
Under review as a conference paper at ICLR 2021

UNSUPERVISED ACTIVE PRE-TRAINING FOR REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new unsupervised pre-training method for reinforcement learning
called APT, which stands for ActivePre-Training. APT learns a representation and
a policy initialization by actively searching for novel states in reward-free environ-
ments. We use the contrastive learning framework for learning the representation
from collected transitions. The key novel idea is to collect data during pre-training
by maximizing a particle based entropy computed in the learned latent representa-
tion space. By doing particle based entropy maximization, we alleviate the need
for challenging density modeling and are thus able to scale our approach to image
observations. APT successfully learns meaningful representations as well as policy
initializations without using any reward. We empirically evaluate APT on the Atari
game suite and DMControl suite by exposing task-specific reward to agent after a
long unsupervised pre-training phase. On Atari games, APT achieves human-level
performance on 12 games and obtains highly competitive performance compared
to canonical fully supervised RL algorithms. On DMControl suite, APT beats all
baselines in terms of asymptotic performance and data efficiency and dramatically
improves performance on tasks that are extremely difficult for training from scratch.
Importantly, the pre-trained models can be fine-tuned to solve different tasks as long
as the environment does not change. Finally, we also pre-train multi-environment
encoders on data from multiple environments and show generalization to a broad
set of RL tasks.

1 INTRODUCTION

Deep reinforcement learning (RL) provides a general framework for solving challenging sequential
decision-making problems, it has achieved remarkable success in advancing the frontier of AI
technologies thanks to scalable and efficient learning algorithms (Mnih et al., 2015; Lillicrap et al.,
2015; Schulman et al., 2015; 2017). These landmarks include outperforming humans in board (Silver
et al., 2016; 2018; Schrittwieser et al., 2019) and computer games (Mnih et al., 2015; Berner et al.,
2019; Schrittwieser et al., 2019; Vinyals et al., 2019; Badia et al., 2020a), and solving complex
robotic control tasks (Andrychowicz et al., 2017; Akkaya et al., 2019). Despite these successes, a key
challenge with Deep RL is that it requires a huge amount of interactions with the environment before
it learns effective policies, and needs to do so for each encountered task. Environments are required
to have carefully designed task-specific reward functions to guide the RL algorithms (Andrychowicz
et al., 2017; Ng et al., 1999), which further limits its wide applications of Deep RL. This is in contrast
to how intelligent creatures learn in the absence of external supervisory signals, acquiring abilities in
a task-agnostic manner by exploring the environment.

Unsupervised pre-training is a framework that trains models without expert supervision has obtained
promising results in computer vision (Oord et al., 2018; He et al., 2019; Chen et al., 2020b; Caron
et al., 2020; Grill et al., 2020) and natural language modeling (Vaswani et al., 2017; Devlin et al.,
2018; Peters et al., 2018; Brown et al., 2020). The key insight of unsupervised pre-training techniques
is learning a good representation or initialization from a massive amount of unlabeled data such as
ImageNet (Deng et al., 2009), Instagram image set (He et al., 2019), Wikipedia, and WebText (Radford
et al., 2019) which are easier to collect and scales to millions or trillions of data points. As a result,
The learned representation when fine-tuned on the downstream tasks can solve them efficiently
without needing any supervision or in a few-shot manner.

1

Under review as a conference paper at ICLR 2021

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Cheetah Run

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

50

100

150

200

250

300

350

Ep
iso

de
 R

et
ur

n

Hopper Hop

From scratch Pre-training on ImageNet Count-based pre-training

Figure 1: Unsupervised pre-training for deep RL on DM-
Control. After pre-training (e.g. on ImageNet or in Chee-
tah reward free environment), the agent fine-tunes the pre-
trained representation or initialization to achieve higher task-
specific rewards (e.g. let the Cheetah run faster). ImageNet
pre-training denotes training MoCo on downsampled Ima-
geNet. Count-based pre-training means training RL agent
with only count-based exploration signal. The training details
are in Appendix Section F.1. The results show none of the two
methods outperforms training from scratch.

Driven by the significance of the massive
abundance of unlabeled data relative to la-
beled data, we pose the following ques-
tion: is enabling efficient unsupervised pre-
training for deep RL as easy as increas-
ing the amount of unlabeled data? Un-
like the computer vision or language do-
mains, in reinforcement learning it’s not
obvious where to extract large pools of
unlabeled data. A natural choice is pre-
training on ImageNet and transfer the en-
coder to reinforcement learning tasks. We
experimented with using ImageNet data for
unsupervised representation learning as ini-
tialization of the encoder in deep RL agent,
specifically, we used the momentum con-
trast (He et al., 2019; Chen et al., 2020c)
method which is one of the state-of-the-art
methods for representation learning. We
used DrQ (Kostrikov et al., 2020) as the RL optimization algorithm. The results on DMControl are
shown in Figure 1. We can see that using ImageNet pre-trained representations does not lead to any
significant improvement over training from scratch. We also experimented with using supervised
pre-trained ResNet features as initialization similar to Levine et al. (2016) (details in Appendix)
but the results are no different. This seems in contrast to the preeminent successes of ImageNet
pre-trained models in various computer vision downstream tasks (see e.g. Krizhevsky et al., 2012;
Zeiler & Fergus, 2014; Hendrycks et al., 2019; Chen et al., 2020a). On the other hand, previous
research in robotics also found that ImageNet pre-training did not help (Julian et al., 2020). We
hypothesize that the reason for the discrepancy is that the ImageNet data distribution is far from the
induced sample distribution encountered during RL training. It is therefore necessary to collect data
from the RL agent induced distribution.

To investigate this hypothesis, we also experimented with training RL agents by ‘exhaustively’
collecting data during the reward-free interaction. Specifically, during pre-training phase, the only
reward signal is defined by the count-based exploration (Bellemare et al., 2016; Ostrovski et al.,
2017) which is one of the state-of-the-art methods for exploration (Taïga et al., 2019), and the
density estimation model is PixelCNN (Van den Oord et al., 2016). The results of using the resulting
pre-trained policy as initialization are shown in Figure 1. We can see that pre-trained initialization
in Cheetah environment does not improve significantly over random initialization on Cheetah Run
task. Similarly, pre-trained initialization in Hopper environment only leads to a small improvement
over baseline. The reason for this ineffectiveness is that density modeling at the pixel level is difficult
especially in the low-data and non-stationary regime. The results on DMControl demonstrate that
simply increasing the amount of unlabeled data does not work well, therefore we need a more
systematical strategy that caters to RL.

In this paper, we address the issue by proposing to actively collect novel data by exploring unknown
areas in the task agnostic environment. Our means is maximizing the entropy of visited state distribu-
tion subject to some prior constraints. The entropy maximization principle (Jaynes, 1957) originated
in statistical mechanics, where Jaynes showed that entropy in statistical mechanics and information
theory were equivalent. Our motivation is that the resulting representation and initialization will
encode both prior information while being as agnostic as possible, and can be adapted to various
downstream tasks. While the entropy maximization principle seems simple, it is practically difficult
to calculate the Shannon entropy (Shannon, 2001) as a density model is needed. To remedy this, we
resort to the particle-based entropy estimator (Singh et al., 2003; Beirlant, 1997) which has wide
applications in various machine learning areas (Sricharan et al., 2013; Pál et al., 2010; Jiao et al.,
2018). The particle-based entropy estimator is known to be asymptotically unbiased and consistent.
Specifically, it computes the average of the Euclidean distance of each sample to its nearest neighbors.
We compute the entropy in the latent representation space, for this we adapt the idea of contrastive
learning (Hadsell et al., 2006; Gutmann & Hyvärinen, 2010; Mnih & Kavukcuoglu, 2013; He et al.,
2019; Chen et al., 2020b) to encode image observations to representation space.

2

Under review as a conference paper at ICLR 2021

Our approach alternates between training the encoder via contrastive learning and RL style opti-
mization of maximizing expected reward where reward is defined by the particle-based entropy.
After the pre-training phase, we can either fine-tune the encoder representation for test tasks that
have different action space dimension or fine-tune the policy initialization for tasks with the same
action space dimension. Since our method actively collects data during the pre-training phase, the
method is named as Active Pre-Training (APT). We empirically evaluate APT on the Atari game
suite and DMControl suite by exposing task-specific reward to the agent after a long unsupervised
pre-training phase. On the full suite of Atari games, fine-tuning APT pre-trained models achieves
human-level performance on 12 games. On the Atari 100k benchmark (Kaiser et al., 2019), our
fine-tuning achieves 1.3× higher human median scores than state-of-the-art training from scratch
and 4× higher scores than state-of-the-art pre-training RL. On DMControl suite, fine-tuning APT
pre-trained models beating all baselines in terms of asymptotic performance and data efficiency and
solving tasks that are extremely difficult for training from scratch.

The contributions of our paper can be summarized as: (i) We propose a new approach for pre-
training in RL. (ii) We show that our pre-training method significantly improves data efficiency of
solving downstream tasks on DMControl and Atari suite. (iii) We demonstrate that pre-training with
particle-based entropy maximization in contrastive representation space significantly outperforms
prior count-based approaches that rely on density modeling.

2 RELATED WORK

2.1 INTRINSIC MOTIVATION AND EXPLORATION

The learning process of RL agents becomes highly inefficient in sparse supervision tasks when relying
on standard exploration techniques. This issue can be alleviated by introducing intrinsic motivation,
i.e., denser reward signals that can be automatically computed. These rewards are generally task-
agnostic and might come from state visitation count bonus (Bellemare et al., 2016; Tang et al., 2017;
Ostrovski et al., 2017; Zhao & Tresp, 2019), learning to predict environment dynamics (Meyer &
Wilson, 1991; Pathak et al., 2017; Burda et al., 2018a; Sekar et al., 2020), distilling random neural
networks (Burda et al., 2018b; Choi et al., 2018), hindsight relabeling (Andrychowicz et al., 2017),
learning options (Sutton et al., 1999) through mutual information (Jung et al., 2011; Mohamed &
Rezende, 2015), information gain (Lindley, 1956; Sun et al., 2011; Houthooft et al., 2016), successor
features (Kulkarni et al., 2016; Machado et al., 2018), maximizing mutual information between
behaviors and some aspect of the corresponding trajectory (Gregor et al., 2016; Florensa et al., 2017;
Warde-Farley et al., 2018; Hausman et al., 2018; Shyam et al., 2019), using imitation learning to
return to the furthest discovered states (Ecoffet et al., 2019), self-play curriculum (Schmidhuber,
2013; Sukhbaatar et al., 2017; Liu et al., 2019), exploration in latent space (Vezzani et al., 2019),
injecting noise in parameter space (Fortunato et al., 2017; Plappert et al., 2017), learning to imitate
self (Oh et al., 2018), predicting improvement measure (Schmidhuber, 1991; Oudeyer et al., 2007;
Lopes et al., 2012; Achiam & Sastry, 2017), and unsupervised auxiliary task (Jaderberg et al., 2016).
The work by Badia et al. (2020b) also considers k-nearest neighbor based intrinsic reward to incentive
exploration, and shows improved exploration in sparse reward games. Our work differs in that we
consider reward-free settings and the objective of our intrinsic reward is based on particle-based
entropy instead of count bonus. The work closest to ours is Hazan et al. (2019) which presents
provably efficient exploration algorithms under certain conditions. However, their method directly
estimates state visitations through a density model which is difficult to scale. In contrast, our work
turns to particle based entropy maximization in contrastive representation space. Concurrent work
by Mutti et al. (2020) shows maximizing particle-based entropy can improve data efficiency in solving
downstream continuous control tasks. However, their method relies on importance sampling and
on-policy RL which suffers from high variance and is difficult to scale. In contrast, our work resorts
to a biased but lower variance entropy estimator which is scalable for high dimensional observations
and suitable for off-policy RL optimization.

2.2 DATA EFFICIENCY IN RL

Deep RL algorithms are sample inefficient compared to intelligent biological creatures, which can
quickly learn to complete new tasks. To close this data efficiency gap, various methods have been
proposed: Kaiser et al. (2019) introduce a model-based agent (SimPLe) and show that it compares

3

Under review as a conference paper at ICLR 2021

favorably to standard RL algorithms when data is limited. Hessel et al. (2018); Kielak (2020); van
Hasselt et al. (2019) show combining existing RL algorithms (Rainbow) can boost data efficiency.
Srinivas et al. (2020) proposed to combine contrastive loss with image augmentation while follow-up
results from Laskin et al. (2020) suggest that the most of the benefits come from its use of image
augmentation. Laskin et al. (2020); Kostrikov et al. (2020) demonstrate applying modest image
augmentation can substantially improve data efficiency in vision-based RL. Our work improves data
efficiency of RL in an orthogonal direction by unsupervised pre-training, the above advances can be
used inside of APT to obtain better RL optimization in both pre-training and fine-tuning phases.

3 METHOD

Our method shown in Figure 2 consists of contrastive representation learning and particle-based
entropy maximization in the learned representation space. Consider an agent that sees an observation
xt, takes an action at and transitions to the next state with observation xt+1 following unknown envi-
ronmental dynamics. We want to incentivize this agent with a reward rt relating to how informative
the transition was. The goal of the agent is to learn a good representation fθ(x) of the observation x,
or a good initialization of policy π(a|x) by interacting with the environment in a reward-free manner,
such that fine-tuning on downstream tasks achieves higher long-term cumulative task-specific reward
than training from scratch.

Contrastive
Loss

Aug

Reward=

"! #"
$ Aug $ (

((#

)

Representation

K-th nearest neighbor

Batch

Expected
Rewardlog

Figure 2: Diagram of the proposed method Unsupervised Active Pre-Training: it consists of contrastive
representation learning on data collected by the agent (equation (1)) and RL optimization to maximize particle
based entropy (equation (5)). After pre-training, the task-agnostic encoder fθ and the RL policy initialization
can be fine-tuned for different downstream tasks to maximize task-specific reward.

Learning contrastive representations Within each batch of transitions sampled from the replay
buffer. We apply data augmentation to each data point and the augmented observations are encoded
into a small latent space where a contrastive loss is applied. Our contrastive learning is based on
SimCLR (Chen et al., 2020b), chosen for its simplicity.

min
θ,φ
−E

[
log

exp(zTi zj)∑2N
i=1 I[k 6=i] exp(zTi zk)

]
, (1)

where x is a n-dimensional data point in the observation space X ⊆ Rn, and zi, zj are normalized
dZ -dimensional vectors of two random augmentations xi and xj of the data point x followed by a
deterministic mapping gφ(fθ(xi)(·)), and fθ is representation encoder given by fθ : Rn → RdY , and
gφ is a projection head gφ : RdY → RdZ , and N is the batch size. This objective tries to maximally
distinguish an input xi from alternative inputs xj . The intuition is that by doing so, the representation
captures important information between similar data points, and therefore improve performance on
downstream tasks.

Particle based entropy maximization Let the distribution of observations be p(x). The entropy
of the observations is given by H(p) = −Ex∼p(x) [log p(x)]. However, in high-dimensional spaces it
is challenging to estimate the density, preventing us from directly maximizing the exact entropy.

To remedy this issue, we resort to the particle-based entropy estimator (Singh et al., 2003; Beirlant,
1997) which is based on k-Nearest Neighbors (kNN). The particle based entropy estimate is given by

Ĥk(p) = − 1

N

N∑
i=1

log
k

NVolki
+ log k −Ψ(k) ∝

N∑
i=1

Volki , (2)

4

Under review as a conference paper at ICLR 2021

where Ψ is the digamma function, log k −Ψ(k) is a bias correction term, Volki is the volume of the
hyper-sphere of radius Ri = ‖xi − xkNN

i ‖, which is the Euclidean distance between xi and its k-th
nearest neighbor xkNN

i . The volume is given by:

Volki =
‖xi − xkNN

i ‖nn · πn/2

Γ
(
p
2 + 1

) , (3)

where Γ is the gamma function, and n the dimensions of X . Put equation (2) and equation (3)
together, we simplify the entropy:

Ĥk(p) ∝
N∑
i=1

log ‖xi − xkNN
i ‖nn. (4)

When the target data distribution p′(x) (as in the case of off-policy RL, which we use for sample
efficiency) is different from the sampling distribution p(x), in principle importance sampling is needed
to correct bias (Ajgl & Šimandl, 2011). However, empirically we find the biased approximation
in equation (2) works fine and does not need to estimate the high variance importance ratios, as shown
in Section B (Appendix).

Given a batch of transitions sampled from the replay buffer, we associate the particle based entropy
estimation with the intrinsic reward, and use off-policy RL algorithm to maximize the expected
reward. With the objective of particle based entropy given in equation (4), we might able to maximize
state entropy in continuous control, but it is still not applicable to learn visual RL agents in high-
dimensional domains like DMControl and Atari games.

To remedy this issue, we maximize the entropy in our learned lower-dimensional representation
space, we do this by jointly learning representations by contrastive learning equation (1) and ex-
ploring by particle based entropy maximization equation (4). Specifically, for a batch of transitions
{(xt, at, xt+1)} sampled from the replay buffer, each xt+1 is treated as a particle and we associate
each transition with a intrinsic reward given by

r(xt, at, xt+1) := log(‖yt+1 − ykNN
t+1 ‖nn + c), (5)

where y = fθ(x) is the representation (i.e. we estimate the entropy in the latent space), c is a constant
for numerical stability (fixed to 1 in all our experiments). In order to keep the rewards on a consistent
scale, we normalized the intrinsic reward by dividing it by a running estimate of the standard deviation
of the intrinsic reward. A detailed computation of the intrinsic reward in PyTorch can be found
in Algorithm 2.

Algorithm 1 Unsupervised Active Pre-Training
f: encoder network shared between actor & critic
g: projection network for contrastive learning
k: hyperparameter of kNN
while iterations so far < max pre-training iterations
do

Interact with a reward-free environment
// sample a batch of transitions from replay buffer
// update f and g to minimize contrastive loss
Update(f.param, g.param)
// compute intrinsic reward for each transition
Compute yt+1 for each sampled transition
Set r(xt, at, xt+1) = log(‖yt+1 − ykNN

t+1 ‖22 + 1)
// update RL agent to maximize expected reward
Update(actor.param, critic.param)

end while

With the intrinsic reward defined in equation (5),
we can derive the intrinsic reward decreases to
0 as most of the state space is visited which is
a favorable property for pre-training.
Lemma 1. Assume we have an episodic MDP
setting, and a finite state space X ⊆ Rn, and a
buffer of observed states (x1, . . . , xT) with total
sample size T , a deterministic representation
encoder fθ : Rn → RdY , an intrinsic reward
defined as equation (5) with k ∈ N, and an op-
timal policy that maximize the intrinsic rewards.
We can derive the intrinsic reward is 0 in the
limit of sample size

lim
T→∞

r(x, a, x′) = 0, ∀x ∈ X . (6)

Proof. Since the intrinsic reward r(x, a, x′) defined in equation (5) depends on the k-th nearest
neighbor in latent space and the encoder fθ is deterministic, we just need to prove the visitation count
c(x) of x is larger than k as T goes infinity. We know the MDP is episodic, therefore as T →∞, all
states communicate and c(x)→∞, thus we have lim

T→∞
c(x) ≥ k, ∀k ∈ N,∀x ∈ X .

While the assumption of finite state space may not be true for large complex environment like Atari
games, lemma 1 gives more insights on using this particular intrinsic reward for pre-training. We use

5

Under review as a conference paper at ICLR 2021

n = 2 in our implementation because of the structure we imposed on the contrastive representations.
The kNN in principle should be computed over the entire buffer which means it scales linearly with
sample size, we instead compute the intrinsic reward within current batch to trade-off computation.
We fixed k = 3 in all our experiments as we found it works well in initial experiments. APT
alternates between minimizing contrastive loss in equation (1) and maximizing expected intrinsic
reward in equation (5). The pseudocode of APT is shown in Algorithm 1 and the full pseudocode of
the algorithm is summarized in Algorithm 3 (Appendix). The diagram of APT is shown in Figure 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The evaluation benchmarks are DeepMind Control Suite (DMControl; Tassa et al., 2020) and Atari
suite (Bellemare et al., 2013) from OpenAI Gym (Brockman et al., 2016). For DMControl, we use
pixel observation instead of state as input. For all of the experiments, we use DrQ as the underlying
RL optimization algorithm. Unless stated otherwise, all curves are the average of three runs with
different seeds, and the shaded areas are standard errors of the mean. The results reported on Atari
games suite are averaged over five runs with different seeds. In addition to the existing tasks in
DMControl, we also design several new sparse reward tasks: (1) {HalfCheetah, Hopper, Walker}
Jump Sparse: the agent receives a positive reward 1 for jumping above a given height otherwise
reward is 0. (2) {HalfCheetah, Hopper, Walker} Reach Sparse: the agent receives positive reward
1 for reaching a given target location otherwise reward is 0. (3) Walker Escape Sparse: the initial
position of Walker is turned upside down, and receives reward 1 for successfully turning itself over
otherwise 0. In all the considered tasks, the episode ends when the goal is reached.

Table 1: Evaluation on Atari games. @N represents the amount of RL interaction utilized. Mdn is the median
of human-normalized scores, M is the mean, > 0 is the number of games with better than random performance,
and > H is the number of games with human-level performance. On each subset, we mark as bold the highest
score. Since different papers report different results of supervised RL e.g SimPLe, we choose the best available
results and contrast them to APT’s results. The results of VISR are cited from Hansen et al. (2020) as the source
code is not publicly available. Raw scores of each Atari game given Table 5 (Appendix). Top: data-limited RL.
Bottom: RL with unsupervised pre-training.

26 Game Subset 47 Game Subset Full 57 Games

Algorithm Mdn M >0 >H Mdn M >0 >H Mdn M >0 >H

// Fully-supervised training

SimPLe @100k 14.39 44.30 26 2 – – – – – – – –
OTRainbow @100k 20.40 26.42 26 1 – – – – – – – –
DrQ @100k 28.42 35.70 24 2 – – – – – – – –
PPO @500k 20.93 43.74 25 7 – – – – – – – –
DQN @10M 27.80 52.95 25 7 9.91 28.07 41 7 8.61 27.55 48 7

// Unsupervised pre-training with supervised fine-tuning @100k

DIAYN 0.01 16.94 13 2 1.31 19.64 28 6 1.55 16.65 33 6
VISR 9.50 128.07 21 7 9.42 121.08 35 11 6.81 102.31 40 11
GPI VISR 6.59 111.23 22 7 11.70 129.76 38 12 8.99 109.16 44 12
Count-based 1.23 21.94 16 3 – – – – – – – –
APT (ours) 38.23 59.89 26 7 34.22 61.78 36 12 41.25 87.33 43 12

4.2 SINGLE ENVIRONMENT PRE-TRAINING

We conduct a full evaluation of APT on a diverse set of tasks in the single environment setting, the
models are pre-trained on Cheetah, Hopper, and Walker for a long period of interacting without reward
supervision (5M steps), then fine-tuned for 15 downstream RL tasks such as controlling the Walker
to turn itself over. Fine-tuning representation is a common practice in deep learning (Krizhevsky
et al., 2012; He et al., 2016). In our RL experiments, APT stands for fine-tuning both representation
and RL agent initialization. The main baseline is count-based exploration (Bellemare et al., 2014;
2016; Ostrovski et al., 2017), which was proposed as a way to estimate counts in high dimensional

6

Under review as a conference paper at ICLR 2021

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Cheetah Run

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Cheetah Flip Forward

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Cheetah Flip Backward

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Cheetah Jump Sparse

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Cheetah Reach Sparse

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

100

200

300

400

Ep
iso

de
 R

et
ur

n

Hopper Hop

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Hopper Stand

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

100

200

300

400

Ep
iso

de
 R

et
ur

n

Hopper Hop Backward

0.0 0.1 0.2 0.3 0.4 0.5
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Hopper Jump Sparse

0.0 0.1 0.2 0.3 0.4 0.5
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Hopper Reach Sparse

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

100

200

300

400

500

600

700

800

Ep
iso

de
 R

et
ur

n

Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n
Walker Stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Walker Jump Sparse

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Walker Escape Sparse

From scratch Active pre-training (ours) Count-based pre-training
Figure 3: Evaluation on DeepMind Control suite. Models are pre-trained on Cheetah, Hopper, and Walker, and
subsequently fine-tuned on respective downstream tasks. The ’sparse’ denotes reward is sparse. The scores of
each environment given in Table 4 (Appendix).

states spaces by estimating density; the agent is then encouraged to visit states with a low visit
count. We followed Ostrovski et al. (2017) to use PixelCNN (Van den Oord et al., 2016) as a
density model. Count-based exploration with PixelCNN is an efficient exploration method in sparse
reward environments (Taïga et al., 2019), we will refer to this baseline as count-based exploration or
count-based throughout the rest of the paper.

Results on DMControl shown in Figure 3 demonstrate that APT beats all baselines on all the tasks
across different environments, while the sparse reward tasks are extremely difficult for training from
scratch. In some cases, APT allows for very rapid fine-tuning, indicating APT learns reward-free
representation and meaningful RL initialization. The significantly superior performance of APT
empirically shows that maximizing particle-based entropy can drive the RL agent to collect diverse
samples and learn reward-free initializations that are effective for downstream tasks.

7

Under review as a conference paper at ICLR 2021

The evaluation on the full suite of 57 Atari games (Bellemare et al., 2013) follows the setting of
VISR (Hansen et al., 2020). Firstly, we evaluate APT in a two-phase setup. Agents are allowed a
long unsupervised pre-training phase without access to rewards, followed by a short test phase(100k
steps). DIAYN (Eysenbach et al., 2018) is a skill-discovery method that maximizes the mutual
information between latent variable polices and their behavior in terms of state visitation. The
main baseline is VISR (and its variant GPI VISR), which combines skill discovery with universal
successor approximators (Borsa et al., 2018) to enable fast task inference at both training and test
phases (Barreto et al., 2017; 2018). Due to the high computational cost, the count-based baseline is
not evaluated on the entire 57 games suite but the 26 games subset (Kaiser et al., 2019). Secondly, we
contrast APT with canonical RL algorithms in the low-data regime, following the setting of Kaiser
et al. (2019). The compared algorithms include DrQ, SimPLe (Kaiser et al., 2019), proximal policy
optimization (PPO) (Schulman et al., 2017), and OTRainbow (Kielak, 2020).

Results shown in Table 1 demonstrate that APT significantly outperforms all baselines and buying
performance equivalent to hundreds of millions of sampling steps. Note that it is possible we can
further improve the performance by directly applying VISR on top of the pre-trained models learned
by APT, we leave it for future direction. A further discussion of the connections and differences
between APT and VISR can be found in Section C in Appendix which gives more intuitions.

4.3 REPRESENTATION AND RL AGENT INITIALIZATION FINE-TUNE

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

100

200

300

400

Ep
iso

de
 R

et
ur

n

Hopper Hop

0.0 0.1 0.2 0.3 0.4 0.5
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Hopper Jump Sparse

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Hopper Stand

From scratch Active pre-training Active pre-training (representation) Count-based pre-training Count-based pre-training (representation) Contrastive count-based pre-training

Figure 4: Comparison of fine-tuning representation, fine-tuning both representation and RL agent, and ablated
baselines. Models are pre-trained on Hopper and subsequently fine-tuned on downstream tasks. The ’sparse’
denote reward is sparse. Both variants of APT outperform training from scratch and other baselines.

Table 2: Comparison of fine-tuning representation, fine-tuning both representation and RL agent on Atari games.
The results are obtained after fine-tuning 100k timesteps and are averaged over five random seeds.

Atari Games Human Random VISR APT(representation) APT (ours)
// Hard exploration games (dense reward)

BanHeist 753.1 14.2 200.3 ± 14.9 347.7 ± 24.6 456.7 ± 15.6
Hero 30826.4 1027.0 663.5 ± 31.8 4571.6 ± 234.6 6789.1 ± 171.4
// Hard exploration games (sparse reward)

Freeway 29.6 0.0 -2.1 ± 0.5 12.9 ± 0.7 29.9 ± 1.3
MontezumaRevenge 4753.3 0.0 0.0 ± 0.0 43.1 ± 15.6 147.0 ± 24.3

We investigated the difference between fine-tuning only the representation and fine-tuning both
representation and policy initialization. APT denotes fine-tuning both representation and RL policy
initialization while APT (representation) stands for fine-tuning encoder from pre-trained models and
randomly initializing policy. The notable difference is that APT (representation) decouples the action
space dimension from pre-trained models. We applied count-based exploration on top of contrastive
learning representations to eliminate the potential effect of representation learning difference, this
baseline is shown as contrastive count-based pre-training, where we train VAE (Kingma & Welling,
2013) on the learned contrastive representations to estimate state visitation.

As we show in Figure 4, APT (representation) beats all of the supervised RL and pre-training RL
baselines, fine-tuning both representation and RL initialization further improve performance. In
some cases, APT allows for more rapid performance improvement than APT (representation) in a
small fraction of the total number of samples, indicating APT learns meaningful reward-free and
task-agnostic behavior. Both APT and APT (representation) significantly outperform the ablated

8

Under review as a conference paper at ICLR 2021

contrastive count-based pre-training baseline, confirming the particle-based entropy maximization is
a crucial component.

Table 2 shows the results of fine-tuning pre-trained models for 100k timesteps on Atari games.
VISR tends to be more data efficient than APT and APT(representation) on easy exploration games,
potentially due to the explicit reward regression and successor feature in VISR. On hard exploration
games, e.g., Freeway, APT has a significant advantage, achieving an order of magnitude higher
scores than VISR while maintaining a very high score across the remaining games. APT significantly
outperforms APT(representation) on Atari games, showing the learned exploratory policy is crucial
for learning with a very limited number of interactions.

4.4 DISCUSSION OF MULTI-ENVIRONMENT PRE-TRAINING

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Cheetah Reach Sparse

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

100

200

300

400

Ep
iso

de
 R

et
ur

n

Hopper Hop

0.0 0.1 0.2 0.3 0.4 0.5
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Hopper Reach Sparse

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps (×106)

0

100

200

300

400

500

600

700

800

Ep
iso

de
 R

et
ur

n

Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Walker Escape Sparse

From scratch Active pre-training Active pre-training (multi-env representation)

Figure 5: Comparison between fine-tuning representations learned on single environment and multiple environ-
ments. We apply APT to all the three environments.

We completed an initial exploration of APT (representation) in multi-environment setting on DMCon-
trol suite, results shown in Table 5. In this setup, APT simultaneously learns pre-trained representation
from Hopper, Cheetah, and Walker environments. We evaluate the pre-trained model by using it in
separate RL agents learning each downstream task from every environment. As shown in Figure 5, we
found multi-environment pre-training outperforms training from scratch in sparse reward tasks and
performs on par or better than training from scratch in dense reward tasks, showing multi-environment
pre-training is efficient. Comparing with single environment APT, multi-environment pre-training
tends to have mixed results, indicating there exists intervention between representation learning in
different environments. We remark despite the multi-environment variant of APT is outperformed by
APT, the multi-environment pre-training is a novel research direction and our careful implementation
considerations and extensive experimental results allow the method to be widely adopted.

5 CONCLUSION

A new unsupervised pre-training method for RL is introduced to address reward-free pre-training for
visual RL. On DMControl suite and Atari games, our method dramatically improves performance
on tasks that are extremely difficult for training from scratch. Our method achieves the results of
fully supervised canonical RL algorithms using a small fraction of total samples and outperforms
data-efficient supervised RL methods. Our major contribution is proposing an efficient algorithm for
maximizing particle-based entropy in the latent representation space, allowing the same task-agnostic
pre-trained model to successfully tackle a broad set of RL tasks.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732, 2017.

Jiří Ajgl and Miroslav Šimandl. Differential entropy estimation by particles. IFAC Proceedings
Volumes, 44(1):11991–11996, 2011.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in neural information processing systems, pp. 5048–5058, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. arXiv
preprint arXiv:2003.13350, 2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never give
up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020b.

David Barber and Felix V. Agakov. The im algorithm: A variational approach to information
maximization. In Advances in neural information processing systems, 2003.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in neural
information processing systems, pp. 4055–4065, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features
and generalised policy improvement. In International Conference on Machine Learning, pp. 501–
510. PMLR, 2018.

J Beirlant. Nonparametric entropy estimation: An overview. International Journal of the Mathemati-
cal Statistics Sciences, 6:17–39, 1997.

Marc Bellemare, Joel Veness, and Erik Talvitie. Skip context tree switching. In International
Conference on Machine Learning, pp. 1458–1466, 2014.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in neural information
processing systems, pp. 1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

10

Under review as a conference paper at ICLR 2021

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giro-i Nieto, and Jordi
Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. arXiv preprint
arXiv:2002.03647, 2020.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33, 2020.

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan,
and Ilya Sutskever. Generative pretraining from pixels. In Proceedings of the 37th International
Conference on Machine Learning, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020b.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi,
and Honglak Lee. Contingency-aware exploration in reinforcement learning. arXiv preprint
arXiv:1811.01483, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical reinforce-
ment learning. arXiv preprint arXiv:1704.03012, 2017.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

11

Under review as a conference paper at ICLR 2021

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297–304, 2010.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Steven Hansen, Will Dabney, Andre Barreto, David Warde-Farley, Tom Van de Wiele, and Volodymyr
Mnih. Fast task inference with variational intrinsic successor features. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
BJeAHkrYDS.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations, 2018.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. arXiv preprint arXiv:1901.09960, 2019.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pp. 1109–1117, 2016.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

Jiantao Jiao, Weihao Gao, and Yanjun Han. The nearest neighbor information estimator is adaptively
near minimax rate-optimal. In Advances in neural information processing systems, pp. 3156–3167,
2018.

R. Julian, B. Swanson, G. Sukhatme, Sergey Levine, Chelsea Finn, and Karol Hausman. Never stop
learning: The effectiveness of fine-tuning in robotic reinforcement learning. 2020.

Tobias Jung, Daniel Polani, and Peter Stone. Empowerment for continuous agent—environment
systems. Adaptive Behavior, 19(1):16–39, 2011.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Kacper Kielak. Do recent advancements in model-based deep reinforcement learning really improve
data efficiency? arXiv preprint arXiv:2003.10181, 2020.

12

https://openreview.net/forum?id=BJeAHkrYDS
https://openreview.net/forum?id=BJeAHkrYDS

Under review as a conference paper at ICLR 2021

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learming with augmented data. arXiv:2004.14990, 2020.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, pp. 986–1005, 1956.

Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive experience replay. arXiv
preprint arXiv:1902.00528, 2019.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Advances in neural
information processing systems, pp. 206–214, 2012.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. arXiv preprint arXiv:1807.11622, 2018.

Jean-Arcady Meyer and Stewart W Wilson. A possibility for implementing curiosity and boredom in
model-building neural controllers. 1991.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive
estimation. In Advances in neural information processing systems, pp. 2265–2273, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. In Advances in neural information processing systems, pp.
2125–2133, 2015.

Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. A policy gradient method for task-agnostic
exploration. arXiv preprint arXiv:2007.04640, 2020.

A. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and
application to reward shaping. In ICML, 1999.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. arXiv preprint
arXiv:1806.05635, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. arXiv preprint arXiv:1703.01310, 2017.

13

Under review as a conference paper at ICLR 2021

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Dávid Pál, Barnabás Póczos, and Csaba Szepesvári. Estimation of rényi entropy and mutual informa-
tion based on generalized nearest-neighbor graphs. In Advances in Neural Information Processing
Systems, pp. 1849–1857, 2010.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint conference
on neural networks, pp. 1458–1463, 1991.

Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually
searching for the simplest still unsolvable problem. Frontiers in psychology, 4:313, 2013.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arxiv 2017. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. arXiv preprint arXiv:2005.05960, 2020.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile
computing and communications review, 5(1):3–55, 2001.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International Conference on Machine Learning, pp. 5779–5788, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene Demchuk. Nearest
neighbor estimates of entropy. American journal of mathematical and management sciences, 23
(3-4):301–321, 2003.

14

Under review as a conference paper at ICLR 2021

Kumar Sricharan, Dennis Wei, and Alfred O Hero. Ensemble estimators for multivariate entropy
estimation. IEEE transactions on information theory, 59(7):4374–4388, 2013.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. Planning to be surprised: Optimal bayesian ex-
ploration in dynamic environments. In International Conference on Artificial General Intelligence,
pp. 41–51. Springer, 2011.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Adrien Ali Taïga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare.
Benchmarking bonus-based exploration methods on the arcade learning environment. arXiv
preprint arXiv:1908.02388, 2019.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. In Advances in neural information processing systems, pp.
2753–2762, 2017.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh
Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm_control: Software and tasks for
continuous control. arXiv preprint arXiv:2006.12983, 2020.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. In Advances in neural information processing systems,
pp. 4790–4798, 2016.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? In Advances in Neural Information Processing Systems, pp. 14322–14333,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Giulia Vezzani, Abhishek Gupta, Lorenzo Natale, and Pieter Abbeel. Learning latent state representa-
tion for speeding up exploration. arXiv preprint arXiv:1905.12621, 2019.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Rui Zhao and Volker Tresp. Curiosity-driven experience prioritization via density estimation. arXiv
preprint arXiv:1902.08039, 2019.

15

Under review as a conference paper at ICLR 2021

A REWARD COMPUTATION IN PYTORCH

Algorithm 2 Computation of reward in APT

import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class RMS(object):
def __init__(self, epsilon=1e-4, shape=(1,)):

self.M = torch.zeros(shape).to(device)
self.S = torch.ones(shape).to(device)
self.n = epsilon

def __call__(self, x):
bs = x.size(0)
delta = torch.mean(x, dim=0) - self.M
new_M = self.M + delta * bs / (self.n + bs)
new_S = (self.S * self.n + torch.var(x, dim=0) * bs +
torch.square(delta) * self.n * bs / (self.n + bs)) / (self.n + bs)

self.M = new_M
self.S = new_S
self.n += bs

return self.M, self.S

rms = RMS() # moving statistics of reward
source: batch of states sampled from replay buffer (b1, c)
target: same as source or all of the states in replay buffer (b2, c)
encoder: contrastive representation encoder
def compute_intrinsic_reward(source, target, encoder, k):

with torch.no_grad():
source, target = encoder(source), encoder(target)
sim_matrix = torch.norm(source[:, None, :] - target[None, :, :],
dim=-1, p=2) # (b1, 1, c) - (1, b2, c) -> (b1, b2, c) -> (b1, b2)
sim_weight, sim_indice = sim_matrix.topk(k, dim=1, largest=False) #
(b1, k)
reward = torch.norm(source - target[sim_indice[:, -1]], dim=1, p=2,
keepdim=True) # (b1, k) # k-th based
moving_mean, moving_std = rms(reward)
reward = reward / moving_std
reward = torch.log(reward + 1.0)

return reward

16

Under review as a conference paper at ICLR 2021

B EVALUATION OF ENTROPY MAXIMIZATION

0.0 0.2 0.4 0.6 0.8 1.0
sample size 1e7

4
2
0
2
4
6
8

en
tro

py
 in

de
x

Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
sample size 1e7

10

5

0

5

10

en
tro

py
 in

de
x

Humanoid-v2

Random MaxEnt MEPOL APT

Figure 6: Comparison of entropy between different state exploration
methods. The results are averaged over 5 random trials. Error bar
denotes one standard derivation.

We conducted experiments to evalu-
ate APT’s performance in maximizing
entropy in state based continuous con-
trol tasks from OpenAI Gym (Brock-
man et al., 2016). We compared
APT with state-of-the-art state entropy
maximization methods, including (1)
MaxEnt (Hazan et al., 2019) which
proposes a provable efficient explo-
ration method for maximizing state
entropy, and shows their method can
improve the efficiency of exploring
the state space in continuous control.
(2) MEPOL (Mutti et al., 2020) which
is a recent state-of-the-art of exploration in continuous control, their estimation of particle based
entropy based on importance sampling and is unbiased. (3) APT-like MEPOL which denotes training
APT objective with MEPOL’s trust region optimization.

Following MaxEnt (Hazan et al., 2019), we compute the entropy index by discretizing the state
space. The Ant-v2 Jump and Humanoid-v2 Standup tasks are two sparse reward tasks given in
MEPOL (Mutti et al., 2020).

Figure 6 shows the results of entropy achieved by different methods, Table 3 and shows the results of
fine-tuning pre-trained models for 0.5M timesteps. MaxEnt performs poorly in high-dimensional
continuous control due to state density modeling is difficult. APT-like MEPOL outperforms MEPOL,
indicating the objective of APT balances between variance and bias. APT significantly outperforms
all baselines in maximizing entropy and also has the highest data efficiency in solving sparse reward
tasks, confirming that the off-policy nature of APT is crucial for both pre-training and fine-tuning.

Gym Environments From scratch
(state input) MEPOL APT-like

MEPOL MaxEnt APT (ours)

Sparse reward tasks Success rate

Ant-v2 Jump .12 ± .07 .44 ± .29 .52 ± .04 .18 ± .05 .96 ± .10
Humanoid-v2 Standup .0 ± .0 .72 ± .21 .78 ± .06 .12 ± .04 .94 ± .13
Dense reward tasks Episode reward

Ant-v2 4278.1 ± 712.7 1467.3 ± 879.4 1635.7 ± 876.9 1534.6 ± 318.6 4857.8 ± 875.9
Humanoid-v2 4854.3 ± 1012.6 1427.3 ± 567.8 1987.4 ± 467.8 678.4 ± 267.8 5036.9 ± 1367.8

Table 3: Comparison of fine-tuning on continuous control environments in OpenAI Gym. Maximum value for
each task is bolded. ± corresponds to a single standard deviation over 3 runs with random seed.

C ANALYSIS VARIATIONAL UNSUPERVISED RL METHODS

We contrast APT with variational unsupervised RL algorithms to give more intuitions besides the
empirical evaluation in Table 1.

Utilizing a strong inductive bias that is likely to yield features relevant to rewards of possible
downstream tasks has been the central goal of unsupervised RL research. One of the widely used
such bias is proposed by Achiam & Sastry (2017); Gregor et al. (2016) that is to only represent the
subset of observation space that the agent can control. This can be accomplished by maximizing
the mutual information between a policy conditioning variable and the agent’s behavior. Formally,
the goal is to learn latent-conditioned policies πθ(a|s, z) and define skills as the policies obtained
when conditioning π on a fixed value of z ∈ Z. There exist many algorithms that optimize policy
parameter θ maximize the mutual information through various means (see e.g. Eysenbach et al., 2018;
Hansen et al., 2020; Warde-Farley et al., 2018; Sharma et al., 2019). The quantity can be derived by

17

Under review as a conference paper at ICLR 2021

expanding the definition and derive a variational lower bound (Barber & Agakov, 2003).

J(θ) = I(z; s) (7)
= H(z)−H(z|s) (8)
= Eπ,z [log q(z|s)] + Es [KL(p(·|s)||qφ(·|s))] +H(z) (9)
≥ Eπ,z[log qφ(z|s)] +H(z), (10)

(11)

where qφ(z|s) is a variational approximation. In practice, sampling z from a fixed distribution yields
better and more stable results (Eysenbach et al., 2018; Hansen et al., 2020), which simplifies the
objective to maximizing the conditional entropy,

L(θ, φ) = Eπ,z[log qφ(z|s)]. (12)

The optimization of equation (12) is then accomplished by RL algorithm by defining reward

r(s, a, s′) = log qφ(z|s) (13)

equation (12) has been shown effective in RL, from learning skills in state based control in DI-
AYN (Eysenbach et al., 2018) and EDL (Campos et al., 2020) to combining successor features with
skill discovery in VISR (Hansen et al., 2020).

Comparing the variational based intrinsic reward equation (13) with the intrinsic reward used in
APT(equation (5)), we can see that the particle-based reward does not need to learn a parametric
probabilistic density and thus gracefully scales to high dimensional vision-based RL. We see that
APT performs considerably better on downstream RL tasks as shown in Table 1.

D COMPARISON ON DMCONTROL

DMC Environment From scratch
(visual)

From scratch
(state) Count-based DIAYN VISR APT (ours)

//Dense reward tasks Mean episode return

Cheetah Run 660 ± 96 772 ± 60 610 ± 78 256 ± 128 640 ± 134 671 ± 89
Cheetah Flip Forward 885 ± 112 937 ± 73 867 ± 98 432 ± 78 897 ± 215 987 ± 97
Cheetah Flip Backward 879 ± 87 923 ± 145 871 ± 79 465 ± 89 868 ± 187 856 ± 103
Hopper Hop 314 ± 167 287 ± 145 346 ± 198 389 ± 211 353 ± 189 397 ± 101
Hopper Stand 845 ± 103 859 ± 97 834 ± 121 821 ± 109 798 ± 123 832 ± 112
Hopper Hop Backward 290 ± 97 381 ± 109 361 ± 81 267 ± 65 376 ± 54 387 ± 112
Walker Run 713 ± 139 787 ± 37 683 ± 151 697 ± 63 675 ± 71 765 ± 63
Walker Stand 987 ± 40 991 ± 29 961 ± 39 974 ± 78 996 ± 67 979 ± 31
Walker Walk 965 ± 35 979 ± 67 958 ± 29 945 ± 71 987 ± 37 969 ± 51

//Sparse reward tasks Mean success rate

Cheetah Jump Sparse .0 ± .0 .38 ± .13 .09 ± .03 .31 ± .12 .68 ± .12 .79 ± .13
Cheetah Reach Sparse .0 ± .0 .18 ± .06 .23 ± .08 .53 ± .15 .93 ± .16 .83 ± .12
Hopper Jump Sparse .0 ± .0 .53 ± .14 .37 ± .08 .51 ± .23 .87 ± .12 .91 ± .05
Hopper Reach Sparse .0 ± .0 .37 ± .08 .16 ± .07 .65 ± .18 .93 ± .06 .94 ± .04
Walker Jump Sparse .0 ± .0 .13 ± .02 .05 ± .01 .14 ± .08 .68 ± .12 .87 ± .09
Walker Escape Sparse .0 ± .0 .09 ± .02 .67 ± .14 .95 ± .17 .87 ± .12 .97 ± .03

Table 4: Comparison of fine-tuning on DMControl. Models are pre-trained on Cheetah, Hopper, and Walker,
and subsequently fine-tuned on respective downstream tasks. The ’sparse’ denotes reward is sparse. APT
significantly outperforms baselines in most of sparse reward tasks.

18

Under review as a conference paper at ICLR 2021

E COMPARISON ON ATARI GAMES

Table 5: Comparison of raw scores of each method on Atari games. Results are averaged over five random
seeds. denotes dense reward hard exploration games. denotes sparse reward hard exploration games. @N
represents the amount of RL interaction utilized at fine-tuning phase.

Atari game Human Random VISR@100k APT@0 APT@100k (ours)
Alien 7127.7 227.8 364.4 287.7 2614.8
Amidar 1719.5 5.8 286.0 256.8 1231.4
Assault 742.0 222.4 1209.1 345.1 891.5
Asterix 8503.3 210.0 6216.7 234.8 185.5
Asteroids 47388.7 719.1 4443.3 45.6 678.7
Atlantis 29028.1 12850.0 140542.8 3451.9 40231.0
BankHeist 753.1 14.2 200.3 267.7 456.7
BattleZone 37187.5 2360.0 7072.7 3491.8 7075.1
BeamRider 16826.5 363.9 1741.9 1348.3 3487.2
Berzerk 2630.4 123.7 491.4 120.8 493.4
Bowling 160.7 23.1 21.2 -16.9 -56.5
Boxing 12.1 0.1 43.0 33.7 21.3
Breakout 30.5 1.7 397.9 231.8 480.9
Centipede 12017.1 2090.9 7184.9 3678.1 6233.9
ChopperCommand 7387.8 881.0 800.8 98.7 317.0
CrazyClimber 35829.4 10780.5 49373.9 1897.9 4128.0
Defender 18688.9 2874.5 15876.1 1154.3 5927.9
DemonAttack 1971.0 152.1 8994.9 945.8 7771.8
DoubleDunk -16.4 -18.6 -22.6 -10.8 -17.2
Enduro 860.5 0.0 -3.1 -10.9 -0.3
FishingDerby -38.7 -91.7 -93.9 -5.9 -1.6
Freeway 29.6 0.0 -2.1 12.1 29.9
Frostbite 4334.7 65.2 230.9 771.3 2196.1
Gopher 2412.5 257.6 1298.6 1298.6 8190.4
Gravitar 3351.4 173.0 328.1 228.6 542.0
Hero 30826.4 1027.0 663.5 363.9 6789.1
IceHockey 0.9 -11.2 -18.1 -16.4 -30.1
Jamesbond 302.8 29.0 484.4 10.3 356.1
Kangaroo 3035.1 52.0 1761.9 871.9 412.0
Krull 2665.5 1598.0 3142.5 849.8 2312.0
KungFuMaster 22736.3 258.5 16754.9 3871.9 17357.0
MontezumaRevenge 4753.3 0.0 0.0 1.3 147.0
MsPacman 6951.6 307.3 558.5 403.5 2427.1
NameThisGame 8049.0 2292.3 2605.8 698.5 1387.2
Phoenix 7242.6 761.4 7162.23 2871.9 3874.2
Pitfall 6463.7 -229.4 -370.8 -54.9 0.8
Pong 14.6 -20.7 -26.2 -21.8 -8.0
PrivateEye 69571.3 24.9 428.3 -54.9 556.1
Qbert 13455.0 163.9 666.3 459.8 17671.2
Riverraid 17118.0 1338.5 5422.2 3871.9 4671.0
RoadRunner 7845.0 11.5 6146.7 987.9 4782.1
Robotank 11.9 2.2 10.0 9.1 13.7
Seaquest 42054.7 68.4 706.6 1891.4 2116.7
Skiing -4336.9 -17098.1 -4312.4 -29819.4 -38434.1
Solaris 12326.7 1236.3 841.5 367.9 1925.8
SpaceInvaders 1668.7 148.0 9741.0 1389.7 3687.2
StarGunner 10250.0 664.0 25827.5 109.8 8717.0
Surround 6.5 -10.0 -15.5 -5.9 -4.5
Tennis -8.3 -23.8 0.7 -8.7 1.2
TimePilot 5229.2 3568.0 4503.6 968.1 1567.0
Tutankham 167.6 11.4 50.7 78.8 124.6
UpNDown 11693.2 533.4 17037.6 81.1 8289.4
Venture 1187.5 0.0 -1.7 13.8 231.0
VideoPinball 17667.9 0.0 35120.3 989.5 2817.1
WizardOfWor 4756.5 563.5 1453.3 746.9 3465.0
YarsRevenge 54576.9 3092.9 5543.5 719.3 1871.5
Zaxxon 9173.3 32.5 1092.5 518.6 5431.0

19

Under review as a conference paper at ICLR 2021

F EXPERIMENT DETAILS

F.1 IMAGENET BASED PRE-TRAINING

In Figure 1, the ImageNet (Deng et al., 2009) pre-trained model is based on MoCo (He et al., 2019).
The policies are represented by the Impala convolutional residual network as in (Espeholt et al., 2018),
with the LSTM (Hochreiter & Schmidhuber, 1997) part excluded. Images sampled from ImageNet
are downsampled to 84× 84, followed by frame-stacking and data augmentation. We experiment
with the data augmentation methods used in He et al. (2019); Chen et al. (2020c) and the simpler
random crop used in RL (Kostrikov et al., 2020). Results on DMControl shown no benefit comes from
ImageNet unsupervised pre-trained models. To improve the quality of pre-trained representations, we
consider initializing the filters in the first layer with weights from the model of He et al. (2016) which
is trained on ImageNet classification. Similar to fine-tuning MoCo trained models, we observe no
difference in performance between fine-tuning supervised pre-trained models observed and training
from scratch.

F.2 GENERAL IMPLEMENTATION DETAILS

The encoder network f is a ReLU convolution neural network followed by a full-connected layer
normalized by LayerNorm (Ba et al., 2016) and a tanh nonlinearity applied to the output of fully-
connected layer. The data augmentation is a simple random shift which has been shown effective in
visual domain RL in DrQ (Kostrikov et al., 2020) and RAD (Laskin et al., 2020). Specifically, the
images are padded each side by 4 pixels (by repeating boundary pixels) and then select a random
84× 84 crop, yielding the original image. This procedure is repeated every time an image is sampled
from the replay buffer. The learning rate of contrastive learning is 0.001, the temperature is 0.1. We
incorporate the memory mechanism (with a moving average of weights for stabilization) from He
et al. (2019); Chen et al. (2020c). We use DrQ as the RL optimization algorithm at both pre-training
phase and fine-tuning phase. The batch size of contrastive learning is 1024, the batch size of RL
optimization is 512. The pre-training phase consists of 5M environment steps on DMControl and
250M environment steps on Atari games. The replay buffer size is 100K. The projection network is
a two-layer MLP with hidden size of 128 and output size of 64. All hyperparameters are included
in Table 7 and Table 8.

F.3 MULTI-ENVIRONMENT PRE-TRAINING DETAILS

For the experiments of multi-environment pre-training (results shown in Figure 5), we use one
separate replay buffer for each of the three environments, and compute environment specific loss
using data sampled from its own replay buffer. The contrastive loss and RL loss are then summations
of every environment specific loss.

F.4 DMCONTROL HYPERPARAMETERS

Environment name Action repeat
Cheetah 4
Walker 2
Hopper 2

Table 6: The action repeat hyper-parameter used for each environment.

F.5 ATARI HYPERPARAMETERS

For the experiments in Atari 100k experiments, we largely reuse the hyper-parameters from
DrQ (Kostrikov et al., 2020). The evaluation is done for 125k environment steps at the end of
training for 100k environment steps.

20

Under review as a conference paper at ICLR 2021

Algorithm 3 Pseudo-code of Unsupervised Active Pre-Training.

f: encoder network shared between actor & critic
g: projection network for contrastive learning
k: hyperparameter of kth-nearest neighbor

// Unsupervised pre-training phase: learning pre-trained actor-critic
while iterations so far < max pre-training iterations do

Interact with a reward-free environment and collect transitions and save to replay buffer
// sample a batch of transitions from replay buffer and compute contrastive loss
Compute contrastive_loss using equation (1)
// update f and g to minimize contrastive loss
Contrastive_loss.backward()
Update(f.param, g.param)
// compute intrinsic reward for each transition
Compute representation yt+1 for each xt+1 for computing kNN.
Compute r(xt, at, xt+1) = log(‖yt+1 − ykNN

t+1 ‖22 + 1) (equation (5))
// optimize reward via off-policy RL
Compute expected_reward
// update RL agent to maximize expected reward
Update(actor.param, critic.param)

end while

// Supervised fine-tune phase: fine-tuning both actor and critic
// If fine-tune both representation and RL agent, initialize encoder and actor-critic from pre-trained
models.
// If fine-tune representation only, initialize encoder from pre-trained models and randomly initialize
actor and critic.
while iteration number ≤ max fine-tune iterations do

Interact with a task-specific environment and collect transitions and save to replay buffer
Sample a batch of transitions
// fine-tune representation or fine-tune both representation and RL agent initialization
Update(f.param, actor.param, critic.param)

end while

21

Under review as a conference paper at ICLR 2021

Parameter Setting
Data augmentation Random shifts
Frames stacked 3
Action repetitions Table 6
Replay buffer capacity 100000
Random steps (fine-tuning phase) 1000
RL minibatch size 512
Contrastive learning minibatch size 512
K-Nearest Neighbors K value 3
Discount γ 0.99
RL/contrastive learning optimizer Adam
RL learning rate 10−3

Contrastive learning rate 10−3

Learning rate schedule cosine
Temperature 0.1
Shared encoder: channels 32, 32, 32
Shared encoder: filter size 3× 3, 3× 3, 3× 3
Shared encoder: stride 2, 2, 2, 1
Actor update frequency 2
Actor log stddev bounds [−10, 2]
Actor: hidden units 1024
Actor: layers 3
Init temperature 0.1
Critic Q-function: hidden units 1024
Critic target update frequency 2
Critic Q-function soft-update rate τ 0.01
Non-linearity ReLU

Table 7: Hyper-parameters in the DeepMind control suite experiments.

22

Under review as a conference paper at ICLR 2021

Parameter Setting
Data augmentation Random shifts and Intensity
Grey-scaling True
Observation down-sampling 84× 84
Frames stacked 4
Action repetitions 4
Reward clipping [−1, 1]
Terminal on loss of life True
Max frames per episode 108k
Update Double Q
Dueling True
Target network: update period 1
Discount factor 0.99
Minibatch size 32
RL optimizer Adam
RL optimizer (pre-training): learning rate 0.0001
RL optimizer (fine-tuning): learning rate 0.001
RL optimizer: β1 0.9
RL optimizer: β2 0.999
RL optimizer: ε 0.00015
K-Nearest Neighbors K value 3
Contrastive learning optimizer Adam
Contrastive learning rate 10−3

Learning rate schedule cosine
Temperature 0.1
Max gradient norm 10
Training steps 100k
Evaluation steps 125k
Min replay size for sampling 1600
Memory size Unbounded
Replay period every 1 step
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8× 8, 4× 4, 3× 3
Q network: stride 4, 2, 1
Q network: hidden units 512
Non-linearity ReLU
Exploration ε-greedy
ε-decay 2500

Table 8: Hyper-parameters in the Atari suite experiments.

23

	Introduction
	Related Work
	Intrinsic Motivation and Exploration
	Data efficiency in RL

	Method
	Experiments
	Experimental setup
	Single environment Pre-Training
	Representation and RL agent initialization fine-tune
	Discussion of Multi-environment Pre-training

	Conclusion
	Reward computation in PyTorch
	Evaluation of entropy maximization
	Analysis variational unsupervised RL methods
	Comparison on DMControl
	Comparison on Atari games
	Experiment details
	ImageNet based pre-training
	General implementation details
	Multi-environment pre-training details
	DMControl hyperparameters
	Atari hyperparameters

