
EvalSVA: Multi-Agent Evaluators for Next-Gen Software Vulnerability
Assessment

Anonymous ACL submission

Abstract001

Software Vulnerability (SV) assessment is a002
crucial process of determining different aspects003
of SVs (e.g., attack vectors and scope) for devel-004
opers to effectively prioritize efforts in vulnera-005
bility mitigation. It presents a challenging and006
laborious process due to the complexity of SVs007
and the scarcity of labeled data. To mitigate008
the above challenges, we introduce EvalSVA,009
a multi-agent evaluators team to autonomously010
deliberate and evaluate various aspects of SV011
assessment. Specifically, we propose a multi-012
agent-based framework to simulate vulnerabil-013
ity assessment strategies in real-world scenar-014
ios, which employs multiple Large Language015
Models (LLMs) into an integrated group to en-016
hance the effectiveness of SV assessment in017
the limited data. We also design diverse com-018
munication strategies to autonomously discuss019
and assess different aspects of SV. Furthermore,020
we construct a multi-lingual SV assessment021
dataset based on the new standard of CVSS,022
comprising 699, 888, and 1,310 vulnerability-023
related commits in C++, Python, and Java, re-024
spectively. Our experimental results demon-025
strate that EvalSVA averagely outperforms the026
44.12% accuracy and 43.29% F1 for SV assess-027
ment compared with the previous methods. It028
shows that EvalSVA offers a human-like pro-029
cess and generates both reason and answer for030
SV assessment. EvalSVA can also aid human031
experts in SV assessment, which provides more032
explanation and details for SV assessment.033

1 Introduction034

Software Vulnerabilities (SVs) are mostly caused035

by insecure code that can be exploited to attack036

software systems (Dissanayake et al., 2022; Khan037

and Parkinson, 2018), and further cause security038

issues such as systems susceptible to cyber-attacks,039

and data leakage problems (Le et al., 2023). Over040

the past decade, the number of SVs has been in-041

creasing rapidly (Smyth, 2017), rising from 5,697042

in 2013 to 29,065 in 2023 (Statista, 2024). There- 043

fore, SV assessment is a crucial yet challenging 044

problem in security. 045

The expert-based Common Vulnerability Scor- 046

ing System (CVSS) (CVS, 2024a) is a widely 047

adopted framework for assessing SVs, which pro- 048

vides metrics to quantify the exploitability, impact, 049

and severity metrics of SVs (CVS, 2024c; Fore- 050

man., 2019). Such procedures are labor-intensive 051

and suffer from inefficiencies due to the complex- 052

ity of vulnerabilities (Bilge and Dumitras, 2012; 053

Feutrill et al., 2018). Traditional automated ap- 054

proaches for SV assessment, primarily reliant on 055

user-submitted reports, are hampered by substantial 056

delays—over 82% of reports are filed more than 057

30 days post initial detection (Thung et al., 2012). 058

Recent studies aim to automate assess SV via com- 059

mits (Le et al., 2021; Zhou et al., 2021), greatly 060

reducing reliance on manual expert evaluations and 061

accelerating the assessment process. 062

However, the existing methods still pose sev- 063

eral major challenges that need to be addressed: 064

Firstly, the existing methods depend on extensive 065

labeled data, which is difficult to evolve in practice. 066

Specifically, the CVSS framework updates rapidly, 067

evolving from CVSS v2 to v3, and subsequently to 068

v3.1 (CVS, 2024d,b,c). It is time-consuming for 069

experts to furnish high-quality assessments in new 070

standards. For instance, the National Vulnerability 071

Database (NVD) (NIST, 2024) and the Common 072

Vulnerabilities and Exposures (CVE) (CVE, 2024) 073

lists maintained by Mend (WhiteSource, 2023) 074

only contains 699 complete vulnerability entries 075

for C++ from 2013 to 2023. Consequently, the 076

labeled data presents difficulties in industry and 077

limits practical value in real-world scenarios, po- 078

tentially leading to unreliable performance. Second, 079

the previous commit-level SV assessment studies 080

have not started to use the new standards (CVS, 081

2024c), which incorporate additional metrics (e.g., 082

Scope and User Interaction) to enhance the com- 083

1

plexity of vulnerability and become the current084

standard in industry. Additionally, most of the ex-085

isting techniques solely predict SV scores of CVSS.086

They provide no idea about how the vulnerability087

assessment is derived from the input, making the088

results difficult to interpret and verify.089

To mitigate the above challenges, we propose a090

multi-agent EVALuators team to autonomously de-091

liberate and evaluate various aspects for Software092

Vulnerability Assessment, called EvalSVA. Specif-093

ically, we propose a multi-agent-based frame-094

work to simulate vulnerability assessment strate-095

gies in real-world scenarios, which employs mul-096

tiple Large Language Models (LLMs) into an in-097

tegrated group to enhance the effectiveness of SV098

assessment in limited data. We also design diverse099

communication strategies to autonomously discuss,100

which conduct comprehensive processes and as-101

sess different aspects of SV. Moreover, to verify102

our multi-agent framework in the real-world sce-103

nario, we construct the first multi-lingual vulner-104

ability assessment dataset based on the new stan-105

dard of CVSS, comprising 699, 888, and 1,310106

vulnerability-related commits in C++, Python, and107

Java, respectively. Our case study also shows that108

EvalSVA offers a human-like process and generates109

both reason and answer for SV assessment.110

We summarize our major contributions as:111

• We are the first to propose the multi-agent eval-112

uators with autonomously deliberating for next-113

gen software vulnerability assessment. Our ex-114

perimental results demonstrate that EvalSVA av-115

eragely outperforms the 44.12% accuracy and116

43.29% F1 compared with the single agent.117

• We construct the first multi-lingual vulnerabil-118

ity assessment dataset based on the new stan-119

dard of CVSS, comprising 699, 888, and 1,310120

vulnerability-related commits in C++, Python, and121

Java, respectively.122

• We explore the performance of different communi-123

cation strategies. The results show that EvalSVA124

can aid human experts in many aspects of SV125

assessment.126

2 Methodology127

In this section, we elaborate on the overview of128

EvalSVA by first introducing SV assessment task129

formulation and then explaining our evaluators.130

2.1 Software Vulnerability Assessment 131

Formulation 132

Common vulnerability scoring system. The 133

CVSS has emerged as the definitive framework 134

for evaluating the severity of SVs. In this paper, we 135

first employ CVSS v3.1 for the commit-level SV as- 136

sessment. In this paper, we focus on the prediction 137

of Base Metrics due to their broader applicability. 138

These metrics encapsulate the intrinsic attributes of 139

a vulnerability that remain constant over time and 140

across different user environments; 141

SV assessment task formulation. As shown in 142

Figure 1(a), a vulnerability-related commit can be 143

denoted by the input X (the template of input X 144

are shown in Appendix) and SV tasks can be per- 145

formed in all metrics simultaneously. The goal 146

of EvalSVA is to learn a mapping F : X 7→ Y 147

from input X to the output signals Y . Specifically, 148

the output signals for SV assessment tasks can be 149

broadly classified into three aspects: Exploitabil- 150

ity, Scope, and Impact. As shown in Figure 1(b), 151

the output signals consists of the security of Attack 152

Vector (AV) yAV, Attack Complexity (AC) yAC, Priv- 153

ileges Required (PR) yPR and User Interaction (UI) 154

yUI for exploitability aspect, the security of Scope 155

Change (S) yS for scope aspect, and the security 156

of Confidentiality (C) yC, Integrity (I) yI and Avail- 157

ability (A) yA for impact aspect. We then briefly 158

introduce each task of the SV assessment in the 159

CVSS v3.1 as follows: 160

(1) Exploitability: The exploitability reflects the 161

properties of the vulnerability that lead to a success- 162

ful attack. In this paper, we use the four metrics 163

to represent the exploitability, including AV, AC, 164

PR, and UI. Specifically, the AV metric reflects the 165

attack path by which vulnerability exploitation is 166

possible. AC metric describes the difficulty of con- 167

ditions beyond the attacker’s control to exploit the 168

vulnerability. PR metric assesses the level of au- 169

thority or access rights that an attacker must acquire 170

to successfully exploit the vulnerability. UI metric 171

distinguishes between vulnerabilities that can be 172

exploited solely by attackers and those requiring in- 173

volvement from a separate user process. For exam- 174

ple, Figure 1(a)’s original code (shaded in red) con- 175

tains a Cross-Site Scripting (XSS) (CWE, 2024b) 176

vulnerability which generally requires “Low” priv- 177

ileges, such as a standard user account and “Re- 178

quired” user interaction with a potentially victim 179

triggering the malicious script. This vulnerabil- 180

ity can be exploited through the “Network” attack 181

2

...

Exploitability Scope Impact

ACAV UIPR S C I A

 (b) Vulnerability Assessment Tasks (a) Vulnerability-Related Commit

 (c) Methods

(1) Expert-based

(2) Single Agent-based

(3) Multi Agent-based

@@ -14,7 +14,7 @@
 from blog.models import Article, Category, Tag, Links,

SideBar, LinkShowType
 from comments.models import Comment

- from djangoblog.utils import CommonMarkdown

+ from djangoblog.utils import CommonMarkdown,
sanitize_html

 from djangoblog.utils import cache
 from djangoblog.utils import get_current_site
 from oauth.models import OAuthUser
@@ -55,6 +55,13 @@ def get_markdown_toc(content):
 return mark_safe(toc)
+ @register.filter()
+ @stringfilter

...

Figure 1: Figure (a) presents the vulnerability commit of CVE-2023-2954 (Detail, 2024a). The code shaded in red
and green denote the vulnerability code and corresponding fixed code from commit, respectively. Figure (b) presents
the three aspects and eight tasks of SV assessment. Figure (c) presents the three types of SV assessment method.

(1) Expert-based

(2) Single Agent-based

... Summarizer

(1) Preceding
One Expert

(2) Previous
Communication

(3) Simultaneous
Assessment

(4) Summarizer
Assessment

... ...

Figure 2: Communication strategy for SV assessment.

path with “Low” complexity via user inputs. (2)182

Scope: It indicates whether exploiting a vulnera-183

bility impacts resources beyond its security scope184

(e.g., application and operating system). S deter-185

mines whether exploiting a vulnerability within a186

component’s scope provides the ability to access187

or impact the scopes of other components. (3) Im-188

pact: It captures the consequences of a successfully189

exploited vulnerability, which can cause losses in190

Confidentiality, Integrity, and Availability. Confi-191

dentiality refers to limiting information access and192

disclosure while preventing unauthorized individ-193

uals from gaining access. Integrity refers to the194

trustworthiness and accuracy of information, ensur-195

ing that data remains reliable. Availability presents196

the accessibility of information resources, such as197

processor cycles or disk space.198

2.2 Multi Agent Evaluators199

2.2.1 Multi Agents and Software Vulnerability200

Assessment201

Various studies (Gao et al., 2023; Peng et al., 2023;202

Deng et al., 2024) have shown that LLM-based203

methods are utilized to boost interpretability and204

practical values behind the classical supervised-205

Table 1: Statistics of the dataset in C++, Java and
Python.

Language # Types of Vul # Projects # Commits # Files

C++ 105 169 689 1,506
Java 129 307 888 2,925

Python 159 366 1,310 2,760

based method. Despite the capability of a single 206

LLM to handle a wide range of tasks across multi- 207

ple domains (Zheng et al., 2023; Imran et al., 2023), 208

it continues to encounter significant challenges in 209

SV assessment. This is primarily due to assessing 210

the severity of vulnerabilities entails a complex and 211

consequential process (Croft et al., 2021), which 212

typically requires collaboration among multiple 213

experts rather than relying solely on individual as- 214

sessments. These complex situations make it dif- 215

ficult for an existing single LLM to perform well 216

in SV assessment. Inspired by the recent advance 217

in multi-agent methods has demonstrated its effec- 218

tiveness (Li et al., 2023a; Liang et al., 2023; Huang 219

et al., 2024), we design the first multi-agent-based 220

framework for effectively SV assessment, where 221

the agents interact and communicate within a col- 222

laborative environment, aiming to emulate the in- 223

teraction and collaboration strategies in real-world 224

scenarios (Karpinska et al., 2021). We elaborate on 225

the two components in EvalSVA including vulnera- 226

bility expert agents and communication strategy. 227

2.2.2 Component 228

We provide the details of each component’s role 229

and functionality in this section. 230

3

1. Vulnerability Expert Agents. Vulnerabil-231

ity expert agents for evaluators constitute a criti-232

cal component in EvalSVA, where each individ-233

ual LLM is regarded as an expert agent for SV234

assessment tasks. For each task related to SV as-235

sessment, we meticulously craft unique prompts236

tailored to the specific requirements of the task.237

Each LLM is tasked with evaluating the severity238

of a vulnerability-related commit and subsequently239

providing a detailed explanation. The responses240

generated by all agents are preserved within the241

chat history. This archive of interactions enables242

subsequent evaluators in future rounds of assess-243

ment from prior communications, which mirrors244

the real-world interactions for SV assessment. It245

is worth mentioning that each agent evaluates all246

aspects of the same commit, employing different247

prompts tailored to specific tasks.248

2. Communication Strategy. Another pivotal249

challenge involves leveraging references from pre-250

vious expert analyses to construct new prompts that251

facilitate further exploration by agents. As previ-252

ously discussed, assessing the multifaceted aspects253

of vulnerabilities is an intricate and critical process,254

we are more concerned with how to refer to other255

expert responses and interpretations for further SV256

assessment. As shown in Figure 2, we explore four257

distinct communication strategies to emulate the258

processes in the real-world scenarios.259

(1) Referencing the preceding one expert. Each260

expert agent constructs its response based on the261

input from the immediately preceding expert, ex-262

cept the initial agent. We incorporate only the prior263

agent’s response into the current agent’s conversa-264

tional history. It prevents excessive past interac-265

tions from influencing present results.266

(2) Referencing the previous communication.267

The expert agents sequentially generate their re-268

sponses in a predetermined order. This procedure269

involves concatenating all previous responses into270

the chat history to construct the assistant’s prompt271

for the next agents. This approach simulates the272

written communication for SV assessment in the273

real world, where experts access all prior informa-274

tion and make their judgments accordingly.275

(3) Simultaneous assessment. Every expert agent276

cannot reference the responses of other experts277

from the current round but may consider the re-278

sponses from all experts in the previous round. This279

method minimizes the dependency of an agent on280

the responses of other experts and mitigates the281

influences that could arise from sequential order.282

(4) Summarizer assessment. Building on the 283

strategy (3), each round additionally augments a 284

summarizer, which synthesizes the responses of 285

all experts within the current round and makes a 286

final judgment. This approach emulates real-world 287

scenarios where conflicting opinions on SV assess- 288

ments, and introduces an expert specifically desig- 289

nated for decision-making purposes. 290

3. Adaptive Environment. In EvalSVA, each 291

LLM is treated as an agent that interacts with the 292

adaptive environment. The environment presents 293

two aspects: integration of knowledge from the 294

CVSS standard and coordination with multiple 295

agents from the chat history. The CVSS standard, 296

which can be either predefined or user-modified, is 297

designed to facilitate the rapid integration of new 298

domain knowledge and adapt to evolving standards 299

in SV assessment. The chat history is dynamically 300

produced by each agent. The responses generated 301

by different agents collaboratively contribute to up- 302

dates in the prompt, enhancing the collaborative 303

process. 304

3 Experiments 305

3.1 Data Preparation 306

Securing high-quality datasets comprising 307

vulnerability-related commits for SV assessment is 308

a formidable challenge, necessitating the demand 309

for qualified expertise. 310

Data Collection: Our initial step involved 311

acquiring open-source vulnerabilities from 312

Mend (WhiteSource, 2023), which provides 313

extensive vulnerability entries contributed by 314

a community of experts. For each identified 315

vulnerability entry, we extracted security-related 316

commits (i.e., patches) from platforms such as 317

GitHub, Android, and Chrome, recording their 318

associated project and commit messages. 319

Data Filter: To ensure the relevance and accu- 320

racy of our dataset, we employed a filtering method- 321

ology to select commits based on two essential 322

criteria: (1) All SV assessment labels must be com- 323

plete, and (2) The labels for SV assessments must 324

conform to the evaluation standards established by 325

CVSS V3.1. Additionally, we utilized time-based 326

splits for testing the EvalSVA, aiming to closely 327

mimic real-world scenarios where future unseen 328

data is not available. 329

As presented in Table 1, we have gathered 699, 330

888, and 1,310 vulnerability-related commits in 331

C++, Python, and Java, respectively. They are col- 332

4

Table 2: Dataset evaluation in C++, Java and Python.

Datasets Language Accuracy

Big-Vul (Fan et al., 2020) C/C++ 54.3
D2A (Zheng et al., 2021) C/C++ 28.6

EvalSVA
C++ 90.0

Python 65.0
Java 70.0

lected according to the CVSS v3.1 standard and en-333

compass 105, 129, and 159 types of vulnerabilities334

across the 160, 307, and 366 projects, respectively.335

3.2 Dataset Evaluation336

The previous study (Croft et al., 2023) has demon-337

strated that vulnerability datasets often exhibit qual-338

ity problems. Therefore, we conducted an evalu-339

ation of our dataset in comparison with existing340

datasets, despite the absence of specific datasets341

dedicated to vulnerability assessment. Specifically,342

we randomly select 20 examples from each pro-343

gramming language and manually analyze the vul-344

nerability. The manual analysis is independently345

carried out by two developers, each possessing over346

five years of experience in software security. As347

presented in Table 2, our dataset demonstrates a348

higher accuracy compared to previous datasets, un-349

derscoring the effectiveness of our data collection350

and filtration processes.351

3.3 Baselines352

We primarily focus on few-shot-based methods for353

SV assessment. This is due to the insufficiency of354

labeled data for CVSS v3.1 available in program-355

ming languages such as C++, Java, and Python.356

Despite the limited data, these languages pose sig-357

nificant vulnerability threats.358

We use the Yin et al. (Yin et al., 2024a) method359

as baseline, which directly involves a single LLM360

to generate a response for the given commit (i.e.,361

Single). This approach tests the LLM’s ability for362

SV assessment. For the LLMs utilized in EvalSVA,363

we have selected ChatGPT (ChatGPT, 2022) and364

GPT-4 (OpenAI, 2023), given their robust capabili-365

ties in handling code-related tasks.366

3.4 Evaluation Metrics367

In this paper, we employ the evaluation framework368

delineated by the CVSS v3.1 for SV assessment369

results derived from various methods. Specifically,370

we compute the Accuracy (i.e., Acc), which quan-371

tifies the ratio of accurately classified instances to372

the total number of instances, and calculate the F1373

score (i.e., F1) to evaluate issues of class imbalance 374

situation. 375

3.5 EvalSVA Results 376

As illustrated in Table 3, these LLM-based ap- 377

proach tasks are to achieve consistency with the 378

SV assessment results of human experts in the 379

CVSS v3.1 framework. Our findings reveal that: 380

(1) SV assessment is an arduous task for a sin- 381

gle agent. Existing single-based LLMs perform 382

poorly across all metrics SV assessment with com- 383

mit input, with average performances as low as 384

48.50% and 34.73% on the accuracy and F1 met- 385

rics, respectively. This underscores the complex- 386

ity and difficulty of SV assessment for the sin- 387

gle LLM. (2) Superior performance of EvalSVA. 388

EvalSVA significantly enhances the performance of 389

the SV assessment process, achieving higher align- 390

ment with human preference compared to single- 391

agent-based methods. Specifically, the multi-agent- 392

based method improves the F1 by 53.71% for Chat- 393

GPT and 32.88% for GPT-4. This demonstrates 394

EvalSVA’s advanced ability to evaluate the differ- 395

ent aspects of SV assessment. (3) GPT-4 can aid 396

human experts in SV assessment. The ChatGPT 397

method shows more substantial improvements in 398

the exploitability aspect, with average increases of 399

72.35% and 49.35%, respectively. In contrast, the 400

GPT-4 shows more significant improvements on 401

the impact metric, with an absolute improvement 402

of 5.64% and 12.64% on the accuracy and F1 Score, 403

respectively. Overall, GPT-4 performs well on the 404

AV, PR, and UI metrics, significantly aiding human 405

experts in SV assessment. (4) SV assessment in 406

Python and Java presents the greatest challenge. 407

Language-specific results reveal that C++ tasks typ- 408

ically exhibit higher accuracy than Python and Java 409

across all multi-agent methods. This discrepancy 410

may be attributed to C++ providing features like 411

manual memory management and extensive use of 412

pointers. However, these same complexities might 413

make it easier for EvalSVA because they follow 414

certain patterns typical to C++ programming. 415

We also study the different types of vulnerabil- 416

ities misreported by EvalSVA. Despite achieving 417

optimal results in various scenarios, we find that 418

EvalSVA still exhibits an error rate with certain 419

types of vulnerabilities, notably those related to 420

XML. For instance, EvalSVA incorrectly reported 421

seven instances of CWE-79 (CWE, 2024b) vulner- 422

abilities in Python, and the single agent reported 423

23 false positives showing a more severe error rate. 424

5

Exploitability Metrics Attack Vector Access Complexity Privileges Required User Interaction Average
Lang Baselines Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Java
ChatGPT

Single 0.4778 0.4075 0.4000 0.3132 0.2889 0.2425 0.3667 0.3532 0.3834 0.3291
EvalSVA 0.4889 0.4564 0.4444 0.2167 0.5778 0.3613 0.5000 0.4994 0.5028 0.3835

GPT-4
Single 0.8111 0.6052 0.5222 0.2338 0.6444 0.4633 0.7111 0.6928 0.6722 0.4988
EvalSVA 0.8667 0.6296 0.5556 0.3189 0.8333 0.6671 0.7333 0.7091 0.7472 0.5812

Python
ChatGPT

Single 0.3206 0.1909 0.2137 0.1318 0.3359 0.3004 0.3282 0.2984 0.2996 0.2304
EvalSVA 0.3282 0.2014 0.4351 0.2510 0.5954 0.4761 0.4504 0.4496 0.4523 0.3445

GPT-4
Single 0.8168 0.3905 0.1985 0.1311 0.6870 0.5516 0.6718 0.6480 0.5935 0.4303
EvalSVA 0.8931 0.3656 0.5573 0.3251 0.7176 0.6089 0.7557 0.7292 0.7309 0.5072

C++
ChatGPT

Single 0.3333 0.3088 0.2754 0.1873 0.1449 0.0921 0.5072 0.4569 0.3152 0.2613
EvalSVA 0.4203 0.3611 0.4928 0.2686 0.6957 0.3058 0.5652 0.5629 0.5435 0.3746

GPT-4
Single 0.7971 0.5907 0.2174 0.1970 0.8551 0.3073 0.5652 0.5492 0.6087 0.4111
EvalSVA 0.8551 0.6025 0.6667 0.4705 0.9420 0.4851 0.5942 0.5741 0.7645 0.5331

Scope and Impact Metrics Scope Confidentiality Integrity Availability Average
Lang Baselines Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Java
ChatGPT

Single 0.1444 0.1392 0.5111 0.2591 0.4556 0.2406 0.4556 0.2427 0.3917 0.2204
EvalSVA 0.4000 0.3619 0.5333 0.3572 0.4889 0.2729 0.4667 0.2390 0.4722 0.3078

GPT-4
Single 0.4778 0.4173 0.6222 0.4305 0.5333 0.3158 0.5667 0.3579 0.5500 0.3804
EvalSVA 0.5556 0.4591 0.7222 0.6458 0.6556 0.5261 0.5667 0.4153 0.6250 0.5116

Python
ChatGPT

Single 0.2443 0.2133 0.5038 0.3379 0.4504 0.3424 0.3511 0.2471 0.3874 0.2852
EvalSVA 0.4504 0.4386 0.5115 0.4151 0.4733 0.3914 0.4580 0.3432 0.4733 0.3971

GPT-4
Single 0.5878 0.5326 0.6412 0.5843 0.5191 0.4082 0.5802 0.4328 0.5821 0.4895
EvalSVA 0.6742 0.5416 0.6718 0.6483 0.5496 0.4981 0.7176 0.4997 0.6533 0.5469

C++
ChatGPT

Single 0.1449 0.1384 0.4638 0.2622 0.4928 0.3192 0.5072 0.2509 0.4022 0.2427
EvalSVA 0.5217 0.3907 0.5507 0.4029 0.5217 0.3436 0.6812 0.4059 0.5688 0.3858

GPT-4
Single 0.6087 0.3784 0.6087 0.4230 0.6087 0.3739 0.7101 0.3778 0.6341 0.3883
EvalSVA 0.7246 0.5043 0.6087 0.5163 0.6812 0.5935 0.7246 0.4825 0.6848 0.5242

Table 3: Experimental results across Java, Python and C++. We bold the best-performing method for each metric.

This count is the highest among all types of vulner-425

abilities misreported in terms of the AC. Further-426

more, both single agent and EvalSVA record 15427

false positives in the confidentiality metric, which428

underscores the ongoing need for EvalSVA to en-429

hance its detection capabilities for XML vulnera-430

bilities.431

These findings suggest the potential benefits432

of incorporating related code snippets for expert433

agents to better assess language-specific vulnerabil-434

ities, particularly for programming languages with435

complex structures like Python and Java.436

3.6 Communication Strategy437

To answer Q2, we propose four different commu-438

nication strategies termed as preceding one expert,439

previous communication, simultaneous assessment,440

and summarizer assessment for the SV assessment441

task. We experiment with these strategies in Python442

and the detailed results are described in Table 4.443

The remaining experiment results of Java and C++444

are presented in Appendix. Our observations indi-445

cate that (1) Employing either communication446

strategy proves advantageous for SV assessment.447

Integrating a multi-agent strategy with ChatGPT448

results in an improvement of 8.83% and 8.07% in449

accuracy and F1 score, demonstrating the effective-450

ness of the communication strategy methodology,451

respectively. (2) The efficacy of distinct com-452

munication strategies should be tailored to the453

tasks. Communication strategies exhibit varying454

performance depending on the task configuration,455

which can be attributed to the inherent nature of 456

these tasks. For instance, the evaluation of attack 457

complexity and user interaction typically falls un- 458

der binary classification, whereas the impact aspect 459

(including confidentiality, integrity, and availabil- 460

ity) requires multi-classification. This underscores 461

the necessity of adopting task-specific communi- 462

cation strategies in the development of SV assess- 463

ment methods. (3) The superior performance 464

of preceding one expert strategy for most met- 465

rics. Preceding one expert strategy demonstrates 466

superior performance in four tasks, yielding signif- 467

icant F1 improvements of 1.32%, 14.54%, 14.31%, 468

and 10.64% in scope, confidentiality, integrity, and 469

availability, respectively. It suggests that excessive 470

reliance on the previous references may lead to 471

deviations in the understanding of expert agents. 472

3.7 Expert Numbers and Rounds 473

To answer Q3, we conduct the experiment to study 474

the influence of different expert numbers and com- 475

munication rounds for assessing vulnerability. 476

Expert Numbers. The number of experts should 477

be selected as medium (2-3). As illustrated in Fig- 478

ure 3 (a)-(b), the correlation between the number 479

of experts and performance demonstrates a pattern 480

of initial improvement followed by a subsequent 481

decrease, with the optimal performance occurring 482

when the number of experts is 2-3. This suggests 483

that diverse expert roles enhance the model’s com- 484

prehension of SV assessments, aligning with find- 485

ings reported by (Du et al., 2023; Chan et al., 2023). 486

6

Exploitability Metrics Attack Vector Access Complexity Privileges Required User Interaction Average
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.3206 0.1909 0.2137 0.1318 0.3359 0.3004 0.3282 0.2984 0.2996 0.2304
Previous Communication 0.2366 0.1509 0.4351 0.2510 0.5954 0.4761 0.3511 0.3487 0.4046 0.3067
Preceding One Expert 0.2137 0.1398 0.3893 0.2181 0.5496 0.4607 0.4504 0.4465 0.4008 0.3163
Simultaneous Assessment 0.2672 0.1697 0.4580 0.2494 0.5878 0.4710 0.4427 0.4426 0.4389 0.3332
Summarizer Assessment 0.3282 0.2014 0.4122 0.2310 0.5573 0.4552 0.4504 0.4496 0.4370 0.3343

Scope and Impact Metrics Scope Confidentiality Integrity Availability Average
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.2443 0.2133 0.5038 0.3379 0.4504 0.3424 0.3511 0.2471 0.3874 0.2852
Previous Communication 0.4198 0.4190 0.4656 0.3624 0.4275 0.3039 0.4351 0.2921 0.4370 0.3444
Preceding One Expert 0.4504 0.4386 0.5115 0.4151 0.4733 0.3914 0.4580 0.3432 0.4733 0.3971
Simultaneous Assessment 0.4351 0.4311 0.4733 0.3445 0.4122 0.2879 0.4351 0.3102 0.4389 0.3434
Summarizer Assessment 0.4504 0.4329 0.4122 0.2949 0.4198 0.3368 0.4122 0.2645 0.4237 0.3323

Table 4: Experimental results of different communication strategies of ChatGPT in Python. We bold the best-
performing communication strategy for each metric.

1 2 3 4 5

0.3
0.4
0.5

(a) Expert number of AV.

1 2 3 4 5
0.3
0.4
0.5

(b) Expert number of PR.

1 2 3 4 5
0.3
0.4
0.5

(c) Round of AV.

1 2 3 4 5
0.3
0.4
0.5

(d) Round of PR.

Figure 3: The impact of expert numbers and communi-
cation rounds on EvalSVA in the Java dataset. The blue,
purple, orange, and green lines denote the accuracy,
precision, recall and F1 score metrics, respectively.

Furthermore, it indicates that an excessive number487

of experts involved in the decision-making process488

may misguide the LLM-based method decisions,489

potentially due to the extended context length.490

Communication Rounds. Multiple rounds491

of communication are required to facilitate the492

model’s understanding of vulnerability due to its493

lack of domain-specific knowledge. However, com-494

munication across numerous rounds does not nec-495

essarily even result in a decline. This could be496

attributed to the fact that excessively long contexts497

are detrimental to the model’s ability to effectively498

process the task of SV assessment. It is notewor-499

thy that different tasks may necessitate varying500

numbers of communication rounds. For instance,501

the PR exhibits optimal performance after three502

rounds, while AV reaches peak performance in the503

first rounds. These findings underscore the need for504

a more sophisticated appreciation of the balance505

between the number of communication rounds and506

the specific task to optimize performance.507

4 Discussion 508

4.1 Case Study 509

Figure 4 is a vulnerability example from CVE- 510

2023-46502 (Detail, 2024b), which uses the 511

EvalSVA to evaluate the Attack Complexity. The 512

vulnerability arises from the improper configura- 513

tion of DocumentBuilderFactory (shaded in brown 514

in Figure 4), which allows XML external entity at- 515

tacks (i.e., CWE-611 (CWE, 2024a)). We observe 516

that there initially exists a discrepancy in opinions 517

between the different agents during the first round 518

of responses. Then, a consensus is reached in the 519

subsequent round. This case mirrors real-world 520

situations where multiple experts assess a single 521

vulnerability. Specifically, EvalSVA demonstrates 522

several human-like decision-making processes ob- 523

served in the industry. (1) Opinions diversity: 524

Initially, Expert 1 and Expert 2 present differing 525

judgments when assessing the same vulnerability 526

commit. This diversity broadens the perspective 527

and encompasses a more comprehensive range of 528

considerations in SV assessment. (2) Revision: 529

Upon considering the viewpoints of other experts, 530

Expert 1 learns from different aspects and revises 531

its previously erroneous judgment. This indicates 532

that EvalSVA, when informed by the perspectives 533

of multiple experts, possesses the capability to re- 534

vise. (3) Interpretability: Each expert provides 535

explanations for their assessments. This practice 536

aligns with industry standards set by FIRST (fir, 537

2024), which mandates that CVSS must adhere to 538

documented guidelines and include both the scor- 539

ing vector and a detailed rationale, enabling others 540

to understand the derivation of the scores. Previous 541

methods (Le et al., 2021; Li et al., 2023b) often pro- 542

vided scores without the explanations needed for 543

comprehensive SV assessment. (4) Evolutionary 544

adaptation: EvalSVA can be adapted to differ- 545

7

Expert_1's answer in Round 2:
...The Attack Complexity within the context of CVSS v3.1 is rated as Low (L) prior to the fix,

because an attacker could exploit the XML External Entity (XXE) vulnerability without needing any
specialized conditions...

Expert_2's answer in Round 1:
...The Attack Complexity would be rated as Low (L) prior to changes implemented by the

commit.\n\nIn the original vulnerable state, an attacker could exploit the XML External Entity (XXE)
vulnerability without needing to meet any special conditions or complex configurations. Therefore,
the attack could be launched repeatedly and consistently, making its complexity low. ...

Expert_2's answer in Round 2:
...The Attack Complexity can be rated as Low (L) in the CVSS v3.1 severity rating prior to any

remediation efforts. The reason for this classification is that the vulnerability, related to XML
External Entity (XXE) injection, ..., indicating a low complexity for the attacks.

@@ -221,16 +221,40 @@ protected String getCleanPath(
 ...
+ documentBuilderFactory = DocumentBuilderFactory.newInstance();
+ documentBuilderFactory.setNamespaceAware(true);
+ try { documentBuilderFactory.setFeature("http://apache.org/xml/features/disallow-doctype-decl",

true); }
 ...
 try {
- documentBuilderFactory = DocumentBuilderFactory.newInstance();
+ documentBuilder = documentBuilderFactory.newDocumentBuilder();
 }

Expert_1's answer in Round 1:
 The Attack Complexity can be considered High (H). ... allowed for XML External Entity (XXE)
injection, implying potentially low complexity for an attacker, the updated configuration requires now
some specific conditions to launch a successful attack. ...

Vulnerability-Triggering Statement

Figure 4: A EvalSVA example presents a discussion
process involving two expert agents. The text shaded
in red and green denote the wrong and right responses
from LLMs, respectively.

ent versions of SV assessment systems based on546

the prompts. Unlike prior works, EvalSVA swiftly547

integrates current version-specific domain knowl-548

edge to conduct SV assessments without training,549

demonstrating its agility and relevance in evolving550

systems.551

4.2 Limitation552

Transferability on other types of SV assessment. In553

this paper, we only focus on SV assessment with554

commit input and CVSS v3.1 standard, excluding555

SV and bug report-based methods. In the future, we556

intend to explore the efficacy of EvalSVA regarding557

the upgrade of the assessment system.558

Constraints of domain knowledge in prompts.559

For the context limited of LLMs, EvalSVA only560

contains the prompt-based domain knowledge and561

chat history to facilitate the SV assessment. In the562

future, we will explore more expert-based exam-563

ples as prompts for the LLM-based SV assessment.564

5 Related Work565

Public security databases, such as the NVD (NIST,566

2024), and expert-based scoring systems, such as567

the CVSS (CVS, 2023) have been pivotal in fur-568

nishing detailed datasets for SV. In recent years,569

the CVSS framework has witnessed significant en-570

hancements (Feutrill et al., 2018), evolving from571

v2 (CVS, 2024d) to v3.0 (CVS, 2024b), and subse-572

quently to v3.1 (CVS, 2024c). Specifically, the ex-573

isting methods can be broadly divided into two as-574

pects: SV report-based and commit-based methods. 575

The majority of existing methods for automated SV 576

assessment depend on SV reports (i.e., SV reported- 577

based methods) (Han et al., 2017; Lamkanfi et al., 578

2010; Le et al., 2019; Spanos and Angelis, 2018) 579

from the NVD. These methods typically focus on 580

predicting either a single metric (Fu et al., 2024; 581

Kudjo et al., 2019; Wang et al., 2019) or a set of 582

metrics associated with the CVSS (Le and Babar, 583

2022; Yamamoto et al., 2015; Ognawala et al., 584

2018). For instance, Han et al. (Han et al., 2017) 585

introduced a Convolutional Neural Network-based 586

method to automate and predict the overall sever- 587

ity rating by analyzing SV descriptions. However, 588

these user-submitted SV reports often exhibit sig- 589

nificant delays (Thung et al., 2012; Sawadogo et al., 590

2021; Bosu and Carver, 2012; Thongtanunam et al., 591

2015), potentially exceeding 1000 days. To expe- 592

dite SV assessment and reduce the extensive labor 593

required by human experts for evaluations, In addi- 594

tion, the recent research also explored the potential 595

of commit-based methods (Le et al., 2021; Zhou 596

et al., 2022; Li et al., 2023b; Yin et al., 2024b). This 597

type of method involves utilizing commit changes 598

to assess all aspects of SVs. For instance, Le et 599

al. (Le et al., 2021) introduced DeepCVA, a model 600

that applies multi-task learning to perform commit- 601

based SV assessment. Li et al. (Li et al., 2023b) 602

proposed a neural framework dedicated to SV de- 603

tection and assessment simultaneously. 604

6 Conclusion 605

In this paper, we propose the first multi-agent- 606

based framework EvalSVA to simulate vulnera- 607

bility assessment strategies in real-world scenar- 608

ios. Furthermore, we construct the first multi- 609

lingual SV assessment dataset based on the new 610

standard of CVSS, comprising 699, 888, and 1,310 611

vulnerability-related commits in C++, Python, and 612

Java, respectively, which can serve as a founda- 613

tion dataset for future research. We emphasize the 614

necessity of developing multi-agent evaluators for 615

SV assessment due to the continuous evolution of 616

CVSS. Our experimental results confirm the effec- 617

tiveness of EvalSVA, especially in scenarios with 618

limited labeled data. We also find that EvalSVA of- 619

fers a human-like process, providing both rationale 620

and responses for SV assessment. This underscores 621

the effectiveness and possibility of EvalSVA for the 622

next generation of SV assessment. 623

8

References624

2023. What is cvss score. https://debricked.com/625
blog/what-is-cvss-score/.626

2024a. Common vulnerability scoring system (cvss).627
https://www.first.org/cvss/.628

2024. Common vulnerability scoring system sig.629
https://www.first.org/cvss/.630

2024b. Common vulnerability scoring system v3.0:631
Specification document. https://www.first.org/632
cvss/v3.0/specification-document.633

2024c. Common vulnerability scoring system v3.1:634
Specification document. https://www.first.org/635
cvss/v3.1/specification-document.636

2024d. A complete guide to the common vulnerability637
scoring system version 2.0. https://www.first.638
org/cvss/v2/guide.639

2024a. Cwe-611: Improper restriction of xml external640
entity reference. https://cwe.mitre.org/data/641
definitions/611.html.642

2024b. Cwe-79: Improper neutralization of input during643
web page generation (’cross-site scripting’). https:644
//cwe.mitre.org/data/definitions/79.html.645

2024. “Common Vulnerabilities and Exposures (CVE)”.646
https://cve.mitre.org/.647

Leyla Bilge and Tudor Dumitras. 2012. Before we648
knew it: an empirical study of zero-day attacks in649
the real world. In the ACM Conference on Computer650
and Communications Security, CCS’12, Raleigh, NC,651
USA, October 16-18, 2012, pages 833–844. ACM.652

Amiangshu Bosu and Jeffrey C. Carver. 2012. Peer653
code review in open source communitiesusing re-654
viewboard. In Proceedings of the ACM 4th Annual655
Workshop on Evaluation and Usability of Program-656
ming Languages and Tools, PLATEAU 2012, Tucson,657
AZ, USA, October 21, 2012, pages 17–24. ACM.658

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,659
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.660
2023. Chateval: Towards better llm-based evaluators661
through multi-agent debate. CoRR, abs/2308.07201.662

ChatGPT. 2022. Chatgpt. https://chat.openai.663
com/.664

Roland Croft, Muhammad Ali Babar, and M. Mehdi665
Kholoosi. 2023. Data quality for software vulner-666
ability datasets. In 45th IEEE/ACM International667
Conference on Software Engineering, ICSE 2023,668
Melbourne, Australia, May 14-20, 2023, pages 121–669
133. IEEE.670

Roland Croft, Dominic Newlands, Ziyu Chen, and671
Muhammad Ali Babar. 2021. An empirical study of672
rule-based and learning-based approaches for static673
application security testing. In ESEM ’21: ACM /674
IEEE International Symposium on Empirical Soft-675
ware Engineering and Measurement, Bari, Italy, Oc-676
tober 11-15, 2021, pages 8:1–8:12. ACM.677

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, 678
Shizhuo Dylan Zhang, Shujing Yang, and Lingming 679
Zhang. 2024. Large language models are edge-case 680
generators: Crafting unusual programs for fuzzing 681
deep learning libraries. In Proceedings of the 46th 682
IEEE/ACM International Conference on Software En- 683
gineering, ICSE 2024, Lisbon, Portugal, April 14-20, 684
2024, pages 70:1–70:13. ACM. 685

CVE-2023-2954 Detail. 2024a. https://nvd.nist. 686
gov/vuln/detail/CVE-2023-2954/. 687

CVE-2023-46502 Detail. 2024b. https://nvd.nist. 688
gov/vuln/detail/CVE-2023-46502. 689

Nesara Dissanayake, Asangi Jayatilaka, Mansooreh Za- 690
hedi, and Muhammad Ali Babar. 2022. An empirical 691
study of automation in software security patch man- 692
agement. In 37th IEEE/ACM International Confer- 693
ence on Automated Software Engineering, ASE 2022, 694
Rochester, MI, USA, October 10-14, 2022, pages 7:1– 695
7:13. ACM. 696

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. 697
Tenenbaum, and Igor Mordatch. 2023. Improving 698
factuality and reasoning in language models through 699
multiagent debate. CoRR, abs/2305.14325. 700

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 701
2020. A C/C++ code vulnerability dataset with code 702
changes and CVE summaries. In MSR ’20: 17th 703
International Conference on Mining Software Repos- 704
itories, Seoul, Republic of Korea, 29-30 June, 2020, 705
pages 508–512. ACM. 706

Andrew Feutrill, Dinesha Ranathunga, Yuval Yarom, 707
and Matthew Roughan. 2018. The effect of com- 708
mon vulnerability scoring system metrics on vulner- 709
ability exploit delay. In Sixth International Sympo- 710
sium on Computing and Networking, CANDAR 2018, 711
Takayama, Japan, November 23-27, 2018, pages 1– 712
10. IEEE Computer Society. 713

Park Foreman. 2019. Vulnerability management. Auer- 714
bach Publications. 715

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki 716
Kume, Van Nguyen, Dinh Q. Phung, and John C. 717
Grundy. 2024. Aibughunter: A practical tool for 718
predicting, classifying and repairing software vulner- 719
abilities. Empir. Softw. Eng., 29(1):4. 720

Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan 721
Wang, Hongyu Zhang, and Michael R. Lyu. 2023. 722
What makes good in-context demonstrations for code 723
intelligence tasks with llms? In 38th IEEE/ACM 724
International Conference on Automated Software En- 725
gineering, ASE 2023, Luxembourg, September 11-15, 726
2023, pages 761–773. IEEE. 727

Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao 728
Liu, and Zhiyong Feng. 2017. Learning to predict 729
severity of software vulnerability using only vulnera- 730
bility description. In 2017 IEEE International Con- 731
ference on Software Maintenance and Evolution, IC- 732
SME 2017, Shanghai, China, September 17-22, 2017, 733
pages 125–136. IEEE Computer Society. 734

9

https://debricked.com/blog/what-is-cvss-score/
https://debricked.com/blog/what-is-cvss-score/
https://debricked.com/blog/what-is-cvss-score/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cve.mitre.org/
https://chat.openai.com/
https://chat.openai.com/
https://chat.openai.com/
https://nvd.nist.gov/vuln/detail/CVE-2023-2954/
https://nvd.nist.gov/vuln/detail/CVE-2023-2954/
https://nvd.nist.gov/vuln/detail/CVE-2023-2954/
https://nvd.nist.gov/vuln/detail/CVE-2023-46502
https://nvd.nist.gov/vuln/detail/CVE-2023-46502
https://nvd.nist.gov/vuln/detail/CVE-2023-46502

Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang,735
Wenxuan Wang, Youliang Yuan, Wenxiang Jiao,736
Xing Wang, Zhaopeng Tu, and Michael R. Lyu. 2024.737
How far are we on the decision-making of llms? eval-738
uating llms’ gaming ability in multi-agent environ-739
ments. CoRR, abs/2403.11807.740

Mia Mohammad Imran, Preetha Chatterjee, and741
Kostadin Damevski. 2023. Uncovering the causes742
of emotions in software developer communication743
using zero-shot llms. CoRR, abs/2312.09731.744

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.745
2021. The perils of using mechanical turk to evaluate746
open-ended text generation. In Proceedings of the747
2021 Conference on Empirical Methods in Natural748
Language Processing, EMNLP 2021, Virtual Event749
/ Punta Cana, Dominican Republic, 7-11 November,750
2021, pages 1265–1285. Association for Computa-751
tional Linguistics.752

Saad Khan and Simon Parkinson. 2018. Review into753
state of the art of vulnerability assessment using ar-754
tificial intelligence. In Simon Parkinson, Andrew755
Crampton, and Richard Hill, editors, Guide to Vulner-756
ability Analysis for Computer Networks and Systems757
- An Artificial Intelligence Approach, Computer Com-758
munications and Networks, pages 3–32. Springer.759

Patrick Kwaku Kudjo, Jinfu Chen, Minmin Zhou,760
Solomon Mensah, and Rubing Huang. 2019. Im-761
proving the accuracy of vulnerability report classifi-762
cation using term frequency-inverse gravity moment.763
In 19th IEEE International Conference on Software764
Quality, Reliability and Security, QRS 2019, Sofia,765
Bulgaria, July 22-26, 2019, pages 248–259. IEEE.766

Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and767
Bart Goethals. 2010. Predicting the severity of a re-768
ported bug. In Proceedings of the 7th International769
Working Conference on Mining Software Reposito-770
ries, MSR 2010 (Co-located with ICSE), Cape Town,771
South Africa, May 2-3, 2010, Proceedings, pages772
1–10. IEEE Computer Society.773

Triet Huynh Minh Le and Muhammad Ali Babar. 2022.774
On the use of fine-grained vulnerable code statements775
for software vulnerability assessment models. In776
19th IEEE/ACM International Conference on Mining777
Software Repositories, MSR 2022, Pittsburgh, PA,778
USA, May 23-24, 2022, pages 621–633. ACM.779

Triet Huynh Minh Le, Huaming Chen, and Muham-780
mad Ali Babar. 2023. A survey on data-driven781
software vulnerability assessment and prioritization.782
ACM Comput. Surv., 55(5):100:1–100:39.783

Triet Huynh Minh Le, David Hin, Roland Croft, and784
Muhammad Ali Babar. 2021. Deepcva: Automated785
commit-level vulnerability assessment with deep786
multi-task learning. In 36th IEEE/ACM Interna-787
tional Conference on Automated Software Engineer-788
ing, ASE 2021, Melbourne, Australia, November 15-789
19, 2021, pages 717–729. IEEE.790

Triet Huynh Minh Le, Bushra Sabir, and Muham- 791
mad Ali Babar. 2019. Automated software vulner- 792
ability assessment with concept drift. In Proceed- 793
ings of the 16th International Conference on Mining 794
Software Repositories, MSR 2019, 26-27 May 2019, 795
Montreal, Canada, pages 371–382. IEEE / ACM. 796

Guohao Li, Hasan Abed Al Kader Hammoud, Hani 797
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 798
2023a. CAMEL: communicative agents for "mind" 799
exploration of large scale language model society. 800
CoRR, abs/2303.17760. 801

Yi Li, Aashish Yadavally, Jiaxing Zhang, Shaohua 802
Wang, and Tien N. Nguyen. 2023b. Commit-level, 803
neural vulnerability detection and assessment. In 804
Proceedings of the 31st ACM Joint European Soft- 805
ware Engineering Conference and Symposium on 806
the Foundations of Software Engineering, ESEC/FSE 807
2023, San Francisco, CA, USA, December 3-9, 2023, 808
pages 1024–1036. ACM. 809

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, 810
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and 811
Shuming Shi. 2023. Encouraging divergent thinking 812
in large language models through multi-agent debate. 813
CoRR, abs/2305.19118. 814

NIST. 2024. “National Vulnerability Database (NVD)”. 815
https://nvd.nist.gov/. 816

Saahil Ognawala, Ricardo Nales Amato, Alexander 817
Pretschner, and Pooja Kulkarni. 2018. Automati- 818
cally assessing vulnerabilities discovered by com- 819
positional analysis. In Proceedings of the 1st Inter- 820
national Workshop on Machine Learning and Soft- 821
ware Engineering in Symbiosis, MASES@ASE 2018, 822
Montpellier, France, September 3, 2018, pages 16–25. 823
ACM. 824

OpenAI. 2023. GPT-4 technical report. CoRR, 825
abs/2303.08774. 826

Yun Peng, Chaozheng Wang, Wenxuan Wang, Cuiyun 827
Gao, and Michael R. Lyu. 2023. Generative type 828
inference for python. In 38th IEEE/ACM Interna- 829
tional Conference on Automated Software Engineer- 830
ing, ASE 2023, Luxembourg, September 11-15, 2023, 831
pages 988–999. IEEE. 832

Arthur D. Sawadogo, Quentin Guimard, Tegawendé F. 833
Bissyandé, Abdoul Kader Kaboré, Jacques Klein, 834
and Naouel Moha. 2021. Early detection of security- 835
relevant bug reports using machine learning: How far 836
are we? CoRR, abs/2112.10123. 837

Vincent Smyth. 2017. Software vulnerability manage- 838
ment: how intelligence helps reduce the risk. Netw. 839
Secur., 2017(3):10–12. 840

Georgios Spanos and Lefteris Angelis. 2018. A multi- 841
target approach to estimate software vulnerability 842
characteristics and severity scores. J. Syst. Softw., 843
146:152–166. 844

10

https://nvd.nist.gov/

Statista. 2024. Number of common it se-845
curity vulnerabilities and exposures (cves)846
worldwide from 2009 to 2024 ytd. https:847
//www.statista.com/statistics/500755/848
worldwide-common-vulnerabilities-and-exposures/.849

Patanamon Thongtanunam, Shane McIntosh, Ahmed E.850
Hassan, and Hajimu Iida. 2015. Investigating code851
review practices in defective files: An empirical study852
of the qt system. In 12th IEEE/ACM Working Con-853
ference on Mining Software Repositories, MSR 2015,854
Florence, Italy, May 16-17, 2015, pages 168–179.855
IEEE Computer Society.856

Ferdian Thung, David Lo, Lingxiao Jiang, Lucia,857
Foyzur Rahman, and Premkumar T. Devanbu. 2012.858
When would this bug get reported? In 28th IEEE859
International Conference on Software Maintenance,860
ICSM 2012, Trento, Italy, September 23-28, 2012,861
pages 420–429. IEEE Computer Society.862

Peichao Wang, Yun Zhou, Baodan Sun, and Weim-863
ing Zhang. 2019. Intelligent prediction of vulner-864
ability severity level based on text mining and xg-865
bboost. In Eleventh International Conference on866
Advanced Computational Intelligence, ICACI 2019,867
Guilin, China, June 7-9, 2019, pages 72–77. IEEE.868

WhiteSource. 2023. “Mend bolt”. https://www.mend.869
io/free-developer-tools/.870

Yasuhiro Yamamoto, Daisuke Miyamoto, and Masaya871
Nakayama. 2015. Text-mining approach for estimat-872
ing vulnerability score. In 4th International Work-873
shop on Building Analysis Datasets and Gathering874
Experience Returns for Security, BADGERS@RAID875
2015, Kyoto, Japan, November 5, 2015, pages 67–73.876
IEEE.877

Xin Yin, Chao Ni, and Shaohua Wang. 2024a.878
Multitask-based evaluation of open-source LLM on879
software vulnerability. CoRR, abs/2404.02056.880

Xin Yin, Chao Ni, and Shaohua Wang. 2024b.881
Multitask-based evaluation of open-source LLM on882
software vulnerability. CoRR, abs/2404.02056.883

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan884
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,885
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,886
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging887
llm-as-a-judge with mt-bench and chatbot arena. In888
Advances in Neural Information Processing Systems889
36: Annual Conference on Neural Information Pro-890
cessing Systems 2023, NeurIPS 2023, New Orleans,891
LA, USA, December 10 - 16, 2023.892

Yunhui Zheng, Saurabh Pujar, Burn L. Lewis, Luca893
Buratti, Edward A. Epstein, Bo Yang, Jim Laredo,894
Alessandro Morari, and Zhong Su. 2021. D2A: A895
dataset built for ai-based vulnerability detection meth-896
ods using differential analysis. In 43rd IEEE/ACM897
International Conference on Software Engineering:898
Software Engineering in Practice, ICSE (SEIP) 2021,899
Madrid, Spain, May 25-28, 2021, pages 111–120.900
IEEE.901

Jiayuan Zhou, Michael Pacheco, Zhiyuan Wan, Xin Xia, 902
David Lo, Yuan Wang, and Ahmed E. Hassan. 2021. 903
Finding A needle in a haystack: Automated mining 904
of silent vulnerability fixes. In 36th IEEE/ACM In- 905
ternational Conference on Automated Software Engi- 906
neering, ASE 2021, Melbourne, Australia, November 907
15-19, 2021, pages 705–716. IEEE. 908

Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing 909
Liu, and Yang Liu. 2022. SPI: automated identifi- 910
cation of security patches via commits. ACM Trans. 911
Softw. Eng. Methodol., 31(1):13:1–13:27. 912

11

https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
https://www.mend.io/free-developer-tools/
https://www.mend.io/free-developer-tools/
https://www.mend.io/free-developer-tools/

Appendix913

A Prompt Template914

The example of a prompt template is illustrated915

in Figure 5. We incorporate numerous commit916

details, such as commit information, CVE Descrip-917

tion, Commit message, and domain knowledge of918

CVSS. In this context, we substitute the highlighted919

(red) square brackets with corresponding informa-920

tion from each commit before querying the LLMs.921

922

B Additional Communication Strategies923

Results924

In this appendix, we present the detailed experi-925

ment results that focus on different communication926

strategies for Java and C++. Our study is also con-927

ducted in ChatGPT as Q2.928

C Additional Experimental Setting929

C.1 Implementation Details930

For ChatGPT (“gpt-3.5-turbo-0125”) and GPT-4931

(“gpt-4-turbo”), we use the public APIs provided932

by OpenAI. To mitigate the risk of data leakage and933

effectively evaluate the methods’ ability for SV as-934

sessment, we adopt a time-split setting based on the935

“commit date” of vulnerability patches. Specifically,936

the vulnerability-related commit after 2023-11-27937

of Python, 2023-11-28 of Java, and 2023-12-02 of938

C++ are designated for testing in this paper.939

C.2 Additional Metrics940

We also use the following two widely used perfor-941

mance metrics for SV assessment:942

Precision: It is the ratio of true positives (TP) to943

the sum of true positives and false positives (FP),944

calculated following: Precision = TP
TP+FP .945

Recall: It is the ratio of TP to the sum of TP946

and false negatives (FN), calculated following:947

Recall = TP
TP+FN .948

D Algorithm of Communication949

Strategies950

In this appendix, we formally define the follow-951

ing four different communication strategies, includ-952

ing preceding one expert (Refer to Algorithm 1),953

previous communication(Refer to Algorithm 2), si-954

multaneous assessment(Refer to Algorithm 3), and955

summariser assessment(Refer to Algorithm 4) for956

the SV assessment task.957

Algorithm 1 Referencing the preceding one expert
Require: Agents Number: N , Expert Agents:

E1, E2, · · · , EN , Communication Rounds: R,
Chat History List History, Vulnerability Assessment
Tasks T1, T2, · · · , T8

Ensure: Results for Vulnerability Assessment Task Answer

1: Initialize a vulnerability assessment task Ti

2: for r ← 0 to R do
3: for n← 0 to N do
4: if History ̸= ∅ then
5: hrole ← En

6: hanswer ← En(Ti, History)
7: History ← {hrole, hanswer}
8: else
9: hrole ← En

10: hanswer ← En(Ti)
11: History ← {hrole, hanswer}
12: end if
13: Answer ← Final hanswer

14: end for
15: end for
16: return Answer

Algorithm 2 Referencing the previous communi-
cation
Require: Agents Number: N , Expert Agents:

E1, E2, · · · , EN , Communication Rounds: R,
Chat History List History, Vulnerability Assessment
Tasks T1, T2, · · · , T8

Ensure: Results for Vulnerability Assessment Task Answer

1: Initialize a vulnerability assessment task Ti

2: for r ← 0 to R do
3: for n← 0 to N do
4: if History ̸= ∅ then
5: hrole ← En

6: hanswer ← En(Ti, History)
7: History ← {hrole, hanswer}
8: else
9: hrole ← En

10: hanswer ← En(Ti)
11: History ← History + {hrole, hanswer}
12: end if
13: Answer ← Final hanswer

14: end for
15: end for
16: return Answer

12

You are a [C++] vulnerability expert for [Attack Complexity].
[This metric describes the conditions beyond the attacker’s control that must exist in order to
exploit the vulnerability. If a specific configuration is required for an attack to succeed, the
Base metrics should be scored assuming the vulnerable component is in that configuration. The Base
Score is greatest for the least complex attacks.]
[Low (L): Specialized access conditions or extenuating circumstances do not exist. An attacker can
expect repeatable success when attacking the vulnerable component.
High (H): A successful attack depends on conditions beyond the attacker's control. That is, a
successful attack cannot be accomplished at will, but requires the attacker to invest in some
measurable amount of effort in preparation or execution against the vulnerable component before a
successful attack can be expected.]

Provide a qualitative CVSS v3.1 severity ratings of [Attack Complexity] for the vulnerable [C++]
code snippet.

Project:
[stellarium/stellarium]
Filename:
[src/scripting/StelScriptOutput.cpp]
CVE Description:
[In Stellarium through 1.2, attackers can write to files that are typically unintended, such as
ones with absolute pathnames or .. directory traversal.]
Commit Message:
 [Fix a possible security issue
- disallow overwriting config.ini]
Code:
[@@ -62,6 +62,12 @@ void StelScriptOutput::saveOutputAs(const QString &name)

 const bool okToSaveToAbsolutePath=StelApp::getInstance().getSettings()

->value("scripts/flag_script_allow_write_absolute_path", false).toBool();

+ if (name.contains("config.ini"))
+ {
+ qWarning() << "SCRIPTING ERROR: You are trying to overwrite config.ini.
Ignoring.";
+ return;
+ }
+
 ...
]

Task Description
User Prompt

System Prompt

Commit Information

CVE Description

Commit Message

Code Change

Role Description

Metric Description

Domain Knowledge

Figure 5: The prompt template for commit-based SV assessment.

Algorithm 3 Simultaneous Assessment
Require: Agents Number: N , Expert Agents:

E1, E2, · · · , EN , Communication Rounds: R,
Chat History List History, Vulnerability Assessment
Tasks T1, T2, · · · , T8

Ensure: Results for Vulnerability Assessment Task Answer

1: Initialize a vulnerability assessment task Ti

2: for r ← 0 to R do
3: Initialize current round chat history Historyc
4: for n← 0 to N do
5: if History ̸= ∅ then
6: hrole ← En

7: hanswer ← En(Ti, History)
8: Historyc ← {hrole, hanswer}
9: else

10: hrole ← En

11: hanswer ← En(Ti)
12: Historyc ← {hrole, hanswer}
13: end if
14: end for
15: History ← History +Historyc
16: Answer ← Final hanswer

17: end for
18: return Answer

Algorithm 4 Summarizer Assessment
Require: Agents Number: N , Expert Agents:

E1, E2, · · · , EN−1, Summarizer Agent S, Com-
munication Rounds: R, Chat History List History,
Vulnerability Assessment Tasks T1, T2, · · · , T8

Ensure: Results for Vulnerability Assessment Task Answer

1: Initialize a vulnerability assessment task Ti

2: for r ← 0 to R do
3: Initialize current round chat history Historyc
4: for n← 0 to N do
5: if n ̸= N then
6: hrole ← En

7: hanswer ← En(Ti, History)
8: Historyc ← {hrole, hanswer}
9: else

10: srole ← S
11: sanswer ← S(Ti, History +Historyc)
12: Historyc ← {srole, sanswer}
13: end if
14: end for
15: History ← History +Historyc
16: Answer ← Final sanswer

17: end for
18: return Answer

13

Exploitability Metrics AV AC PR UI
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.4778 0.4075 0.4000 0.3132 0.2889 0.2425 0.3667 0.3532
Previous Communication 0.3222 0.3078 0.4444 0.2167 0.5778 0.3603 0.5000 0.4994
Preceding One Expert 0.3111 0.3056 0.3556 0.1943 0.5556 0.3492 0.4667 0.4643
Simultaneous Assessment 0.4444 0.3939 0.4111 0.2158 0.5778 0.3613 0.4222 0.4219
Summarizer Assessment 0.4889 0.4564 0.3222 0.1728 0.5333 0.3387 0.4000 0.4000

Scope and Impact Metrics S C I A
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.1444 0.1392 0.5111 0.2591 0.4556 0.2406 0.4556 0.2427
Previous Communication 0.3333 0.3168 0.5333 0.3457 0.5000 0.2496 0.4556 0.2169
Preceding One Expert 0.3778 0.3623 0.5333 0.3572 0.4889 0.2729 0.4222 0.2189
Simultaneous Assessment 0.3444 0.3202 0.5000 0.2582 0.5111 0.2495 0.4667 0.2390
Summarizer Assessment 0.4000 0.3619 0.5333 0.2819 0.4889 0.2731 0.4667 0.2317

Table 5: Evaluation of different communication strategies of ChatGPT in Java.

Exploitability Metrics AV AC PR UI
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.3333 0.3088 0.2754 0.1873 0.1449 0.0921 0.5072 0.4569
Previous Communication 0.2319 0.2214 0.3333 0.1950 0.6087 0.2523 0.5507 0.5473
Preceding One Expert 0.4203 0.3611 0.4203 0.2372 0.5942 0.2485 0.5652 0.5629
Simultaneous Assessment 0.1884 0.1869 0.3913 0.2129 0.6812 0.2701 0.5072 0.5063
Summarizer Assessment 0.2899 0.2746 0.4928 0.2686 0.6957 0.3058 0.5072 0.5071

Scope and Impact Metrics S C I A
Communication Strategy Acc F1 Acc F1 Acc F1 Acc F1
Single Agent 0.1449 0.1384 0.4638 0.2622 0.4928 0.3192 0.5072 0.2509
Previous Communication 0.4203 0.3155 0.4928 0.3074 0.4348 0.2259 0.6812 0.4059
Preceding One Expert 0.4928 0.3538 0.5072 0.3616 0.4203 0.2920 0.5942 0.3459
Simultaneous Assessment 0.5217 0.3907 0.5507 0.4029 0.4783 0.3024 0.6522 0.3548
Summarizer Assessment 0.4928 0.3538 0.4493 0.2313 0.5217 0.3436 0.6232 0.3888

Table 6: Evaluation of different communication strategies of ChatGPT in C++.

E Task-related Prompt958

In this appendix, we present the task-related prompt959

by CVSS v3.1 and design several descriptions as960

follows.961

Attack Vector: You are a [Language] expert for962

Attack Vector. This metric reflects the context in963

which vulnerability exploitation is possible. This964

metric value (and consequently the Base Score)965

will be larger the more remote (logically, and phys-966

ically) an attacker can be to exploit the vulnerable967

component. Network (N): The vulnerable compo-968

nent is bound to the network stack and the set of969

possible attackers extends beyond the other options970

listed below, up to and including the entire Internet.971

Local (L): The vulnerable component is not bound972

to the network stack and the attacker’s path is via973

read/write/execute capabilities.974

Attack Complexity: You are a [Language] ex-975

pert for Attack Complexity. This metric describes976

the conditions beyond the attacker’s control that 977

must exist in order to exploit the vulnerability. If 978

a specific configuration is required for an attack 979

to succeed, the Base metrics should be scored as- 980

suming the vulnerable component is in that config- 981

uration. The Base Score is greatest for the least 982

complex attacks. Low (L): Specialized access con- 983

ditions or extenuating circumstances do not exist. 984

An attacker can expect repeatable success when 985

attacking the vulnerable component. High (H): A 986

successful attack depends on conditions beyond 987

the attacker’s control. That is, a successful attack 988

cannot be accomplished at will, but requires the 989

attacker to invest in some measurable amount of 990

effort in preparation or execution against the vul- 991

nerable component before a successful attack can 992

be expected. 993

Privileges Required: You are a [Language] ex- 994

pert for Privileges Required. This metric describes 995

14

the level of privileges an attacker must possess be-996

fore successfully exploiting the vulnerability. The997

Base Score is greatest if no privileges are required.998

None (N): The attacker is unauthorized prior to999

attack, and therefore does not require any access1000

to settings or files of the vulnerable system to carry1001

out an attack. Low (L): The attacker requires privi-1002

leges that provide basic user capabilities that could1003

normally affect only settings and files owned by a1004

user. High (H): The attacker requires privileges1005

that provide significant (e.g., administrative) con-1006

trol over the vulnerable component allowing access1007

to component-wide settings and files.1008

User Interaction: You are a [Language] ex-1009

pert for User Interaction. This metric captures the1010

requirement for a human user, other than the at-1011

tacker, to participate in the successful compromise1012

of the vulnerable component. This metric deter-1013

mines whether the vulnerability can be exploited1014

solely at the will of the attacker, or whether a sep-1015

arate user (or user-initiated process) must partic-1016

ipate in some manner. The Base Score is greatest1017

when no user interaction is required. None (N):1018

The vulnerable system can be exploited without in-1019

teraction from any user. Required (R): Successful1020

exploitation of this vulnerability requires a user to1021

take some action before the vulnerability can be1022

exploited.1023

Scope: You are a [Language] expert for Scope.1024

The Scope metric captures whether a vulnerability1025

in one vulnerable component impacts resources in1026

components beyond its security scope. The Base1027

Score is greatest when a scope change occurs. Un-1028

changed (U): An exploited vulnerability can only1029

affect resources managed by the same security au-1030

thority. Changed (C): An exploited vulnerability1031

can affect resources beyond the security scope man-1032

aged by the security authority of the vulnerable1033

component.1034

Confidentiality: You are a [Language] expert1035

for Confidentiality. This metric measures the im-1036

pact to the confidentiality of the information re-1037

sources managed by a software component due to1038

a successfully exploited vulnerability. The impact1039

can vary from none to complete disclosure of all1040

restricted information to the attacker. High (H):1041

There is a total loss of confidentiality, resulting in1042

all resources within the impacted component being1043

divulged to the attacker. Alternatively, access to1044

only some restricted information is obtained, but1045

the disclosed information presents a direct, serious1046

impact. Low (L): There is some loss of confiden-1047

tiality. Access to some restricted information is 1048

obtained, but the attacker does not have control 1049

over what information is obtained, or the amount 1050

or kind of loss is limited. None (N): There is no loss 1051

of confidentiality within the impacted component. 1052

Integrity: You are a [Language] expert for In- 1053

tegrity. This metric measures the impact to the 1054

integrity of a successfully exploited vulnerability. 1055

Integrity refers to the trustworthiness and veracity 1056

of information. The Base Score is greatest when the 1057

consequence to the impacted component is highest. 1058

High (H): There is a total loss of integrity, or a 1059

complete loss of protection. For example, the at- 1060

tacker is able to modify any/all files protected by 1061

the impacted component. Low (L): Modification 1062

of data is possible, but the attacker does not have 1063

control over the consequence of a modification, or 1064

the amount of modification is limited. None (N): 1065

There is no loss of integrity within the impacted 1066

component. 1067

Availability: You are a [Language] expert for 1068

Availability. This metric measures the impact to the 1069

availability of the impacted component resulting 1070

from a successfully exploited vulnerability. The 1071

Base Score is greatest when the consequence to the 1072

impacted component is highest. High (H): There 1073

is a total loss of availability, resulting in the at- 1074

tacker being able to fully deny access to resources 1075

in the impacted component; this loss is either sus- 1076

tained (while the attacker continues to deliver the 1077

attack) or persistent (the condition persists even 1078

after the attack has completed). Low (L): Perfor- 1079

mance is reduced or there are interruptions in re- 1080

source availability. Even if repeated exploitation 1081

of the vulnerability is possible, the attacker does 1082

not have the ability to completely deny service to 1083

legitimate users. None (N): There is no impact to 1084

availability within the impacted component. 1085

15

	Introduction
	Methodology
	Software Vulnerability Assessment Formulation
	Multi Agent Evaluators
	Multi Agents and Software Vulnerability Assessment
	Component

	Experiments
	Data Preparation
	Dataset Evaluation
	Baselines
	Evaluation Metrics
	EvalSVA Results
	Communication Strategy
	Expert Numbers and Rounds

	Discussion
	Case Study
	Limitation

	Related Work
	Conclusion
	Prompt Template
	Additional Communication Strategies Results
	Additional Experimental Setting
	Implementation Details
	Additional Metrics

	Algorithm of Communication Strategies
	Task-related Prompt

