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Abstract

Protein language models (pLMs) achieve state-of-the-art performance on pro-
tein structure and function prediction tasks, yet their internal computations re-
main opaque. Sparse autoencoders (SAEs) have been used to recover sparse
features, called latents, from pLM layer representations, whose activations cor-
relate with known biological concepts. However, prior work has not established
which model concepts are causally necessary for pLM performance on down-
stream tasks. Here, we adapt causal activation patching to the pLM setting and
perform it in SAE latent space to extract the minimal circuit responsible for ac-
curacy in a contact prediction task for two case study proteins. We observe
that preserving only a tiny fraction of latent–token pairs (0.022% and 0.015%)
is sufficient to retain contact prediction accuracy in a residue unmasking exper-
iment. Our circuit indicates a two-step computation in which early-layer mo-
tif detectors respond to short local sequence patterns, gating mid-to-late domain
detectors which are selective for protein domains and families. Path-level ab-
lations confirm the causal dependence of domain latents on upstream motif la-
tents. To evaluate these components quantitatively, we introduce two diagnos-
tics: a Motif Conservation Test and a Domain Selectivity Framework that supports
hypothesis-driven tests. All candidate motif-detector latents pass the conserva-
tion test, and 18/23 candidate domain-detector latents achieve AUROC ≥ 0.95.
To our knowledge, this is the first circuits-style causal analysis for pLMs, pin-
pointing the motifs, domains, and motif-domain interactions that drive contact
prediction in two specific case studies. The framework introduced herein will en-
able future mechanistic dissection of protein language models. Code available at
https://github.com/NainaniJatinZ/plm_circuits

1 Introduction

Protein language models (pLMs) now sit at the core of modern computational biology, achieving
strong performance at many computational biology tasks [Lin et al., 2023a, Wu et al., 2022, Elnaggar
et al., 2022, Nijkamp et al., 2023, Ullanat et al., 2025]. Yet, we know little about the computational
mechanisms that enable these networks to transform raw amino acid sequences into higher-level
structural or functional inferences. Without insight into a model’s internal computations, we cannot
effectively reason about predictions, debug systematic errors, or extract new biological insights.

The field of mechanistic interpretability provides insight into model computations by
reverse-engineering neural networks at feature-level resolution. A central obstacle is that most neu-
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rons in large language models are polysemantic: a single neuron fires for several unrelated sequence
features [Olah et al., 2020, Elhage et al., 2022], which hampers interpretation. Sparse autoencoders
(SAEs) project the dense activations of neurons in a large language model into a higher-dimensional
sparse space, where eachneuron—called a latent—is intended to fire selectively for a single con-
cept [Bricken et al., 2023, Gao et al., 2024, Templeton, 2024]. Efforts to port SAEs to biological
sequence models have provided descriptive evidence that pLMs contain features for sequence mo-
tifs, secondary-structure elements, and whole protein families [Simon and Zou, 2024, Adams et al.,
2025, Gujral et al., 2025]. While SAEs can reveal some of the concepts that a model encodes, only
causal interventions—perturbing a latent’s activation and measuring the effect on the output—can
tell us whether a model’s output depends on that concept (as encoded by a specific latent) to make
predictions [Vig et al., 2020].

Here, we extend the causal interpretability framework [Lindsey et al., 2025] to SAE latents in
pLMs. We study the residue–residue contact prediction capabilities of ESM-2, using causal acti-
vation patching to measure the contribution of each interpretable SAE latent. We show that contact
prediction depends on only a small subset of representations by identifying specific latents, active
at specific token positions, that are individually necessary. We provide evidence that the causally
necessary representations correspond to biologically meaningful concepts. We show that early lay-
ers detect short sequence motifs that causally gate domain recognition in deeper layers, forming a
multi-step computational circuit. By tracing ESM-2’s contact prediction for specific proteins back
to a compact and interpretable subgraph of the model, and by publishing the tools needed to extend
this analysis, we advance the theory and practice of mechanistic understanding of protein language
models.

2 Results

2.1 A framework for causal circuit discovery in pLMs

Here we outline a framework for causal circuit discovery in pLMs, building on established inter-
pretability practice in language models [Wang et al., 2022, Lindsey et al., 2025]. Our analysis
follows four steps: (i) represent hidden activations in an interpretable sparse latent space, (ii) define
a task for the pLM of interest to perform, (iii) perform causal interventions in the interpretable latent
space to perturb performance of the task, and (iv) interpret the biological meaning, if any, of the
observed causal latents. We briefly describe each choice below.

(i) Sparse autoencoders provide an interpretable latent space for pLMs. Recent studies
[Adams et al., 2025, Simon and Zou, 2024, Gujral et al., 2025] have shown that sparse autoen-
coders (SAEs) [Elhage et al., 2022] project the dense, polysemantic activations of protein language
models into interpretable sparse representations where individual neurons, called latents, capture
meaningful biological concepts. We use SAEs from Adams et al.: eight layers (4–32 in steps of 4),
4,096 latents each.

(ii) Contact prediction as an example task for PLMs. An ideal downstream task for activation
patching to interpret pLM behavior is one in which the model exhibits a near-discrete behavior
switch over a small change in input, because this minimizes possible confounds[Zhang and Nanda,
2023, Wang et al., 2022]. Such behavior has been documented for the residue-residue contact pre-
diction capabilities of ESM-2-3B. Zhang et al. showed that contact recovery for distant secondary-
structure elements (SSEs) in a partially masked sequence stays near random until a critical number
of residues flanking the SSEs are unmasked; then accuracy "jumps" to near-perfect (Fig. 1A-C). This
results in two nearly identical inputs for which the network has a major transition in its output. We
select two such case-study proteins: MetXA (UniProt: P45131), where unmasking two additional
residues raises the contact recovery score m(X) from 0.02 to 0.58; and TOP2 (UniProt: P06786),
where unmasking four extra residues raises m(X) from 0.06 to 0.86.

(iii) Activation patching to identify causal network components. Activation patching [Vig
et al., 2020, Finlayson et al., 2021] can measure the causal necessity of every latent, at each token
position (which we call “latent-token pair”) for a specific task and input pair. For each case study
input pair, we define the corrupted input as the input sequence and with low contact recovery, and
the clean input as the related sequence and with high recovery. The corresponding latent activations
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Figure 1: (A) Residue-residue contact maps for MetXA under three conditions: clean sequence (44
aa) yields near-perfect recovery; corrupted sequence (43 aa) yields near-random contact recovery;
causal intervention replaces clean activation with a single latent patched to its corrupted value. Loss
of contact recovery flags that latent as causal. (B) Contact recovery jump behavior reproduced from
Zhang et al. [2024]. (C) MetXA structure (RCSB-PDB ID: 2B61 Chain A [Mirza et al., 2005]); the
studied SSE elements are highlighted in yellow. (D) Recovery vs. per-layer circuit size. Starting
points differ by error-node performance m0.

are also called corrupted and clean, respectively. We use activation patching to compute the Indirect
Effect (IE), which measures the causal influence of the input on the output through a single latent
acting as a mediator Pearl [2022], by patching corrupted activations into a clean pass of the model to
determine whether specific latent-token pairs were causally necessary for the task (Methods, Sec. 4;
Fig. 1A). We identify a “circuit”: the smallest set of latents whose clean activations sustain contact
recovery (Sec. 2.2). We later extend this analysis to interactions between components (Sec. 2.4.3).

(iv) Interpretation of causal network components After identification of relevant latent-token
pairs, we ask what biological computations they represent and how they interact to produce the jump
in conctact recovery. We proceed in two stages. First, we assign global semantic labels by inspecting
each latent’s top-activating residues and proteins across the corpus. Second, we characterize each
latent’s task-specific role by comparing its activation in the clean vs. corrupted inputs around the
flanking regions that control the jump. From these observations we formulate hypotheses about:
(i) the function of individual latents; and (ii) directed interactions between latents across layers
(Sec. 2.3). We then attempt to falsify these hypotheses using targeted interventions and selectivity
tests (Sec. 2.4).

2.2 Causal circuits underlying contact prediction for two case study proteins

We compute the indirect effect (IE) for 4,096 latents across 8 layers at ∼400 token positions (≈
1.3× 107 latent–token pairs), and then compute both global and layer-wise circuits.
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Figure 2: (A) Motif and domain detectors in the layer-wise circuit for MetXA. Arrows connect
causal latent-token pairs. (B) Frequency of Interpro domains for top 10 proteins with highest ac-
tivation for latent 2112 in layer 12. (C) Change in activation of latent 3788 in layer 4 from clean
to corrupted. The latent-token pair at position P131 only activates when I133 is unmasked in the
clean sequence supporting motif activation of XXI. (D) Screenshot of activation patterns of the top
5 proteins for latent 3788 in layer 4 from Interprot [Adams et al., 2025].

Global circuits for quantification We ask for the smallest subset K of latent–token pairs whose
clean activations keep contact recovery above a threshold θ of the clean score (Fig. 1D). For each
protein, we fix the threshold at 70% of the clean contact recovery, θ = 0.70 × mclean. Then, for
a given K, we patch all non–top K pairs to their corrupted activations, recompute the model, and
check whether m(X) ≥ θ; if so, those K latent-token pairs are sufficient (Sec. 4). Fig. 13a and
Fig. 14a show the increase in m(X) with increasing top K pairs considered. For both proteins,
only a tiny subgraph is needed for the circuit to reach the 70%-of-clean threshold θ: 2,401 pairs
(0.022%) for MetXA and 1,801 (0.015%) for TOP2. Thus the contact-prediction switch is governed
by a subgraph three orders of magnitude smaller than the full network.

Layer-wise circuits for interpretability Manually inspecting thousands of pairs is infeasible with-
out a prior, so we analyze one layer at a time. For layer ℓ, the bottleneck Bℓ is the smallest within-
layer subset that maintains m(X) ≥ θ with all other layers left unmodified. Because the SAEs
cannot perfectly reconstruct activations, SAEs include an “error” node that carries reconstruction
loss [Marks et al., 2024]. For layer ℓ, let the zero-circuit performance m0(ℓ) be the score when all
pairs in that layer are patched to their corrupted values and only the error node remains active. Be-
cause this node contains the activations “unexplained” by the SAE, we treat it as non-interpretable;
continuing work aims to reduce its contribution [Rajamanoharan et al., 2024, Bussmann et al., 2024].
We focus on the explainable window Wℓ = θ − m0(ℓ), the margin above the error-only baseline
that a layer’s bottleneck must account for; we report drops both in absolute units and as a percent of
Wℓ. The resulting bottlenecks Bℓ contains on average only ≈ 60 latent–token pairs—tractable for
qualitative study yet still drawn from the very top of the global IE ranking (Fig. 1D).

2.3 Manual inspection of two case studies reveals a motif-gated, domain-recognition circuit

We now manually annotate the causally relevant latents in each layer-wise bottleneck for both of
our case study proteins. Manual annotation in this step will be used to generate hypotheses that
are quantitatively tested in the next step. For every latent–token pair in each layer’s bottleneck we
ask two questions. First, (Q1) what biological signal, if any, does the latent usually represent?
Second, (Q2) how does that latent’s activation change from the corrupted to the clean input, and
why might that change unblock the downstream domain detector? We answer both questions
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by (E1) inspecting the 20 UniRef50 proteins that most strongly activate the latent and (E2)
comparing the latent’s activation maps between corrupted and clean runs of the case-study protein
(Sec. 4). We describe motifs using the following notation: specific residues use one-letter amino-
acid codes; X denotes any residue; an underline marks the token where the latent activates (e.g.,
XXI indicates a latent that activates two residues upstream of an isoleucine). See Sec. B.3 for details.

2.3.1 Homoserine O-acetyltransferase

Unmasking I133 (left) and F363 (right) raises contact recovery from mcorr = 0.02 to mclean = 0.58
(∆m = 0.56); thus the threshold T = 0.40. We provide per-latent and per-latent-cluster details
in Table 1 and Table 3 respectively. Latents not detailed could not readily be assigned a global or
task-specific role by manual inspection.

Layer 4. The zero-circuit performance m0 = 0.027, thus the explainable window W = T −m0 =
0.373. The circuit requires 30 latent–token pairs to meet the criterion. We find latents that activate
on short sequence patterns (Q1) across the proteome (E1), so we label them motif detectors. This
cluster contains 10 pairs (33.33% of the layer). We identify direct motif detectors that include one of
the two newly unmasked residues (16.67% of layer). Ablating them reduces m(X) by 22.9% of W
(0.0863). For example, a latent at P131 fires on the motif XXI across its top 20 activating proteins
(E1, Fig. 2D) and switches on only when I133 is revealed (E2→Q2, Fig. 2C). We also identify
indirect motif detectors, which activate on residues not in the flank region, but whose activation
differs between corrupted and clean inputs (16.67% of layer). Ablating them reduces m(X) by
13.3% of W (0.0501). Example: a latent at I181 (center of SSE1) activates for PXXXXXX (E1);
its activation rises once distant flanks are unmasked (E2→Q2). Together, motif detectors account
for 35% of W (0.132).

Layer 8. The zero-circuit performance is m0 = 0.255, thus the explainable window W = T −
m0 = 0.145. The circuit requires 11 latent–token pairs to meet the criterion. We observe latents
which which activate on proteins (Q1) containing a specific domain annotation, and term them
domain detectors. This cluster contains 5 pairs (45.45% of the layer). Domains matching MetXA ’s
own annotation (annotated domain detectors) comprise 9.09% of layer, and ablating them reduces
m(X) by 9.54% of W (0.015). We also see latents that activate on other domains (miscellaneous
domain detectorrs), such as DHFR, FAD/NAD, or transketolase domains (E1) (36.36% of layer).
Ablating them reduces m(X) by 38% of W (0.0597), suggesting the model cross-checks related
folds. Together, domain detectors account for 47.2% of W (0.0742).

Layer 12. The zero-circuit performance is m0 = 0.156, thus the explainable window W = T −
m0 = 0.244. The circuit requires 50 latent–token pairs to meet the criterion. Similar to Layer
8, Layer 12 contains domain detectors. The group of domain detectors comprises 8 pairs (16%
of the layer). Annotated domain detectors comprise 4% of the layer, and ablating them reduces
m(X) by 7.74% of W (0.0192). For example, a latent selective for the AB-hydrolase fold (E1,
Fig. 2B) is causal at two token positions. Miscellaneous domain detectors activate on NAT, SAM-
methyltransferase, WD40, and aldolase families (E1) (12% of layer). Ablating them reduces m(X)
by 29.11% of W (0.072). Together, domain detectors account for 37.7% of W (0.093).

2.3.2 DNA topoisomerase 2

Unmasking T31–Y32 (left) and G271–E272 (right) raises contact recovery from mcorr = 0.06 to
mclean = 0.86 (∆m = 0.80); threshold T = 0.6. Per-cluster and per-latent details are in Table 2
and Table 4. SAE error nodes already achieve m0 = 0.59 at Layer 8 (> T ), so we analyze Layers 4,
12, and 16 where W > 0. As in MetXA, Layer 4 contains motif detectors and Layers 12/16
contain domain detectors. The novelty is not the presence of these two functional classes but their
reappearance with protein-appropriate content: TOP2’s Layer 4 motifs differ from MetXA’s, and its
domain detectors align with TOP2’s GHKL/HATPase_c annotation. We cover the per-layer analysis
in the Appendix A.

2.3.3 Shared mechanism and hypotheses.

Across both proteins, we observe that early layers (L4) contain motif detectors; mid/late layers (L8-
16) contain domain detectors. Unmasking flank residues raises activation in both direct and indirect
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Figure 3: (A) Circuit diagram for MetXA with causal edges between latents. The subgraph for AB
hydrolase is highlighted for readability, with edge ranks (out of 1580) shown. (B) Sequence logos
for hypothesized motif detectors. (C) AUROC scores for hypothesized domain detectors. Label on
the bar denotes the “short name” on Interpro.

motif detectors, and domain detectors. The reason for activation of indirect motif detectors and
domain detectors is not readily obvious, but one hypothesis is that the motif detectors give signal
to the domain detectors. Because the explainable windows reported here are layer-specific and not
cumulative, we test end-to-end causal gating with path-level ablations in Sec. 2.4.3.

Together, the case studies suggest a two-step circuit, that we hypothesize works in the following way:
(1) early-layers require latents that detect specific motifs, (2) later layers require latents that detect
specific domains, and (3) domain recognition is causally gated by the early layer motif detectors.

2.4 Quantitative validation of mechanistic hypotheses

In this section, we subject our hypotheses from the case studies to quantitative validation.

2.4.1 Motif detectors preferentially activate on assigned motifs

Our case studies suggested that Layer 4 latents function as specific motif detectors which trigger
the contact prediction circuit. We now ask whether each latent does indeed fire on a specific motif
across all proteins, not just for our specific case study proteins.

We sample 10,000 proteins from the set of UniProt reviewed proteins and record the activation for
each latent for each input token (Sec. 4.2.1). For every latent in our layer-specific bottlenecks, we
create a sequence logoby recording the window around top activating token for each protein. For
each latent in our qualitative analysis that was seen to be associated with a particular motif, that
motif was also present in the sequence logo and accounted for more than 50% of the information at
each position. As shown in Fig 3, we see that the residue that is fixed for a motif (e.g. F in XXXF)
and its position are highly conserved whereas the rest of the window is not. All sequence logos are
displayed in Fig. 5 and 6.

We found motif detectors not annotated during the manual analysis, including F (Layer 4, 181),
FXXXX (Layer 4, 1096), and DXXX (Layer 4, 1712). The SAE latents we identified as motif
detectors behave as motif detectors across the proteome, not just in our specific case study proteins.

2.4.2 Domain detectors preferentially activate on assigned domains

Our case studies identified causally important latents that seem to be associated with protein do-
mains; we tested whether 23 pre-specified latent-to-domain hypotheses (10 in MetXA, 13 in TOP2)
hold on the full set of reviewed Uniprot protein entries, using length-matched negatives. Because
latents activate on a per-token basis and domains are a protein-level feature, we compute a protein-
level latent activation score by taking the mean of the activation on the top-q% (where q=1) of tokens
for that latent. We report AUROC± 95% stratified confidence intervals to test how selective a latent
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z is for domain d (Sec. 4.2.2). We found that 7/10 latent-to-domain hypotheses for MetXA and
10/13 for TOP2 had AUROC > 0.95 (95% CI width ±0.02). In MetXA, these were latents selective
for AB hydrolase fold, FAD/NAD, NAT, SAM Mtases, and WD40. For TOP2, latents with high AU-
ROC were associated with Kinesin, HATPase_c, and XPG_I. A few tests returned moderate AUROC
results (e.g., MetXA Transketolase AUC 0.92, DHFR 0.86, Aldolase 0.93; TOP2 two HATPase_c
latents at 0.71 and 0.79), suggesting these latents may be non-specific or non-selective in some way.
We note that choice of the protein-level latent activation score affects the conclusions (Figs. 7, 8,and
9). We found that the global mean dilutes signal of sparse detectors in long sequences; the max and
top-K are length-biased. The top-q score captures signal for both sparse and dense detectors and is
not length-biased.

2.4.3 Domain detectors are dependent on motif detectors

We hypothesized from the case studies that domain detectors are causally gated by motif detectors.
That is, the presence of specific motifs allows the model to detect the domain/family of the protein.
To test this we use path patching [Wang et al., 2022]: (1) patch the earlier feature to its corrupted
value and record the value the later feature takes; (2) in a new run, set only that later feature to the
recorded value and measure the change in contact recovery. This isolates the effect flowing along
that specific link; we report edge strength as |∆m|. (Sec. B.5.3)

We rank edges by absolute effect |∆m| and compute the cumulative area under the sorted curve
A(k) =

∑k
i=1 |∆m|i (Fig. 10, 11). We choose the smallest k such that A(k) ≥ 0.75 × A(all).

Under this rule, MetXA requires k = 316/1580 edges (20.0%) to cover 76.5% AUC, and TOP2
requires k = 244/1064 edges (22.9%) to cover 75.4% AUC.

Homoserine O-acetyltransferase Within the AUC-75% set (316 edges; 20.0% of 1580), we find
28 edges between labeled components (Table 7), including multiple motif→domain links consistent
with gating. For example, motif detectors for FX, XXI, XXM, and YX connect to AB-hydrolase
detector (2112) in Layer 12 (Fig. 3)Most late-layer domain detectors receive at least one motif
detector input in this set; one Layer-12 domain detector lacks a direct motif edge but connects
via another Layer-12 domain that does receive motif input, consistent with motif-gated recognition
through an intermediate domain.

DNA topoisomerase 2 Within the AUC-75% set (244 edges; 22.9% of 1064), we observe 39 edges
between labeled components (Table 8). As a representative example, several Layer-4 motif detectors
converge on a single HATPase_c detector (1166) in Layer 16—E, XN, XXQ, V DX, XXXN, and
GX—with ranks 46, 66, 79, 100, 189, 225, and 229, respectively. Other HATPase_c and Kinesin
detectors in Layers 12 and 16 also receive motif detector inputs (see Table 8). All but one late-layer
domain detector have a direct motif input within this set; the remaining detector has no labeled
inbound edges.

3 Discussion

We provide the first example of circuit analysis for pLMs, by adapting the causal intervention frame-
work from mechanistic interpretability. We demonstrate how causal intervention on SAE latents
using clean/corrupted input pairs can help identify the internal circuits used by pLMs to perform a
downstream task. While we apply our framework to contact prediction in ESM, it is readily gener-
alizable to other pLMs and tasks. For our case study proteins, we show that preserving only a tiny
fraction of latent–token pairs is sufficient to retain most post-jump accuracy. We observe a small
set of early-layer latents that respond to short sequence motifs, that gate mid-to-late latents selective
for protein domains/families, as confirmed by path-level ablations. We emphasize that these links
are model-internal causal dependencies under our perturbation scheme ; our work does not address
biochemical mechanism or causality.

Identifying and labeling causally-relevant latent-token pairs could enable new forms of discovery
with pLMs. First, we can check whether model predictions rely on biologically sensible evidence.
Second, we can investigate targeted editing and steering: attenuating misleading latents or ampli-
fying mechanistically plausible ones, without retraining the entire model. Third, we can perform
systematic follow up on cases where our labels do or do not align with known motifs and domains.
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This analysis may uncover overlooked functional sites, suggest previously unrecognized domain
relationships, and inspire wet-lab tests that feed back into both model refinement and biological
discovery.

3.1 Limitations

Our causal claims are restricted to where we intervened and what we measured. We study ESM-2-
650M because residual-stream SAEs are publicly available for this variant, but only for every four
transformer blocks. For tractability we rank and evaluate layer bottlenecks for the first 3 SAE layers,
and our work is restricted to contact prediction circuits in two case-study proteins. Some top-ranked
latents could not be confidently labeled as motif or domain detectors. Our motif-conservation check
does not perform explicit multiple-sequence alignment and may miss gapped/shifted motifs.

3.2 Future Work

Future work will expand the scope of our causal annotation for contact prediction. SAEs trained at
every layer (and ideally on attention/MLP streams) or cross layer transcoders [Lindsey et al., 2025],
would enable cross-layer minimal-set searches for the full circuit. Extending our analysis from
the flank-induced jumps to full input sequences will test whether the same motif→ domain logic
persists when many residue pairs are jointly scored, and whether additional long-range features
emerge. Finally, rather than summarizing interventions with a single scalar, we will analyze per-
contact effects: which residue pairs gain/lose probability under targeted latent edits, how these
changes cluster in 2D contact space (e.g., within/between SSEs), and how they project to 3D via
structure prediction.

We plan automated labeling of latent-token pairs to reduce manual effort and improve label reli-
ability. We will then seek to generalize across proteins and scales, to reveal which motif/domain
detectors and dependencies are shared vs. protein-specific, how they shift with model size, and
whether “domain-labeled” late-layer units sometimes act as short-motif proxies.

Together, these directions take us from a tractable layer-wise bottleneck to a complete, cross-layer
circuit for contact prediction, and from two case studies toward a library of mechanistic explanations
that are auditable, reusable, and biologically informative.

4 Methods

In this section, we cover the methods used for case study analysis §2.3 and selectivity tests
§2.4.1,2.4.2. We overview the model and data selection in Appendix §B.1, contact prediction task
in Appendix §B.2, the causal intervention framework in Appendix §B.5.

4.1 Latent Interpretation and Case-Study Analysis

Each latent–token pair in the layer-wise bottlenecks was manually examined for two complemen-
tary properties: its global role and its jump-specific role. For the global role, we select the 20
UniRef50 proteins with the highest activation for the latent, and load them in the InterProt viewer
[InterProt Team, 2025] [access date: June 30, 2025] annotations that overlap with the token position
were retrieved automatically from UniProt and recurring sequence motifs were noted by eye. For
the jump-specific role, we plotted the latent’s per-token activations on the case-study protein under
three inputs (corrupted, clean, and fully unmasked). The indirect-effect ranking already scales with
activation change, so no additional numeric threshold was imposed. Latents whose motif encom-
passed a residue newly revealed in the clean input were labeled directly explained motif detectors;
those whose motif lay elsewhere were labeled indirect motif detectors. Finally, latents whose acti-
vation patterns matched a specific InterPro domain—regardless of whether that domain is annotated
for the target protein—were labeled domain detectors.

4.2 Quantitative latent labeling

From the full set of UniProt reviewed proteins (n = 573,661 as of June 30, 2025), we first filtered
out any proteins with sequence length > 1022, as ESM-2 adds two extra tokens to the input and caps
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input length at 1024 tokens. Then, we randomly selected a set of 10,000 proteins from this length-
restricted subset. For each of these proteins and for each available latent, the per-token activation
was extracted and stored. Using the per-token activations, we then quantitatively labeled latents for
both motifs and domains.

4.2.1 Motif Labeling through Sequence Conservation

To identify sequence motifs associated with latent activations, we aligned sequences at their max-
imum activation positions and analyzed conservation patterns in flanking regions. For each la-
tent, we identified the highest-activating residue in each protein, ranked these maxima across the
dataset, selected the top 100 residues (ensuring each protein was represented only once), and com-
puted position-specific conservation scores to quantitatively characterize activation-associated mo-
tifs. Specifically, for each of those top 100 residues, we extract the 10 amino acids before and after it
in the sequence, truncating if we run into the beginning or end of the protein. The window size was
chosen empirically based on manual inspection. For each latent, we then created a sequence logo
using those 100 sequences of length 21 (10+1+10). Sequence logos were generated with the LO-
GOMAKER Python library [Tareen and Kinney, 2020]. The x-axis of such a logo gives the sequence
position, relative to the middle residue (the highest-activating residue). The y-axis of a sequence
logo gives the information content in bits, where the height h of an amino acid a at position i is
given by:

h = fa,i × [log2(s)− (Hi + en)] , Hi = −
t∑

b=0

fa,i × log2 (fa,i) , en =
1

ln 2

s− 1

2n
(1)

where fa,i is the relative frequency of amino acid a at position i and s = 20 because we are only
considering the 20 canonical amino acids. The quantity Hi is the Shannon entropy or the uncertainty
of position i, and en is the small-sample correction for an alignment of n letters (here, n = 100
sequences) [Schneider and Stephens, 1990]. The final sequence logos for each latent represent
a statistical view of the conservation of amino acids at each position in the neighborhood of the
highest-activated residue.

4.2.2 Domain labeling through correlation

Protein domains are conserved sequences associated with structure and function [Chothia, 1992],
and are curated in InterPro [Blum et al., 2025]. For each latent z and domain d, we hypothesize
score(X, z) is higher for proteins (X) with d than without d. We test these pre-specified latent-to-
domain hypotheses on a shared dataset. For a domain d, positive examples are randomly selected
from the set of UniProt reviewed proteins with domain d. We defined a candidate negative pool
as reviewed Uniprot proteins without d, and length-matched negatives to positives via stratified
sampling over 12 empirical length-quantile bins to remove sequence-length confounding. Quantiles
are computed on the union of positive and candidate-negative lengths for that domain. Within each
bin, we sampled negatives without replacement up to the number of positives in that bin; if fewer
negatives were available, we took all available and accepted minor imbalance. We summarize a
protein’s activation score by the mean of the top q% of tokens, with q = 1 (fixed a priori). This
captures both sparse and dense signals without being length biased. An ideal score metric should
also expect low Spearman Rank Correlation rho (ρ(score, logL) ≈ 0) on negatives. This is because
for proteins without domain d, a good per-protein score should not systematically increase/decrease
with sequence length. With this setup, we calculated the AUROC using scikit-learn [Pedregosa et al.,
2011] to measure the effect strength for selectivity and provide 95% stratified bootstrap confidence
intervals (CIs). AUROC denotes the probability that a random positive out-scores a random negative;
CIs use 3000 stratified bootstrap resamples. For comparison, we computed the same metrics for max,
mean, top-K as for top-q. We found that the global mean dilutes sparse activations, while the max
and top-K had higher length correlations for negatives (Appendix §D).
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A DNA topoisomerase 2 Layer wise analysis

Layer 4. The zero-circuit performance is m0 = 0.33; thus the explainable window is W = T −
m0 = 0.27. The circuit requires 29 latent–token pairs to meet the criterion. Similar to the results
for MetXA, observe motif detectors. This cluster contains 13 pairs (44.8% of the layer). Direct
motif detectors (20.7% of layer). Ablating them reduces m(X) by 6.3% of W (0.017). Example:
a latent at G34 fires on YXX across its top-20 proteins (E1) and deactivates when Y28 is masked
(E2→Q2). Indirect motif detectors (24.1% of layer). Ablating them reduces m(X) by 11% of W
(0.03). Example: a latent at I101 prefers IXX (E1); its activation rises only in the clean input
(E2→Q2). Together, motif detectors accounts for 19.10% of W (0.053).

Layer 12. The zero-circuit performance is m0 = 0.096; thus the explainable window is W =
T −m0 = 0.50. The circuit requires 18 latent–token pairs to meet the criterion. This layer contains
domain detectors. This cluster contains 5 pairs (27.8% of the layer). Annotated domains (TOP2 ’s
own labels: GHKL / HATPase_c) (16.7% of layer). Ablating them reduces m(X) by 24.6% of W
(0.125).

Misc domains (e.g., XPG-I or Kinesin) (11.1% of layer). Ablating them reduces m(X) by 1.6% of
W (0.01). Example: two latents prefer XPG-I/Kinesin families (E1); removal yields a small drop.
Together, domain detectors accounts for 31.3% of W (0.158).

Layer 16. The zero-circuit performance is m0 = 0.11; thus the explainable window is W =
T − m0 = 0.49. The circuit requires 25 latent–token pairs to meet the criterion. This layer also
contains domain detectors. This cluster contains 6 pairs (24% of the layer). Annotated (GHKL /
HATPase_c) (24% of layer). Ablating them reduces m(X) by 15.6% of W (0.0785). Example: a
latent at V201 fires on GHKL proteins (E1) and activates only in the clean run (E2→Q2). Together,
domain detectors accounts for 15.6% of W (0.0785).
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Table 1: Layer-wise role for latents in MetXA circuit.

Layer Role Class Quantity % of Layer ∆m drop (abs) ∆m drop
(rel % w/o err)

4
(Zero Circuit Base-
line: 0.027)

Motif Detectors Direct 5 16.7 0.0860 22.9
Indirect 5 16.7 0.0500 13.3

Total Explained - 10 33.3 0.1330 35.3
Unlabeled - 20 66.6 – –

8
(Zero Circuit Base-
line: 0.255)

Domain Detectors Annotated 1 9.1 0.0150 9.5
Misc 4 36.7 0.0590 38.0

Total Explained - 5 45.4 0.0740 47.2
Unlabeled - 6 54.6 – –

12
(Zero Circuit Base-
line: 0.156)

Domain Detectors Annotated 2 4.0 0.0190 7.7
Misc 6 12.0 0.0720 29.1

Total Explained - 8 16.0 0.0930 37.7
Unlabeled - 42 84.0 – –

Table 2: Layer-wise role for latents in TOP2 circuit.

Layer Role Class Quantity % of Layer ∆m drop (abs) ∆m drop
(rel % w/o err)

4
(Zero Circuit Base-
line: 0.33)

Motif Detectors Direct 6 20.7 0.0170 6.3
Indirect 7 24.1 0.0300 11.0

Total Explained - 13 44.8 0.0530 19.1
Unlabeled - 16 55.2 – –

12
(Zero Circuit Base-
line: 0.096)

Domain Detectors Annotated 3 16.7 0.1250 24.6
Misc 2 11.1 0.0080 1.6

Total Explained - 5 27.8 0.1580 31.3
Unlabeled - 13 72.2 – –

16
(Zero Circuit Base-
line: 0.11)

Domain Detectors Annotated 6 24.0 0.0780 15.6
Misc - – – –

Total Explained - 6 24.0 0.0780 15.6
Unlabeled - 19 76.0 – –
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Table 3: Latent census by layer (MetXA).

Layer Latent ID Position Global Role ∆ Activation
(clean−corr.) Class

4

3788 P113/P131 XXI 2.76 Directly explained
1690 Y362 XXXF 3.95 Directly explained
237 E366 YX 2.63 Directly explained
798 D361 DXXG -0.38 Directly explained
340 E366 FX 3.22 Directly explained
2277 G159 G 0.13 Indirectly modulated
3634 G159 XXXXG 0.07 Indirectly modulated
1682 I181 PXXXXXX 0.09 Indirectly modulated
2311 H355 XXM 0.08 Indirectly modulated
3326 H355 H -0.03 Indirectly modulated

8

488 T297/T315 AB hydrolase 0.45 Annotated domain
2677 I181 FAD/NAD 1.05 Misc domain
2166 T315 DHFR -0.39 Misc domain
2775 I181,T315 Transketolase 0.46,0.38 Misc domain

12

2112 I163/I181, A167 AB hydrolase 0.86,2.3 Annotated domain
1256 I181 FAM 1.03 Misc domain
3794 I181 SAM Mtases 1.31 Misc domain
3035 I181 WD40 0.6 Misc domain
2797 I181 Aldolase 1.52 Misc domain
3536 I181 SAM Mtases 0.96 Misc domain

Table 4: Latent census by layer (TOP2).

Layer Latent ID Position Global Role ∆ Activation
(clean−corr.) Class

4

1509 E272 E 10.28 Directly explained
2511 N270 XXQ 1.17 Directly explained
2112 G34 YXX 6.08 Directly explained
3069 E272 GX 6.3 Directly explained
3544 Y32 C -1.87 Directly explained
2929 N270 N -0.24 Directly explained
3170 D269 XN -1.23 Indirectly modulated
3717 V101 V -0.2 Indirectly modulated
527 N270 DX -0.4 Indirectly modulated

1297 I71 I -0.24 Indirectly modulated
1468 I71 XXXN 0.05 Indirectly modulated
1196 D269 D -0.54 Indirectly modulated
3229 V101 IXX 0.06 Indirectly modulated

12

3943 V201 HATPase 3.61 Annotated domain
1796 V201 HATPase 1.48 Annotated domain
1204 V201 HATPase 2.01 Annotated domain
1082 V201 XPG-I 0.58 Misc domain
2474 V201 Kinesin 1.11 Misc domain

16
1353 V201 HATPase 5.51 Annotated domain
1597 V201,F203 HATPase 4.53 Annotated domain
1166 T199,V201,P205 HATPase 4.34,2.65,4.03 Annotated domain
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Figure 4: TOP2 structure (RCSB-PDB ID: 1PVG Chain A Classen et al. [2003]) with SSE elements
used for contact prediction in orange, and relevant flank regions in blue [Zhang et al., 2024]

B Materials

B.1 Model and Data Selection

Protein language model. All experiments use ESM-2-650M as the primary protein language model,
from FAIR’s public repository (“esm2_t33_650M_UR50D” checkpoint). No additional fine-tuning
was performed [Lin et al., 2023b, Meta AI (FAIR), 2023b].

Sparse autoencoders (SAEs). We use eight publicly released SAEs from Adams et al. [2025],
trained on residual stream activations from layers 4, 8, 12, 16, 20, 24, 28, and 32. Each SAE
encodes the 1 280-dimensional residual activation (extracted after the attention and MLP sublayers)
to a 4 096-d latent vector z, followed by a TopK gate (k = 64) to enforce sparsity. Throughout,
latents refers exclusively to these pretrained SAE features z.

Proteome for selectivity assays. AUROC and enrichment tests are applied to the reviewed
Swiss-Prot subset of UniProt (N = 573, 661 proteins) [Boutet et al., 2007]. For manual inspection
of top-activating sequences we use the InterProt viewer (UR50 protein set, accessed 2 Aug 2025).

Case-study proteins. Zhang et al. [2024] demonstrated the sudden increase in contact recovery on
ESM-2-3B. As both open sources SAEs were only available on ESM-2-650M, we iterated over the
set of proteins from Zhang et al. [2024] and picked the two that showcased the jump in the smaller
650M model. (1) DNA topoisomerase 2; Species: Saccharomyces cerevisiae strain ATCC 204508
/ S288c (baker’s yeast) S288C; UniProt: P06786; PDB: 1PVG [Mirza et al., 2005] (2) Homoserine
O-acetyltransferase; Species: Haemophilus influenzae strain ATCC 51907 / DSM 11121 / KW20 /
Rd; UniProt: P45131; PDB: 2B61 [Classen et al., 2003].

B.2 Contact-prediction task

We adapt the contact prediction task defined by Zhang et al. [2024], using the ESM-2 contact pre-
diction head [Rao et al., 2020, Meta AI (FAIR), 2023a]. They built a dataset of pairs of contacting
secondary-structure elements (SSEs) separated by > 100 aa in the primary sequence across 266 pro-
teins. For an input protein sequence X (which may contain masked tokens) and its corresponding
pair of SSEs from their database, we define the per-SSE-pair prediction quality as the recovery score

m(X) =

∑
i∈R1

∑
j∈R2

P (contactij |X)∑
i∈R1

∑
j∈R2

P (contactij |Xfull)
, (2)
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where R1, R2 index the two SSEs and Xfull is the unmasked sequence.

Jump setup. Two inputs are compared: a clean sequence whose flanks yield high recovery (typi-
cally, m≈1) and a corrupted sequence with two fewer flank residues that collapses to near-random
(m≲0.1). The step-change constitutes is referred to as the jump.

B.3 Motif notation

We describe motifs using one-letter amino acid codes with the following notation:

• {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}: a specific, conserved amino acid.
• X: any amino acid (position not conserved).
• underline: the token at which the latent activates.

B.4 Sparse Autoencoders (SAEs)

Neurons in deep neural networks and language models are usually polysemantic, meaning that they
activate on to multiple unrelated variables or concepts [Olah et al., 2020]. One potential cause of
polysemanticity is superposition, where a neural network represents more independent features of
the data than it has neurons for by assigning each feature its own linear combination of neurons
[Bricken et al., 2023]. The work by Elhage et al. [2022] has shown how Sparse Autoencoders
(SAEs) can be used to disentangle these dense representations into monosemantic neurons, which
represent a single concept/variable.

We use the sparse autoencoders trained by Adams et al., which followed Gao et al., where each SAE
is a linear encoder–decoder that learns a sparse, length-k latent vector z for every residual-stream
activation x ∈ Rd:

z top-k︸ ︷︷ ︸
sparse

= TopK
(
Wenc (x− b)

)
, x̂ = Wdec z + b, L = ∥x− x̂∥22.

Individual neurons zi in the SAE are referred to as latents. Because only the k top activating latents
survive the TopK gate, individual latents are often monosemantic [Gao et al., 2024], making them
easier to interpret or ablate.

B.5 Circuit Discovery

B.5.1 Causal influence ranking by activation patching

We aim to discover which specific latents at each sequence position (latent–token pairs) are causally
necessary for the contact prediction jump. First, we conduct two forward passes of the network, one
with the clean sequence that produces near-complete contact recovery, and one with the corrupted
sequence that produces near-zero contact recovery. Then, for each SAE latent at each sequence
position, we measure its indirect effect (IE) [Pearl, 2022] using counterfactual activation patching
[Vig et al., 2020, Finlayson et al., 2021]. Activation patching copies the hidden activations of a
single network component from one forward pass into another. Here, we copy the latent activations
from the corrupted forward pass into a clean forward pass. The change in the model’s output that
results from patching a component is called the indirect effect (IE) of that component.

Indirect-effect calculation. For a component a we patch its activations from the failing run into the
successful one and recompute the score: m

(
Xclean | do(a←apatch)

)
.

IE(a) = m
(
Xclean | do(a←apatch)

)
−m(Xclean). (3)

Patching can be restricted to a single position t by swapping only a[t]. We refer to the activation
of a latent at a specific sequence position as “latent–token pair.” Components are ranked by the
magnitude of their IE; a large negative value indicates that importing a from the corrupted run alone
has a large negative impact on contact recovery even though the rest of the network still receives the
clean input.

Directly evaluating the indirect effect in (3) for every latent–token pair would require a forward pass
per component (∼ 107), which is infeasible. Instead, following Marks et al. [2024] we compute
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effects with two gradient-based approximations: Attribution Patching [Nanda, 2023, Syed et al.,
2023, Kramár et al., 2024]: a first-order Taylor expansion around the clean run that estimates the
effect of all components using only two forward passes and a single backward pass. Integrated
Gradients [Sundararajan et al., 2017, Hanna et al., 2024]: a more accurate path integral of the
gradient along the straight-line interpolation between patched and clean activations. We use N=10
[Marks et al., 2024] evenly spaced interpolation points, trading the extra 10 forward–backward pairs
for a noticeably tighter fit than only using attribution patching Hanna et al. [2024].

B.5.2 Circuit Discovery

Circuits are a subgraph of a neural network [Olah et al., 2020, Wang et al., 2022]. In the context of
this work, we define circuit as the minimal set of latent–token pairs needed to maintain a threshold of
the contact recovery, while all other pairs are ablated (frozen to their corrupted activations). We rank
4,092 × 8 latents at each of the ∼400 sequence positions for IE, yielding ∼1.3 × 107 latent–token
pairs. However, SAEs are usually not able to reconstruct the activations with 100% accuracy. So
error terms [Marks et al., 2024] are added to the reconstructions to maintain performance. Math-
ematically, the error term ε(x) is the difference between the model and reconstructed activations:
x = x̂+ ε(x)

We construct the circuit with the top K latent–token pairs with highest indirect effect. We begin by
patching the corrupted activations for every pair not in the top K. Then, we allow the top K to be
recomputed during the forward pass. If contact recovery jumps, the retained pairs are sufficient to
create the circuit; if it remains low, the circuit is still missing critical pieces and we continue adding
more clean activations. We set the threshold at 70% of the post-jump recovery. We chose 70% to
explain the majority of the jump while focusing on the most important latents.

Layer-wise bottlenecks. In addition to the model-spanning circuit defined above, we seek to com-
pute layer-specific bottlenecks, defined as the minimal set of latent–token pairs from a specific layer
needed to maintain a threshold of contact recovery, with all other latent–token pairs from that layer
ablated and with all other layers not directly intervened. For layer ℓ we allow only its top-Kℓ latent–
token pairs to be recomputed and patch the corrupted activation for all other latent–token pairs in
that layer. All other layers are also allowed to be recomputed. Caples et al. [2025]. Kℓ is the small-
est value reaching ≥70% recovery, this set of pairs are referred to as Bℓ. Layer bottlenecks trade
completeness for interpretability: Bℓ ⊆ circuit, but each is small enough for manual inspection.

B.5.3 Path Patching

To quantify how strongly an upstream SAE feature ui in layer ℓ influences a downstream feature dj
in layer ℓ′, we follow Wang et al. [2022] and compute an edge attribution via path patching. This
method isolates the causal pathway from ui to dj through a two-stage intervention:

1. Record downstream change: Patch the upstream feature activation from uclean
i to ucorr

i while
keeping all other upstream features at their clean values. Record the resulting downstream acti-
vation dablated

j .
2. Isolate pathway effect: In a fresh forward pass on the clean input, patch only the downstream

feature from dclean
j to dablated

j (the value recorded in step 1), keeping all other features at their
clean values.

3. Measure metric change: Compute the change in metric (2): wi→j = mpatched −mclean .

The resulting edge weight wi→j isolates the causal contribution of feature ui to the model’s per-
formance that flows specifically through feature dj , excluding any parallel pathways. This two-
stage patching procedure ensures we capture only the direct ui → dj influence, providing a precise
measure of feature interaction strength. However, this needs O(K2) forward passes for complete
pairwise analysis.
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C Sequence Logos

(a) latent181 (F) (b) latent237 (YX) (c) latent340 (FX)

(d) latent443 (no motif) (e) latent794 (no motif) (f) latent798 (DXXG)

(g) latent963 (no motif) (h) latent1096 (FXXXX) (i) latent1474 (no motif)

(j) latent1682 (PXXXXXX) (k) latent1690 (XXXF) (l) latent1712 (DXXX)

(m) latent2277 (G) (n) latent2311 (XXM) (o) latent2340 (no motif)

(p) latent2443 (no motif) (q) latent3153 (no motif) (r) latent3326 (H)

(s) latent3351 (XL) (t) latent3634 (XXXXG) (u) latent3651 (no motif)

(v) latent3701 (no motif) (w) latent3764 (D) (x) latent3788 (XXI)

Figure 5: Sequence logos for motif-detector latents in layer 4 for MetXA. Each panel
shows the 21-residue window centered on the max-activating token; y-axis is information
(bits).
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(a) latent100 (no motif) (b) latent237 (YX) (c) latent527 (DX)

(d) latent601 (no motif) (e) latent1196 (D) (f) latent1297(I)

(g) latent1468 (XXXN) (h) latent1509 (E) (i) latent1949 (no motif)

(j) latent2005 (PXXXXX) (k) latent2112 (YXX) (l) latent2511 (XXQ)

(m) latent2850 (no motif) (n) latent2929 (N) (o) latent2947 (V)

(p) latent2983 (no motif) (q) latent3069 (GX) (r) latent3170 (XN)

(s) latent3229 (IXX) (t) latent3351 (no motif) (u) latent3544 (C)

(v) latent3634 (XXXXG) (w) latent3717 (V)

Figure 6: Sequence logos for motif-detector latents in layer 4 for TOP2. Each panel shows
the 21-residue window centered on the max-activating token; y-axis is information (bits).
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D Domain Correlation Tables

Table 5: Top domain selectivity latents by AUC for aggregator top-q, group MetXA. We show the
number of positive and negative samples, bootstrap 95% CI, Spearman rho correlation of the score
vs length of sample.

layer latent domain domain_name N_pos N_neg AUC CI_lo CI_hi rho_len_pos rho_len_neg

12 3035 IPR036322 WD40 2148 2174 0.997 0.995 0.999 -0.496 0.031
12 2112 IPR029058 AB hydrolase fold 2937 2957 0.994 0.992 0.996 0.075 -0.101
8 2677 IPR036188 FAD/NAD 4014 4124 0.983 0.98 0.985 -0.659 -0.127

12 3536 IPR029063 SAM MTases 10228 10545 0.972 0.97 0.975 -0.388 0.089
8 488 IPR029058 AB hydrolase fold 2937 2957 0.971 0.967 0.975 -0.56 0.089

12 3794 IPR029063 SAM MTases 10228 10545 0.968 0.966 0.971 -0.662 -0.023
12 1256 IPR016181 NAT 1554 1579 0.96 0.951 0.968 -0.271 0.088
12 2797 IPR013785 Aldolase 12702 13012 0.929 0.926 0.932 -0.482 0.036
8 2775 IPR009014 Transketolase 772 785 0.921 0.903 0.937 0.144 -0.047
8 2166 IPR024072 DHFR 135 142 0.86 0.815 0.902 -0.578 0.033

Table 6: Top domain selectivity latents by AUC for aggregator top-q, group TOP2. We show the
number of positive and negative samples, bootstrap 95% CI, Spearman rho correlation of the score
vs length of sample.

layer latent domain domain_name N_pos N_neg AUC CI_lo CI_hi rho_len_pos rho_len_neg

12 2472 IPR036961 Kinesin 221 222 0.998 0.992 1 -0.292 -0.028
16 3077 IPR036890 HATPase_C_sf 1700 1737 0.997 0.995 0.999 -0.53 0.011
16 1353 IPR036890 HATPase_C_sf 1700 1737 0.996 0.994 0.998 -0.606 0.013
16 1814 IPR036890 HATPase_C_sf 1700 1737 0.996 0.993 0.998 -0.206 0.091
12 1145 IPR036890 HATPase_C_sf 1700 1737 0.996 0.993 0.998 -0.356 -0.047
20 2311 PF13589 HATPase_c_3 869 892 0.995 0.992 0.999 0.076 0.048
12 3943 IPR036890 HATPase_C_sf 1700 1737 0.995 0.993 0.997 -0.588 0.058
12 1796 IPR036890 HATPase_C_sf 1700 1737 0.994 0.991 0.997 -0.107 0.115
12 1082 PF00867 XPG_I 220 223 0.994 0.983 1 -0.062 -0.055
16 1166 PF13589 HATPase_c_3 869 892 0.992 0.987 0.997 0.135 0.015
12 1204 IPR036890 HATPase_C_sf 1700 1737 0.974 0.969 0.978 0.409 0.094
16 1597 IPR036890 HATPase_C_sf 1700 1737 0.794 0.778 0.811 0.487 0.077
16 3994 PF13589 HATPase_c_3 869 892 0.712 0.685 0.739 0.124 0.007

(a) auc topq, top2 (b) auc mean, top2 (c) auc max, top2 (d) auc topk, top2

Figure 7: AUROC score bar charts for TOP2 using mean, max and topk aggregators.
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(a) (b) (c)

Figure 8: (a) Spearman rho correlation topq score vs log L, for negative samples between
-0.1 to 0.1. (b) Demonstrating difference in auroc for mean and top q%. (c) AUC compar-
ison max vs top q%.

(a) auc mean, metx (b) auc max, metx (c) auc topk, metx

Figure 9: AUROC score bar charts for MetXA using mean, max and topk aggregators.
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E Path Patching results

Table 7: Interpretable edges for MetXA between manually analyzed latents. Upstream is earlier,
downstream is later.
Edge Rank Up Layer Up Latent Up Feature Down Layer Down Latent Down Feature

19 4 1690 XXXF 8 2775 Transketolase
26 4 798 DXXG 8 2775 Transketolase
47 8 2775 Transketolase 12 1256 FAM
67 8 2775 Transketolase 12 2112 AB_Hydrolase_fold
76 8 2677 FAD/NAD 12 2112 AB_Hydrolase_fold

129 8 2677 FAD/NAD 12 1256 FAM
132 4 340 FX 12 2112 AB_Hydrolase_fold
146 4 2277 G 8 2677 FAD/NAD
147 4 237 YX 8 2775 Transketolase
152 4 3788 XXI 12 2112 AB_Hydrolase_fold
159 4 3788 XXI 12 1256 FAM
168 8 488 AB_Hydrolase_fold 12 2112 AB_Hydrolase_fold
178 8 2677 FAD/NAD 12 2797 Aldolase
179 4 340 FX 12 1256 FAM
184 8 2775 Transketolase 12 2797 Aldolase
186 8 2677 FAD/NAD 12 3794 SAM_mtases
196 8 2677 FAD/NAD 12 3536 SAM_mtases
208 4 3634 XXXXG 8 2677 FAD/NAD
210 4 1690 XXXF 8 2677 FAD/NAD
228 4 3788 XXI 8 2166 DHFR
235 8 2775 Transketolase 12 3536 SAM_mtases
246 4 1690 XXXF 12 1256 FAM
254 4 2311 XXM 12 2112 AB_Hydrolase_fold
268 4 237 YX 12 2112 AB_Hydrolase_fold
274 4 340 FX 8 488 AB_Hydrolase_fold
290 8 2775 Transketolase 12 3035 WD40
295 8 2166 DHFR 12 3536 SAM_mtases
306 4 1682 PXXXXXX 12 1256 FAM
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Table 8: Interpretable edges for TOP2 between manually analyzed latents. Upstream is earlier,
downstream is later.
Edge Rank Up Layer Up Latent Up Feature Down Layer Down Latent Down Feature

1 12 3943 Hatpase_C 16 1353 Hatpase_C
25 12 1204 Hatpase_C 16 1166 Hatpase_C
28 12 1204 Hatpase_C 16 1597 Hatpase_C
32 12 1796 Hatpase_C 16 1353 Hatpase_C
34 4 1509 E 16 1353 Hatpase_C
40 12 3943 Hatpase_C 16 1597 Hatpase_C
46 4 1509 E 16 1166 Hatpase_C
48 12 1796 Hatpase_C 16 1597 Hatpase_C
54 4 1509 E 12 3943 Hatpase_C
55 4 1509 E 16 1597 Hatpase_C
57 4 3170 XN 12 3943 Hatpase_C
61 4 3170 XN 16 1597 Hatpase_C
66 4 3170 XN 16 1166 Hatpase_C
68 4 2112 YXX 12 2472 Kinesin
76 4 2511 XXQ 12 2472 Kinesin
79 4 2511 XXQ 16 1166 Hatpase_C
82 4 2929 N 12 2472 Kinesin
87 4 527 DX 12 2472 Kinesin
91 4 3717 V 12 2472 Kinesin
92 4 1468 XXXN 12 2472 Kinesin

100 4 3717 V 16 1597 Hatpase_C
102 4 3170 XN 12 2472 Kinesin
118 4 3069 GX 16 1353 Hatpase_C
123 4 3717 V 16 1166 Hatpase_C
137 12 1204 Hatpase_C 16 1353 Hatpase_C
140 4 1509 E 12 1796 Hatpase_C
151 12 2472 Kinesin 16 1597 Hatpase_C
157 4 1468 XXXN 12 3943 Hatpase_C
175 4 3170 XN 16 1353 Hatpase_C
189 4 527 DX 16 1166 Hatpase_C
198 4 3069 GX 12 1204 Hatpase_C
203 4 1468 XXXN 16 1353 Hatpase_C
204 4 1468 XXXN 16 1597 Hatpase_C
223 12 2472 Kinesin 16 1166 Hatpase_C
225 4 1468 XXXN 16 1166 Hatpase_C
229 4 3069 GX 16 1166 Hatpase_C
232 4 3544 C 12 1204 Hatpase_C
234 4 1297 I 16 1597 Hatpase_C
238 4 3544 C 12 3943 Hatpase_C

Figure 10: Edge strength distribution (sorted by |∆m|) for MetXA.
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Figure 11: Edge strength distribution (sorted by |∆m|) for TOP2.
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F Additional recovery curves

(a) Global recovery curve - MetXA (b) Circuit size distribution - MetXA

Figure 13: Performance and distribution diagnostics for the learned circuit.

(a) Global recovery curve - TOP2 (b) Circuit size distribution - TOP2

Figure 14: Performance and distribution diagnostics for the learned circuit.
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