS v3.1 for the commit-level SV as-
sessment. In this paper, we focus on the prediction
of Base Metrics due to their broader applicability.
These metrics encapsulate the intrinsic attributes of
a vulnerability that remain constant over time and
across different user environments;

SV assessment task formulation. As shown in
Figure 1(a), a vulnerability-related commit can be
denoted by the input X (the template of input X’
are shown in Appendix) and SV tasks can be per-
formed in all metrics simultaneously. The goal
of EvalSVA is to learn a mapping F : X —)
from input X to the output signals Y. Specifically,
the output signals for SV assessment tasks can be
broadly classified into three aspects: Exploitabil-
ity, Scope, and Impact. As shown in Figure 1(b),
the output signals consists of the security of Attack
Vector (AV) yav, Attack Complexity (AC) yac, Priv-
ileges Required (PR) ypr and User Interaction (UI)
yur for exploitability aspect, the security of Scope
Change (S) ys for scope aspect, and the security
of Confidentiality (C) yc, Integrity (I) y; and Avail-
ability (A) ya for impact aspect. We then briefly
introduce each task of the SV assessment in the
CVSS v3.1 as follows:

(1) Exploitability: The exploitability reflects the
properties of the vulnerability that lead to a success-
ful attack. In this paper, we use the four metrics
to represent the exploitability, including AV, AC,
PR, and UI. Specifically, the AV metric reflects the
attack path by which vulnerability exploitation is
possible. AC metric describes the difficulty of con-
ditions beyond the attacker’s control to exploit the
vulnerability. PR metric assesses the level of au-
thority or access rights that an attacker must acquire
to successfully exploit the vulnerability. Ul metric
distinguishes between vulnerabilities that can be
exploited solely by attackers and those requiring in-
volvement from a separate user process. For exam-
ple, Figure 1(a)’s original code (shaded in red) con-
tains a Cross-Site Scripting (XSS) (CWE, 2024b)
vulnerability which generally requires “Low” priv-
ileges, such as a standard user account and “Re-
quired” user interaction with a potentially victim
triggering the malicious script. This vulnerabil-
ity can be exploited through the “Network™ attack

b
(a) Vulnerability-Related Commit

| @@-14,7+14,7 @@
from blog.models import Article, Category, Tag, Links,
SideBar, LinkShowType

1
1
1 .
| from comments.models import Comment
1

: - from djangoblog.utils import CommonMarkdown I
1

+ from djangoblog.utils import CommonMarkdown,
sanitize_html|

from djangoblog.utils import cache
from djangoblog.utils import get_current_site
from oauth.models import OAuthUser
@@ -55,6 +55,13 @@ def get_markdown_toc(content):
return mark_safe(toc)
+ @register.filter()
+ @stringfilter

I
I
I
|
I
|
|
I
1
|
I
:
(

" " """ " " " " " "

& (b) Vulnerability Assessment Tasks

1
:[Exploitability] [
S

I~

Py i
avliac!ie!iu!
oo o

{ (3) Multi Agent-based

878

Figure 1: Figure (a) presents the vulnerability commit of CVE-2023-2954 (Detail, 2024a). The code shaded in red
and green denote the vulnerability code and corresponding fixed code from commit, respectively. Figure (b) presents
the three aspects and eight tasks of SV assessment. Figure (c) presents the three types of SV assessment method.

I’ (1) Preceding
One Expert

86 lg®. s B el &
. ®e 9805 ® % P
i\&) ii&) ii&; ii\dghsummmmi

__

Figure 2: Communication strategy for SV assessment.

path with “Low” complexity via user inputs. (2)
Scope: It indicates whether exploiting a vulnera-
bility impacts resources beyond its security scope
(e.g., application and operating system). S deter-
mines whether exploiting a vulnerability within a
component’s scope provides the ability to access
or impact the scopes of other components. (3) Im-
pact: It captures the consequences of a successfully
exploited vulnerability, which can cause losses in
Confidentiality, Integrity, and Availability. Confi-
dentiality refers to limiting information access and
disclosure while preventing unauthorized individ-
uals from gaining access. [Infegrity refers to the
trustworthiness and accuracy of information, ensur-
ing that data remains reliable. Availability presents
the accessibility of information resources, such as
processor cycles or disk space.

2.2 Multi Agent Evaluators

2.2.1 Multi Agents and Software Vulnerability

Assessment

Various studies (Gao et al., 2023; Peng et al., 2023;
Deng et al., 2024) have shown that LLM-based
methods are utilized to boost interpretability and
practical values behind the classical supervised-

Table 1: Statistics of the dataset in C++, Java and
Python.

Language # Types of Vul # Projects ~ # Commits # Files
C++ 105 169 689 1,506
Java 129 307 888 2,925

Python 159 366 1,310 2,760

based method. Despite the capability of a single
LLM to handle a wide range of tasks across multi-
ple domains (Zheng et al., 2023; Imran et al., 2023),
it continues to encounter significant challenges in
SV assessment. This is primarily due to assessing
the severity of vulnerabilities entails a complex and
consequential process (Croft et al., 2021), which
typically requires collaboration among multiple
experts rather than relying solely on individual as-
sessments. These complex situations make it dif-
ficult for an existing single LLLM to perform well
in SV assessment. Inspired by the recent advance
in multi-agent methods has demonstrated its effec-
tiveness (Li et al., 2023a; Liang et al., 2023; Huang
et al., 2024), we design the first multi-agent-based
framework for effectively SV assessment, where
the agents interact and communicate within a col-
laborative environment, aiming to emulate the in-
teraction and collaboration strategies in real-world
scenarios (Karpinska et al., 2021). We elaborate on
the two components in EvalSVA including vulnera-
bility expert agents and communication strategy.

2.2.2 Component

We provide the details of each component’s role
and functionality in this section.

1. Vulnerability Expert Agents. Vulnerabil-
ity expert agents for evaluators constitute a criti-
cal component in EvalSVA, where each individ-
uval LLM is regarded as an expert agent for SV
assessment tasks. For each task related to SV as-
sessment, we meticulously craft unique prompts
tailored to the specific requirements of the task.
Each LLM is tasked with evaluating the severity
of a vulnerability-related commit and subsequently
providing a detailed explanation. The responses
generated by all agents are preserved within the
chat history. This archive of interactions enables
subsequent evaluators in future rounds of assess-
ment from prior communications, which mirrors
the real-world interactions for SV assessment. It
is worth mentioning that each agent evaluates all
aspects of the same commit, employing different
prompts tailored to specific tasks.

2. Communication Strategy. Another pivotal
challenge involves leveraging references from pre-
vious expert analyses to construct new prompts that
facilitate further exploration by agents. As previ-
ously discussed, assessing the multifaceted aspects
of vulnerabilities is an intricate and critical process,
we are more concerned with how to refer to other
expert responses and interpretations for further SV
assessment. As shown in Figure 2, we explore four
distinct communication strategies to emulate the
processes in the real-world scenarios.

(1) Referencing the preceding one expert. Each
expert agent constructs its response based on the
input from the immediately preceding expert, ex-
cept the initial agent. We incorporate only the prior
agent’s response into the current agent’s conversa-
tional history. It prevents excessive past interac-
tions from influencing present results.

(2) Referencing the previous communication.
The expert agents sequentially generate their re-
sponses in a predetermined order. This procedure
involves concatenating all previous responses into
the chat history to construct the assistant’s prompt
for the next agents. This approach simulates the
written communication for SV assessment in the
real world, where experts access all prior informa-
tion and make their judgments accordingly.

(3) Simultaneous assessment. Every expert agent
cannot reference the responses of other experts
from the current round but may consider the re-
sponses from all experts in the previous round. This
method minimizes the dependency of an agent on
the responses of other experts and mitigates the
influences that could arise from sequential order.

(4) Summarizer assessment. Building on the
strategy (3), each round additionally augments a
summarizer, which synthesizes the responses of
all experts within the current round and makes a
final judgment. This approach emulates real-world
scenarios where conflicting opinions on SV assess-
ments, and introduces an expert specifically desig-
nated for decision-making purposes.

3. Adaptive Environment. In EvalSVA, each
LLM is treated as an agent that interacts with the
adaptive environment. The environment presents
two aspects: integration of knowledge from the
CVSS standard and coordination with multiple
agents from the chat history. The CVSS standard,
which can be either predefined or user-modified, is
designed to facilitate the rapid integration of new
domain knowledge and adapt to evolving standards
in SV assessment. The chat history is dynamically
produced by each agent. The responses generated
by different agents collaboratively contribute to up-
dates in the prompt, enhancing the collaborative
process.

3 Experiments

3.1 Data Preparation

Securing high-quality datasets comprising
vulnerability-related commits for SV assessment is
a formidable challenge, necessitating the demand
for qualified expertise.

Data Collection: Our initial step involved
acquiring open-source vulnerabilities from
Mend (WhiteSource, 2023), which provides
extensive vulnerability entries contributed by
a community of experts. For each identified
vulnerability entry, we extracted security-related
commits (i.e., patches) from platforms such as
GitHub, Android, and Chrome, recording their
associated project and commit messages.

Data Filter: To ensure the relevance and accu-
racy of our dataset, we employed a filtering method-
ology to select commits based on two essential
criteria: (1) All SV assessment labels must be com-
plete, and (2) The labels for SV assessments must
conform to the evaluation standards established by
CVSS V3.1. Additionally, we utilized time-based
splits for testing the EvalSVA, aiming to closely
mimic real-world scenarios where future unseen
data is not available.

As presented in Table 1, we have gathered 699,
888, and 1,310 vulnerability-related commits in
C++, Python, and Java, respectively. They are col-

Table 2: Dataset evaluation in C++, Java and Python.

Datasets Language Accuracy
Big-Vul (Fan et al., 2020) C/C++ 54.3
D2A (Zheng et al., 2021) C/C++ 28.6

C++ 90.0

EvalSVA Python 65.0

Java 70.0

lected according to the CVSS v3.1 standard and en-
compass 105, 129, and 159 types of vulnerabilities
across the 160, 307, and 366 projects, respectively.

3.2 Dataset Evaluation

The previous study (Croft et al., 2023) has demon-
strated that vulnerability datasets often exhibit qual-
ity problems. Therefore, we conducted an evalu-
ation of our dataset in comparison with existing
datasets, despite the absence of specific datasets
dedicated to vulnerability assessment. Specifically,
we randomly select 20 examples from each pro-
gramming language and manually analyze the vul-
nerability. The manual analysis is independently
carried out by two developers, each possessing over
five years of experience in software security. As
presented in Table 2, our dataset demonstrates a
higher accuracy compared to previous datasets, un-
derscoring the effectiveness of our data collection
and filtration processes.

3.3 Baselines

We primarily focus on few-shot-based methods for
SV assessment. This is due to the insufficiency of
labeled data for CVSS v3.1 available in program-
ming languages such as C++, Java, and Python.
Despite the limited data, these languages pose sig-
nificant vulnerability threats.

We use the Yin et al. (Yin et al., 2024a) method
as baseline, which directly involves a single LLM
to generate a response for the given commit (i.e.,
Single). This approach tests the LLM’s ability for
SV assessment. For the LLMs utilized in EvalSVA,
we have selected ChatGPT (ChatGPT, 2022) and
GPT-4 (OpenAl, 2023), given their robust capabili-
ties in handling code-related tasks.

3.4 Evaluation Metrics

In this paper, we employ the evaluation framework
delineated by the CVSS v3.1 for SV assessment
results derived from various methods. Specifically,
we compute the Accuracy (i.e., Acc), which quan-
tifies the ratio of accurately classified instances to
the total number of instances, and calculate the F1

score (i.e., F1) to evaluate issues of class imbalance
situation.

3.5 EvalSVA Results

As illustrated in Table 3, these LLM-based ap-
proach tasks are to achieve consistency with the
SV assessment results of human experts in the
CVSS v3.1 framework. Our findings reveal that:
(1) SV assessment is an arduous task for a sin-
gle agent. Existing single-based LLMs perform
poorly across all metrics SV assessment with com-
mit input, with average performances as low as
48.50% and 34.73% on the accuracy and F1 met-
rics, respectively. This underscores the complex-
ity and difficulty of SV assessment for the sin-
gle LLM. (2) Superior performance of EvalSVA.
EvalSVA significantly enhances the performance of
the SV assessment process, achieving higher align-
ment with human preference compared to single-
agent-based methods. Specifically, the multi-agent-
based method improves the F1 by 53.71% for Chat-
GPT and 32.88% for GPT-4. This demonstrates
EvalSVA'’s advanced ability to evaluate the differ-
ent aspects of SV assessment. (3) GPT-4 can aid
human experts in SV assessment. The ChatGPT
method shows more substantial improvements in
the exploitability aspect, with average increases of
72.35% and 49.35%, respectively. In contrast, the
GPT-4 shows more significant improvements on
the impact metric, with an absolute improvement
of 5.64% and 12.64% on the accuracy and F1 Score,
respectively. Overall, GPT-4 performs well on the
AV, PR, and UI metrics, significantly aiding human
experts in SV assessment. (4) SV assessment in
Python and Java presents the greatest challenge.
Language-specific results reveal that C++ tasks typ-
ically exhibit higher accuracy than Python and Java
across all multi-agent methods. This discrepancy
may be attributed to C++ providing features like
manual memory management and extensive use of
pointers. However, these same complexities might
make it easier for EvalSVA because they follow
certain patterns typical to C++ programming.

We also study the different types of vulnerabil-
ities misreported by EvalSVA. Despite achieving
optimal results in various scenarios, we find that
EvalSVA still exhibits an error rate with certain
types of vulnerabilities, notably those related to
XML. For instance, EvalSVA incorrectly reported
seven instances of CWE-79 (CWE, 2024b) vulner-
abilities in Python, and the single agent reported
23 false positives showing a more severe error rate.

Exploitability Metrics Attack Vector Access Complexity Privileges Required User Interaction Average
Lang Baselines Acc F1 Acc Acc F1 Acc F1 Acce F1
ChatGPT Single 0.4778 0.4075 0.4000 0.3132 0.2889 0.2425 0.3667 0.3532 0.3834 0.3291
Java E_valSVA 0.4889 0.4564 0.4444 0.2167 0.5778 0.3613 0.5000 0.4994 0.5028 0.3835
GPT4 Single 0.8111 0.6052 0.5222 0.2338 0.6444 0.4633 0.7111 0.6928 0.6722 0.4988
EvalSVA 0.8667 0.6296 0.5556 0.3189 0.8333 0.6671 0.7333 0.7091 0.7472 0.5812
T é h;lél;lj " Single 03206 0.1909 02137 0.1318 03359 03004 03282 02984 0.2996 0.2304
Python EyalSVA 0.3282 0.2014 0.4351 0.2510 0.5954 0.4761 0.4504 0.4496 0.4523 0.3445
GPT4 Single 0.8168 0.3905 0.1985 0.1311 0.6870 0.5516 0.6718 0.6480 0.5935 0.4303
EvalSVA 0.8931 0.3656 0.5573 0.3251 0.7176 0.6089 0.7557 0.7292 0.7309 0.5072
T (; h;lél;; T Single 03333 03088 02754 0.1873 0.1449 0.0921 05072 04569 03152 02613
Cit EyalSVA 0.4203 0.3611 0.4928 0.2686 0.6957 0.3058 0.5652 0.5629 0.5435 0.3746
GPT4 Single 0.7971 0.5907 0.2174 0.1970 0.8551 0.3073 0.5652 0.5492 0.6087 0.4111
EvalSVA 0.8551 0.6025 0.6667 0.4705 0.9420 0.4851 0.5942 0.5741 0.7645 0.5331
Scope and Impact Metrics Scope Confidentiality Integrity Availability Average
Lang Baselines Ace F1 Acc Acc F1 Acc F1 Ace F1
ChatGPT Single 0.1444 0.1392 0.5111 0.2591 0.4556 0.2406 0.4556 0.2427 0.3917 0.2204
Java E_valSVA 0.4000 0.3619 0.5333 0.3572 0.4889 0.2729 0.4667 0.2390 0.4722 0.3078
GPT4 Single 0.4778 0.4173 0.6222 0.4305 0.5333 0.3158 0.5667 0.3579 0.5500 0.3804
EvalSVA 0.5556 0.4591 0.7222 0.6458 0.6556 0.5261 0.5667 0.4153 0.6250 0.5116
T é hgtél;; " Single 02443 02133 05038 03379 04504 03424 03511 02471 03874 02852
Python EyalSVA 0.4504 0.4386 0.5115 0.4151 0.4733 0.3914 0.4580 0.3432 0.4733 0.3971
GPT4 Single 0.5878 0.5326 0.6412 0.5843 0.5191 0.4082 0.5802 0.4328 0.5821 0.4895
EvalSVA 0.6742 0.5416 0.6718 0.6483 0.5496 0.4981 0.7176 0.4997 0.6533 0.5469
T (; h;lé;,; " Single 0.1449 0.1384 04638 02622 04928 03192 05072 02509 04022 02427
Cit EvalSVA 0.5217 0.3907 0.5507 0.4029 0.5217 0.3436 0.6812 0.4059 0.5688 0.3858
GPT-4 Single 0.6087 0.3784 0.6087 0.4230 0.6087 0.3739 0.7101 0.3778 0.6341 0.3883
EvalSVA 0.7246 0.5043 0.6087 0.5163 0.6812 0.5935 0.7246 0.4825 0.6848 0.5242

Table 3: Experimental results across Java, Python and C++. We bold the best-performing method for each metric.

This count is the highest among all types of vulner-
abilities misreported in terms of the AC. Further-
more, both single agent and EvalSVA record 15
false positives in the confidentiality metric, which
underscores the ongoing need for EvalSVA to en-
hance its detection capabilities for XML vulnera-
bilities.

These findings suggest the potential benefits
of incorporating related code snippets for expert
agents to better assess language-specific vulnerabil-
ities, particularly for programming languages with
complex structures like Python and Java.

3.6 Communication Strategy

To answer Q2, we propose four different commu-
nication strategies termed as preceding one expert,
previous communication, simultaneous assessment,
and summarizer assessment for the SV assessment
task. We experiment with these strategies in Python
and the detailed results are described in Table 4.
The remaining experiment results of Java and C++
are presented in Appendix. Our observations indi-
cate that (1) Employing either communication
strategy proves advantageous for SV assessment.
Integrating a multi-agent strategy with ChatGPT
results in an improvement of 8.83% and 8.07% in
accuracy and F1 score, demonstrating the effective-
ness of the communication strategy methodology,
respectively. (2) The efficacy of distinct com-
munication strategies should be tailored to the
tasks. Communication strategies exhibit varying
performance depending on the task configuration,

which can be attributed to the inherent nature of
these tasks. For instance, the evaluation of attack
complexity and user interaction typically falls un-
der binary classification, whereas the impact aspect
(including confidentiality, integrity, and availabil-
ity) requires multi-classification. This underscores
the necessity of adopting task-specific communi-
cation strategies in the development of SV assess-
ment methods. (3) The superior performance
of preceding one expert strategy for most met-
rics. Preceding one expert strategy demonstrates
superior performance in four tasks, yielding signif-
icant F1 improvements of 1.32%, 14.54%, 14.31%,
and 10.64% in scope, confidentiality, integrity, and
availability, respectively. It suggests that excessive
reliance on the previous references may lead to
deviations in the understanding of expert agents.

3.7 Expert Numbers and Rounds

To answer Q3, we conduct the experiment to study
the influence of different expert numbers and com-
munication rounds for assessing vulnerability.
Expert Numbers. The number of experts should
be selected as medium (2-3). As illustrated in Fig-
ure 3 (a)-(b), the correlation between the number
of experts and performance demonstrates a pattern
of initial improvement followed by a subsequent
decrease, with the optimal performance occurring
when the number of experts is 2-3. This suggests
that diverse expert roles enhance the model’s com-
prehension of SV assessments, aligning with find-
ings reported by (Du et al., 2023; Chan et al., 2023).

Exploitability Metrics Attack Vector Access Complexity Privileges Required User Interaction Average
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.3206 0.1909 0.2137 0.1318 0.3359 0.3004 0.3282 0.2984 0.2996 0.2304
Previous Communication 0.2366 0.1509 0.4351 0.2510 0.5954 0.4761 0.3511 0.3487 0.4046 0.3067
Preceding One Expert 0.2137 0.1398 0.3893 0.2181 0.5496 0.4607 0.4504 0.4465 0.4008 0.3163
Simultaneous Assessment 0.2672 0.1697 0.4580 0.2494 0.5878 0.4710 0.4427 0.4426 0.4389 0.3332
Summarizer Assessment 0.3282 0.2014 0.4122 0.2310 0.5573 0.4552 0.4504 0.4496 0.4370 0.3343
Scope and Impact Metrics Scope Confidentiality Integrity Availability Average
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.2443 0.2133 0.5038 0.3379 0.4504 0.3424 0.3511 0.2471 0.3874 0.2852
Previous Communication 0.4198 0.4190 0.4656 0.3624 0.4275 0.3039 0.4351 0.2921 0.4370 0.3444
Preceding One Expert 0.4504 0.4386 0.5115 0.4151 0.4733 0.3914 0.4580 0.3432 0.4733 0.3971
Simultaneous Assessment 0.4351 0.4311 0.4733 0.3445 0.4122 0.2879 0.4351 0.3102 0.4389 0.3434
Summarizer Assessment 0.4504 0.4329 0.4122 0.2949 0.4198 0.3368 0.4122 0.2645 0.4237 0.3323

Table 4: Experimental results of different communication strategies of ChatGPT in Python. We bold the best-

performing communication strategy for each metric.

— - N
0.5/« = 05))
04 n 04 N
03 7\ | | | 03 X | | | \7

12345 12345

(a) Expert number of AV. (b) Expert number of PR.

1 [T 1 — T
05F - 05|
0.4 | 0.4| fomi
0.3 L % e 0.3H_ . . | \EL
12345 12345
(c) Round of AV. (d) Round of PR.

Figure 3: The impact of expert numbers and communi-
cation rounds on EvalSVA in the Java dataset. The blue,
purple, , and green lines denote the accuracy,
precision, and F1 score metrics, respectively.

Furthermore, it indicates that an excessive number
of experts involved in the decision-making process
may misguide the LLM-based method decisions,
potentially due to the extended context length.

Communication Rounds. Multiple rounds
of communication are required to facilitate the
model’s understanding of vulnerability due to its
lack of domain-specific knowledge. However, com-
munication across numerous rounds does not nec-
essarily even result in a decline. This could be
attributed to the fact that excessively long contexts
are detrimental to the model’s ability to effectively
process the task of SV assessment. It is notewor-
thy that different tasks may necessitate varying
numbers of communication rounds. For instance,
the PR exhibits optimal performance after three
rounds, while AV reaches peak performance in the
first rounds. These findings underscore the need for
a more sophisticated appreciation of the balance
between the number of communication rounds and
the specific task to optimize performance.

4 Discussion

4.1 Case Study

Figure 4 is a vulnerability example from CVE-
2023-46502 (Detail, 2024b), which uses the
EvalSVA to evaluate the Attack Complexity. The
vulnerability arises from the improper configura-
tion of DocumentBuilderFactory (shaded in brown
in Figure 4), which allows XML external entity at-
tacks (i.e., CWE-611 (CWE, 2024a)). We observe
that there initially exists a discrepancy in opinions
between the different agents during the first round
of responses. Then, a consensus is reached in the
subsequent round. This case mirrors real-world
situations where multiple experts assess a single
vulnerability. Specifically, EvalSVA demonstrates
several human-like decision-making processes ob-
served in the industry. (1) Opinions diversity:
Initially, Expert 1 and Expert 2 present differing
judgments when assessing the same vulnerability
commit. This diversity broadens the perspective
and encompasses a more comprehensive range of
considerations in SV assessment. (2) Revision:
Upon considering the viewpoints of other experts,
Expert 1 learns from different aspects and revises
its previously erroneous judgment. This indicates
that EvalSVA, when informed by the perspectives
of multiple experts, possesses the capability to re-
vise. (3) Interpretability: Each expert provides
explanations for their assessments. This practice
aligns with industry standards set by FIRST (fir,
2024), which mandates that CVSS must adhere to
documented guidelines and include both the scor-
ing vector and a detailed rationale, enabling others
to understand the derivation of the scores. Previous
methods (Le et al., 2021; Li et al., 2023b) often pro-
vided scores without the explanations needed for
comprehensive SV assessment. (4) Evolutionary
adaptation: EvalSVA can be adapted to differ-

@ -221,16 +221,40 @@ protected String getCleanPath(

documentBuilderFactory = DocumentBuilderFactory.newlnstance();

documentBuilderFactory.setNamespaceAware(true);

try { documentBuilderFactory.setFeature("http://apache.org/xml/features/disallow-doctype-decl",
true); }

@

G Vulnerability-Triggering Statement
|documentBuilderFactory = DocumentBuilderFactory.newInstance(); |
. documentBuilder = documentBuilderFactory.newDocumentBuilder();

___ N
& Expert_1's answer in Round 1: 1
The Attack Complexity can be considered High (H). ... allowed for XML External Entity (XXE) |

injection, implying potentially low complexity for an attacker, the updated configuration requires now

1
e b !
some specific conditions to launch a successful attack. ... I

Expert_2's answer in Round 1:
...The Attack Complexity would be rated as Low (L) prior to changes implemented by the

i
i

1 commit.\n\nIn the original vulnerable state, an attacker could exploit the XML External Entity (XXE) :
: vulnerability without needing to meet any special conditions or complex configurations. Therefore, |
I theattack could be launched and !

! because an attacker could exploit the XML External Entity (XXE) vulnerability without needing any
1 specialized conditions...

& Expert_1's answer in Round 2: 1
...The Attack Complexity within the context of CVSS v3.1 is rated as Low (L) prior to the fix, 1

1

1

1

| Expert_2's answer in Round 2: B
1 ..The Attack Complexity can be rated as Low (L) in the CVSS v3.1 severity rating prior to any

: remediation efforts. The reason for this ification is that the ility, related to XML :

| External Entity (XXE) injection, ..., indicating a low complexity for the attacks. |

Figure 4: A EvalSVA example presents a discussion
process involving two expert agents. The text shaded
in red and green denote the wrong and right responses
from LLMs, respectively.

ent versions of SV assessment systems based on
the prompts. Unlike prior works, EvalSVA swiftly
integrates current version-specific domain knowl-
edge to conduct SV assessments without training,
demonstrating its agility and relevance in evolving
systems.

4.2 Limitation

Transferability on other types of SV assessment. In
this paper, we only focus on SV assessment with
commit input and CVSS v3.1 standard, excluding
SV and bug report-based methods. In the future, we
intend to explore the efficacy of EvalSVA regarding
the upgrade of the assessment system.

Constraints of domain knowledge in prompts.
For the context limited of LLMs, EvalSVA only
contains the prompt-based domain knowledge and
chat history to facilitate the SV assessment. In the
future, we will explore more expert-based exam-
ples as prompts for the LLM-based SV assessment.

5 Related Work

Public security databases, such as the NVD (NIST,
2024), and expert-based scoring systems, such as
the CVSS (CVS, 2023) have been pivotal in fur-
nishing detailed datasets for SV. In recent years,
the CVSS framework has witnessed significant en-
hancements (Feutrill et al., 2018), evolving from
v2 (CVS, 2024d) to v3.0 (CVS, 2024b), and subse-
quently to v3.1 (CVS, 2024c). Specifically, the ex-
isting methods can be broadly divided into two as-

pects: SV report-based and commit-based methods.
The majority of existing methods for automated SV
assessment depend on SV reports (i.e., SV reported-
based methods) (Han et al., 2017; Lamkanfi et al.,
2010; Le et al., 2019; Spanos and Angelis, 2018)
from the NVD. These methods typically focus on
predicting either a single metric (Fu et al., 2024;
Kudjo et al., 2019; Wang et al., 2019) or a set of
metrics associated with the CVSS (Le and Babar,
2022; Yamamoto et al., 2015; Ognawala et al.,
2018). For instance, Han et al. (Han et al., 2017)
introduced a Convolutional Neural Network-based
method to automate and predict the overall sever-
ity rating by analyzing SV descriptions. However,
these user-submitted SV reports often exhibit sig-
nificant delays (Thung et al., 2012; Sawadogo et al.,
2021; Bosu and Carver, 2012; Thongtanunam et al.,
2015), potentially exceeding 1000 days. To expe-
dite SV assessment and reduce the extensive labor
required by human experts for evaluations, In addi-
tion, the recent research also explored the potential
of commit-based methods (Le et al., 2021; Zhou
etal.,2022; Li et al., 2023b; Yin et al., 2024b). This
type of method involves utilizing commit changes
to assess all aspects of SVs. For instance, Le et
al. (Le et al., 2021) introduced DeepCVA, a model
that applies multi-task learning to perform commit-
based SV assessment. Li et al. (Li et al., 2023b)
proposed a neural framework dedicated to SV de-
tection and assessment simultaneously.

6 Conclusion

In this paper, we propose the first multi-agent-
based framework EvalSVA to simulate vulnera-
bility assessment strategies in real-world scenar-
ios. Furthermore, we construct the first multi-
lingual SV assessment dataset based on the new
standard of CVSS, comprising 699, 888, and 1,310
vulnerability-related commits in C++, Python, and
Java, respectively, which can serve as a founda-
tion dataset for future research. We emphasize the
necessity of developing multi-agent evaluators for
SV assessment due to the continuous evolution of
CVSS. Our experimental results confirm the effec-
tiveness of EvalSVA, especially in scenarios with
limited labeled data. We also find that EvalSVA of-
fers a human-like process, providing both rationale
and responses for SV assessment. This underscores
the effectiveness and possibility of EvalSVA for the
next generation of SV assessment.

References

2023. What is cvss score. https://debricked.com/
blog/what-is-cvss-score/.

2024a. Common vulnerability scoring system (cvss).
https://www.first.org/cvss/.

2024. Common vulnerability scoring system sig.
https://www.first.org/cvss/.

2024b. Common vulnerability scoring system v3.0:
Specification document. https://www.first.org/
cvss/v3.0/specification-document.

2024c. Common vulnerability scoring system v3.1:
Specification document. https://www.first.org/
cvss/v3.1/specification-document.

2024d. A complete guide to the common vulnerability
scoring system version 2.0. https://www.first.
org/cvss/v2/guide.

2024a. Cwe-611: Improper restriction of xml external
entity reference. https://cwe.mitre.org/data/
definitions/611.html.

2024b. Cwe-79: Improper neutralization of input during
web page generation (’cross-site scripting’). https:
//cwe.mitre.org/data/definitions/79.html.

2024. “Common Vulnerabilities and Exposures (CVE)”.
https://cve.mitre.org/.

Leyla Bilge and Tudor Dumitras. 2012. Before we
knew it: an empirical study of zero-day attacks in
the real world. In the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012, pages 833-844. ACM.

Amiangshu Bosu and Jeffrey C. Carver. 2012. Peer
code review in open source communitiesusing re-
viewboard. In Proceedings of the ACM 4th Annual
Workshop on Evaluation and Usability of Program-
ming Languages and Tools, PLATEAU 2012, Tucson,
AZ, USA, October 21, 2012, pages 17-24. ACM.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2023. Chateval: Towards better llm-based evaluators
through multi-agent debate. CoRR, abs/2308.07201.

ChatGPT. 2022. Chatgpt.
com/.

https://chat.openai.

Roland Croft, Muhammad Ali Babar, and M. Mehdi
Kholoosi. 2023. Data quality for software vulner-
ability datasets. In 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023, pages 121—
133. IEEE.

Roland Croft, Dominic Newlands, Ziyu Chen, and
Muhammad Ali Babar. 2021. An empirical study of
rule-based and learning-based approaches for static
application security testing. In ESEM ’21: ACM /
IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, Bari, Italy, Oc-
tober 11-15, 2021, pages 8:1-8:12. ACM.

Yinlin Deng, Chunqgiu Steven Xia, Chenyuan Yang,
Shizhuo Dylan Zhang, Shujing Yang, and Lingming
Zhang. 2024. Large language models are edge-case
generators: Crafting unusual programs for fuzzing
deep learning libraries. In Proceedings of the 46th
IEEE/ACM International Conference on Software En-
gineering, ICSE 2024, Lisbon, Portugal, April 14-20,
2024, pages 70:1-70:13. ACM.

CVE-2023-2954 Detail. 2024a. https://nvd.nist.
gov/vuln/detail/CVE-2023-2954/.

CVE-2023-46502 Detail. 2024b. https://nvd.nist.
gov/vuln/detail/CVE-2023-46502.

Nesara Dissanayake, Asangi Jayatilaka, Mansooreh Za-
hedi, and Muhammad Ali Babar. 2022. An empirical
study of automation in software security patch man-
agement. In 37th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022, pages 7:1-
7:13. ACM.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate. CoRR, abs/2305.14325.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen.
2020. A C/C++ code vulnerability dataset with code
changes and CVE summaries. In MSR '20: 17th
International Conference on Mining Software Repos-
itories, Seoul, Republic of Korea, 29-30 June, 2020,
pages 508-512. ACM.

Andrew Feutrill, Dinesha Ranathunga, Yuval Yarom,
and Matthew Roughan. 2018. The effect of com-
mon vulnerability scoring system metrics on vulner-
ability exploit delay. In Sixth International Sympo-
sium on Computing and Networking, CANDAR 2018,
Takayama, Japan, November 23-27, 2018, pages 1—
10. IEEE Computer Society.

Park Foreman. 2019. Vulnerability management. Auer-
bach Publications.

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki
Kume, Van Nguyen, Dinh Q. Phung, and John C.
Grundy. 2024. Aibughunter: A practical tool for
predicting, classifying and repairing software vulner-
abilities. Empir. Softw. Eng., 29(1):4.

Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan
Wang, Hongyu Zhang, and Michael R. Lyu. 2023.
What makes good in-context demonstrations for code
intelligence tasks with llms? In 38th IEEE/ACM
International Conference on Automated Software En-
gineering, ASE 2023, Luxembourg, September 11-15,
2023, pages 761-773. IEEE.

Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao
Liu, and Zhiyong Feng. 2017. Learning to predict
severity of software vulnerability using only vulnera-
bility description. In 2017 IEEE International Con-
ference on Software Maintenance and Evolution, IC-
SME 2017, Shanghai, China, September 17-22, 2017,
pages 125-136. IEEE Computer Society.

https://debricked.com/blog/what-is-cvss-score/
https://debricked.com/blog/what-is-cvss-score/
https://debricked.com/blog/what-is-cvss-score/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cve.mitre.org/
https://chat.openai.com/
https://chat.openai.com/
https://chat.openai.com/
https://nvd.nist.gov/vuln/detail/CVE-2023-2954/
https://nvd.nist.gov/vuln/detail/CVE-2023-2954/
https://nvd.nist.gov/vuln/detail/CVE-2023-2954/
https://nvd.nist.gov/vuln/detail/CVE-2023-46502
https://nvd.nist.gov/vuln/detail/CVE-2023-46502
https://nvd.nist.gov/vuln/detail/CVE-2023-46502

Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang,
Wenxuan Wang, Youliang Yuan, Wenxiang Jiao,
Xing Wang, Zhaopeng Tu, and Michael R. Lyu. 2024.
How far are we on the decision-making of llms? eval-
uating llms’ gaming ability in multi-agent environ-
ments. CoRR, abs/2403.11807.

Mia Mohammad Imran, Preetha Chatterjee, and
Kostadin Damevski. 2023. Uncovering the causes
of emotions in software developer communication
using zero-shot 1lms. CoRR, abs/2312.09731.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
2021. The perils of using mechanical turk to evaluate
open-ended text generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 1265-1285. Association for Computa-
tional Linguistics.

Saad Khan and Simon Parkinson. 2018. Review into
state of the art of vulnerability assessment using ar-
tificial intelligence. In Simon Parkinson, Andrew
Crampton, and Richard Hill, editors, Guide to Vulner-
ability Analysis for Computer Networks and Systems
- An Artificial Intelligence Approach, Computer Com-
munications and Networks, pages 3—32. Springer.

Patrick Kwaku Kudjo, Jinfu Chen, Minmin Zhou,
Solomon Mensah, and Rubing Huang. 2019. Im-
proving the accuracy of vulnerability report classifi-
cation using term frequency-inverse gravity moment.
In 19th IEEE International Conference on Software
Quality, Reliability and Security, QRS 2019, Sofia,
Bulgaria, July 22-26, 2019, pages 248-259. IEEE.

Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and
Bart Goethals. 2010. Predicting the severity of a re-
ported bug. In Proceedings of the 7th International
Working Conference on Mining Software Reposito-
ries, MSR 2010 (Co-located with ICSE), Cape Town,
South Africa, May 2-3, 2010, Proceedings, pages
1-10. IEEE Computer Society.

Triet Huynh Minh Le and Muhammad Ali Babar. 2022.
On the use of fine-grained vulnerable code statements
for software vulnerability assessment models. In
19th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2022, Pittsburgh, PA,
USA, May 23-24, 2022, pages 621-633. ACM.

Triet Huynh Minh Le, Huaming Chen, and Muham-
mad Ali Babar. 2023. A survey on data-driven
software vulnerability assessment and prioritization.
ACM Comput. Surv., 55(5):100:1-100:39.

Triet Huynh Minh Le, David Hin, Roland Croft, and
Muhammad Ali Babar. 2021. Deepcva: Automated
commit-level vulnerability assessment with deep
multi-task learning. In 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, ASE 2021, Melbourne, Australia, November 15-
19, 2021, pages 717-729. IEEE.

10

Triet Huynh Minh Le, Bushra Sabir, and Muham-
mad Ali Babar. 2019. Automated software vulner-
ability assessment with concept drift. In Proceed-
ings of the 16th International Conference on Mining
Software Repositories, MSR 2019, 26-27 May 2019,
Montreal, Canada, pages 371-382. IEEE / ACM.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. CAMEL: communicative agents for "mind"
exploration of large scale language model society.
CoRR, abs/2303.17760.

Yi Li, Aashish Yadavally, Jiaxing Zhang, Shaohua
Wang, and Tien N. Nguyen. 2023b. Commit-level,
neural vulnerability detection and assessment. In
Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2023, San Francisco, CA, USA, December 3-9, 2023,
pages 1024-1036. ACM.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
CoRR, abs/2305.19118.

NIST. 2024. “National Vulnerability Database (NVD)”.
https://nvd.nist.gov/.

Saahil Ognawala, Ricardo Nales Amato, Alexander
Pretschner, and Pooja Kulkarni. 2018. Automati-
cally assessing vulnerabilities discovered by com-
positional analysis. In Proceedings of the 1st Inter-
national Workshop on Machine Learning and Soft-
ware Engineering in Symbiosis, MASES@ASE 2018,
Montpellier, France, September 3, 2018, pages 16-25.
ACM.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Yun Peng, Chaozheng Wang, Wenxuan Wang, Cuiyun
Gao, and Michael R. Lyu. 2023. Generative type
inference for python. In 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, ASE 2023, Luxembourg, September 11-15, 2023,
pages 988-999. IEEE.

Arthur D. Sawadogo, Quentin Guimard, Tegawendé F.
Bissyandé, Abdoul Kader Kaboré, Jacques Klein,
and Naouel Moha. 2021. Early detection of security-
relevant bug reports using machine learning: How far
are we? CoRR, abs/2112.10123.

Vincent Smyth. 2017. Software vulnerability manage-
ment: how intelligence helps reduce the risk. Netw.
Secur., 2017(3):10-12.

Georgios Spanos and Lefteris Angelis. 2018. A multi-
target approach to estimate software vulnerability
characteristics and severity scores. J. Syst. Softw.,
146:152-166.

https://nvd.nist.gov/

Statista. 2024. Number of common it se- Jiayuan Zhou, Michael Pacheco, Zhiyuan Wan, Xin Xia,

curity vulnerabilities and exposures (cves) David Lo, Yuan Wang, and Ahmed E. Hassan. 2021.
worldwide from 2009 to 2024 ytd. https: Finding A needle in a haystack: Automated mining
//www.statista.com/statistics/500755/ of silent vulnerability fixes. In 36th IEEE/ACM In-

worldwide-common-vulnerabilities-and-exposures/ternational Conference on Automated Software Engi-

neering, ASE 2021, Melbourne, Australia, November
Patanamon Thongtanunam, Shane MclIntosh, Ahmed E. 15-19, 2021, pages 705-716. IEEE.

Hassan, and Hajimu lida. 2015. Investigating code
review practices in defective files: An empirical study Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing

of the qt system. In /2¢th IEEE/ACM Working Con- Liu, and Yang Liu. 2022. SPI: automated identifi-
ference on Mining Software Repositories, MSR 2015, cation of security patches via commits. ACM Trans.
Florence, Italy, May 16-17, 2015, pages 168—179. Softw. Eng. Methodol., 31(1):13:1-13:27.

IEEE Computer Society.

Ferdian Thung, David Lo, Lingxiao Jiang, Lucia,
Foyzur Rahman, and Premkumar T. Devanbu. 2012.
When would this bug get reported? In 28th IEEE
International Conference on Software Maintenance,
ICSM 2012, Trento, Italy, September 23-28, 2012,
pages 420—429. IEEE Computer Society.

Peichao Wang, Yun Zhou, Baodan Sun, and Weim-
ing Zhang. 2019. Intelligent prediction of vulner-
ability severity level based on text mining and xg-
bboost. In Eleventh International Conference on
Advanced Computational Intelligence, ICACI 2019,
Guilin, China, June 7-9, 2019, pages 72-77. IEEE.

WhiteSource. 2023. “Mend bolt”. https://www.mend.
io/free-developer-tools/.

Yasuhiro Yamamoto, Daisuke Miyamoto, and Masaya
Nakayama. 2015. Text-mining approach for estimat-
ing vulnerability score. In 4th International Work-
shop on Building Analysis Datasets and Gathering
Experience Returns for Security, BADGERS @RAID
2015, Kyoto, Japan, November 5, 2015, pages 67-73.
IEEE.

Xin Yin, Chao Ni, and Shaohua Wang. 2024a.
Multitask-based evaluation of open-source LLM on
software vulnerability. CoRR, abs/2404.02056.

Xin Yin, Chao Ni, and Shaohua Wang. 2024b.
Multitask-based evaluation of open-source LLM on
software vulnerability. CoRR, abs/2404.02056.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Yunhui Zheng, Saurabh Pujar, Burn L. Lewis, Luca
Buratti, Edward A. Epstein, Bo Yang, Jim Laredo,
Alessandro Morari, and Zhong Su. 2021. D2A: A
dataset built for ai-based vulnerability detection meth-
ods using differential analysis. In 43rd IEEE/ACM
International Conference on Software Engineering:
Software Engineering in Practice, ICSE (SEIP) 2021,
Madrid, Spain, May 25-28, 2021, pages 111-120.
IEEE.

11

https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.mend.io/free-developer-tools/
https://www.mend.io/free-developer-tools/
https://www.mend.io/free-developer-tools/

Appendix
A Prompt Template

The example of a prompt template is illustrated
in Figure 5. We incorporate numerous commit
details, such as commit information, CVE Descrip-
tion, Commit message, and domain knowledge of
CVSS. In this context, we substitute the highlighted
(red) square brackets with corresponding informa-
tion from each commit before querying the LLMs.

B Additional Communication Strategies
Results

In this appendix, we present the detailed experi-
ment results that focus on different communication
strategies for Java and C++. Our study is also con-
ducted in ChatGPT as Q2.

C Additional Experimental Setting

C.1 Implementation Details

For ChatGPT (“gpt-3.5-turbo-0125) and GPT-4
(“gpt-4-turbo’), we use the public APIs provided
by OpenAl. To mitigate the risk of data leakage and
effectively evaluate the methods’ ability for SV as-
sessment, we adopt a time-split setting based on the
“commit date” of vulnerability patches. Specifically,
the vulnerability-related commit after 2023-11-27
of Python, 2023-11-28 of Java, and 2023-12-02 of
C++ are designated for testing in this paper.

C.2 Additional Metrics

We also use the following two widely used perfor-
mance metrics for SV assessment:

Precision: It is the ratio of true positives (TP) to
the sum of true positives and false positives (FP),
calculated following: Precision = TP%FP.

Recall: It is the ratio of TP to the sum of TP
and false negatives (FN), calculated following:

_ TP
Recall = TPIEN-

D Algorithm of Communication
Strategies

In this appendix, we formally define the follow-
ing four different communication strategies, includ-
ing preceding one expert (Refer to Algorithm 1),
previous communication(Refer to Algorithm 2), si-
multaneous assessment(Refer to Algorithm 3), and
summariser assessment(Refer to Algorithm 4) for
the SV assessment task.

12

Algorithm 1 Referencing the preceding one expert

Require: Agents Number: N, Expert Agents:
FE1,Es,--- ,En, Communication Rounds: R,
Chat History List History, Vulnerability Assessment
Tasks T1,T2, s 7T’g

Ensure: Results for Vulnerability Assessment Task Answer

1: Initialize a vulnerability assessment task 75
2: forr < 0to Rdo

3: forn < Oto N do

4 if History # () then

5: hrole — En

6: hanswer < En(T;, History)
7: HiStOTy <~ {hrolm hanswcr}
8: else

9: hrole — En

10: hanswe'r — En (Tz)

11: History < {hrote, hanswer }
12: end if

13: Answer < Final hanswer

14: end for

15: end for

16: return Answer

Algorithm 2 Referencing the previous communi-

cation
Require: Agents Number: N, Expert Agents:
FE1,FEs,--- ,En, Communication Rounds: R,

Chat History List History, Vulnerability Assessment
Tasks 11,75, - ,Ts
Ensure: Results for Vulnerability Assessment Task Answer

1: Initialize a vulnerability assessment task 75
2: forr < Oto Rdo

3 for n < Oto N do

4 if History # () then

5: h'role — En

6: hanswer < En (T3, History)

7 History <« {hr0157 hanswer}

8: else

9: hrote < En
10: hanswer <~ En (Tl)
11: History < History + {hrote, hanswer }
12: end if
13: Answer < Final hopnswer
14: end for
15: end for

16: return Answer

|
Role Description I System Prompt

™ You are a [C++] vulnerability expert for [Attack Complexity].
I [This metric describes the conditions beyond the attacker’ s control that must exist in order to
| exploit the vulnerability. If a specific configuration is required for an attack to succeed, the
Base metrics should be scored assuming the vulnerable component is in that configuration. The Base
. I Score is greatest for the least complex attacks.]
Domain Knowledge I [Low (L): Specialized access conditions or extenuating circumstances do not exist. An attacker can
I expect repeatable success when attacking the vulnerable component.
High (H): A successful attack depends on conditions beyond the attacker's control. That is, a
I successful attack cannot be accomplished at will, but requires the attacker to invest in some
I measurable amount of effort in preparation or execution against the vulnerable component before a

Metric Description

V4 TS ST s T T s T T e T T N
User Prompt
Provide a qualitative CVSS v3.1 severity ratings of [Attack Complexity] for the vulnerable [C++]

Commit Information I code snippet.
\

Task Description

Project:
CVE Description [stellarium/stellarium]
Filename:
[src/scripting/StelScriptOutput.cpp]
CVE Description:
I [In Stellarium through 1.2, attackers can write to files that are typically unintended, such as
| ones with absolute pathnames or .. directory traversal.]
Commit Message:
B [Fix a possible security issue
| disallow overwriting config.ini]
| Code:
i [@@ -62,6 +62,12 @@ void StelScriptOutput::saveOutputAs(const QString &name)

Commit Message

Code Change

R T R e,

const bool okToSaveToAbsolutePath=StelApp::getInstance().getSettings()
1 ->value("scripts/flag_script_allow_write_absolute_path", false).toBool();
: + if (name.contains("config.ini"))
: : ¢ qWarning() << "SCRIPTING ERROR: You are trying to overwrite config.ini.
I Ignoring.";
I+ return;
1 o }
I+
1
1
i i e e K e i i i e e o S L e o S B S e L -
Figure 5: The prompt template for commit-based SV assessment.
Algorithm 3 Simultaneous Assessment Algorithm 4 Summarizer Assessment
Require: Agents Number: N, Expert Agents: Require: Agents Number: N, Expert Agents:
FEi,E5,--- ,En, Communication Rounds: R, FEr,Es,--- ,En—1, Summarizer Agent S, Com-
Chat History List History, Vulnerability Assessment munication Rounds: R, Chat History List History,
Tasks 11, 7%, --- , T3 Vulnerability Assessment Tasks 74,15, --- , T3
Ensure: Results for Vulnerability Assessment Task Answer Ensure: Results for Vulnerability Assessment Task Answer
1: Initialize a vulnerability assessment task 7; 1: Initialize a vulnerability assessment task 75
2: forr < 0to Rdo 2: forr < Oto Rdo
3: Initialize current round chat history History. 3 Initialize current round chat history History.
4: forn « 0to N do 4 forn < 0to N do
5: if History # () then 5: if n # N then
6: hrole — En 6: h'role — En
7: hanswer < En(T;, History) 7 hanswer < En (T3, History)
8: HiStO'r‘yc — {hr0167 hanswer} 8 HiStOTyc — {hral67 hanswer}
9: else 9: else
10: hmle ~— F, 10: Srole S
11: hanswer En(T3) 11: Sanswer < S (T3, History + History.)
12: Historye < {hrote, Panswer } 12: Historye < {srole; Sanswer }
13: end if 13: end if
14: end for 14: end for
15: History <— History + History. 15: History < History + History.
16: Answer < Final hgnswer 16: Answer < Final sqnswer
17: end for 17: end for
18: return Answer 18: return Answer

13

Exploitability Metrics AV AC PR Ul
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.4778 0.4075 0.4000 03132 0.2889 0.2425 0.3667 0.3532
Previous Communication 0.3222 0.3078 0.4444 0.2167 0.5778 0.3603 0.5000 0.4994
Preceding One Expert 0.3111 0.3056 0.3556 0.1943 0.5556 0.3492 0.4667 0.4643
Simultaneous Assessment 0.4444 0.3939 04111 0.2158 0.5778 0.3613 0.4222 0.4219
Summarizer Assessment 0.4889 0.4564 0.3222 0.1728 0.5333 0.3387 0.4000 0.4000
Scope and Impact Metrics S C I A
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.1444 0.1392 0.5111 0.2591 0.4556 0.2406 0.4556 0.2427
Previous Communication 0.3333 0.3168 0.5333 0.3457 0.5000 0.2496 0.4556 0.2169
Preceding One Expert 0.3778 0.3623 0.5333 0.3572 0.4889 0.2729 0.4222 0.2189
Simultaneous Assessment 0.3444 0.3202 0.5000 0.2582 0.5111 0.2495 0.4667 0.2390
Summarizer Assessment 0.4000 0.3619 0.5333 0.2819 0.4889 0.2731 0.4667 0.2317
Table 5: Evaluation of different communication strategies of ChatGPT in Java.

Exploitability Metrics AV AC PR Ul
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.3333 0.3088 0.2754 0.1873 0.1449 0.0921 0.5072 0.4569
Previous Communication 0.2319 0.2214 0.3333 0.1950 0.6087 0.2523 0.5507 0.5473
Preceding One Expert 0.4203 0.3611 0.4203 0.2372 0.5942 0.2485 0.5652 0.5629
Simultaneous Assessment 0.1884 0.1869 0.3913 0.2129 0.6812 0.2701 0.5072 0.5063
Summarizer Assessment 0.2899 0.2746 0.4928 0.2686 0.6957 0.3058 0.5072 0.5071
Scope and Impact Metrics S C I A
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.1449 0.1384 0.4638 0.2622 0.4928 0.3192 0.5072 0.2509
Previous Communication 0.4203 0.3155 0.4928 0.3074 0.4348 0.2259 0.6812 0.4059
Preceding One Expert 0.4928 0.3538 0.5072 0.3616 0.4203 0.2920 0.5942 0.3459
Simultaneous Assessment 0.5217 0.3907 0.5507 0.4029 0.4783 0.3024 0.6522 0.3548
Summarizer Assessment 0.4928 0.3538 0.4493 0.2313 0.5217 0.3436 0.6232 0.3888

Table 6: Evaluation of different communication strategies of ChatGPT in C++.

E Task-related Prompt

In this appendix, we present the task-related prompt
by CVSS v3.1 and design several descriptions as
follows.

Attack Vector: You are a [Language] expert for
Attack Vector. This metric reflects the context in
which vulnerability exploitation is possible. This
metric value (and consequently the Base Score)
will be larger the more remote (logically, and phys-
ically) an attacker can be to exploit the vulnerable
component. Network (N): The vulnerable compo-
nent is bound to the network stack and the set of
possible attackers extends beyond the other options
listed below, up to and including the entire Internet.
Local (L): The vulnerable component is not bound
to the network stack and the attacker’s path is via
read/write/execute capabilities.

Attack Complexity: You are a [Language] ex-
pert for Attack Complexity. This metric describes

14

the conditions beyond the attacker’s control that
must exist in order to exploit the vulnerability. If
a specific configuration is required for an attack
to succeed, the Base metrics should be scored as-
suming the vulnerable component is in that config-
uration. The Base Score is greatest for the least
complex attacks. Low (L): Specialized access con-
ditions or extenuating circumstances do not exist.
An attacker can expect repeatable success when
attacking the vulnerable component. High (H): A
successful attack depends on conditions beyond
the attacker’s control. That is, a successful attack
cannot be accomplished at will, but requires the
attacker to invest in some measurable amount of
effort in preparation or execution against the vul-
nerable component before a successful attack can
be expected.

Privileges Required: You are a [Language] ex-
pert for Privileges Required. This metric describes

the level of privileges an attacker must possess be-
fore successfully exploiting the vulnerability. The
Base Score is greatest if no privileges are required.
None (N): The attacker is unauthorized prior to
attack, and therefore does not require any access
to settings or files of the vulnerable system to carry
out an attack. Low (L): The attacker requires privi-
leges that provide basic user capabilities that could
normally affect only settings and files owned by a
user. High (H): The attacker requires privileges
that provide significant (e.g., administrative) con-
trol over the vulnerable component allowing access
to component-wide settings and files.

User Interaction: You are a [Language] ex-
pert for User Interaction. This metric captures the
requirement for a human user, other than the at-
tacker, to participate in the successful compromise
of the vulnerable component. This metric deter-
mines whether the vulnerability can be exploited
solely at the will of the attacker, or whether a sep-
arate user (or user-initiated process) must partic-
ipate in some manner. The Base Score is greatest
when no user interaction is required. None (N):
The vulnerable system can be exploited without in-
teraction from any user. Required (R): Successful
exploitation of this vulnerability requires a user to
take some action before the vulnerability can be
exploited.

Scope: You are a [Language] expert for Scope.
The Scope metric captures whether a vulnerability
in one vulnerable component impacts resources in
components beyond its security scope. The Base
Score is greatest when a scope change occurs. Un-
changed (U): An exploited vulnerability can only
affect resources managed by the same security au-
thority. Changed (C): An exploited vulnerability
can affect resources beyond the security scope man-
aged by the security authority of the vulnerable
component.

Confidentiality: You are a [Language] expert
for Confidentiality. This metric measures the im-
pact to the confidentiality of the information re-
sources managed by a software component due to
a successfully exploited vulnerability. The impact
can vary from none to complete disclosure of all
restricted information to the attacker. High (H):
There is a total loss of confidentiality, resulting in
all resources within the impacted component being
divulged to the attacker. Alternatively, access to
only some restricted information is obtained, but
the disclosed information presents a direct, serious
impact. Low (L): There is some loss of confiden-

15

tiality. Access to some restricted information is
obtained, but the attacker does not have control
over what information is obtained, or the amount
or kind of loss is limited. None (N): There is no loss
of confidentiality within the impacted component.

Integrity: You are a [Language] expert for In-
tegrity. This metric measures the impact to the
integrity of a successfully exploited vulnerability.
Integrity refers to the trustworthiness and veracity
of information. The Base Score is greatest when the
consequence to the impacted component is highest.
High (H): There is a total loss of integrity, or a
complete loss of protection. For example, the at-
tacker is able to modify any/all files protected by
the impacted component. Low (L): Modification
of data is possible, but the attacker does not have
control over the consequence of a modification, or
the amount of modification is limited. None (N):
There is no loss of integrity within the impacted
component.

Availability: You are a [Language] expert for
Availability. This metric measures the impact to the
availability of the impacted component resulting
from a successfully exploited vulnerability. The
Base Score is greatest when the consequence to the
impacted component is highest. High (H): There
is a total loss of availability, resulting in the at-
tacker being able to fully deny access to resources
in the impacted component; this loss is either sus-
tained (while the attacker continues to deliver the
attack) or persistent (the condition persists even
after the attack has completed). Low (L): Perfor-
mance is reduced or there are interruptions in re-
source availability. Even if repeated exploitation
of the vulnerability is possible, the attacker does
not have the ability to completely deny service to
legitimate users. None (N): There is no impact to
availability within the impacted component.

	Introduction
	Methodology
	Software Vulnerability Assessment Formulation
	Multi Agent Evaluators
	Multi Agents and Software Vulnerability Assessment
	Component

	Experiments
	Data Preparation
	Dataset Evaluation
	Baselines
	Evaluation Metrics
	EvalSVA Results
	Communication Strategy
	Expert Numbers and Rounds

	Discussion
	Case Study
	Limitation

	Related Work
	Conclusion
	Prompt Template
	Additional Communication Strategies Results
	Additional Experimental Setting
	Implementation Details
	Additional Metrics

	Algorithm of Communication Strategies
	Task-related Prompt

