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Abstract

Recent advances in Large Language Models (LLMs) have highlighted the critical
importance of extending context length, yet the quadratic complexity of atten-
tion mechanisms poses significant challenges for efficient long-context modeling.
KV cache compression has emerged as a key approach to address this challenge.
Through extensive empirical analysis, we reveal a fundamental yet previously
overlooked asymmetry in KV caches: while adjacent keys receive similar attention
weights (local homogeneity), adjacent values demonstrate distinct heterogeneous
distributions. This key-value asymmetry reveals a critical limitation in existing
compression methods that treat keys and values uniformly. To address the limita-
tion, we propose a training-free compression framework (AsymKV) that combines
homogeneity-based key merging with a mathematically proven lossless value
compression. Extensive experiments demonstrate that AsymKV consistently out-
performs existing long-context methods across various tasks and base models.
For example, on LLaMA3.1-8B, AsymKV achieves an average score of 43.95 on
LongBench, surpassing SOTA methods like H2O (38.89) by a large margin.Our
code can be found in this link.

1 Introduction

The ability to process long contexts is crucial for Large Language Models (LLMs) [13, 23]. However,
processing such long contexts poses significant challenges: pre-trained LLMs face both architectural
and computational constraints in handling extended contexts. In particular, as the context length
increases, the complexity of attention mechanisms increases quadratically (O(n2)), while storage
overhead increases linearly (O(n)) [7].

Various approaches have been proposed to address this challenge, with KV cache compression
emerging as a promising direction [15]. These methods aim to compress the KV cache while
preserving essential information for maintaining model performance. A straightforward strategy
is to keep tokens with high historical importance (e.g., attention scores [16, 19, 20, 33]). This
approach leverages the observation that attention weights exhibit significant variation across different
tokens. Another line of work attempts to identify more general token importance rather than the
history information [28, 27, 5]. However, these approaches share a fundamental limitation: they
fail to capture certain tokens that are less important in the histroy but suddenly become critical for
subsequent predictions.

To address the information loss caused by directly discarding tokens, cache merging methods have
been proposed to merge multiple tokens into fewer representations rather than hard pruning, thereby
preserving more information [32, 26, 27]. These merging approaches implicitly assume that certain
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Figure 1: Contrasting distributions of local homogeneity in attentions (keys) versus local hetero-
geneity in values. Statistics are from Llama-2-7b-chat on the ShareGPT dataset. (a-b) demonstrate
strong positive correlations between adjacent attention percentile ranks (normalized to [0,1], where 1
indicates highest attention) across all layers and heads, supporting the local homogeneity hypothesis
for keys. (c-d) reveal weak or negative correlations between adjacent value similarity percentile
ranks, computed from sim(vali, valj), indicating distinct heterogeneity in values. The similarity is
measured by cosine. This fundamental difference between keys and values suggests the need for
separate compression strategies.

redundancies or patterns exist in the KV cache. This raises a new fundamental question: what specific
characteristics of LLMs lead to these redundancies and make cache merging feasible? We answer
this question by identifying the key-value asymmetry in LLM attention mechanisms.

Local Key-Value Asymmetry Through extensive empirical analysis, we reveal a fundamental
pattern in attention distributions: the homogeneity of local keys. Specifically, we observe that adjacent
tokens consistently receive similar attention weights - when a query assigns high attention to
position j, the neighboring position (j + 1) typically receives comparable attention weight (Fig. 1a).
This pattern shows remarkable consistency across all layers and attention heads, with an average
Spearman correlation coefficient of 0.727 (Fig. 1b). This consistent local attention pattern, arising
from query-key interactions, suggests an underlying homogeneity of local keys - adjacent keys must
share certain structural properties to produce such stable attention patterns. Such key homogeneity
naturally emerges from language structure, where adjacent words form coherent semantic units and
contribute collectively to meaning representation.

The observed homogeneity of adjacent keys provides evidence for merging neighboring tokens, offer-
ing a principled explanation to recent token merging approaches. Specifically, when multiple adjacent
keys exhibit high homogeneity, computing and storing only one key for the merged representation
effectively approximate the original attention output, leading to both computational and memory
efficiency.

However, our analysis reveals a striking asymmetry: while keys exhibit strong local homogeneity,
adjacent values demonstrate markedly distinct heterogeneous distributions. As shown in Fig. 1c and
Fig. 1d, when switching from keys to value similarities, adjacent value vectors (vi and vi+1) often
show much lower or even negative correlations in some layers.

This local key-value asymmetry reveals critical limitations in existing methods: cache merging
methods [32, 26? ] apply identical merging strategies to both keys and values, overlooking their
fundamentally different distributional characteristics. More studies of this phenomenon will be
discussed in § A.

Training-free Asymmetry Modeling Based on the above analysis, the key challenge in cache
merging lies in modeling heterogeneous values. Fortunately, through careful examine of attention
mechanisms’ mathematical structure, we discover an elegant solution to this value heterogeneity.
We develop a mathematically proven value representation scheme that guarantees lossless attention
computation after merging adjacent keys. Notably, our method remains distribution-agnostic, making
it inherently robust to value heterogeneity.
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Building on the key-value asymmetry and the property for values, we propose AsymKV, a novel
training-free cache merging method for efficient long-context modeling. Our key insight is to
shift the information loss from heterogeneous values to homogeneous keys during merging, thereby
minimizing overall loss. Extensive experiments demonstrate that our method consistently outperforms
existing long-context methods across various tasks and base models. On LLaMA3.1-8B, AsymKV
achieves an average score of 43.95 on LongBench, surpassing H2O [33] (38.89) by a significant
margin. These results demonstrate AsymKV’s effectiveness in extending LLMs’ context handling
capabilities without additional training.

Our Contributions: The key contributions of this work are threefold. First, we reveal a contrasting,
yet previously overlooked asymmetry of local keys and values in LLM attention mechanisms. Second,
based on this asymmetric property, we propose a novel training-free compression framework that
combines homogeneity-based key merging with a mathematically proven lossless value representation.
Third, we demonstrate through extensive experiments that our method consistently outperforms
existing long-context methods across various tasks and base models.

2 Related Work

KV Cache Pruning Recent research focuses on compressing the KV cache through selective
token retention and importance-based pruning. H2O [33] introduces the concept of “Heavy Hitters”
- tokens that contribute significantly to attention scores - and develops a theoretically-grounded
eviction policy. Building on this idea, RoCo [22] improves the robustness of cache compression
by considering both temporal attention scores and stability measures. More recent works like
SnapKV [16] and Scissorhands [19] leverage the persistence of token importance across generation
steps, while [9] demonstrates that L2 norm-based compression can achieve competitive results with a
simpler implementation. However, these compression methods face a fundamental challenge: they
rely heavily on token-centric measures (e.g., attention scores or norm values) to determine which
tokens to retain, potentially discarding tokens that suddenly become crucial for future predictions.

KV Cache Merging Another line of works have explored merging similar KV cache positions to
reduce memory footprint during inference. CaM [32] proposes an adaptive merging strategy guided
by attention scores, while D2O [26] introduces a two-level discriminative approach considering
both layer-wise patterns and token similarities. KVMerger [? ] adaptively constructs the KV
cache by analyzing the intrinsic structure of attention modules. However, a fundamental limitation
of these approaches is their uniform treatment of keys and values during merging despite their
distinct distributional characteristics. As discovered in the introduction, this oversight is particularly
problematic given the inherent heterogeneity of value vectors, which, unlike keys, often exhibit
significant variations even between adjacent positions.

Context Segmentation and Sliding One polular variant of KV cache compression leverages context
segmentation and sliding. These approaches stem from StreamingLLM [28], which discovered
that initial tokens and recent tokens are more important than other middle tokens in the attention.
Therefore, it only keeps such tokens. LongCache [18] expands StreamingLLM by keep critic middle
tokens. These tokens are identified via the historical attention weights. SirLLM [31] uses token
entropy to identify and keeps critic middle tokens. These segmentation-based methods require
minimal KV cache operations, making them computationally efficient. However, these compression
strategies essentially involve directly discarding tokens with lower weights, which results in significant
information loss when these tokens suddenly become critical for future predictions.

3 Proposed Method

Building on the key-value asymmetry, we propose AsymKV. Our main idea is to shift the information
loss from heterogeneous values to homogeneous keys during merging, thereby minimizing the loss.
We show the key intuition and framework of AsymKV in Figure 2. (Left) Previous approaches
that apply identical merging strategies to both keys and values suffer from significant information
loss, especially considering the heterogeneous nature of values. In contrast, we leverage the asym-
metry between keys and values in the attention mechanism. Our method compresses keys with
minimal information loss (§ 3.1) due to their local homogeneity nature, while preserving the distinct
characteristics of heterogeneous values through cardinality-aware normalization (§ 3.2).
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Figure 2: Illustration of our AsymKV mechanism. Left: Conventional approaches that uniformly
merge both keys and values lead to information loss. Middle: We merge adjacent homogeneous
keys for minimal loss. Right: We preserve their heterogeneous values through cardinality-aware
normalization.

3.1 Homogeneous Key Merging

Our primary goal of adjacent token compression is to convert the original n tokens in the KV cache
into n− 1 by merging a pair of adjacent positions m,m+ 1.

First, consider the key merging. Based on our observation of adjacent key homogeneity, we can
merge adjacent keys without significantly affecting model performance. Given key vectors K =
[k1,k2, . . . ,kn] from the KV cache and a pair of adjacent positions m,m+1 to be merged, let L(K)
denote the language modeling loss. After compressing km,km+1 into one embedding k, we denote
the new loss as:

L([K<m,k,K>m+1]) (1)

where K<i denotes the sequence [k1, . . . ,ki−1], and K>i denotes [ki+1, . . . ,kn]. Our objective of
optimal key compression is to find k that minimizes the information loss.

Due to the dimensional mismatch between the original K and [K<m,k,K>m+1] in Eq. (1) (n×d →
(n− 1)× d), our cache merging takes two steps: 1. Find a pair of identical embeddings (k∗,k∗) to
replace (km,km+1) while preserving dimensionality, which is mathematically tractable. 2. Leverage
attention properties to merge the two tokens.

We first find optimal embeddings k that minimize L([K<m,k,k,K>m+1]) while keeping the
dimensionality. For simplification, we denote it as L(k,k), and the optimal k as k∗: k∗ =
argmink L(k,k).
We approach this optimization problem using a Newton-like method. By applying a second-order
Taylor expansion of L(x,y) around (km,km+1):

L(x,y) ≈ L(km,km+1) +∇L(km,km+1)
⊤
[

x− km

y − km+1

]
+

1

2

[
x− km

y − km+1

]⊤
H

[
x− km

y − km+1

]
(2)

where H is the Hessian matrix at (km,km+1). We denote the Hessian matrix H as:

H =

[
H11 H12

H21 H22

]
(3)
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Each submatrix Hab is a d× d matrix. To minimize L(k,k), we set x = k, y = k and substitute
into our quadratic approximation:

L(k,k) ≈ L(km,km+1) +∇L(km,km+1)
⊤
(

k− km

k− km+1

)
+

1

2

(
k− km

k− km+1

)⊤

H

(
k− km

k− km+1

)
(4)

Following the Newton method, we find the critical point by setting the gradient of this quadratic
approximation to zero. This yields the optimal solution (details in Appendix C):

k∗ =(H11 + 2H12 +H22)−1[H11km +H12(km + km+1) +H22km+1 − (gm + gm+1)]
(5)

where gm = ∇km
L and gm+1 = ∇km+1

L.

To efficiently compute the Hessian matrix H, we use the Fisher information matrix as an approxima-
tion, which is a common technique in second-order optimization methods. Following the approach
in neural network pruning [12], we assume that the interactions between parameters are negligible
and approximate the Fisher information matrix as a diagonal matrix. The diagonal elements can be
efficiently computed using their gradients:

Hii = Fii = ∇L(km,km+1)
2
i (6)

In our empirical analysis, we discover that the magnitude of gradient terms gm and gm+1 can exceed
that of H by six orders of magnitude in Eq. (5). This is a known issue in Newton-like methods when
the function is far from its minimum or when the curvature is very small. To stabilize the optimization
and maintain k∗ as a valid key, we adopt a modified Newton approach by dropping the gradient terms
from Eq. (5), effectively using only the curvature information to guide our solution.

Compression Position Selection To minimize information loss during merging, we select positions
m,m+ 1 with the lowest sum of attention scores, where positions receiving minimal attention have
the least impact on the model’s attention mechanism.

3.2 Cardinality Normalization for Lossless Value Merging

After replacing adjacent keys with identical embeddings, two challenges remain: (1) how to reduce
input tokens (k∗,k∗) → k∗ to improve computing efficiency; (2) how to merge their corresponding
values. We elaborate how to extend the attention mechanism to address both challenges while
maintaining output equivalence.

In the original attention mechanism, the output for query q is:

Attention(q,K,V) =

|K|∑
i=1

exp(q · ki)∑|K|
j=1 exp(q · kj)

vi (7)

After key compression where km = km+1 = k∗ in § 3.1, we have:

Attention(q,K,V) =
∑

i∈[1,n]\{m,m+1}

exp(q · ki)∑|K|
j=1 exp(q · kj)

vi +
exp(q · k∗)∑n
j=1 exp(q · kj)

(vm + vm+1)︸ ︷︷ ︸
attention to one merged KV pair

(key=k∗, value=vm + vm+1)
(8)

Examining Eq. (8), we observe a key insight: after converting both km,km+1 to k∗, the attention
output for two original tokens m and m+ 1 is mathematically equivalent to the attention output for a
single compressed token with key k∗ and value (vm + vm+1).

(Locally Merged Attention) The insight above naturally suggests an alternated attention mechanism
for merged tokens, which we denote as Locally Merged Attention (LMA):

LMA(q,K,V,C) =

|K|∑
i=1

exp(q · ki)∑n
j=1 exp(q · kj)cj

vi (9)
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where ci indicates the number of original tokens represented by the i-th compressed token. The
cardinality vector c is designed to maintain the denominator in Eq. (8), ensuring mathematical
equivalence between the original and compressed attention mechanisms. Initially, ci = 1 for all
tokens. After merging positions m and m+1, we update C as [C<m, cm+cm+1,C>m+1], ensuring
the denominator in our attention calculation remains equivalent to the original uncompressed attention.

(Equivalence) Using LMA, the following equivalence holds:

Attention(q,K,V) = LMA(q,K′,V′,C) (10)

where K,V are KV caches for n tokens while K′,V′ are for n− 1 tokens:

K′ = [K<m,k∗,K>m+1]

V′ = [V<m,vm + vm+1,V>m+1]
(11)

This equivalence reveals an elegant characteristic of attention mechanisms: they permit lossless
compression of values through simple vector addition. The only cost is to store C with n integers.
This property is particularly powerful as it enables preservation of attention outputs while reducing
sequence length, effectively solving the quadratic complexity challenge of long-sequence processing.

3.3 Efficient Implementations for Long-Text Generation

3.3.1 Time-Efficiency by Chunk-wise Parallel Compression

We propose a chunk-based parallel compression method for efficient long-text generation. The
process predicts the next token using HLA in place of the original attention, without requiring any
model fine-tuning. More specifically, when the context length reaches max_length, after every
chunk_size new tokens, we compress max_length + chunk tokens into max_length tokens in
parallel by: 1. Identifying chunk pairs of adjacent tokens with lowest attention scores. 2. Computing
optimal compression according to Eq. (5). 3. Merging keys, values and cardinalities.

Since the merge operation is performed only once every chunk_size tokens (e.g., 512 tokens), its
computational overhead is minimal relative to the overall inference process. The compression step
requires only a single backward pass to compute the Hessian matrices for all candidate compression
positions, followed by parallel execution of the optimal compression operations. This design ensures
that AsymKV maintains inference efficiency. More experimental results are shown in § 4.5.

3.3.2 Memory-Efficiency by Selective Gradient Computation

Our method requires gradient computation (Eq. (5)) which might raise concerns about increased
memory usage. However, AsymKV still maintains memory efficiency compared to other approaches.
Unlike typical backpropagation that computes gradients for all parameters, we only compute gradients
for key embeddings within the current chunk, not for all model parameters.

To elaborate further from a quantitative perspective, this selective gradient computation yields a
gradient tensor of size approximately c× d, where c denotes the chunk size and d is the dimension
per token. In contrast, a standard forward pass (and its associated gradient computation) requires
storing the full model parameters (with size O(p), where p is the total number of parameters) along
with the KV cache states, sized at 2 × l × d (where l represents the maximum sequence length).
Thus, the additional memory overhead from our selective gradients is on the order of O(cd), which
is significantly smaller than the baseline’s O(2ld + p) when c ≪ l (a typical scenario in chunked
processing). This avoids unnecessary gradient computations across the entire sequence, ensuring
that both memory and computational overhead are greatly reduced. Detailed memory statistics are
provided in § 4.5.

4 Experiments

4.1 Experimental Setup

Baselines We compare AsymKV against several categories of approaches: KV cache compres-
sion: H2O [33], KV cache merge: CaM [32] ,prompt compression: LLMLingua-2.0 [21], context
segmentation: StreamingLLM [28] and LongCache [18].
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Table 1: Performance on LongBench. AsymKV outperforms its baselines on most settings.

Single-Doc Multi-Doc Sum Few-shot Synthetic Code Avg.

Llama2-7B-chat

Full Context 25.80 21.47 24.62 62.86 4.96 48.90 32.00
StreamingLLM 19.29 21.05 23.15 60.85 1.81 48.58 29.61
LongCache 19.73 20.06 23.19 61.26 2.24 49.05 29.71
H2O 19.92 25.64 23.85 61.37 4.27 50.28 31.34
LLMLingua-2 21.47 23.29 23.53 33.23 6.17 35.12 24.20
CaM 19.53 20.64 22.67 61.81 4.18 48.53 30.15
AsymKV 24.63 24.15 24.22 62.11 10.18 52.16 33.12

Llama3.1-8B-Instruct

Full Context 43.73 44.49 29.12 69.36 53.56 52.94 60.21
StreamingLLM 28.15 27.19 25.15 63.17 16.33 54.02 35.73
LongCache 28.98 27.84 25.35 64.73 19.68 53.60 36.70
H2O 33.30 34.43 26.60 66.23 14.75 55.56 38.89
LLMLingua-2 32.02 32.24 24.99 27.87 17.67 52.63 30.75
CaM 32.14 32.63 24.91 63.09 16.77 54.03 37.49
AsymKV 39.42 38.93 27.30 65.66 39.39 55.24 43.95

Mistral-7B-Instruct-v0.3

Full Context 38.74 38.29 29.04 70.70 51.00 55.06 46.40
StreamingLLM 24.80 22.14 25.18 66.49 15.14 53.51 34.57
LongCache 26.05 22.31 25.44 66.21 14.93 53.43 34.80
H2O 29.66 28.22 26.32 67.78 14.83 53.95 37.09
LLMLingua-2 28.12 28.62 25.75 45.85 16.00 48.81 32.17
CaM 26.15 29.06 26.81 66.16 20.96 53.76 37.12
AsymKV 33.71 32.81 27.04 67.21 34.56 54.93 41.33

Qwen2-7B-Instruct

Full Context 37.07 41.77 28.27 68.61 36.25 50.67 43.81
StreamingLLM 27.73 28.14 24.32 66.85 7.50 49.55 34.70
LongCache 27.98 28.98 24.80 66.38 9.00 48.34 34.94
H2O 29.91 28.49 25.21 68.08 12.25 53.63 36.68
LLMLingua-2 30.04 31.71 24.63 46.32 6.50 50.09 31.96
CaM 29.14 28.59 25.87 66.33 9.25 48.88 35.38
AsymKV 33.72 34.46 26.24 69.88 14.25 49.33 38.76

Base Models To demonstrate the generality of AsymKV, we evaluate across diverse model ar-
chitectures: Llama2-7B-chat [24], Llama3.1-8B-Instruct [10], Mistral-7B-Instruct-v0.3 [11], and
Qwen2-7B-Instruct [29].

Implementation Details Unless otherwise specified, we set the compression context max_length
to 2048 tokens and chunk_size to 512. All baselines use the same settings for fair comparison.
For H2O, we set recent budget to 2048 and heavy budget to 512. Following attention sink [28], we
always preserve the initial 32 tokens. All experiments are conducted on NVIDIA A100 80GB.

4.2 Long Context Performance Evaluation

We evaluate AsymKV’s effectiveness on LongBench [2], a comprehensive benchmark for long-
context understanding. LongBench contains 16 English tasks from a wide range of categories.

Results As shown in Table 1, AsymKV consistently outperforms existing long-context methods
across different models and tasks. On LLaMA3.1-8B, AsymKV achieves a 43.95 average score,
surpassing H2O (38.89) and other baselines by a significant margin. The improvement is particularly
pronounced in challenging tasks like Synthetic reasoning, where AsymKV scores 39.39 compared to
H2O’s 14.75. For all base models, AsymKV maintains its advantage with average scores, showing
substantial improvements over baselines.
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Table 2: Performance on LongBenchV2.
Model Overall Easy Hard Short Medium Long
Full Context 30.02 30.73 29.58 35.00 27.91 25.93
StreamingLLM 27.04 27.60 26.69 32.78 23.26 25.00
LongCache 28.43 28.13 28.62 32.78 25.58 26.85
H2O 28.23 28.12 28.29 31.67 26.98 25.00
CaM 28.23 28.64 27.97 31.67 26.98 25.00
AsymKV 30.02 30.23 29.90 32.78 27.44 28.85

Table 3: Performance on early topic retrieval.

Model Qwen2-7B Llama3.1-8B Mistral-7B

Full Context 47.33 80.00 42.67
StreamingLLM 0.00 0.00 0.00
LongCache 0.00 0.00 8.67
CaM 12.67 24.67 15.33
H2O 21.33 63.33 38.67
LLMLingua2 0.00 0.00 0.00
AsymKV 36.00 75.33 40.67
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Figure 3: Inference efficiency.

Precise Information Retrieval In Single-Doc and Multi-Doc QA tasks, which require precise
information retention, AsymKV consistently outperforms other methods by significant margins (5-10
points). This suggests that our homogeneity-based compression effectively preserves key information
needed for accurate question answering.

Extreme Long-Context Compression We evaluate AsymKV on LongBenchV2 [3], a benchmark
with contexts ranging from 8,000 to 2 million tokens across six task categories (multi-document
QA, code comprehension, temporal reasoning, mathematical derivation, cross-lingual understanding,
and hierarchical information synthesis). Using Llama3.1-8B-Instruct with cache_size=8192, Table 2
shows that AsymKV matches full-context methods in short contexts while significantly outperforming
baselines in medium to long contexts (up to millions of tokens), demonstrating its effectiveness in
extreme long-context senarios.

Regularization Effect of AsymKV. AsymKV often outperforms the full-context model across
various tasks, suggesting that it acts as a form of regularization in long-context settings. Due to
the inherent limitations of LLMs in handling extended contexts, full KV caches tend to accumulate
redundant tokens with low attention scores, diluting focus on relevant information. By selectively
merging these low-attention tokens, AsymKV effectively suppresses contextual noise, leading to
more focused and efficient inference. A similar regularization phenomenon has also been observed in
related KV-cache optimization methods [33].

4.3 Comprehensive Information Retention

KV cache compression methods face multiple challenges in information retention: they must preserve
not only early context details but also maintain the ability to capture document-level semantic
structure and sequential relationships. To evaluate models’ comprehensive information retention
capabilities, we conduct experiments using TopicRet [14] from L-Eval [1]. This benchmark is
particularly challenging as it requires models to answer questions about the second or third topic in
multi-topic documents, testing their ability to retain early context information.

The results in Table 3 reveal several key findings. First, context segmentation methods
(StreamingLLM, LongCache) and prompt compression approaches (LLMLingua2) completely fail
at this task, scoring zero or near-zero across all models. This dramatic performance drop confirms
our hypothesis that discarding or imprecisely compressing early tokens severely impairs models’
ability to access historical information. Although methods like CaM and H2O show some capability
in retaining early information, their performance significantly lags behind full-context processing. In
contrast, AsymKV demonstrates remarkable effectiveness in preserving early context information,
achieving scores close to full-context processing (75.33 vs 80.00 on LLaMA3.1-8B).
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Figure 4: Effect of different compression ratios.

Table 4: Peak GPU Memory (MB)

Method L.2-7B L.2-13B

StreamingLLM 19,592 39,911
LongCache 24,968 49,236
H2O 22,479 47,310
CaM 22,548 47,476
AsymKV 24,923 48,671

Figure 5: Ablation study on different merge strategies.

Value Merge Strategy

Key Merge Strategy Same as Key Asymmetric

Mean Merge 18.93 21.86
Weighted by Cardinality 20.90 23.91
Weighted by Attention 14.99 23.83
Optimal k∗ (Eq. (5)) 21.21 24.43

4.4 Compression Rate Analysis

To systematically evaluate AsymKV’s context compression capabilities, we analyze its performance
across different compression rates on the long-context HotpotQA [30] task from LongBench. Here,
the compression rate is defined as the ratio between the compressed and original token counts.

As shown in Fig. 4, AsymKV demonstrates superior compression capabilities across all compression
rates. Most notably, with only 20% of the original context length, AsymKV achieves performance
comparable to full-context processing, significantly outperforming all baseline methods. This robust
performance highlights AsymKV’s effectiveness in preserving crucial contextual information even
under aggressive compression.

4.5 Inference Efficiency

We evaluated the computational efficiency of different approaches during text generation. To do this,
we had the models generate text using greedy sampling on Mistral-7B-Instruct-v0.3 and measured
the time required to generate different numbers of tokens.

Inference Speed Fig. 3 reveals that among the evaluated methods, context segmentation approaches
(StreamingLLM and LongCache) achieve the highest computational efficiency due to their minimal
KV cache operations. However, this efficiency comes at the cost of performance. AsymKV strikes a
better balance, achieving the highest efficiency among compression-based methods.

Memory Consumption We measure peak GPU memory usage on LLaMA3.1-8B-Instruct with a
cache size of 2048 and chunk size of 128. As shown in Table 4, AsymKV’s memory consumption is
comparable to other baselines. This validates that both generation and compression costs are practical
and scalable.

4.6 Ablations on Merge Strategies

We conduct an ablation study to compare different strategies for merging keys and values during
compression. For key merging, we compare four approaches: simple mean pooling, cardinality-
weighted averaging, attention score-weighted averaging, and our optimal strategy derived from
Eq. (5). For each key merge strategy, we experiment with two value merge strategies: either using the
identical strategy as keys, or using our proposed asymmetric cardinality-normalized method.

Results in Table 5 are scores on the multi-hop QA task MuSiQue [25] from LongBench. The results
demonstrate two key findings. First, our theoretically-derived optimal key merge strategy consistently
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outperforms other approaches. This empirically validates the foundation of our optimal merging
strategy presented in § 3.1. Second, the results show that using distinct strategies for keys and values
is beneficial.

5 Conclusion

In this paper, through extensive empirical analysis, we reveal a fundamental yet previously overlooked
pattern: local KV cache Asymmetry. This property motivates our key technical innovation—a training-
free merging framework that combines homogeneity-based key merging with mathematically proven
lossless value representation. We present AsymKV, a novel approach to address the computational
challenges of long-context modeling in LLMs. Our comprehensive experiments demonstrate that
AsymKV outperforms existing long-context methods across various tasks and base models.

Limitations. Further applications of AsymKV need to consider compatibility with methods like
FlashAttention and vLLM. We view this as an engineering problem and are actively working to
address it.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state:

• Discovery of KV cache asymmetry (key homogeneity vs. value heterogeneity).
• Proposal of AsymKV, a training-free compression framework combining key merging

and lossless value representation.
• Experimental validation showing SOTA performance (e.g., 43.95 vs. 38.89 for H2O on

LongBench).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see § 5. We discussed the potential engineering adaption problem.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper includes detailed mathematical derivations for its key compression
(Eq. 5) and lossless value compression (Eq. 8) methods. Assumptions, such as the use of
the Fisher information matrix as an approximation for the Hessian, are explicitly stated.
Complete proofs are provided in the main text and appendices, supported by references to
established techniques like Taylor expansion.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental setup is thoroughly described, including the models, datasets,
and hyperparameters. As AsymKV is a training-free approach, the compression strategy is
clearly outlined, providing sufficient detail for others to replicate the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Will be added in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Since AsymKV is training-free, no training details are required. Meanwhile,
the paper provides comprehensive inference settings, including compression rates, chunk
sizes, and model configurations. Key hyperparameters, such as max_length and chunk size,
are explicitly listed, ensuring clarity.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper does not include traditional error bars due to the computational
expense of long-context experiments, which allowed for only one run per configuration.
However, the statistical significance of results is established through comprehensive eval-
uations across multiple models (Llama-3.1-8B, Mistral-7B, Qwen2-7B, Llama-2-7B) and
various settings. This extensive cross-model validation demonstrates the consistent perfor-
mance advantages of AsymKV across different settings, providing strong evidence for the
robustness of the reported results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies that experiments were run on NVIDIA A100 80GB GPUs
and includes details on memory usage in 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research focuses on improving LLM efficiency and does not involve
human subjects, sensitive data, or applications with potential harm. It fully aligns with the
ethical standards outlined in the NeurIPS Code of Ethics.

Guidelines:

17

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper is a foundational research and does not directly point to any potential
negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: No new high-risk assets released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: the paper credits the original sources of datasets and models, mentioning
applicable licenses and adhering to their terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the implementation code of our proposed method to support
reproducibility.

• Asset Type: Source code (implementation of the proposed method AsymKV).
• Intended Use: Research and reproducibility. Enables replication and extension of the

reported results.
• License: Apache License 2.0
• Repository: https://github.com/the-scale-lab/AsymKV
• Documentation: Usage instructions, environment setup, and experimental commands

are provided in the repository README.md.
• Ethical Considerations: No human or personal data are involved. All external datasets

and models comply with their original licenses.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: No human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects are involved in this research, rendering IRB approvals
unnecessary.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper clearly states that LLMs serve as the base models for evaluating
AsymKV. Their usage is standard and well-documented, requiring no further declaration
beyond what is provided.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Analysis: Key-Value Asymmetry in Attentions
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Figure 6: Contrasting distributions of local key distributions versus local value distributions across
different datasets and model architectures. Heatmaps show Spearman correlation coefficients between
adjacent tokens across layers (y-axis) and attention heads (x-axis). The consistent strong positive
correlations for local keys (a,c) and weak/negative correlations for local values (b,d) suggesting these
are universal properties of LLM KV caches.

Initial experiments with Llama2-7b-chat on ShareGPT [6] data (Fig. 1) revealed a striking asymmetry
between local key and value distributions. To obtain a more direct observation, we analyze the
Spearman correlation coefficient of sim(keyi, keyj) and sim(vali, valj) for different i, j. To validate
the universality of these patterns, we conducted a comprehensive analysis across diverse settings: (1)
different data distributions, including academic papers (QASPER [8]) and multi-domain questions
(MultiFieldQA(en) [2]) and (2) various model architectures, specifically Mistral-7B-Instruct-v0.3
and Qwen2-7B-Instruct [29]). The results for QASPER and Mistral-7B-Instruct-v0.3 are shown in
Fig. 6, with additional results for MultiFieldQA and Qwen2-7B-Instruct presented in Appendix B.

Key Homogeneity: Adjacent keys exhibit consistently strong positive correlations across all layers
and attention heads (average correlation coefficient > 0.7), indicating robust encoding of local
semantic relationships in key representations.

Value Heterogeneity: In stark contrast, adjacent values show significantly lower (average correlation
coefficient < 0.4) or even negative correlations, suggesting that value vectors encode distinct and
complementary aspects of token information. This heterogeneity appears essential for maintaining
the model’s representational capacity.

B Distribution of Local Keys and Values in More Models and Datasets

To validate that our observations about the asymmetric properties of keys and values are general
across different models and datasets, we conduct additional experiments on the Multifieldqa(en)
dataset and the Qwen2-7B-Instruct model. The results are shown in Figure 7.

As shown in Figure 7, the key similarity heatmaps (Figure 7a, 7c) consistently exhibit strong
diagonal block patterns, indicating high local homogeneity. In contrast, the value similarity heatmaps
(Figure 7b, 7d) show heterogeneous distributions. These results confirm that the asymmetric properties
we observed are inherent characteristics of transformer attention mechanisms rather than artifacts of
specific models or datasets.

C Solving for the Optimal Key Vector

Continue from (4):

Gradient Term Expansion:

∇L(km,km+1)
⊤
[

k− km

k− km+1

]
= g⊤

m(k− km) + g⊤
m+1(k− km+1) (12)
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Figure 7: Similarity heatmaps of local keys and values across different models and datasets (LLaMA2-
7B-chat on MultiFieldqa(en) and Qwen2-7B-Instruct on ShareGPT). The diagonal blocks in key
heatmaps (a, c) indicate strong local homogeneity, while the more scattered patterns in value heatmaps
(b, d) demonstrate heterogeneity.

Quadratic Term Expansion:

1

2

[
k− km

k− km+1

]⊤
H

[
k− km

k− km+1

]
=
1

2
(k− km)⊤H11(k− km) + (k− km)⊤H12(k− km+1)

+
1

2
(k− km+1)

⊤H22(k− km+1)

(13)

Constructing the Total Objective Function

Adding the above terms, the objective function with respect to k is:

L(k) ≈ L(km,km+1) + g⊤
m(k− km) + g⊤

m+1(k− km+1) +
1

2
(k− km)⊤H11(k− km)

+ (k− km)⊤H12(k− km+1) +
1

2
(k− km+1)

⊤H22(k− km+1)

(14)

Taking the Derivative of L(k) with Respect to k and Setting to Zero

Taking the derivative:
∂L
∂k

=gm + gm+1 +H11(k− km) +H12(k− km+1) +H12⊤(k− km) +H22(k− km+1)

(15)

Since the Hessian matrix is symmetric, i.e., H12 = H21, we have:
∂L
∂k

=gm + gm+1 + (H11 + 2H12 +H22)k− (H11km +H12(km + km+1) +H22km+1)

(16)

Setting the derivative to zero yields the optimal condition:
(H11 + 2H12 +H22)k∗ =H11km +H12(km + km+1) +H22km+1 − (gm + gm+1) (17)

Solving for the Optimal Key Vector k∗

The optimal key vector k∗ is obtained as:
k∗ =(H11 + 2H12 +H22)−1(H11km +H12(km + km+1) +H22km+1 − (gm + gm+1))

(18)

D Comparison of AsymKV with Other New Baselines

We also conducted additional comparisons with SnapKV [17], PyramidKV [4], TOVA [20], D2O [26]
and L_2-Norm [9].These experiments were performed on the LongBench dataset based on the
Llama3-8b-Instruct with compression context max_length=2048.

As show in Table 5 AsymKV still demonstrates performance improvements compared to these
baselines.
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Table 5: Comparison of AsymKV with other new baselines on LongBench.

Single-Doc Multi-Doc Sum Few-shot Synthetic Code Avg.

Llama3-8B-Instruct

Full Context 32.19 34.59 24.96 68.48 36.96 54.41 41.46
StreamingLLM 27.90 25.92 24.49 65.09 13.87 55.02 35.50
LongCache 28.26 25.64 24.69 65.75 15.50 54.65 35.83
H2O 30.65 32.77 24.61 61.83 37.08 54.87 39.59
LLMLingua-2 26.50 30.80 24.10 39.30 22.50 32.20 29.47
CaM 30.49 31.48 24.85 63.83 37.02 55.46 39.81
TOVA 31.82 27.94 24.57 64.34 19.29 54.06 37.04
L2 30.18 27.41 24.70 63.29 37.34 51.78 38.43
D2O 30.81 32.87 24.64 67.42 36.67 56.49 40.85
SnapKV 32.17 34.20 25.28 68.57 37.21 53.30 41.36
PyramidKV 31.79 34.02 25.44 68.57 37.24 54.97 41.49
AsymKV 34.45 33.64 26.17 67.94 38.66 56.61 42.32

E Licenses for Existing Assets

We list the assets used in this paper and their licenses below:

• [24],llama2
• [10],llama3
• [11],Apache 2.0 License
• [29],Apache 2.0 License
• [2],MIT License
• [14],Apache 2.0 License
• [30],CC BY-SA 4.0
• [3],MIT License
• [1],GNU General Public License v3.0
• [6],llama2
• [28],MIT License

23


	Introduction
	Related Work
	Proposed Method
	Homogeneous Key Merging
	Cardinality Normalization for Lossless Value Merging
	Efficient Implementations for Long-Text Generation
	Time-Efficiency by Chunk-wise Parallel Compression
	Memory-Efficiency by Selective Gradient Computation


	Experiments
	Experimental Setup
	Long Context Performance Evaluation
	Comprehensive Information Retention
	Compression Rate Analysis
	Inference Efficiency
	Ablations on Merge Strategies

	Conclusion
	Analysis: Key-Value Asymmetry in Attentions
	Distribution of Local Keys and Values in More Models and Datasets
	Solving for the Optimal Key Vector
	Comparison of AsymKV with Other New Baselines
	Licenses for Existing Assets

