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Abstract

Protein language models (pLMs) achieve state-of-the-art performance on protein1

structure and function prediction tasks, yet their internal computations remain2

opaque. Sparse autoencoders (SAEs) have been used on pLMs to recover sparse3

model features, called latents, whose activations correlate with known biologi-4

cal concepts. However, prior work has not established which latents are causally5

necessary for pLM performance on downstream tasks. Here, we adapt causal ac-6

tivation patching to the pLM setting to extract the minimal circuit causally neces-7

sary for residue-residue contact prediction in two case study proteins. Preserving8

only a tiny fraction of latent–token pairs (0.022% and 0.015%) is sufficient to re-9

tain contact prediction accuracy in a residue unmasking experiment. We observe10

a two-step computation in which early-layer motif detectors respond to short lo-11

cal sequence patterns, gating mid-to-late domain detectors which are selective for12

protein domains and families. Path-level ablations confirm the causal dependence13

of domain detector latents on upstream motif detector latents. To evaluate these14

components quantitatively, we introduce two diagnostics: a Motif Conservation15

Test and a hypothesis-driven Domain Selectivity Test. All candidate motif-detector16

latents pass the conservation test, and 18/23 candidate domain-detector latents17

achieve AUROC ≥ 0.95. To our knowledge, this is the first circuits-style causal18

analysis for pLMs, identifying the motifs, domains, and motif-domain interac-19

tions that drive contact prediction in two specific case studies. The framework20

introduced herein will enable future mechanistic dissection of protein language21

models.22

1 Introduction23

Protein language models (pLMs) now sit at the core of modern computational biology, achieving24

strong performance at many computational biology tasks [Lin et al., 2023a, Wu et al., 2022, Elnaggar25

et al., 2022, Nijkamp et al., 2023, Ullanat et al., 2025]. Yet, we know little about the computational26

mechanisms that enable these networks to transform raw amino acid sequences into higher-level27

structural or functional inferences. Without insight into a model’s internal computations, we cannot28

effectively reason about predictions, debug systematic errors, or extract new biological insights.29

The field of mechanistic interpretability provides insight into model computations by30

reverse-engineering neural networks at feature-level resolution. A central obstacle is that most neu-31

rons in large language models are polysemantic: a single neuron fires for several unrelated sequence32

features [Olah et al., 2020, Elhage et al., 2022], which hampers interpretation. Sparse autoencoders33

(SAEs) project the dense activations of neurons in a large language model into a higher-dimensional34

sparse space, where each neuron—called a latent—is intended to fire selectively for a single concept35
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[Bricken et al., 2023, Gao et al., 2024, Templeton, 2024]. Efforts to port SAEs to biological se-36

quence models have provided descriptive evidence that pLMs contain features for sequence motifs,37

secondary-structure elements, and whole protein families [Simon and Zou, 2024, Adams et al., 2025,38

Gujral et al., 2025]. While SAEs reveal what concepts a model encodes, only causal interventions—39

perturbing a latent’s activation and measuring the effect on the output—can tell us whether a model40

depends on that concept (as encoded by a specific latent) to make predictions [Vig et al., 2020].41

Here, we extend the causal interpretability framework [Lindsey et al., 2025] to SAE latents in42

pLMs. We study the residue–residue contact prediction capabilities of ESM-2, using causal acti-43

vation patching to measure the contribution of each interpretable SAE latent. We show that contact44

prediction depends on only a small subset of representations by identifying specific latents, active45

at specific token positions, that are individually necessary. We provide evidence that the causally46

necessary representations correspond to biologically meaningful concepts. We show that early lay-47

ers detect short sequence motifs that causally gate domain recognition in deeper layers, forming a48

multi-step computational circuit. By tracing ESM-2’s contact prediction for specific proteins back49

to a compact and interpretable subgraph of the model, and by publishing the tools needed to extend50

this analysis, we move towards mechanistic understanding of protein language models.51

2 Results52

2.1 A framework for causal circuit discovery in pLMs53

Here we outline a framework for causal circuit discovery in pLMs, building on established inter-54

pretability practice in language models [Wang et al., 2022, Lindsey et al., 2025]. Our analysis55

follows four steps: (i) represent hidden activations in an interpretable sparse latent space, (ii) define56

a task for the pLM of interest to perform, (iii) perform causal interventions in the interpretable latent57

space to perturb performance of the task, and (iv) interpret the biological meaning, if any, of the58

observed causal latents. We briefly describe each choice below.59

(i) Sparse autoencoders provide an interpretable latent space for pLMs. Recent studies60

[Adams et al., 2025, Simon and Zou, 2024, Gujral et al., 2025] have shown that sparse autoen-61

coders (SAEs) [Elhage et al., 2022] project the dense, polysemantic activations of protein language62

models into interpretable sparse representations where individual neurons, called latents, capture63

meaningful biological concepts. We use SAEs from Adams et al.: eight layers (4–32 in steps of 4),64

4,096 latents each.65

(ii) Contact prediction as an example task for PLMs. An ideal downstream task for activation66

patching to interpret pLM behavior is one where the model exhibits a near-discrete behavior switch67

over a small change in input, because this minimizes possible confounds[Zhang and Nanda, 2023,68

Wang et al., 2022]. Such behavior has been documented for the residue-residue contact prediction69

capabilities of ESM-2-3B. Zhang et al. showed that contact recovery for distant secondary-structure70

elements (SSEs) in a partially masked sequence stays near random until a critical number of residues71

flanking the SSEs are unmasked; then accuracy "jumps" to near-perfect (Fig. 1A-C). This results in72

two nearly identical inputs for which the network has a major transition in its output. We select73

two such case-study proteins: MetXA (UniProt: P45131), where unmasking two additional residues74

raises the contact recovery score m(X) from 0.02 to 0.58; and TOP2 (UniProt: P06786), where75

unmasking four extra residues raises m(X) from 0.06 to 0.86.76

(iii) Activation patching to identify causal network components. Activation patching [Vig77

et al., 2020, Finlayson et al., 2021] can measure the causal necessity of every latent, at each token78

position (which we call “latent-token pair”) for a specific task and input pair. For each case study79

input pair, we define the corrupted input as the input sequence and with low contact recovery, and80

the clean input as the related sequence and with high recovery. The corresponding latent activations81

are also called corrupted and clean, respectively. We use activation patching to compute the Indirect82

Effect (IE), which measures the causal influence of the input on the output through a single latent83

acting as a mediator Pearl [2022], by patching corrupted activations into a clean pass of the model to84

determine whether specific latent-token pairs were causally necessary for the task (Methods, Sec. 4;85

Fig. 1A). We identify a “circuit”: the smallest set of latents whose clean activations sustain contact86

recovery (Sec. 2.2). We later extend this analysis to interactions between components (Sec. 2.4.3).87
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Figure 1: (A) Residue-residue contact maps for MetXA under three conditions: clean sequence (44
aa) yields near-perfect recovery; corrupted sequence (43 aa) yields near-random contact recovery;
causal intervention replaces clean activation with a single latent patched to its corrupted value. Loss
of contact recovery flags that latent as causal. (B) Contact recovery jump behavior reproduced from
Zhang et al. [2024]. (C) MetXA structure (RCSB-PDB ID: 2B61 Chain A [Mirza et al., 2005]); the
studied SSE elements are highlighted in yellow. (D) Recovery vs. per-layer circuit size. Starting
points differ by error-node performance m0.

(iv) Interpretation of causal network components After identification of relevant latent-token88

pairs, we ask what biological computations they represent and how they interact to produce the89

jump in conctact recovery. We proceed in two stages. First, we assign global semantic labels by90

inspecting each latent’s top-activating residues and proteins across the corpus. Second, we charac-91

terize each latent’s task-specific role by comparing its activation in the clean vs. corrupted inputs92

around the flanking regions that control the jump. From these observations we formulate hypotheses93

about (i) the function of individual latents and (ii) directed interactions between latents across layers94

(Sec. 2.3). We then attempt to falsify these hypotheses using targeted interventions and selectivity95

tests (Sec. 2.4).96

2.2 Causal circuits underlying contact prediction for two case study proteins97

We compute the indirect effect (IE) for 4,096 latents across 8 layers at ∼400 token positions (≈98

1.3× 107 latent–token pairs), and then compute both global and layer-wise circuits.99

Global circuits for quantification We ask for the smallest subset K of latent–token pairs whose100

clean activations keep contact recovery above a threshold θ of the clean score (Fig. 1D). For each101

protein, we fix the threshold at 70% of the clean contact recovery, θ = 0.70 × mclean. Then, for102

a given K, we patch all non–top K pairs to their corrupted activations, recompute the model, and103

check whether m(X) ≥ θ; if so, those K latent-token pairs are sufficient (Sec. 4). Fig. 13a and104

Fig. 14a show the increase in m(X) with increasing top K pairs considered. For both proteins,105

only a tiny subgraph is needed for the circuit to reach the 70%-of-clean threshold θ: 2,401 pairs106
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Figure 2: (A) Motif and domain detectors in the layer-wise circuit for MetXA. Arrows connect
causal latent-token pairs. (B) Frequency of Interpro domains for top 10 proteins with highest ac-
tivation for latent 2112 in layer 12. (C) Change in activation of latent 3788 in layer 4 from clean
to corrupted. The latent-token pair at position P131 only activates when I133 is unmasked in the
clean sequence supporting motif activation of XXI. (D) Screenshot of activation patterns of the top
5 proteins for latent 3788 in layer 4 from Interprot [Adams et al., 2025].

(0.022%) for MetXA and 1,801 (0.015%) for TOP2. Thus the contact-prediction switch is governed107

by a subgraph three orders of magnitude smaller than the full network.108

Layer-wise circuits for interpretability Manually inspecting thousands of pairs is infeasible with-109

out a prior, so we analyze one layer at a time. For layer ℓ, the bottleneck Bℓ is the smallest within-110

layer subset that maintains m(X) ≥ θ with all other layers left unmodified. Because the SAEs111

cannot perfectly reconstruct activations, SAEs include an “error” node that carries reconstruction112

loss [Marks et al., 2024]. For layer ℓ, let the zero-circuit performance m0(ℓ) be the score when all113

pairs in that layer are patched to their corrupted values and only the error node remains active. Be-114

cause this node contains the activations “unexplained” by the SAE, we treat it as non-interpretable;115

continuing work aims to reduce its contribution [Rajamanoharan et al., 2024, Bussmann et al., 2024].116

We focus on the explainable window Wℓ = θ − m0(ℓ), the margin above the error-only baseline117

that a layer’s bottleneck must account for; we report drops both in absolute units and as a percent of118

Wℓ. The resulting bottlenecks Bℓ contains on average only ≈ 60 latent–token pairs—tractable for119

qualitative study yet still drawn from the very top of the global IE ranking (Fig. 1D).120

2.3 Manual inspection of two case studies reveals a motif-gated, domain-recognition circuit121

We now manually annotate the causally relevant latents in each layer-wise bottleneck for both of122

our case study proteins. Manual annotation in this section will be used to generate hypotheses that123

are quantitatively tested in the next section. For every latent–token pair in each layer’s bottleneck124

we ask two questions. First, (Q1) what biological signal, if any, does the latent usually represent?125

Second, (Q2) how does that latent’s activation change from the corrupted to the clean input, and126

why might that change unblock the downstream domain detector? We answer both questions127

by (E1) inspecting the 20 UniRef50 proteins that most strongly activate the latent and (E2)128

comparing the latent’s activation maps between corrupted and clean runs of the case-study protein129

(Sec. 4). We describe motifs using the following notation: specific residues use one-letter amino-130

acid codes; X denotes any residue; an underline marks the token where the latent activates (e.g.,131

XXI indicates a latent that activates two residues upstream of an isoleucine). See Sec. B.3 for details.132

133
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2.3.1 Homoserine O-acetyltransferase134

Unmasking I133 (left) and F363 (right) raises contact recovery from mcorr = 0.02 to mclean = 0.58135

(∆m = 0.56); thus the threshold T = 0.40. We provide per-latent and per-latent-cluster details136

in Table 1 and Table 3 respectively. Latents not detailed could not readily be assigned a global or137

task-specific role by manual inspection.138

Layer 4. The zero-circuit performance m0 = 0.027, thus the explainable window W = T −m0 =139

0.373. The circuit requires 30 latent–token pairs to meet the criterion. We find latents that activate140

on short sequence patterns (Q1) across the proteome (E1), so we label them motif detectors. This141

cluster contains 10 pairs (33.33% of the layer). We identify direct motif detectors that include one of142

the two newly unmasked residues (16.67% of layer). Ablating them reduces m(X) by 22.9% of W143

(0.0863). For example, a latent at P131 fires on the motif XXI across its top 20 activating proteins144

(E1, Fig. 2D) and switches on only when I133 is revealed (E2→Q2, Fig. 2C). We also identify145

indirect motif detectors, which activate on residues not in the flank region, but whose activation146

differs between corrupted and clean inputs (16.67% of layer). Ablating them reduces m(X) by147

13.3% of W (0.0501). Example: a latent at I181 (center of SSE1) activates for PXXXXXX (E1);148

its activation rises once distant flanks are unmasked (E2→Q2). Together, motif detectors account149

for 35% of W (0.132).150

Layer 8. The zero-circuit performance is m0 = 0.255, thus the explainable window W = T −151

m0 = 0.145. The circuit requires 11 latent–token pairs to meet the criterion. We observe latents152

which which activate on proteins (Q1) containing a specific domain annotation, and term them153

domain detectors. This cluster contains 5 pairs (45.45% of the layer). Domains matching MetXA ’s154

own annotation (annotated domain detectors) comprise 9.09% of layer, and ablating them reduces155

m(X) by 9.54% of W (0.015). We also see latents that activate on other domains (miscellaneous156

domain detectorrs), such as DHFR, FAD/NAD, or transketolase domains (E1) (36.36% of layer).157

Ablating them reduces m(X) by 38% of W (0.0597), suggesting the model cross-checks related158

folds. Together, domain detectors account for 47.2% of W (0.0742).159

Layer 12. The zero-circuit performance is m0 = 0.156, thus the explainable window W = T −160

m0 = 0.244. The circuit requires 50 latent–token pairs to meet the criterion. Similar to Layer161

8, Layer 12 contains domain detectors. The group of domain detectors comprises 8 pairs (16%162

of the layer). Annotated domain detectors comprise 4% of the layer, and ablating them reduces163

m(X) by 7.74% of W (0.0192). For example, a latent selective for the AB-hydrolase fold (E1,164

Fig. 2B) is causal at two token positions. Miscellaneous domain detectors activate on NAT, SAM-165

methyltransferase, WD40, and aldolase families (E1) (12% of layer). Ablating them reduces m(X)166

by 29.11% of W (0.072). Together, domain detectors account for 37.7% of W (0.093).167

2.3.2 DNA topoisomerase 2168

Unmasking T31–Y32 (left) and G271–E272 (right) raises contact recovery from mcorr = 0.06 to169

mclean = 0.86 (∆m = 0.80); threshold T = 0.6. Per-cluster and per-latent details are in Table 2170

and Table 4. SAE error nodes already achieve m0 = 0.59 at Layer 8 (> T ), so we analyze Layers 4,171

12, and 16 where W > 0. As in MetXA, Layer 4 contains motif detectors and Layers 12/16172

contain domain detectors. The novelty is not the presence of these two functional classes but their173

reappearance with protein-appropriate content: TOP2’s Layer 4 motifs differ from MetXA’s, and its174

domain detectors align with TOP2’s GHKL/HATPase_c annotation. We cover the per-layer analysis175

in the Appendix A.176

2.3.3 Shared mechanism and hypotheses.177

Across both proteins, we observe that early layers (L4) contain motif detectors; mid/late layers (L8-178

16) contain domain detectors. Unmasking flank residues raises activation in both direct and indirect179

motif detectors, and domain detectors. The reason for activation of indirect motif detectors and180

domain detectors is not readily obvious, but one hypothesis is that the motif detectors give signal181

to the domain detectors. Because the explainable windows reported here are layer-specific and not182

cumulative, we test end-to-end causal gating with path-level ablations in Sec. 2.4.3.183

Together, the case studies suggest a two-step circuit, that we hypothesize works in the following way:184

(1) early-layers require latents that detect specific motifs, (2) later layers require latents that detect185

specific domains, and (3) domain recognition is causally gated by the early layer motif detectors.186
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Figure 3: (A) Circuit diagram for MetXA with causal edges between latents. The subgraph for AB
hydrolase is highlighted for readability, with edge ranks (out of 1580) shown. (B) Sequence logos
for hypothesized motif detectors. (C) AUROC scores for hypothesized domain detectors. Label on
the bar denotes the “short name” on Interpro.

2.4 Quantitative validation of mechanistic hypotheses187

In this section, we subject our hypotheses from the case studies to quantitative validation.188

2.4.1 Motif detectors preferentially activate on assigned motifs189

Our case studies suggested that Layer 4 latents function as specific motif detectors which trigger190

the contact prediction circuit. We now ask whether each latent does indeed fire on a specific motif191

across all proteins, not just for our specific case study proteins.192

We sample 10,000 proteins from the set of UniProt reviewed proteins and record the activation for193

each latent for each input token (Sec. 4.2.1). For every latent in our layer-specific bottlenecks, we194

create a sequence logo by recording the window around top activating token for each protein. For195

each latent in our qualitative analysis that was seen to be associated with a particular motif, that196

motif was also present in the sequence logo and accounted for more than 50% of the information at197

each position. As shown in Fig 3, we see that the residue that is fixed for a motif (e.g. F in XXXF)198

and its position are highly conserved whereas the rest of the window is not. All sequence logos are199

displayed in Fig. 5 and 6.200

We found motif detectors not annotated during the manual analysis, including F (Layer 4, 181),201

FXXXX (Layer 4, 1096), and DXXX (Layer 4, 1712). The SAE latents we identified as motif202

detectors behave as motif detectors across the proteome, not just in our specific case study proteins.203

2.4.2 Domain detectors preferentially activate on assigned domains204

Our case studies identified causally important latents that seem to be associated with protein do-205

mains; we tested whether 23 pre-specified latent-to-domain hypotheses (10 in MetXA, 13 in TOP2)206

hold on the full set of reviewed Uniprot protein entries, using length-matched negatives. Because207

latents activate on a per-token basis and domains are a protein-level feature, we compute a protein-208

level latent activation score by taking the mean of the activation on the top-q% (where q=1) of tokens209

for that latent. We report AUROC± 95% stratified confidence intervals to test how selective a latent210

z is for domain d (Sec. 4.2.2). We found that 7/10 latent-to-domain hypotheses for MetXA and211

10/13 for TOP2 had AUROC > 0.95 (95% CI width ±0.02). In MetXA, these were latents selective212

for AB hydrolase fold, FAD/NAD, NAT, SAM Mtases, and WD40. For TOP2, latents with high AU-213

ROC were associated with Kinesin, HATPase_c, and XPG_I. A few tests returned moderate AUROC214

results (e.g., MetXA Transketolase AUC 0.92, DHFR 0.86, Aldolase 0.93; TOP2 two HATPase_c215

latents at 0.71 and 0.79), suggesting these latents may be non-specific or non-selective in some way.216

We note that choice of the protein-level latent activation score affects the conclusions (Figs. 7, 8,and217

9). We found that the global mean dilutes signal of sparse detectors in long sequences; the max and218
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top-K are length-biased. The top-q score captures signal for both sparse and dense detectors and is219

not length-biased.220

2.4.3 Domain detectors are dependent on motif detectors221

We hypothesized from the case studies was that domain detectors are causally gated by motif de-222

tectors. That is, the presence of specific motifs allows the model to detect the domain/family of the223

protein. To test this we use path patching [Wang et al., 2022]: (1) patch the earlier feature to its224

corrupted value and record the value the later feature takes; (2) in a fresh clean run, set only that225

later feature to the recorded value and measure the change in contact recovery. This isolates the226

effect flowing along that specific link; we report edge strength as |∆m|. (Sec. B.5.3)227

We rank edges by absolute effect |∆m| and compute the cumulative area under the sorted curve228

A(k) =
∑k

i=1 |∆m|i (Fig. 10, 11). We choose the smallest k such that A(k) ≥ 0.75 × A(all).229

Under this rule, MetXA requires k = 316/1580 edges (20.0%) to cover 76.5% AUC, and TOP2230

requires k = 244/1064 edges (22.9%) to cover 75.4% AUC.231

Homoserine O-acetyltransferase Within the AUC-75% set (316 edges; 20.0% of 1580), we find232

28 edges between labeled components (Table 7), including multiple motif→domain links consistent233

with gating. For example, motif detectors for FX, XXI, XXM, and YX connect to AB-hydrolase234

detector (2112) in Layer 12 (Fig. 3)Most late-layer domain detectors receive at least one motif235

detector input in this set; one Layer-12 domain detector lacks a direct motif edge but connects236

via another Layer-12 domain that does receive motif input, consistent with motif-gated recognition237

through an intermediate domain.238

DNA topoisomerase 2 Within the AUC-75% set (244 edges; 22.9% of 1064), we observe 39 edges239

between labeled components (Table 8). As a representative example, several Layer-4 motif detectors240

converge on a single HATPase_c detector (1166) in Layer 16—E, XN, XXQ, V DX, XXXN, and241

GX—with ranks 46, 66, 79, 100, 189, 225, and 229, respectively. Other HATPase_c and Kinesin242

detectors in Layers 12 and 16 also receive motif detector inputs (see Table 8). All but one late-layer243

domain detector have a direct motif input within this set; the remaining detector has no labeled244

inbound edges.245

3 Discussion246

We provide the first example of circuit analysis for pLMs, by adapting the causal intervention frame-247

work from mechanistic interpretability. We demonstrate how causal intervention on SAE latents248

using clean/corrupted input pairs can define the internal circuits used by pLMs to perform a down-249

stream task. While we apply our framework to contact prediction in ESM, it is readily generalizable250

to other pLMs and tasks. For our case study proteins, we show that preserving only a tiny frac-251

tion of latent–token pairs is sufficient to retain most post-jump accuracy. We observe a small set252

of early-layer latents that respond to short sequence motifs, that gate mid-to-late latents selective253

for protein domains/families, as confirmed by path-level ablations. We emphasize that these links254

are model-internal causal dependencies under our perturbation scheme; our work does not address255

biochemical mechanism or causality.256

Identifying and labeling causally-relevant latent-token pairs could enable new forms of discovery257

with pLMs. First, we can check whether model predictions rely on biologically sensible evidence.258

Second, this will enable targeted editing and steering: attenuating misleading latents or amplifying259

mechanistically plausible ones, without retraining the entire model. Third, we can perform system-260

atic follow up on cases where our labels do or do not align with known motifs and domains. This261

analysis may uncover overlooked functional sites, suggest previously unrecognized domain relation-262

ships, and inspire wet-lab tests that feed back into both model refinement and biological discovery.263

3.1 Limitations264

Our causal claims are restricted to where we intervened and what we measured. We study ESM-2-265

650M because residual-stream SAEs are publicly available for this variant, but only for every four266

transformer blocks. For tractability we rank and evaluate layer bottlenecks for the first 3 SAE layers,267
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and our work is restricted to contact prediction circuits in two case-study proteins. Some top-ranked268

latents could not be confidently labeled as motif or domain detectors. Our motif-conservation check269

does not perform explicit multiple-sequence alignment and may miss gapped/shifted motifs.270

3.2 Future Work271

Future work will expand the scope of our causal annotation for contact prediction. SAEs trained at272

every layer (and ideally on attention/MLP streams) or cross layer transcoders [Lindsey et al., 2025],273

would enable cross-layer minimal-set searches for the full circuit. Extending our analysis from274

the flank-induced jumps to full input sequences will test whether the same motif→ domain logic275

persists when many residue pairs are jointly scored, and whether additional long-range features276

emerge. Finally, rather than summarizing interventions with a single scalar, we will analyze per-277

contact effects: which residue pairs gain/lose probability under targeted latent edits, how these278

changes cluster in 2D contact space (e.g., within/between SSEs), and how they project to 3D via279

structure prediction.280

We plan automated labeling of latent-token pairs to reduce manual effort and improve label reli-281

ability. We will then seek to generalize across proteins and scales, to reveal which motif/domain282

detectors and dependencies are shared vs. protein-specific, how they shift with model size, and283

whether “domain-labeled” late-layer units sometimes act as short-motif proxies.284

Together, these directions take us from a tractable layer-wise bottleneck to a complete, cross-layer285

circuit for contact prediction, and from two case studies toward a library of mechanistic explanations286

that are auditable, reusable, and biologically informative.287

4 Methods288

In this section, we cover the methods used for case study analysis §2.3 and selectivity tests289

§2.4.1,2.4.2. We overview the model and data selection in Appendix §B.1, contact prediction task290

in Appendix §B.2, the causal intervention framework in Appendix §B.5.291

4.1 Latent Interpretation and Case-Study Analysis292

Each latent–token pair in the layer-wise bottlenecks was manually examined for two complemen-293

tary properties: its global role and its jump-specific role. For the global role, we select the 20294

UniRef50 proteins with the highest activation for the latent, and load them in the InterProt viewer295

[InterProt Team, 2025] [access date: June 30, 2025] annotations that overlap with the token position296

were retrieved automatically from UniProt and recurring sequence motifs were noted by eye. For297

the jump-specific role, we plotted the latent’s per-token activations on the case-study protein under298

three inputs (corrupted, clean, and fully unmasked). The indirect-effect ranking already scales with299

activation change, so no additional numeric threshold was imposed. Latents whose motif encom-300

passed a residue newly revealed in the clean input were labeled directly explained motif detectors;301

those whose motif lay elsewhere were labeled indirect motif detectors. Finally, latents whose acti-302

vation patterns matched a specific InterPro domain—regardless of whether that domain is annotated303

for the target protein—were labeled domain detectors.304

4.2 Quantitative latent labeling305

From the full set of UniProt reviewed proteins (n = 573,661 as of June 30, 2025), we first filtered306

out any proteins with sequence length > 1022, as ESM-2 adds two extra tokens to the input and caps307

input length at 1024 tokens. Then, we randomly selected a set of 10,000 proteins from this length-308

restricted subset. For each of these proteins and for each available latent, the per-token activation309

was extracted and stored. Using the per-token activations, we then quantitatively labeled latents for310

both motifs and domains.311

4.2.1 Motif Labeling through Sequence Conservation312

To identify sequence motifs associated with latent activations, we aligned sequences at their max-313

imum activation positions and analyzed conservation patterns in flanking regions. For each la-314

tent, we identified the highest-activating residue in each protein, ranked these maxima across the315
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dataset, selected the top 100 residues (ensuring each protein was represented only once), and com-316

puted position-specific conservation scores to quantitatively characterize activation-associated mo-317

tifs. Specifically, for each of those top 100 residues, we extract the 10 amino acids before and after it318

in the sequence, truncating if we run into the beginning or end of the protein. The window size was319

chosen empirically based on manual inspection. For each latent, we then created a sequence logo320

using those 100 sequences of length 21 (10+1+10). Sequence logos were generated with the LO-321

GOMAKER Python library [Tareen and Kinney, 2020]. The x-axis of such a logo gives the sequence322

position, relative to the middle residue (the highest-activating residue). The y-axis of a sequence323

logo gives the information content in bits, where the height h of an amino acid a at position i is324

given by:325

h = fa,i × [log2(s)− (Hi + en)] , Hi = −
t∑

b=0

fa,i × log2 (fa,i) , en =
1

ln 2

s− 1

2n
(1)

where fa,i is the relative frequency of amino acid a at position i and s = 20 because we are only326

considering the 20 canonical amino acids. The quantity Hi is the Shannon entropy or the uncertainty327

of position i, and en is the small-sample correction for an alignment of n letters (here, n = 100328

sequences) [Schneider and Stephens, 1990]. The final sequence logos for each latent represent329

a statistical view of the conservation of amino acids at each position in the neighborhood of the330

highest-activated residue.331

4.2.2 Domain labeling through correlation332

Hypothesis-driven Protein domains are conserved sequences associated with structure and func-333

tion [Chothia, 1992], and are curated in InterPro [Blum et al., 2025]. For each latent z and domain334

d, we hypothesize score(X, z) is higher for proteins (X) with d than without d. We test these pre-335

specified latent-to-domain hypotheses on a shared dataset. For a domain d, positive examples are336

randomly selected from the set of UniProt reviewed proteins with domain d. We defined a candidate337

negative pool as reviewed Uniprot proteins without d, and length-matched negatives to positives via338

stratified sampling over 12 empirical length-quantile bins to remove sequence-length confounding.339

Quantiles are computed on the union of positive and candidate-negative lengths for that domain.340

Within each bin, we sampled negatives without replacement up to the number of positives in that341

bin; if fewer negatives were available, we took all available and accepted minor imbalance. We342

summarize a protein’s activation score by the mean of the top q% of tokens, with q = 1 (fixed a343

priori). This captures both sparse and dense signals without being length biased. An ideal score344

metric should also expect low Spearman Rank Correlation rho (ρ(score, logL) ≈ 0) on negatives.345

This is because for proteins without domain d, a good per-protein score should not systematically in-346

crease/decrease with sequence length. With this setup, we calculated the AUROC using scikit-learn347

[Pedregosa et al., 2011] to measure the effect strength for selectivity and provide 95% stratified boot-348

strap confidence intervals (CIs). AUROC denotes the probability that a random positive out-scores349

a random negative; CIs use 3000 stratified bootstrap resamples. For comparison, we computed the350

same metrics for max, mean, top-K as for top-q. We found that the global mean dilutes sparse351

activations, while the max and top-K had higher length correlations for negatives (Appendix §D).352
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A DNA topoisomerase 2 Layer wise analysis471

Layer 4. The zero-circuit performance is m0 = 0.33; thus the explainable window is W = T −472

m0 = 0.27. The circuit requires 29 latent–token pairs to meet the criterion. Similar to the results473

for MetXA, observe motif detectors. This cluster contains 13 pairs (44.8% of the layer). Direct474

motif detectors (20.7% of layer). Ablating them reduces m(X) by 6.3% of W (0.017). Example:475

a latent at G34 fires on YXX across its top-20 proteins (E1) and deactivates when Y28 is masked476

(E2→Q2). Indirect motif detectors (24.1% of layer). Ablating them reduces m(X) by 11% of W477

(0.03). Example: a latent at I101 prefers IXX (E1); its activation rises only in the clean input478

(E2→Q2). Together, motif detectors accounts for 19.10% of W (0.053).479

Layer 12. The zero-circuit performance is m0 = 0.096; thus the explainable window is W =480

T −m0 = 0.50. The circuit requires 18 latent–token pairs to meet the criterion. This layer contains481

domain detectors. This cluster contains 5 pairs (27.8% of the layer). Annotated domains (TOP2 ’s482

own labels: GHKL / HATPase_c) (16.7% of layer). Ablating them reduces m(X) by 24.6% of W483

(0.125).484

Misc domains (e.g., XPG-I or Kinesin) (11.1% of layer). Ablating them reduces m(X) by 1.6% of485

W (0.01). Example: two latents prefer XPG-I/Kinesin families (E1); removal yields a small drop.486

Together, domain detectors accounts for 31.3% of W (0.158).487

Layer 16. The zero-circuit performance is m0 = 0.11; thus the explainable window is W =488

T − m0 = 0.49. The circuit requires 25 latent–token pairs to meet the criterion. This layer also489

contains domain detectors. This cluster contains 6 pairs (24% of the layer). Annotated (GHKL /490

HATPase_c) (24% of layer). Ablating them reduces m(X) by 15.6% of W (0.0785). Example: a491

latent at V201 fires on GHKL proteins (E1) and activates only in the clean run (E2→Q2). Together,492

domain detectors accounts for 15.6% of W (0.0785).493
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Table 1: Layer-wise role for latents in MetXA circuit.

Layer Role Class Quantity % of Layer ∆m drop (abs) ∆m drop
(rel % w/o err)

4
(Zero Circuit Base-
line: 0.027)

Motif Detectors Direct 5 16.7 0.0860 22.9
Indirect 5 16.7 0.0500 13.3

Total Explained - 10 33.3 0.1330 35.3
Unlabeled - 20 66.6 – –

8
(Zero Circuit Base-
line: 0.255)

Domain Detectors Annotated 1 9.1 0.0150 9.5
Misc 4 36.7 0.0590 38.0

Total Explained - 5 45.4 0.0740 47.2
Unlabeled - 6 54.6 – –

12
(Zero Circuit Base-
line: 0.156)

Domain Detectors Annotated 2 4.0 0.0190 7.7
Misc 6 12.0 0.0720 29.1

Total Explained - 8 16.0 0.0930 37.7
Unlabeled - 42 84.0 – –

Table 2: Layer-wise role for latents in TOP2 circuit.

Layer Role Class Quantity % of Layer ∆m drop (abs) ∆m drop
(rel % w/o err)

4
(Zero Circuit Base-
line: 0.33)

Motif Detectors Direct 6 20.7 0.0170 6.3
Indirect 7 24.1 0.0300 11.0

Total Explained - 13 44.8 0.0530 19.1
Unlabeled - 16 55.2 – –

12
(Zero Circuit Base-
line: 0.096)

Domain Detectors Annotated 3 16.7 0.1250 24.6
Misc 2 11.1 0.0080 1.6

Total Explained - 5 27.8 0.1580 31.3
Unlabeled - 13 72.2 – –

16
(Zero Circuit Base-
line: 0.11)

Domain Detectors Annotated 6 24.0 0.0780 15.6
Misc - – – –

Total Explained - 6 24.0 0.0780 15.6
Unlabeled - 19 76.0 – –
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Table 3: Latent census by layer (MetXA).

Layer Latent ID Position Global Role ∆ Activation
(clean−corr.) Class

4

3788 P113/P131 XXI 2.76 Directly explained
1690 Y362 XXXF 3.95 Directly explained
237 E366 YX 2.63 Directly explained
798 D361 DXXG -0.38 Directly explained
340 E366 FX 3.22 Directly explained
2277 G159 G 0.13 Indirectly modulated
3634 G159 XXXXG 0.07 Indirectly modulated
1682 I181 PXXXXXX 0.09 Indirectly modulated
2311 H355 XXM 0.08 Indirectly modulated
3326 H355 H -0.03 Indirectly modulated

8

488 T297/T315 AB hydrolase 0.45 Annotated domain
2677 I181 FAD/NAD 1.05 Misc domain
2166 T315 DHFR -0.39 Misc domain
2775 I181,T315 Transketolase 0.46,0.38 Misc domain

12

2112 I163/I181, A167 AB hydrolase 0.86,2.3 Annotated domain
1256 I181 FAM 1.03 Misc domain
3794 I181 SAM Mtases 1.31 Misc domain
3035 I181 WD40 0.6 Misc domain
2797 I181 Aldolase 1.52 Misc domain
3536 I181 SAM Mtases 0.96 Misc domain

Table 4: Latent census by layer (TOP2).

Layer Latent ID Position Global Role ∆ Activation
(clean−corr.) Class

4

1509 E272 E 10.28 Directly explained
2511 N270 XXQ 1.17 Directly explained
2112 G34 YXX 6.08 Directly explained
3069 E272 GX 6.3 Directly explained
3544 Y32 C -1.87 Directly explained
2929 N270 N -0.24 Directly explained
3170 D269 XN -1.23 Indirectly modulated
3717 V101 V -0.2 Indirectly modulated
527 N270 DX -0.4 Indirectly modulated

1297 I71 I -0.24 Indirectly modulated
1468 I71 XXXN 0.05 Indirectly modulated
1196 D269 D -0.54 Indirectly modulated
3229 V101 IXX 0.06 Indirectly modulated

12

3943 V201 HATPase 3.61 Annotated domain
1796 V201 HATPase 1.48 Annotated domain
1204 V201 HATPase 2.01 Annotated domain
1082 V201 XPG-I 0.58 Misc domain
2474 V201 Kinesin 1.11 Misc domain

16
1353 V201 HATPase 5.51 Annotated domain
1597 V201,F203 HATPase 4.53 Annotated domain
1166 T199,V201,P205 HATPase 4.34,2.65,4.03 Annotated domain
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Figure 4: TOP2 structure (RCSB-PDB ID: 1PVG Chain A Classen et al. [2003]) with SSE elements
used for contact prediction in orange, and relevant flank regions in blue [Zhang et al., 2024]

B Materials494

B.1 Model and Data Selection495

Protein language model. All experiments use ESM-2-650M as the primary protein language model,496

from FAIR’s public repository (“esm2_t33_650M_UR50D” checkpoint). No additional fine-tuning497

was performed [Lin et al., 2023b, Meta AI (FAIR), 2023b].498

Sparse autoencoders (SAEs). We use eight publicly released SAEs from Adams et al. [2025],499

trained on residual stream activations from layers 4, 8, 12, 16, 20, 24, 28, and 32. Each SAE500

encodes the 1 280-dimensional residual activation (extracted after the attention and MLP sublayers)501

to a 4 096-d latent vector z, followed by a TopK gate (k = 64) to enforce sparsity. Throughout,502

latents refers exclusively to these pretrained SAE features z.503

Proteome for selectivity assays. AUROC and enrichment tests are applied to the reviewed504

Swiss-Prot subset of UniProt (N = 573, 661 proteins) [Boutet et al., 2007]. For manual inspection505

of top-activating sequences we use the InterProt viewer (UR50 protein set, accessed 2 Aug 2025).506

Case-study proteins. Zhang et al. [2024] demonstrated the sudden increase in contact recovery on507

ESM-2-3B. As both open sources SAEs were only available on ESM-2-650M, we iterated over the508

set of proteins from Zhang et al. [2024] and picked the two that showcased the jump in the smaller509

650M model. (1) DNA topoisomerase 2; Species: Saccharomyces cerevisiae strain ATCC 204508510

/ S288c (baker’s yeast) S288C; UniProt: P06786; PDB: 1PVG [Mirza et al., 2005] (2) Homoserine511

O-acetyltransferase; Species: Haemophilus influenzae strain ATCC 51907 / DSM 11121 / KW20 /512

Rd; UniProt: P45131; PDB: 2B61 [Classen et al., 2003].513

B.2 Contact-prediction task514

We adapt the contact prediction task defined by Zhang et al. [2024], using the ESM-2 contact pre-515

diction head [Rao et al., 2020, Meta AI (FAIR), 2023a]. They built a dataset of pairs of contacting516

secondary-structure elements (SSEs) separated by > 100 aa in the primary sequence across 266 pro-517

teins. For an input protein sequence X (which may contain masked tokens) and its corresponding518

pair of SSEs from their database, we define the per-SSE-pair prediction quality as the recovery score519

m(X) =

∑
i∈R1

∑
j∈R2

P (contactij |X)∑
i∈R1

∑
j∈R2

P (contactij |Xfull)
, (2)
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where R1, R2 index the two SSEs and Xfull is the unmasked sequence.520

Jump setup. Two inputs are compared: a clean sequence whose flanks yield high recovery (typi-521

cally, m≈1) and a corrupted sequence with two fewer flank residues that collapses to near-random522

(m≲0.1). The step-change constitutes is referred to as the jump.523

B.3 Motif notation524

We describe motifs using one-letter amino acid codes with the following notation:525

• {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}: a specific, conserved amino acid.526

• X: any amino acid (position not conserved).527

• underline: the token at which the latent activates.528

B.4 Sparse Autoencoders (SAEs)529

Neurons in deep neural networks and language models are usually polysemantic, meaning that they530

activate on to multiple unrelated variables or concepts [Olah et al., 2020]. One potential cause of531

polysemanticity is superposition, where a neural network represents more independent features of532

the data than it has neurons for by assigning each feature its own linear combination of neurons533

[Bricken et al., 2023]. The work by Elhage et al. [2022] has shown how Sparse Autoencoders534

(SAEs) can be used to disentangle these dense representations into monosemantic neurons, which535

represent a single concept/variable.536

We use the sparse autoencoders trained by Adams et al., which followed Gao et al., where each SAE537

is a linear encoder–decoder that learns a sparse, length-k latent vector z for every residual-stream538

activation x ∈ Rd:539

z top-k︸ ︷︷ ︸
sparse

= TopK
(
Wenc (x− b)

)
, x̂ = Wdec z + b, L = ∥x− x̂∥22.

Individual neurons zi in the SAE are referred to as latents. Because only the k top activating latents540

survive the TopK gate, individual latents are often monosemantic [Gao et al., 2024], making them541

easier to interpret or ablate.542

B.5 Circuit Discovery543

B.5.1 Causal influence ranking by activation patching544

We aim to discover which specific latents at each sequence position (latent–token pairs) are causally545

necessary for the contact prediction jump. First, we conduct two forward passes of the network, one546

with the clean sequence that produces near-complete contact recovery, and one with the corrupted547

sequence that produces near-zero contact recovery. Then, for each SAE latent at each sequence548

position, we measure its indirect effect (IE) [Pearl, 2022] using counterfactual activation patching549

[Vig et al., 2020, Finlayson et al., 2021]. Activation patching copies the hidden activations of a550

single network component from one forward pass into another. Here, we copy the latent activations551

from the corrupted forward pass into a clean forward pass. The change in the model’s output that552

results from patching a component is called the indirect effect (IE) of that component.553

Indirect-effect calculation. For a component a we patch its activations from the failing run into the554

successful one and recompute the score: m
(
Xclean | do(a←apatch)

)
.555

IE(a) = m
(
Xclean | do(a←apatch)

)
−m(Xclean). (3)

Patching can be restricted to a single position t by swapping only a[t]. We refer to the activation556

of a latent at a specific sequence position as “latent–token pair.” Components are ranked by the557

magnitude of their IE; a large negative value indicates that importing a from the corrupted run alone558

has a large negative impact on contact recovery even though the rest of the network still receives the559

clean input.560

Directly evaluating the indirect effect in (3) for every latent–token pair would require a forward pass561

per component (∼ 107), which is infeasible. Instead, following Marks et al. [2024] we compute562

17



effects with two gradient-based approximations: Attribution Patching [Nanda, 2023, Syed et al.,563

2023, Kramár et al., 2024]: a first-order Taylor expansion around the clean run that estimates the564

effect of all components using only two forward passes and a single backward pass. Integrated565

Gradients [Sundararajan et al., 2017, Hanna et al., 2024]: a more accurate path integral of the566

gradient along the straight-line interpolation between patched and clean activations. We use N=10567

[Marks et al., 2024] evenly spaced interpolation points, trading the extra 10 forward–backward pairs568

for a noticeably tighter fit than only using attribution patching Hanna et al. [2024].569

B.5.2 Circuit Discovery570

Circuits are a subgraph of a neural network [Olah et al., 2020, Wang et al., 2022]. In the context of571

this work, we define circuit as the minimal set of latent–token pairs needed to maintain a threshold of572

the contact recovery, while all other pairs are ablated (frozen to their corrupted activations). We rank573

4,092 × 8 latents at each of the ∼400 sequence positions for IE, yielding ∼1.3 × 107 latent–token574

pairs. However, SAEs are usually not able to reconstruct the activations with 100% accuracy. So575

error terms [Marks et al., 2024] are added to the reconstructions to maintain performance. Math-576

ematically, the error term ε(x) is the difference between the model and reconstructed activations:577

x = x̂+ ε(x)578

We construct the circuit with the top K latent–token pairs with highest indirect effect. We begin by579

patching the corrupted activations for every pair not in the top K. Then, we allow the top K to be580

recomputed during the forward pass. If contact recovery jumps, the retained pairs are sufficient to581

create the circuit; if it remains low, the circuit is still missing critical pieces and we continue adding582

more clean activations. We set the threshold at 70% of the post-jump recovery. We chose 70% to583

explain the majority of the jump while focusing on the most important latents.584

Layer-wise bottlenecks. In addition to the model-spanning circuit defined above, we seek to com-585

pute layer-specific bottlenecks, defined as the minimal set of latent–token pairs from a specific layer586

needed to maintain a threshold of contact recovery, with all other latent–token pairs from that layer587

ablated and with all other layers not directly intervened. For layer ℓ we allow only its top-Kℓ latent–588

token pairs to be recomputed and patch the corrupted activation for all other latent–token pairs in589

that layer. All other layers are also allowed to be recomputed. Caples et al. [2025]. Kℓ is the small-590

est value reaching ≥70% recovery, this set of pairs are referred to as Bℓ. Layer bottlenecks trade591

completeness for interpretability: Bℓ ⊆ circuit, but each is small enough for manual inspection.592

B.5.3 Path Patching593

To quantify how strongly an upstream SAE feature ui in layer ℓ influences a downstream feature dj594

in layer ℓ′, we follow Wang et al. [2022] and compute an edge attribution via path patching. This595

method isolates the causal pathway from ui to dj through a two-stage intervention:596

1. Record downstream change: Patch the upstream feature activation from uclean
i to ucorr

i while597

keeping all other upstream features at their clean values. Record the resulting downstream acti-598

vation dablated
j .599

2. Isolate pathway effect: In a fresh forward pass on the clean input, patch only the downstream600

feature from dclean
j to dablated

j (the value recorded in step 1), keeping all other features at their601

clean values.602

3. Measure metric change: Compute the change in metric (2): wi→j = mpatched −mclean .603

The resulting edge weight wi→j isolates the causal contribution of feature ui to the model’s per-604

formance that flows specifically through feature dj , excluding any parallel pathways. This two-605

stage patching procedure ensures we capture only the direct ui → dj influence, providing a precise606

measure of feature interaction strength. However, this needs O(K2) forward passes for complete607

pairwise analysis.608
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C Sequence Logos609

(a) latent181 (F) (b) latent237 (YX) (c) latent340 (FX)

(d) latent443 (no motif) (e) latent794 (no motif) (f) latent798 (DXXG)

(g) latent963 (no motif) (h) latent1096 (FXXXX) (i) latent1474 (no motif)

(j) latent1682 (PXXXXXX) (k) latent1690 (XXXF) (l) latent1712 (DXXX)

(m) latent2277 (G) (n) latent2311 (XXM) (o) latent2340 (no motif)

(p) latent2443 (no motif) (q) latent3153 (no motif) (r) latent3326 (H)

(s) latent3351 (XL) (t) latent3634 (XXXXG) (u) latent3651 (no motif)

(v) latent3701 (no motif) (w) latent3764 (D) (x) latent3788 (XXI)

Figure 5: Sequence logos for motif-detector latents in layer 4 for MetXA. Each panel
shows the 21-residue window centered on the max-activating token; y-axis is information
(bits).
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(a) latent100 (no motif) (b) latent237 (YX) (c) latent527 (DX)

(d) latent601 (no motif) (e) latent1196 (D) (f) latent1297(I)

(g) latent1468 (XXXN) (h) latent1509 (E) (i) latent1949 (no motif)

(j) latent2005 (PXXXXX) (k) latent2112 (YXX) (l) latent2511 (XXQ)

(m) latent2850 (no motif) (n) latent2929 (N) (o) latent2947 (V)

(p) latent2983 (no motif) (q) latent3069 (GX) (r) latent3170 (XN)

(s) latent3229 (IXX) (t) latent3351 (no motif) (u) latent3544 (C)

(v) latent3634 (XXXXG) (w) latent3717 (V)

Figure 6: Sequence logos for motif-detector latents in layer 4 for TOP2. Each panel shows
the 21-residue window centered on the max-activating token; y-axis is information (bits).
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D Domain Correlation Tables610

Table 5: Top domain selectivity latents by AUC for aggregator top-q, group MetXA. We show the
number of positive and negative samples, bootstrap 95% CI, spearmann rho correlation of the score
vs length of sample.

layer latent domain domain_name N_pos N_neg AUC CI_lo CI_hi rho_len_pos rho_len_neg

12 3035 IPR036322 WD40 2148 2174 0.997 0.995 0.999 -0.496 0.031
12 2112 IPR029058 AB hydrolase fold 2937 2957 0.994 0.992 0.996 0.075 -0.101
8 2677 IPR036188 FAD/NAD 4014 4124 0.983 0.98 0.985 -0.659 -0.127

12 3536 IPR029063 SAM MTases 10228 10545 0.972 0.97 0.975 -0.388 0.089
8 488 IPR029058 AB hydrolase fold 2937 2957 0.971 0.967 0.975 -0.56 0.089

12 3794 IPR029063 SAM MTases 10228 10545 0.968 0.966 0.971 -0.662 -0.023
12 1256 IPR016181 NAT 1554 1579 0.96 0.951 0.968 -0.271 0.088
12 2797 IPR013785 Aldolase 12702 13012 0.929 0.926 0.932 -0.482 0.036
8 2775 IPR009014 Transketolase 772 785 0.921 0.903 0.937 0.144 -0.047
8 2166 IPR024072 DHFR 135 142 0.86 0.815 0.902 -0.578 0.033

Table 6: Top domain selectivity latents by AUC for aggregator top-q, group TOP2. We show the
number of positive and negative samples, bootstrap 95% CI, spearmann rho correlation of the score
vs length of sample.

layer latent domain domain_name N_pos N_neg AUC CI_lo CI_hi rho_len_pos rho_len_neg

12 2472 IPR036961 Kinesin 221 222 0.998 0.992 1 -0.292 -0.028
16 3077 IPR036890 HATPase_C_sf 1700 1737 0.997 0.995 0.999 -0.53 0.011
16 1353 IPR036890 HATPase_C_sf 1700 1737 0.996 0.994 0.998 -0.606 0.013
16 1814 IPR036890 HATPase_C_sf 1700 1737 0.996 0.993 0.998 -0.206 0.091
12 1145 IPR036890 HATPase_C_sf 1700 1737 0.996 0.993 0.998 -0.356 -0.047
20 2311 PF13589 HATPase_c_3 869 892 0.995 0.992 0.999 0.076 0.048
12 3943 IPR036890 HATPase_C_sf 1700 1737 0.995 0.993 0.997 -0.588 0.058
12 1796 IPR036890 HATPase_C_sf 1700 1737 0.994 0.991 0.997 -0.107 0.115
12 1082 PF00867 XPG_I 220 223 0.994 0.983 1 -0.062 -0.055
16 1166 PF13589 HATPase_c_3 869 892 0.992 0.987 0.997 0.135 0.015
12 1204 IPR036890 HATPase_C_sf 1700 1737 0.974 0.969 0.978 0.409 0.094
16 1597 IPR036890 HATPase_C_sf 1700 1737 0.794 0.778 0.811 0.487 0.077
16 3994 PF13589 HATPase_c_3 869 892 0.712 0.685 0.739 0.124 0.007

(a) auc topq, top2 (b) auc mean, top2 (c) auc max, top2 (d) auc topk, top2

Figure 7: AUROC score bar charts for TOP2 using mean, max and topk aggregators.
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(a) (b) (c)

Figure 8: (a) Spearman rho correlation topq score vs log L, for negative samples between
-0.1 to 0.1. (b) Demonstrating difference in auroc for mean and top q%. (c) AUC compar-
ison max vs top q%.

(a) auc mean, metx (b) auc max, metx (c) auc topk, metx

Figure 9: AUROC score bar charts for MetXA using mean, max and topk aggregators.
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E Path Patching results611

Table 7: Interpretable edges for MetXA between manually analyzed latents. Upstream is earlier,
downstream is later.
Edge Rank Up Layer Up Latent Up Feature Down Layer Down Latent Down Feature

19 4 1690 XXXF 8 2775 Transketolase
26 4 798 DXXG 8 2775 Transketolase
47 8 2775 Transketolase 12 1256 FAM
67 8 2775 Transketolase 12 2112 AB_Hydrolase_fold
76 8 2677 FAD/NAD 12 2112 AB_Hydrolase_fold

129 8 2677 FAD/NAD 12 1256 FAM
132 4 340 FX 12 2112 AB_Hydrolase_fold
146 4 2277 G 8 2677 FAD/NAD
147 4 237 YX 8 2775 Transketolase
152 4 3788 XXI 12 2112 AB_Hydrolase_fold
159 4 3788 XXI 12 1256 FAM
168 8 488 AB_Hydrolase_fold 12 2112 AB_Hydrolase_fold
178 8 2677 FAD/NAD 12 2797 Aldolase
179 4 340 FX 12 1256 FAM
184 8 2775 Transketolase 12 2797 Aldolase
186 8 2677 FAD/NAD 12 3794 SAM_mtases
196 8 2677 FAD/NAD 12 3536 SAM_mtases
208 4 3634 XXXXG 8 2677 FAD/NAD
210 4 1690 XXXF 8 2677 FAD/NAD
228 4 3788 XXI 8 2166 DHFR
235 8 2775 Transketolase 12 3536 SAM_mtases
246 4 1690 XXXF 12 1256 FAM
254 4 2311 XXM 12 2112 AB_Hydrolase_fold
268 4 237 YX 12 2112 AB_Hydrolase_fold
274 4 340 FX 8 488 AB_Hydrolase_fold
290 8 2775 Transketolase 12 3035 WD40
295 8 2166 DHFR 12 3536 SAM_mtases
306 4 1682 PXXXXXX 12 1256 FAM
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Table 8: Interpretable edges for TOP2 between manually analyzed latents. Upstream is earlier,
downstream is later.
Edge Rank Up Layer Up Latent Up Feature Down Layer Down Latent Down Feature

1 12 3943 Hatpase_C 16 1353 Hatpase_C
25 12 1204 Hatpase_C 16 1166 Hatpase_C
28 12 1204 Hatpase_C 16 1597 Hatpase_C
32 12 1796 Hatpase_C 16 1353 Hatpase_C
34 4 1509 E 16 1353 Hatpase_C
40 12 3943 Hatpase_C 16 1597 Hatpase_C
46 4 1509 E 16 1166 Hatpase_C
48 12 1796 Hatpase_C 16 1597 Hatpase_C
54 4 1509 E 12 3943 Hatpase_C
55 4 1509 E 16 1597 Hatpase_C
57 4 3170 XN 12 3943 Hatpase_C
61 4 3170 XN 16 1597 Hatpase_C
66 4 3170 XN 16 1166 Hatpase_C
68 4 2112 YXX 12 2472 Kinesin
76 4 2511 XXQ 12 2472 Kinesin
79 4 2511 XXQ 16 1166 Hatpase_C
82 4 2929 N 12 2472 Kinesin
87 4 527 DX 12 2472 Kinesin
91 4 3717 V 12 2472 Kinesin
92 4 1468 XXXN 12 2472 Kinesin

100 4 3717 V 16 1597 Hatpase_C
102 4 3170 XN 12 2472 Kinesin
118 4 3069 GX 16 1353 Hatpase_C
123 4 3717 V 16 1166 Hatpase_C
137 12 1204 Hatpase_C 16 1353 Hatpase_C
140 4 1509 E 12 1796 Hatpase_C
151 12 2472 Kinesin 16 1597 Hatpase_C
157 4 1468 XXXN 12 3943 Hatpase_C
175 4 3170 XN 16 1353 Hatpase_C
189 4 527 DX 16 1166 Hatpase_C
198 4 3069 GX 12 1204 Hatpase_C
203 4 1468 XXXN 16 1353 Hatpase_C
204 4 1468 XXXN 16 1597 Hatpase_C
223 12 2472 Kinesin 16 1166 Hatpase_C
225 4 1468 XXXN 16 1166 Hatpase_C
229 4 3069 GX 16 1166 Hatpase_C
232 4 3544 C 12 1204 Hatpase_C
234 4 1297 I 16 1597 Hatpase_C
238 4 3544 C 12 3943 Hatpase_C

Figure 10: Edge strength distribution (sorted by |∆m|) for MetXA.
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Figure 11: Edge strength distribution (sorted by |∆m|) for TOP2.
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F Additional recovery curves612

(a) Global recovery curve - MetXA (b) Circuit size distribution - MetXA

Figure 13: Performance and distribution diagnostics for the learned circuit.

(a) Global recovery curve - TOP2 (b) Circuit size distribution - TOP2

Figure 14: Performance and distribution diagnostics for the learned circuit.
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