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Abstract. Nowadays, financial markets produce a large amount of data,
in the form of historical time series, which quantitative researchers have
recently attempted at predicting with deep learning models. These mod-
els are constantly updated with new incoming data in an online fashion.
However, artificial neural networks tend to exhibit poor adaptability, fit-
ting the last seen trends, without keeping the information from the pre-
vious ones. Continual learning studies this problem, called catastrophic
forgetting, to preserve the knowledge acquired in the past and exploiting
it for learning new trends. This paper evaluates and highlights contin-
ual learning techniques applied to financial historical time series in a
context of binary classification (upward or downward trend). The main
state-of-the-art algorithms have been evaluated with data derived from
a practical scenario, highlighting how the application of continual learn-
ing techniques allows for better performance in the financial field against
conventional online approaches. 1

1 Introduction

The financial market is a worldwide virtual place meant for the exchange of
financial instruments, such as shares, contracts, stocks, or commodities. In the
past, investments were made in person by a small circle of domain experts,
basing their decisions on experience and a small amount of data. Nowadays,
the actors and the dynamics involved have radically changed. The strong avail-
ability of real-time data and the great computational capabilities of computers
brought that most of the investments are not made only by human traders.
Therefore, they are assisted by an ever-increasing number of equipped "intel-
ligent machines" able to understand the best timing for carrying out financial
transactions. Consequently, the concept of algorithmic trading has taken hold.
The algorithms are characterized by a set of rules defined to perform certain
actions based on the state of the market. These rules are written by human
traders who study particular techniques for market choices. The natural evolu-
tion of these algorithms is the use of cutting-edge machine learning and deep
learning techniques to develop predictive models. This way, human intervention
1 Code is available at https://github.com/albertozurli/cl_timeseries.

https://github.com/albertozurli/cl_timeseries
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is no longer required to define steady rules, and decisions support tools can rely
only on data and their patterns over time, through the use of tailored neural
networks. The problem of using machine and deep learning techniques with time
series is the need to periodically retrain the model to allow for the updating and
acquisition of knowledge of the most recent data. This leads neural networks to
suffer from catastrophic forgetting, meaning that their weights are overwritten
in favor of last seen data, losing their predictive power over the older data. It has
been shown that market trends over time are qualitatively similar, and therefore
learning the behavior of the time series in the past could be useful for predicting
its future trend. Continual learning is a deep learning technique developed to
face the catastrophic forgetting problem, and that has recently shown promising
and significant results even in image classification areas. The study and appli-
cation of these techniques could be relevant within the financial market, due to
its cyclical nature.

Exploring the potential of continual learning is a novel topic in the financial
world and therefore, to the best of our knowledge, this is the first work that
analyzes and evaluates the potential of continual learning in-depth. In particu-
lar, we analyzed whether catastrophic forgetting could lead to a bad predictive
performance in financial time series classification, comparing the classical on-
line learning paradigm with continual learning techniques designed to overcome
catastrophic forgetting. Specifically, a problem of binary classification of time se-
ries has been studied, where each time series consists of a vector of consecutive
daily samplings. The goal is to predict whether this will have an increasing or
decreasing trend in the future, leading to a "buy" or "sell" decision. We define
continual learning tasks as periods, which may have different lengths, but specific
behavior. For example, the first task can be represented by a stationary prices
trend, the second one by a sudden increase of prices, the third one by a slow
drop. Each task is time bounded by a change of these regimes. Approaching the
problem this way, we place it in a Domain-Incremental Learning (Domain-IL)
scenario [20], where the distribution of the classes remains unchanged while the
change of task is defined by a variation of the distribution of input data. Several
state-of-the-art continual learning methods have been developed and deeply ana-
lyzed. Eventually, the experimental results achieved suggest that CL techniques,
alleviating the forgetting phenomenon, exhibit better performance than online
learning.

2 Related work

2.1 Financial market predictions

Time series research has experienced strong growth in several sectors in the last
few years: from the prediction of pedestrian and car trajectories for video surveil-
lance [13,1] to the prediction of machinery failures in industries. Among them,
financial market predictions have been deeply investigated leading to the devel-
opment of increasingly sophisticated algorithms capable of predicting the trend
of the financial market. Machine learning and deep learning techniques have been
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applied to financial time series, to make these algorithms as automatic as pos-
sible to facilitate the traders’ decisions. However, due to the unpredictability of
the market is still hard to design machine learning algorithms that can properly
work on financial time series [14]. In fact, deep learning models, like 1-D convo-
lutional neural networks, multi-layer perceptrons, temporal transformers [19]),
that achieve the State Of The Art on other tasks, do not always exhibit satisfac-
tory performance on financial problems. For this reason, deep learning for finance
is at the cutting-edge of research and in the last few years, several methods have
been designed or adapted specifically to financial time series [10,6,15].

2.2 Continual learning techniques

Real-world computational systems are exposed to continuous data flow, and
they have to learn and remember multiple tasks. The traditional optimization
technique applied to machine and deep learning models is not suited to tackle
continuous data flow due to their nature to forget and overwrite the previously
learned knowledge. Neural networks tend to overwrite the previously acquired
knowledge by updating the network parameters when trained with data from
a new task or distribution. This phenomenon is known as catastrophic forget-
ting [12]. It typically leads to a sudden drop in performance or, in the worst
case, the total overwriting of the old task against the new one. If you train
on sequential tasks, the performance of traditional neural networks decreases in
past tasks as the number of tasks increases. Continual learning techniques try
to solve this issue, through specifically designed algorithms that alleviate catas-
trophic forgetting. Several continual learning methods have been studied and
presented in the literature in the last few years. However, no consensus has been
reached about a globally valid continual learning algorithm. We can therefore
distinguish three categories: replay-based, regularization-based and parameter
isolation methods. Replay-based methods [16,3,2], also known as rehearsal, save
examples from previous tasks. These examples are sampled from a memory buffer
and used as input when training the current task. These previous task samples
contribute to the loss function to prevent forgetting and interference. The re-
hearsal methods use only a subset typically limited by the size of the memory
used to save the examples. In the absence of previous task data, pseudo-rehearsal
techniques collect information regarding the distribution of data and, through a
generative model, generate fictitious data but similar to the distribution of the
original dataset. These methods generally scale very well but, for a large number
of tasks, they can run into problems of saturation of the available memory. On
the other hand, regularization-based methods [21,9] act on the parameters of the
model, discouraging the updating of neurons or layers deemed relevant for the
individual tasks. The various methods differ on the type of penalty to be applied
and how this is calculated. This allows consolidating the knowledge of the pre-
vious tasks, leaving the model the possibility to observe and learn data coming
from the current task. The regularization methods, with rare exceptions, are
not particularly computational expansive but they lack scalability. To preserve
past knowledge, the neural network weights are "frozen". So, when the number
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Fig. 1. Data flow of a financial time series in our setting. The prices time series is
subdivided into tasks by a change-point detector (dashed red lines). Raw prices, rel-
ative to a certain period (determined by a window length), are turned into financial
indicators, that become the inputs of the neural network. The problem consists of a
binary classification to predict prices trend (positive or negative) at N time step later.

of tasks increases over time, the neural network tends to saturate, bringing to
low performance on the last tasks. Finally, parameter isolation or architectural
methods [17] dedicate different parts of the model or make a different copy of if
to each task exclusively. In the absence of constraints on the architecture, a new
model’s branch, with exclusive parameters, is instantiated for each new task.
The final layers of the model involved in the classification can be exclusive or
shared. The architectural methods are extremely expensive from the point of
view of the memory and computational power required since there are N models
for N tasks, but they have potentially infinite scalability.

3 Problem formulation

A great advantage of trading using algorithms is the ability to process a large
amount of data in real-time to extract as much information as possible. It is
necessary to provide the model with data that best reflects the state of the
market in each timestep to make the most appropriate investment choice. In
this section, we present the data, their structure, and the features generated by
the models.
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3.1 Financial time series and indicators

The input provided to the model consist of fixed-length sequences representing
the trend of financial time series (daily close values) over a period of one month
(i.e. 20 business days) of observations. Sequences are constructed by taking all
possible consecutive 20-day windows in the available data. Each series is used to
obtain the features and time sequences by building a different dataset, giving rise
to an analysis of multivariate historical series for each financial series. Even if a
neural network can extrapolate the information it deems relevant in a completely
autonomous way, using only time series does not carry out any learning despite
copying the label of the previous example in output. This fact demonstrates a
dependence between time series even where they have no provable relationships.
Consequently, it was necessary to manipulate the series by carrying out various
engineering operations to obtain features. The first step is carried out to elim-
inate copying between outputs, a phenomenon that is not uncommon in time
series and which is usually solved by creating a series obtained as the differ-
ence between data points of two consecutive instants. The input has doubled its
dimensionality from a vector to a matrix. The increase in dimensionality is an as-
pect to be taken into account in a problem of this type: if, on the one hand, only
the raw series is insufficient, on the other hand, using too many features could
push the model to focus on unnecessary or worse misleading information. This
aspect was taken into account in choosing which financial indicators to use as
features that could provide helpful information. Thanks to moving averages, we
can catch the real market trends, removing irrelevant fluctuations in the original
series. Using Weighted Moving Average, we put a specific weight which decades
overtime to any timestep, giving a higher impact on more recent timesteps. Rate
of Change provides a first qualitative analysis regarding possible changepoints
computing the percentual difference between the current timestep and another
n step in the past. A minor variation means that current data do not differ from
previous ones, while a bigger one indicates a possible change in the distribu-
tion. To measure variation speed and magnitude in time series, we used Relative
Strength Index. This momentum oscillator reports the strength of the current
time series trend, highlighting periods of excessive overconfidence and undercon-
fidence of stocks. Chande Momentum Oscillator provides more fine-grain values
in respect to RSI, enabling the model to confirm or deny results of the previ-
ous indicator while at the same time finding out new changepoints. Finally, we
can keep track of market reversals with the Percentage Price Oscillator, another
momentum oscillator able to compare moving averages with different temporal
horizons. An exciting feature of the chosen indicators is that they collect in-
formation about the past and mediate it with the present. This allows forming
features that represent the current state and a set of past timesteps used to con-
stitute the feature itself. Many indicators are characterized by an observation
period overtime in the series. Those listed below have been generated for 5 to
20 days to extract informative content both in the short and long term. Shorter
periods could capture information that is too little specific for the sequence,
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just as long periods would provide information of a greater window than the
observation window of the model itself.

3.2 Definition of domain regimes

The classic problems of continual learning do not deal with time series, but rather
images. Consequently, it is necessary to understand which algorithms could be
applied, taking into account that input data of a different nature lead to differ-
ent assumptions. The first is the temporal aspect of the financial series, where
the time series itself defines the order of tasks and examples. Namely, the only
way to learn from these series is respecting the temporal order, hence excluding
data shuffling or any kind of offline learning. However, this assumption does not
indicate a limitation in the study of the problem since the training of the tasks
is sequential. Continual learning is defined for different scenarios (task, domain,
and class-IL) and the next step was to identify in which of these the problem
treated is found. Since all the tasks come from the same time series, the data dis-
tribution of each task will also be the same; therefore, we can discard the class-IL
scenario. Considering the problem of predicting the market by classification, for
each task, the model receives as input a sequence equal to one month of data
updated every day at the close of the markets, for a sequence length equivalent
to 20 days. The reason for this choice is dictated above all by the opening and
closing of the world market. The second reason for choosing a window of this size
is given by the assumption that in a month of daily observations it is possible
to collect a sufficient amount of data to make a reliable analysis. There is also a
label associated with each sequence. There will be y = 1 if the value of the time
series 20 days after the end of the sequence will be greater than the last data
of the same, zero otherwise. This corresponds to one month of observation and
prediction of the following month. The labels predicted by the model indicate
how to act: a positive prediction suggests an increase in market value, and there-
fore it is generally advisable to buy. In contrast, a negative prediction invites
to sell. For each task, the possible outputs will belong to the same domain and
consequently, we are faced with a domain-IL scenario. In this scenario, there is
no information regarding a task identifier, leading to discard architectural or pa-
rameter isolation methods. Figure 1 shows the data flow in our setting. Dashed
red lines indicate a change of regime (task in the continual learning problem) in
the raw time series; the network takes as input a series of financial indicators,
derived from the raw prices series, relative to a period, defined by a window on
the timeline; the neural networks operate a binary classification defining if the
series exhibits a positive or a negative trend.

3.3 Continual learning techniques

In this section, all the examined algorithms will be explored, describing the tricks
we sometimes employed to adapt these methods to the problem. In fact, not all of
the state-of-the-art methods are suitable for the problem of classifying financial
time series or do not offer the desired performance.
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Gradient Episodic Memory The early learning problems of multiple sequen-
tial tasks were based on Empirical Risk Minimization (ERM) [18], which defines
the theoretical limits of the learning algorithm performance. This limitation
comes from the inability to know the data distribution on which the algorithm
will work. Gradient Episodic Memory (GEM) [11] was proposed as a learning
method disconnected from data distribution and focused on an example by exam-
ple observation. In particular, the classic example-label pair (x, y) is abandoned
in favor of a triplet (x, y, t), where t is a task descriptor. Applied to financial time
series, the task descriptor can be the task-id, as done in this work, or a complex
structure describing the distribution to which the data belong. The main feature
of this method is the episodic memory Mt capable of saving a subset of each task
t. With T tasks and total available memory M , each task will have an exclusive
memory equal to M/T . If the total number of tasks is not known a priori, it is
possible to gradually reduce the number of examples for each task as the number
of tasks increases. The goal of this method is to sequentially train a model on
T tasks, preventing overwriting in future tasks with the constraint that training
a task should not lead to worse performance in previous tasks. Given a triplet
(x, y, t), the optimization problem to be solved is the following:

minimizeθ ℓ(fθ(x, t), y)

subject to ℓ(fθ,Mk) ≤ ℓ(f t−1
θ ,Mk) for all k < t, (1)

The problem is complex to solve with this formulation, but it is possible to make
two observations. The first one concerns the conservation of the parameters of
each task: if the constraint on the loss is maintained, it is no longer necessary
to save the state of the network at the end of each task. The second and, more
important, allow us to represent the variation of the loss between two updates
through the angle between the two gradient vectors if the function is locally
linear, assumption valid between two gradient steps. The second observation
allows us to rewrite the optimization constraints:

⟨g, gk⟩ :=
〈
∂ℓ(fθ(x, t), y)

∂θ
,
∂ℓ(fθ,Mk)

∂θ

〉
≥ 0, for all k < t. (2)

For every training step, there is, therefore, a system of k inequalities to resolve.
It is easy to guess that this operation becomes more onerous as the number of
tasks increases. In case of at least one constraint is not met, a gradient step
in a new direction is required. This makes the optimization problem a QP-
complete problem for that specific training step. Only approximations of the
optimal solution are valid, and the authors of the method proposed a valid one
using the dual problem. Buffer size plays a relevant role in the performance
evaluation: if we use more memory, we could expect better performances. But,
in time series problems, this becomes tricky. A too big memory should allow
saving too much data, going to a pseudo-parallel training of more tasks, and, in
a scenario where temporal order is fundamental, this aspect must be avoided.
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Averaged Gradient Episodic Memory Averaged Gradient Episodic Mem-
ory (A-GEM) [5] has been proposed as an optimization of the forerunner. To
alleviate the weight of the computation, the authors opted for a relaxation of
the constraints, going from loss reduction on examples of each of past tasks to
an average on all the episodic memory. While the objective function to minimize
remains the same, the constraints collapse to a single one valid for all past tasks.

As before, we can reformulate the objective function and the constraints
regarding previous observation of the loss variation and gradient vectors:

minimizeg̃
1

2
||g − g̃||22 s.t. g̃⊤gref ≥ 0 (3)

where gref indicates gradient computed from a random batch obtained by the
episodic memory from all previous tasks; in other words, A-GEM replaces t−1 in-
equalities with only one. However, it remains possible that the unique constraint
is not met. In this scenario, there is no particular problem or approximation to
compute but the solution is given by the projected gradient method:

g̃ = g − g⊤gref
g⊤refgref

gref (4)

As GEM, this method exploits different algorithms to fill the buffer. Since in A-
GEM, we got a single batch sampled from the whole buffer, the data distribution
of the batch could not reflect the original distribution between tasks. We opted
for a different strategy to fill the buffer to maintain the correct distribution, equal
as far as possible to the stream one, using the reservoir sampling algorithm.

Synaptic Intelligence A significant limitation in the development of neural
networks capable of learning multiple sequential tasks lies in the one-dimensional
structure of the neuron, leading a network to catastrophic forgetting. Defining
which neurons are most responsible for learning is necessary to consolidate ac-
quired knowledge on a task. The best way to assess how significant a neuron is
for a task is to calculate its contribution to the global loss of the current task. In
this way, at the end of each task, it will be possible to determine which neurons
contribute most to the current task’s learning and prevent their update in the
future, maintaining knowledge of past tasks, thus avoiding forgetting. Synaptic
Intelligence (SI) [21] does not require external memories or architecture varia-
tion. Still, it acts only on network parameters, defining an additional loss related
to the state of the neurons themselves. When training on a new task, changes to
important parameters are penalized to prevent old memories from being over-
written. We can compute weight importance ωµ

k for each neuron θk related to
task µ. During the training of a task, a learning trajectory θ(t) is described in
the network parameter space. This trajectory will come as close as possible to a
minimum for the loss function for each task. We can now consider an update δ(t)
at time t, leading to a variation on the loss of the current task. This variation
can be approximated by the gradient gk and in such case the relation

ℓ(θ(t) + δ(t))− ℓ(θ(t)) ≈
∑
k

gk(t) · δk(t) (5)
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can be considered valid. The variation δk(t) = θ′k(t) =
∂θk
∂t therefore contributes

to the variation of the global loss. If we want to compute the variation over the
entire trajectory, we must sum up all small updates. This amounts to computing
the path integral of the gradient vector along the parameter trajectory. Since
the gradient is a conservative field, the value of the integral is equal to the
difference in loss between the end point tend and start point tstart. In addition,
the integral can be decomposed as the sum of the impact of the importance ωµ

k

on loss variation. In practice, ωµ
k is the online approximation of the running sum

of the product of the gradient gk(t) =
∂L
∂θk

with the update θ′k. In a sequential
tasks scenario, the model will have only a loss Lµ available on the current task µ.
Catastrophic forgetting occurs when minimizing Lµ there is a significant increase
of the loss Lυ of past tasks υ < µ. In this context, the importance of parameters
θk is determined by: 1) how much the parameter contributes to a loss drop
and 2) the difference θk(t

µ)− θk(t
µ−1). To avoid a significant variation in these

parameters, a modified loss has been proposed:

L̃µ = Lµ + c
∑
k

Ωµ
k (θ̃k − θk)

2 (6)

with θ̃k = θk(t
µ−1) and parameter c to mange regularization. Coefficient Ωµ

k

determines the regularization strenght of each parameter:

Ωµ
k =

∑
υ<µ

ωυ
k

(∆υ
k)

2 + ϵ
(7)

with ∆υ
k = θk(t

υ)− θk(t
υ−1).

Elastic Weight Consolidation Like the previous one, this method presented
by Kirkpatrick et al. [9] is based on the possibility of determining a coefficient
of importance for each neuron to be used in the computing of the global loss.
Given task A, multiple valid network weights configurations θA ensure the same
performances. In this way, when task B occurs, the model will maintain the
performance binding model parameters in a solution space with low error for
the previous task while maximizing performance on the new task B. Elastic
Weight Consolidation (EWC) does not aim to find the optimal solution for each
task but focuses on finding an intersection of low error solution space. To find
which parameters are the most significant for a task, the authors addressed
the problem from a probabilistic point of view. Optimizing the parameters of a
network given the training set D is equal to probability p(θ|D). In presence of
two independent tasks A(DA) and B(DB), with the Bayes’ law we can write:

log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB) (8)

where the right-hand side depends only on the loss on task B log p(DB |θ). Si-
multaneously, all the information regarding task A log p(θ|DA) is soaked up
by the posterior probability. Suppose the true posterior probability cannot be
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computed. In that case, we can obtain a good approximation from a Gaussian
distribution with mean given by parameters θA and angular precision from the
diagonal of the Fisher Information Matrix F . This matrix has three key proper-
ties: 1) it is equivalent to the second derivative of the loss near a minimum, 2) it
can be computed from first-order derivates, and 3) it is guaranteed to be positive
semi-definite. Given this approximation, the loss function L to minimize:

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2 (9)

where LB(θ) is the loss for task B, λ sets the importance of old task compared
to the new one. When moving to a third task C, EWC will try to keep the model
parameters close to the learned parameters on both task A and B, where this
can be enforced either with two separate penalties.

Experience Replay The consolidation of acquired knowledge can occur in
several ways in the human brain. One consists of periodic observation to consol-
idate the knowledge acquired but potentially overwritten over time. Experience
Replay (ER) [16] uses an external memory buffer to save data from previous
tasks, as example-label couple (x, y), without any reference about the task that
the data belong to. During each training step, in addition to the batch of exam-
ples of the current task, another batch composed of examples from past tasks
is sampled from the buffer, and the loss is computed on both of its, driven by
hyperparameters α and β:

L = α · E(x,y)∼Dt
[l(y, f(x))] + β · E(x,y)∼M [l(y, f(x))] (10)

where Dt denotes training set of the current task and M the external memory.

Dark Experience Replay Several CL algorithms have been proposed as im-
provements of ER. Dark Experience Replay (DER) [3] is one of these, and it
relies on dark knwowledge for distilling past experiences, sampled over the en-
tire training trajectory. Differently from the other rehearsal-based methods, this
method retains the network’s logits z ≜ hθt(x), instead of the ground truth labels
y. This stratagem allows avoiding the loss of information due to the compression
made by the final activation function. The corresponding loss function results:

E(x,y)∼Dt
[l(y, f(x))] + αE(x,z)∼M

[
∥z − hθ(x)∥22

]
(11)

This approach is related to Knowledge Distillation [8], a paradigm that allows
the transfer of knowledge from a teacher to a student model. In particular, DER
exploits a variant of this, known as self-distillation [7], in which transfer occurs
between the same architecture. In this scenario, by saving logits of previous task
examples, the model transfers knowledge to a version of itself in the future. More-
over, Dark Experience Replay ++ has been proposed that equips equation 11
with an additional term on buffer datapoints, promoting higher conditional like-
lihood concerning their ground labels.
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4 Experiments

4.1 Architecture

All the methods under examination were evaluated with the same architecture,
using a fully-connected network composed of three hidden layers with respec-
tively 100, 50, and 25 neurons each and with LeakyReLu as an activation func-
tion. All methods were tested using Stochastic Gradient Descent (SGD) with
momentum as an optimizer for a total of 480000 training steps for each task.
For rehearsal methods, we set the buffer size to 500 samples.

4.2 Evaluation metrics

To properly assess learning quality at training time, it is mandatory to consider
both single tasks as the whole training process. In other words, a CL algorithm
should be evaluated both on the past and the present tasks to reflect in its
behavior on the future unseen tasks. It is crucial to assess the ability to transfer
knowledge across tasks to achieve this, along with average accuracy (ACC). More
specifically, we would like to measure Forward Transfer (FWT) and Backward
Transfer (BWT) [11] (Forgetting (FRG) [4] has been omitted because it is equal
to BT except for the sign). The first one assesses the influence that learning a
task t has on the performance on a future task k > t, whereas the second and
third ones measure the performance degradation in subsequent tasks. FWT is
computed as the difference between the accuracy before starting training on a
given task and the random-initialized network, then averaged across all tasks.
FRG and BWT compute the difference between the current accuracy and its
best value for each task, presumably at the end of the training of the task itself.
Except for FRG, the larger these metrics, the better the model. If two models
have similar ACC, the preferable one is the one with larger BWT and FWT.
While BWT measures the influence of a task on the previous ones and FWT
the influence on the following ones, it is meaningless to discuss backward for the
first task or forward for the last one.

4.3 Dataset

For the experimental analysis, two datasets have been employed. We used Brent
Oil dataset 2, the historical series of the oil prices on a daily basis. In particu-
lar, we used 9282 time steps, collected between 02/01/1986 and 31/07/2021 3.
We also employed the copper dataset 2, consisting in 8500 time steps, taken
from 02/01/1989 and 31/07/2021 3. An example contains twenty consecutive
daily observations. The next example is obtained by shifting the time window
by one timestep. To provide more refined information to the model, it was de-
cided to proceed towards an engineering of the features using some of the most
famous financial and statistical indicators, as explained in section 3.1. Finally,
for the definition of the various tasks within the time series, Bayesian Online
2 https://datahub.io/core/oil-prices, https://help.yahoo.com/kb/SLN2311.html
3 Dates are reported as DD/MM/YY.

https://datahub.io/core/oil-prices
https://help.yahoo.com/kb/SLN2311.html
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Online SI EWC ER GEM A-GEM DER DER++

Accuracy 65.04 70.34 71.64 72.29 65.25 65.47 72.59 73.37
Backward Transfer - -6.06 -4.15 -3.72 -11.29 -5.74 -4.96 -4.11
Forward Transfer - 25.28 26.02 24.05 12.21 25.97 23.39 27.24

Table 1. Results of tested methods on Brent Oil dataset. For accuracy, backward and
forward transfer bigger is better.

Online SI EWC ER GEM A-GEM DER DER++

Accuracy 58.28 65.46 68.01 68.00 54.23 58.86 64.09 68.77
Backward Transfer - -5.08 -3.28 -0.85 -8.94 -6.74 -4.22 -3.11
Forward Transfer - 14.45 11.64 17.92 7.02 13.39 14.32 12.28

Table 2. Results of tested methods on copper dataset. For accuracy, backward and
forward transfer bigger is better.

Changepoint Detection (BOCD) was used, an online algorithm for the detection
of changepoints, i.e. moments in which a significant change occurs in the data
distribution. To verify the validity of this technique, we asked a financial expert
to manually find out the change-points on the time series. The results almost
completely coincide with those found by the algorithm, with an occasional vari-
ation of maximum 1 or 2 time steps. This allows the whole continual learning
process to work without the need for further human intervention to detect regime
changes, allowing us to use public datasets without further processing. Within
each task, we split the data into two different sets: train and evaluation set. Be-
tween the two sets, we leave a gap excluding any sample whose evaluation time
is posterior to the earliest prediction time in the validation set. This ensures that
predictions on the validation set are free of look-ahead bias.

4.4 Quantitative results

This section will discuss the results of each Continual Learning method, com-
paring them with the sequential training of each task without any continual
technique, called online learning. Each method is evaluated not only with accu-
racy across all tasks but also with ad hoc Continual Learning metrics: forward
transfer and backward transfer. In Table 1 and Table 2 are reported perfor-
mances measured at the end of the whole training, respectively on the Brent
oil dataset and on the copper dataset. To obtain less noisy performance esti-
mates, values are reported as averages of three runs with different runs with
different initialization. In the regularization methods, SI and EWC, we found
an attenuation of the average forgetting across all tasks, even if the task nature
heavily influences the accuracy of past tasks. This aspect is emphasized in SI,
while EWC demonstrates good stability. Figure 2(a) shows the evolution of the
accuracy of these methods during the training, compared to online learning on
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Fig. 2. Performance results. Dashed lines indicate task change: regularization methods
performance on Brent Oil dataset (a), rehearsal method performance on Brent Oil
dataset (b), regularization methods performance on the copper dataset (c), rehearsal
method performance on the copper dataset (d).

Brent oil dataset, while Figure 2(c) on the copper dataset. SI and EWC expe-
rience similar accuracy on both datasets, while in the continual metrics, EWC
performs slightly better. In replay-based methods (Figure 2(b) on the Bernt oil
dataset and Figure 2(d) on the copper dataset), Gem and A-GEM are com-
plex and hard to evaluate algorithms. GEM experiences the worst performance
across all continual methods tested, especially on the copper dataset; probably
due to the constraints violations introduced by the technique, event more and
more frequently as the number of tasks increases. Although A-GEM significantly
relaxes the constraints, accuracy remains aligned with baseline online learning
while continual metrics are comparable to other methods. Vice versa, ER, DER
and, DER++ experience the best performances. DER++ combines the features
of the other two methods taking advantage of its: replaying past data from the
buffer as ER, it uses logits information context as done in DER to improve
further the predictions, bringing it to be the most performing method. In Fig-
ure 3(a) and (b) are reported the training times of each method, respectively
on Brent oil dataset and on the copper dataset. Again, the behavior is similar
on both datasets, demonstrating the robustness of these algorithms on financial
time series. SI demonstrates to be the quickest to be trained thanks to online es-
timate models weights. Simultaneously, the other regularization method, EWC,
is the second most time-consuming algorithm due to the necessity to compute
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Fig. 3. Training time comparison on Brent Oil dataset (a) on the left and the copper
dataset (b).

the Fisher Information Matrix at the end of each task. GEM constraints, finally,
do not make up a complexity element only from a computational perspective,
but they also make this method the most time-consuming for the model training.

5 Conclusion

In this paper, an experimental analysis of continual learning algorithms on mar-
ket predictions has been conducted, highlighting their significant contribution
in the field of artificial intelligence applied to finance. A deep investigation of
the most promising state-of-the-art continual learning algorithms has been made,
discovering that not all of them are suitable to financial time series. Furthermore,
we found that other factors such as training time, computational complexity, and
memory requirements can be decisive in defining the scenario and choosing the
most appropriate algorithm to apply. The formulation adopted represents only
an exemplifying model of more complex dynamics, but the development of this
tool could be a concrete help for professional traders in the future. As future
work, a specific continual learning algorithm for financial time series could be
designed, taking into account the variety and complexity of the markets.
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