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User Response in Ad Auctions: An MDP Formulation of
Long-term Revenue Optimization

Anonymous Author(s)
∗

ABSTRACT
We propose a new Markov Decision Process (MDP) model for ad

auctions to capture the user response to the quality of ads, with the

objective ofmaximizing the long-term discounted revenue. By incor-

porating user response, our model takes into consideration all three

parties involved in the auction (advertiser, auctioneer, and user).

The state of the user is modeled as a user-specific click-through rate

(CTR) with the CTR changing in the next round according to the

set of ads shown to the user in the current round. We characterize

the optimal mechanism for this MDP as a Myerson’s auction with a

notion of modified virtual value, which relies on the value distribu-

tion of the advertiser, the current user state, and the future impact

of showing the ad to the user. Leveraging this characterization, we

design a sample-efficient and computationally-efficient algorithm

which outputs an approximately optimal policy that requires only

sample access to the true MDP and the value distributions of the

bidders. Finally, we propose a simple mechanism built upon second

price auctions with personalized reserve prices and show it can

achieve a constant-factor approximation to the optimal long term

discounted revenue.
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1 INTRODUCTION
Auctions have proven to be highly robust mechanisms for price

discovery and for optimizing revenue or social welfare. Recent

high impact applications of auctions include auctions for internet

advertising [16, 42] and wireless spectrum allocations [27]. The

classic design and analysis of auctions naturally focuses on the

outcomes for two parties: the auctioneer and the bidders, i.e., the

seller and the buyers. The seminal works of Vickrey [43], Clarke

[13], and Groves [21] give auction mechanisms which guarantee an

outcome with the optimal social welfare. Another seminal work of
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Myerson [33] gives the design of optimal auctions, i.e., those which

maximize revenue for the auctioneer.

However, in many applications, there are additional parties in-

volved in the transaction. We are specifically interested in the do-

main of internet advertising auctions. Besides the auction platform

and the advertisers, an important party involved in the auction is

the user who is viewing and interacting with the ads on the search

results page. The business objective of the auction is to provide

relevant ads to the user. For example, in sponsored search, the user

is issuing a search query with some intent of purchasing a good or

a service, and the goal of the advertising system is to connect the

user to sellers who can provide the desired goods or services.

The key metric for capturing this business objective is the long-

term social welfare or revenue across millions of repeated auctions.

Most prior works on ad auctions (see exceptions in Section 1.2),

focus on single-shot auctions and do not incorporate user response

to ad quality, thus are unable to capture any sort of long-term effects.

As two examples, a user may see completely irrelevant ads, or see

seemingly relevant and useful ads which turn out to be malware.

Both these examples result in very poor experiences to the user

and the user may no longer interact with any ads shown in future.

This effect has been nicely captured by Hohnhold et al. [24] in

a paper which established the empirical importance of showing

higher quality ads. They established that user satisfaction is driven

by the quality of ads viewed or clicked in the past and described

an experimental design which measures long-term effects on the

users’ propensity to click on ads: they show, based on real-world

and large-scale experiments, how low-quality ads can lead to ads

blindness, i.e., the user will stop interacting with ads in the future,

even if the future ads are relevant and of good quality. Similarly,

high quality ads can lead to ads sightedness. We discuss other related

work in Section 1.2.

In this paper, we capture this important empirical observation

via a theoretical model which is amenable to an auction design anal-

ysis. Specifically, we propose a model based on a Markov Decision

Process (MDP) to capture the user’s response to the quality of the

ad. With this model in mind, we design an auction that uses these

signals to obtain an optimal (or approximately optimal) auction in

terms of the long-term revenue.

Our Model. We model the setting (details in Section 2) as a

repeated interaction between a user, who is modelled using an

MDP, and an ads system, who is the decision maker of the MDP.

In each auction, ad candidate 𝑖 comes with a bid 𝑏𝑖 . The user state

is modeled via their click-through-rate (CTR), which we think of

as the user’s propensity to click.
1
We assume that the auctioneer

knows, or can estimate, the impact on the user’s CTR when a set𝑊

of ads is shown to the user. In Section 5, we further assume that in

each auction, ad candidate 𝑖 also comes with a signal 𝑞𝑖 . While our

1
The user state can be considered as a multiplier for the ad-specific CTR. Note that, in

this paper, we hide the ad-specific CTR into the value of the ad.

1
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theory in Section 5 does not require the signal to have any semantic

meaning, we will think of 𝑞𝑖 as a quality signal.

1.1 Our Results
In this model, we first provide (Section 3) a characterization of the

long-term (discounted) revenue-optimal auction which balances

both the (short-term) revenue considerations per round and the

positive or negative longer-term effects of showing a good or bad

ad. A well-known result in the reinforcement learning literature is

that the auction that optimizes the long-term discounted revenue

must satisfy a recursive equation known as the Bellman Equation

and that the optimal auction can be found using an algorithm

such as value iteration [37]. Naively, this would require that we

optimize a particular function over the (infinite-sized) space of all

possible auctions. Thus, it is not a priori clear whether or not this

optimization problem is even tractable.

Interestingly, we show that the long-term revenue-optimal auc-

tion takes a recognizable form. A seminal result due to Myerson

[33] showed that, when bidders’ valuations are drawn from some

regular distribution, the revenue optimal auction maximizes virtual

welfare, which is a function of both the bid and the value distribu-

tion of each bidder. In our model, we define the notion of amodified

virtual welfare which consists of the original virtual welfare plus

a correction term that takes into account the long-term impact of

showing a particular set of ads. This correction term is calculated

based on the MDP formulation and depends on the current user

state and the set of ads shown. We show that the long-term revenue-

optimal auction is the one which maximizes this modified virtual

welfare in each round, and prices the ads accordingly. In other

words, the optimal auction is a Myerson auction with modified

virtual welfare. One immediate benefit of such a characterization

is that, in the single-slot setting, the optimization problem in the

Bellman Equation now becomes not only tractable but indeed has

a closed-form solution.

We next consider the question of whether we can learn an ap-

proximately optimal mechanism when we do not know the MDP

or bidders’ value distributions. More specifically, we consider the

generative model where one is allowed sample access to the MDP

for any given state-outcome pair. We show that the problem can

be essentially decoupled so that we can separately learn the MDP

transitions and the value distributions. While our techniques are in-

spired by existing literature on learning optimal policies for MDPs

and learning approximately optimal mechanisms, we note that

there are some technical differences that we need to handle. First,

the majority of prior work on learning optimal policies assume

that the state transition depends on the action taken where the

action set is either finite or exhibits certain linear structure. Here,

the set of actions correspond to the set of all possible mechanisms

which is an infinite set with complex structure. However, the set

of possible outcomes, where an outcome corresponds to the set of

shown ads, is finite, and we make use of this observation to show

that it is possible to adapt existing results. Second, most results for

learning approximately optimal mechanisms rely on the structure

of the revenue-optimal auction. However, recall from the previous

paragraph that the mechanism that optimizes the long-term rev-

enue maximizes the modified virtual welfare in each round and

thus, is not a per-round optimal mechanism and depends on the

MDP learning question. Indeed, these two learning problems are

highly inter-dependent. For this reason, existing results are not

directly applicable but we show how to adapt existing results to

our setting.

Finally, we follow the spirit of the “simple versus optimal” litera-

ture [23] in seeking a mechanism whose structure is similar to a

second-price auction that can approximate the long-term revenue

under user response. This has two key benefits. First, the pricing

and allocation is more transparent to the advertisers. Second, from

the auctioneer’s perspective, this reduces the design space to help

make the auction tuning more tractable in practice. One particu-

lar implementation of this, which is similar to the one that will

be discussed in this paper, is to first filter out all bidders that do

not meet their personalized reserve. We then allocate to the high-

est bidder in the auction and they are charged the higher of their

personalized reserve and the second second-highest bid. Hartline

and Roughgarden [23] show that this simple auction with the ap-

propriate reserves (in particular, the Myerson reserve) achieves a

2-approximation of the optimal revenue in the single-shot setting.

In our setting, we explore what can be achieved using auctions

that fall into this family of second-price auction with personalized

reserves.

Our third result (Section 5) shows that there is indeed a version of

a second-price auction with personalized reserves which provides

a constant factor approximation to the long-term revenue-optimal

auction from Section 3. A technical challenge in designing such an

auction is that the auction may cause the state transition of the user

to behave very differently than the optimal auction. In particular,

if we use such an auction, we need to utilize the personalized

reserve prices to control the user state transitions and use this as a

proxy to trade-off the current round revenue with the long-term

impact. Ideally, we would like for two things to be true. First, we

want that the personalized reserves that we introduce induces user

state transitions that are very similar, or even identical, to the user

state transitions of the optimal mechanism. Second, we would like

to guarantee that, at each step of the auction, the personalized

reserves are chosen in a way that the revenue is a constant factor

approximation to the revenue obtained using the long-term revenue-

optimal auction. Indeed, it turns out that it is possible to achieve

both desiderata simultaneously.

To summarize, our work generalizes classical auction theory to

the setting of long-term revenue optimization with user response.

We bring together the reinforcement learning theory and auction

theory by using an MDP to capture the user response. Addition-

ally, we characterize the optimal mechanism for this setting by

combining the Bellman Equation and Myerson’s auction. Building

upon this characterization, we design algorithms that learn approxi-

mately optimal mechanisms from samples. Furthermore, we extend

ideas from the simple versus optimal mechanism design literature

to our setting.

1.2 Related Work
A number of other models have been studied in the literature that

incorporate some form of user response. Athey and Ellison [4] and

Linden et al. [29] consider a single-stage position auction where

2
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a user has some budget and clicking on an advertisement incurs

some search cost and consumes a portion of this budget. Some rele-

vant literature, including Abrams and Schwarz [1], Bachrach et al.

[7], Lahaie and Pennock [26], Schroedl et al. [38], Thompson and

Leyton-Brown [41] incorporate the user’s externality in determin-

ing ad placement. While these papers focus on some form of user

response for a single query, our model is focused on understanding

user response across queries. Another point of view of this paper is

that we use an MDP to capture the effect of future user response

created by showing an ad in the current round, and incorporate

that into the auction design.

In another set of related works, Li et al. [28], Stourm and Bax [40]

use “shadow costs" or “hidden costs" to capture the effect of negative

user experiences on the ad platform’s future revenue. They design

good auctions to maximize long-term revenue assuming these costs

are given. Ashlagi et al. [3] consider a mathematical model where

there may be multiple search engines competing for users. The user

has a cost for user a search engine depending on a search cost and

also their “distance” from a search engine. They study equilibria of

search engines in this setting. In this paper, we use an MDP model

to provide microfoundations for these costs (or gains) and show

how to learn the optimal auction without knowing the costs (or

gains) a priori.

Another stream of related work includes the problem of dynamic

mechanism design which has been heavily studied in the literature

(e.g. [5, 9, 12, 25, 30, 31, 35, 36]; see also the surveys [8, 10] and

the references therein). Some of these works also consider an MDP

setting [25, 36]. For example, Kakade et al. [25] consider a setting

where the advertisers’ values evolve according to a Markov process,

although their specific setting requires separability assumptions

that do not capture our setting involving the user. A key differentia-

tor between these sequences of works on dynamic mechanisms is

that they assume the advertisers are long-lived and they evolve over

time, say via an MDP. Thus, the advertisers are assumed to satisfy

a long-term incentive compatibility constraint which themselves

resemble Bellman Equations (for example, see Section 2 of [10]).

On the other hand, we assume that advertisers are static
2
and our

model assumes that it is the user that evolves over time. As a result,

we only need to guarantee that the auction is incentive compatible

for each individual round which allows us to have a particularly

clean characterization of the optimal mechanism.

2 MODEL AND PRELIMINARIES
In this section, we describe the model we consider in this paper. We

assume that we are in a repeated auction setting with 𝑛 advertisers

(bidders) competing for one of 𝑘 identical ad slots of a query from

a single user in each round.
3
At each round 𝑡 , the advertiser 𝑖 ∈ [𝑛]

has a value 𝑣𝑖 drawn from a (regular) distribution F𝑖 with CDF

𝐹𝑖 and PDF 𝑓𝑖 whose support is bounded in [0, 1]. In Section 3,

we assume that showing a set𝑊 of ads to the user has a known

affect on the user; this is discussed more in the next paragraph. In

Section 5, we assume instead that each ad 𝑖 comes with a signal

2
Our model doesn’t require the advertisers are fixed at each round as long as we know

the set of the advertisers.

3
Our analysis never makes use of the fact that the number of advertisers are the same

so we can allow the number of advertisers to be different in every round. For simplicity,

we will assume that the number of advertisers in each round is the same.

𝑞𝑖 ∈ {−1, 1}. Although 𝑞𝑖 need not have any semantic meaning, we

refer to it as a quality signal where 𝑞𝑖 = 1 means the ad is good and

𝑞𝑖 = −1 means the ad is bad. We note that the value distributions

and quality signals may change over time but since most of our

analysis focus on a single point in time, we omit a subscript on

the time. For simplicity, we assume the advertisers are myopic. In

other words, we assume that each advertiser aims to optimize their

utility only in the current auction and does not try to optimize their

utility across all auctions. We believe this is a valid assumption

since the advertisers do not know the identity of the user and the

advertisers may be involved in many other auctions all involving

different users. In fact, an advertiser may not even see the same

user twice.
4
Thus, it may be difficult for an advertiser to directly

benefit from any specific user response.

A novel contribution of the paper is to provide a natural, yet

general, model of the effect of the ad quality on the user’s respon-

siveness to ads in the future. We model the user effects of showing

good or poor ads using a Markov Decision Process (MDP). Suppose

that the user, at round 𝑡 has a user-specific click-through rate (or

propensity to click), ctr𝑡
5
, which is used to measure the probability

that the user is willing to click an ad that is shown to her. With-

out loss of generality,
6
we assume ctr𝑡 is independent of the ad

shown to the user. If𝑊 ⊆ [𝑛] is the set of ads that are shown then

we assume that that the next round click-through-rate ctr𝑡+1 is

drawn from some distribution denoted by 𝑃𝑊 (·|ctr𝑡 ). In the case of

single-slot auctions, we will also use 𝑃𝑖 to denote 𝑃{𝑖 } for 𝑖 ∈ [𝑛]
and 𝑃0 to denote 𝑃∅ . For our results in Section 5, which focuses on

single-slot auctions, we do make a further simplifying assumption

that assumes the ctr in the next round ctr𝑡+1 depends only on ctr𝑡

and 𝑞𝑖 and not on the identity of the ad. We also assume that quality

is binary. Intuitively, this means an ad is either good or bad.

With this user model in mind, we can then describe the repeated

auction setting as an MDPM = (S,A, 𝑃 (·|𝑎, ctr), 𝑅(𝑎, ctr)) where
• The set of statesS is the interval [0, 1]. We represent a state

by ctr which denotes the user-level click-through rate.

• The set of actionsA is the set of all mechanisms that the auc-

tioneer may use. In this paper, we restrict the auctioneer to

using incentive compatible mechanisms (see Subsection 2.1

for some background in auction theory).

• 𝑃 (·|𝑎, ctr) is the transition probability which determines

the ctr of the user at the next state. We assume it is given

as follows. Let D𝑎 be the distribution of winners for the

auction 𝑎 when the value distributions are 𝐹1, . . . , 𝐹𝑛 . Then

𝑃 (·|𝑎, ctr) = E𝑊 ∼D𝑎 [𝑃𝑊 (·|ctr)]. In particular, note that

the transition is independent of the auction given which

ads are shown.
7

• 𝑅(𝑎, ctr) is the (expected) reward function. Given a truth-

ful mechanism 𝑎 with allocation 𝑥𝑎 (𝑣) ∈ [0, 1]𝑛 where∑𝑛
𝑖=1 𝑥

𝑎
𝑖
(𝑣) ≤ 𝑘 and (expected) payment function 𝑝𝑎 (𝑣) ∈

R𝑛≥0, we have that 𝑅(𝑎, ctr) = ctr · E
[∑𝑛

𝑖=1 𝑝
𝑎
𝑖
(𝑣)

]
. Note

4
For example, if a user submits two different search queries, it is quite likely that the

set of advertisers for the two queries are disjoint.

5
For simplicity, we assume that all the slots are associated with the same click-through

rate. Our results also hold when the click-through rate is different for each slot.

6
Our model allows the ad-specific click-through rate, but we hide this factor in the

value 𝑣𝑖 of each ad 𝑖 .
7
Note that 𝑃 without a subscript will correspond to the transition of the chain given

an action (i.e., auction) and 𝑃𝑋 denotes the transition when the ad set 𝑋 is shown.

3
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that (𝑥𝑎, 𝑝𝑎) must be chosen in an incentive compatible

manner (see Subsection 2.1).

Finally, we assume an infinite-horizonMDP setting and we let𝛾 < 1

be the discount factor. For a policy 𝜋 : S → ΔA , the long-term

discounted revenue starting at state ctr0 is given by

𝑉 𝜋 (ctr0) = E
[ ∞∑︁
𝑡=0

𝛾𝑡 E
𝑎𝑡∼𝜋 (ctr𝑡 )

[𝑅(𝑎𝑡 , ctr𝑡 )]
]
, (2.1)

where ctr𝑡+1 ∼ 𝑃 (·|𝑎𝑡 , ctr𝑡 ). Note that a distribution over IC mecha-

nisms is itself an IC mechanism, so ΔA = A. Thus, without loss of

generality, given a state ctr𝑡 , we assume that the policy 𝜋 outputs

a single (possibly, randomized) mechanism and so the policy is

actually deterministic. Finally, we note that we can extend all our

results to the finite-time horizon setting with the caveat that our

policies may depend on the number of rounds 𝑡 so far.

2.1 Standard Auction Preliminaries
In this work, we focus on incentive compatible (IC) mechanisms

8
,

i.e., reporting true value is the optimal bidding strategy for each

bidder no matter how the other bidders bid. For each IC auction

𝑎 ∈ A, we have an allocation rule 𝑥𝑎 : R𝑛≥0 → [0, 1]
𝑛
and payment

function 𝑝𝑎 : R𝑛≥0 → R
𝑛
≥0, where

∑𝑛
𝑖=1 𝑥

𝑎
𝑖
(𝑣) ≤ 𝑘 . Here, 𝑥𝑎

𝑖
(𝑣) and

𝑝𝑎
𝑖
(𝑣) represent the allocation probability and (expected) payment

of bidder 𝑖 respectively when the reports (bids) are 𝑣 (we may

write 𝑣 as the bids since the auctions are assumed to be IC). Given

Myerson’s Lemma [33], for any IC mechanism 𝑎 ∈ A, allocation

𝑥𝑎 (·) is monotone with the input bid and the payment rule satisfies

the payment identity 𝑝𝑎 (𝑏) = 𝑏 · 𝑥𝑎 (𝑏) −
∫ 𝑏
0
𝑥𝑎 (𝑣) d𝑣,∀𝑏 ∈ R≥0.

Therefore, we can rewrite the expected reward function 𝑅(𝑎, ctr) as
𝑅(𝑎, ctr) = ctr · E𝑣

[∑𝑛
𝑖=1 𝑥

𝑎
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
where 𝜙𝑖 (𝑣) B 𝑣 − 1−𝐹𝑖 (𝑣)

𝑓𝑖 (𝑣)
is the virtual value function for each advertiser 𝑖 . Throughout this

paper, we assume value distribution F𝑖 is regular so that 𝜙𝑖 (·) is
non-decreasing for each bidder 𝑖 . Moreover, since we focus on IC

mechanisms, we slightly abuse the notation to use allocation rule 𝑥

to represent the mechanism and the payment rule can be induced

by 𝑥 following Myerson’s Lemma [33]. Throughout the paper, we

interchange advertiser and bidder to refer to the same entity.

3 OPTIMAL MECHANISM
In this section, we characterize the optimal policy in our MDP

setting. Recall that the policy maps each state to an IC mechanism

𝑎 ∈ A. Following the standard notations in infinite-horizon MDP

literature, let𝑉 ∗ denote the value function under the optimal policy,

i.e. 𝑉 ∗ (ctr) = sup𝜋 𝑉
𝜋 (ctr) for all ctr ∈ [0, 1], where 𝑉 𝜋 is defined

in Eq. (2.1). For notation, for a set𝑊 ⊆ [𝑛], we let 𝑃𝑊 (·|ctr) denote
the transition probability function if we show the ads in𝑊 when the

state is ctr and 𝑃 (·|𝑎, ctr) denotes the overall transition probability

(over the randomness in value distributions) when the auction is 𝑎

and the state is ctr.

Theorem 3.1. Suppose that the advertiser distributions are regular

and that there are 𝑘 identical slots. In each state ctr, the optimal (IC)

8
In the single-parameter setting, Bayesian incentive compatibility (BIC) is equivalent

to dominant strategy incentive compatibility (DSIC). So we use “IC” or “truthful”

interchangeably in this paper, depending on context.

mechanism allocates the slots to the advertisers in the set𝑊 ⊆ [𝑛]
with 0 < |𝑊 | ≤ 𝑘 that maximizes

ctr ·
∑︁
𝑖∈𝑊

𝜙𝑖 (𝑣𝑖 )

+ 𝛾
(

E
ctr
′∼𝑃𝑊 ( · |ctr)

[
𝑉 ∗ (ctr′)

]
− E

ctr
′∼𝑃∅ ( · |ctr)

[
𝑉 ∗ (ctr′)

] )
,

(3.1)

provided that Eq. (3.1) is positive (otherwise, the mechanism does not

allocate).

The proof of Theorem 3.1 is deferred to Appendix A. It is instruc-

tive to compare this mechanism with Myerson’s optimal auction.

Recall that Myerson’s auction chooses the set𝑊 that maximizes

the virtual welfare, i.e.

∑
𝑖∈𝑊 𝜙𝑖 (𝑣𝑖 ); this latter term is precisely the

first term of Eq. (3.1) (modulo the ctr term which is independent of

the set𝑊 ). Theorem 3.1 asserts that to optimize the discounted long

term-revenue, it suffices to incorporate an additive correction term

to the virtual welfare, i.e. the second term of Eq. (3.1). Intuitively,

the correction term can be thought as the long-term revenue impact

of showing a set of ads compared to a baseline of not showing any

ads.

Remark 3.2. Regularity is not strictly necessary for Theorem 3.1.

Indeed, if the distributions are not regular then one may always use

Myerson’s ironing procedure [33] to the modified virtual value, so

that the resulting ironed modified virtual value is monotone in the

bidder’s value.

3.1 Single-slot auctions
In this subsection, we show that we can further simplify the form

of the optimal mechanism presented in the previous section when

there is only a single slot. Recall that, for 𝑖 ∈ [𝑛], we let 𝑃𝑖 (·|ctr)
denote the transition probability function if we show ad 𝑖 when the

the state is ctr, and let 𝑃0 (·|ctr) denote the transition probability

function if no ads are shown.

Definition 3.3 (Modified virtual value). Fix an advertiser

𝑖 ∈ [𝑛] whose value is drawn from a distribution 𝐹𝑖 . We define the

modified virtual value as

𝜙𝑖 (𝑣𝑖 , ctr) = ctr · 𝜙𝑖 (𝑣𝑖 ) +

𝛾

(
E

ctr
′∼𝑃𝑖 ( · |ctr)

[
𝑉 ∗ (ctr′)

]
− E

ctr
′∼𝑃0 ( · |ctr)

[
𝑉 ∗ (ctr′)

] )
.

Following Theorem 3.1, we immediately have,

Corollary 3.4. Suppose that the advertiser distributions are reg-

ular. In each state ctr, the optimal (IC) mechanism allocates to the

advertiser that maximizes the modified virtual value 𝜙𝑖 (𝑣𝑖 , ctr) if
at least one of the modified virtual values is positive (otherwise, the

mechanism does not allocate).

4 LEARNING APPROXIMATELY OPTIMAL
POLICIES

In the previous section,we developed the optimal mechanism when

we have access to the valuation distribution of the bidders and the

transition probability matrix of the MDP. In this section we present

approaches to design approximately-optimal policies (mechanisms)

which require only sample access to the valuation distribution of

4
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the bidders and the transition matrix; this is known as the gen-

erative model in the Reinforcement Learning literature. We start

with an intermediate setting where the valuation distributions are

known, but the auctioneer only has sample access to the transi-

tion matrix of the MDP. In particular, we assume that for every

state-outcome pair (ctr,𝑊 ) ∈ S × [𝑛 + 1]𝑘 the learner can obtain

samples from 𝑃𝑊 (·|ctr) . In this setting, we design an efficient al-

gorithm that computes an 𝜀-optimal policy with probability 1 − 𝛿
using poly(1/(1 − 𝛾), 1/𝜀, log(1/𝛿), |S|, 𝑛𝑘 ) samples from the MDP.

Its running time is polynomial in the number of samples.

Subsequently, we show how to handle the case where both the

MDP and the valuation distributions are unknown. We present

an algorithm that computes an 𝜀-optimal policy with probability

at least 1 − 𝛿 using poly(1/𝜀, 1/(1 − 𝛾), log(1/𝛿), |S|, 𝑛𝑘 ) samples

from the MDP and poly(1/𝜀, 1/(1 − 𝛾), log(1/𝛿), |S|, 𝑛, 𝑘) samples

from the valuation distributions. Moreover, the running time of

the algorithm is poly(1/𝜀, 1/(1−𝛾), log(1/𝛿), |S|, 𝑛𝑘 ). The omitted

results and proofs of this section can be found in Appendix B.

4.1 Learning Approximately Optimal Policies:
Known Valuations, Unknown MDP

In the setting where the MDP (transition matrix) is unknown and

the valuation distributions are known, our approach is conceptually

simple: we use a large enough number of samples to estimate an

empirical MDP and then we compute an approximately optimal

policy with respect to that MDP. We can show that, with high

probability, that policy will also be approximately optimal with

respect to the true MDP. This approach is inspired by a line of

work in the RL literature (see, e.g. [2, 19] and references therein).

The main technical challenge is to handle the fact that the action

space of the auctioneer is infinite. However, the key insight is that

the transition of the MDP depends on a finite number of different

outcomes of the auction. In this section, we will use 𝑃 to denote an

empiricalMDP.We let𝑉 𝜋 and𝑉 𝜋 be the value function of the policy

𝜋 with respect to the true MDP and emprical MDP, respectively.

Further, we let 𝑉★
and 𝑉★

denote the optimal value function with

respect to the true MDP and empirical MDP, respectively.

Lemma 4.1 (Performance of Policies in Empirical MDPs).

Consider a repeated 𝑘-slot auction among𝑛 bidders. LetW ⊆ [𝑛+1]𝑘
be the set of potential outcomes of the auction. Let S be the state space.

Let 𝑃 be the empirical MDP that is constructed using 𝑁 samples from

each state-outcome pair. Then, for every policy 𝜋 and any 𝛿 > 0, with

probability at least 1−𝛿 over the random draw of the samples it holds

that

| |𝑉 𝜋 −𝑉 𝜋 | |∞ ≤
2𝛾𝜀opt

1 − 𝛾 + 3
𝛾2

(1 − 𝛾)3
·
√︂

2 log(2|S| |W|/𝛿)
𝑁

| |𝑉★ −𝑉★ | |∞ ≤
𝛾

(1 − 𝛾)2
·
√︂

2 log(2|S| |W|/𝛿)
𝑁

where 𝜀opt = | |𝑉★ −𝑉 𝜋 | |∞.
The proofs uses ideas from [2, 19] that are generalized to our

setting with an infinite action space.

The following result, whose proof is deferred to Appendix B, is

an adaptation of the main result of [39] which handles infinitely

dimensional action spaces and allows for 𝜀-greedy policies.

Theorem 4.2 (From Value Estimation to Policy Estimation

(Adapted from [39])). Let 𝑉 ∈ RS be a value function such that

| |𝑉 −𝑉★ | | ≤ 𝜀opt. Let 𝜋 : S × A be an 𝜀′-greedy policy with respect

to 𝑉 , i.e.,

𝑅(ctr, 𝜋 (ctr)) + 𝛾
∑︁
ctr
′

E
𝑊 ∼D𝜋 (ctr)

[𝑃𝑊 (ctr′ |ctr)] ·𝑉 (ctr′) ≥

max

𝑎∈A
𝑅(ctr, 𝑎) + 𝛾

∑︁
ctr
′
E

𝑊 ∼D𝑎
[𝑃𝑊 (ctr′ |ctr)] ·𝑉 (ctr′) − 𝜀′,∀ctr ∈ S .

Then | |𝑉★ −𝑉 𝜋 | |∞ ≤
2𝛾𝜀opt+𝜀′

1−𝛾 .

Finally, we will make use of the following forklore result. For

completeness, we provide a short proof in Appendix B adapted

to our setting where the transition of the MDP does not depend

directly on the action that was taken.

Theorem 4.3 (Approximate Bellman Update). Let 𝑉 (0) (ctr) =
0,∀ctr ∈ S. For every 𝑘 ≥ 1 define

𝑉 (𝑘 ) = max

𝑎∈A
𝑅(ctr, 𝑎)+

∑︁
ctr
′∈S

E
𝑊 ∼D𝑎

[𝑃𝑊 (𝑐𝑡𝑟 ′ |𝑐𝑡𝑟 )]·𝑉 (𝑘−1) (ctr′)+𝜀𝑘−1 ,

where | |𝜀𝑘−1 | |∞ ≤ 𝜀. Let 𝜋𝑘 be an 𝜀′-greedy policy with respect to

𝑉 (𝑘 ) , i.e., for every ctr ∈ S it holds that

𝑅(ctr, 𝜋𝑘 (ctr)) +
∑︁

ctr
′∈S

E
𝑊 ∼D𝜋𝑘 (ctr)

[𝑃𝑊 (𝑐𝑡𝑟 ′ |𝑐𝑡𝑟 )] ·𝑉 (𝑘 ) (ctr′) ≥

max

𝑎∈A
𝑅(ctr, 𝑎) +

∑︁
ctr
′∈S

E
𝑊 ∼D𝑎

[𝑃𝑊 (𝑐𝑡𝑟 ′ |𝑐𝑡𝑟 )] ·𝑉 (𝑘 ) (ctr′) − 𝜀′ .

Then,

| |𝑉 𝜋𝑘 −𝑉★ | |∞ ≤
2𝛾

(1 − 𝛾)2
·
(
𝛾𝑘 + 𝜀 + (1 − 𝛾)𝜀

′

2𝛾

)
.

Equipped with the previous results, we can show the following

corollary, whose proof is postponed to Appendix B.

Theorem 4.4. Let 𝛿 ∈ (0, 1), 𝛾 ∈ (0, 1), 𝜀 ∈ (0, 1). Then, there
is an algorithm that given full access to the valuation distributions

of the bidders and 𝑁 = 𝑂

(
log( |S | · |W|/𝛿 )
(1−𝛾 )6𝜀2

)
samples from the true

transition kernel of every state-outcome pair outputs a policy 𝜋 such

that, with probability at least 1 − 𝛿 , | |𝑉★ −𝑉 𝜋 | |∞ ≤ 𝜀. The running
time of the algorithm is poly( |S|, |W|, 𝑛, 1/𝜀, log(1/𝛿), 1/(1 − 𝛾))

4.2 Learning Approximately Optimal Policies
for Single-Slot Auctions: Unknown
Valuations, Unknown MDP

We now proceed to the more challenging setting where both the

MDP and the valuation distributions of the bidders are unknown

to the seller. Similarly as before, our approach is divided into two

steps: we first use a sufficiently large number of samples from the

generator to estimate the transition probability of the MDP, and

then we compute an approximately optimal policy with respect to

the empirical MDP. The main challenge is to deal with the fact that

the reward function 𝑅(ctr, 𝑎) is unknown. In the traditional RL liter-

ature this is not an issue since the sample complexity of estimating

the transition probability accurately is larger than the sample com-

plexity required to estimate the reward function. However, in our

case there is an infinite number of actions so estimating 𝑅(ctr, 𝑎)
5
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for every (ctr, 𝑎) ∈ S ×A is non-trivial. Hence, we take a different

approach that combines core RL algorithms, like value iteration,

with results regarding the sample complexity of estimating revenue

optimal single-parameter auctions (see, e.g. [11, 14, 15, 20, 22, 32]).

The crucial observation is that, using Theorem 3.1 we can view

every step of the value iteration algorithm as a single-parameter

modified revenue-maximization problem, where we take into ac-

count both the current round revenue and the future revenue of

the auction. This result also shows that the optimal auction in the

𝑘-th iteration for every state ctr ∈ S is the one that, given any

valuation profile 𝑣 ∈ [0, 1]𝑛 as input, allocates the slots to the bid-

ders that maximize Equation (3.1), assuming that this quantity is

non-negative, otherwise it does not allocate the slots.

An important step of our approach is to design approximately

optimal auctions with respect to the modified revenue objective

and it is inspired by the work of Devanur et al. [15]. Let us first

provide the formal definition of this objective.

Definition 4.5. Let 𝛾 be the discount factor of the MDP, let

𝑉 : S → [0, 1/(1 − 𝛾)] and ctr ∈ [0, 1] . Denote 𝑀 as a truthful

mechanism for a 𝑘-slot auction with allocation rule 𝑥𝑀 (𝑣) ∈ [0, 1]𝑛
and payment rule 𝑝𝑀 (𝑣) ∈ R𝑛≥0 . Let F = 𝐹1 × . . .× 𝐹𝑛 . The modified

revenue objective with respect to ctr and 𝑉 is defined to be

ctr · E
𝑣∼F

[
𝑛∑︁
𝑖=1

𝑝𝑀𝑖 (𝑣)
]
+

𝛾
∑︁

𝑊 ⊆[𝑛]
|𝑊 | ≤𝑘

E
ctr
′∼𝑃𝑊 ( · |ctr)

[
𝑉 (ctr′)

]
· E
𝑣∼𝐹

[∑︁
𝑖∈𝑊

𝑥𝑀𝑖 (𝑣)
]
.

The approach of [15] consists of two main steps. First, they show

that by “rounding” the distribution of the bidders to multiples of

𝑂 (𝜀/𝑘) the revenue of the optimal mechanism with respect to the

rounded distribution will be close to the revenue of the optimal

mechanism with respect to the true distribution. Then, using a

uniform convergence result they show how to compute an approxi-

mately optimalmechanismwith respect to themodified distribution.

An important difference in our setting is that the future revenue

term that appears in Definition 4.5 depends on the set of bidders that

are selected by the auctioneer, and cannot be decomposed across

individual bidders. The straightforward adaptation of the approach

in [15] to handle the modified revenue objective induces sample

complexity of the order poly(𝑛𝑘 ), since there are 𝑛𝑘 different sets

of bidders that need to be considered. We are able to circumvent

this issue by adding an extra step in this approach which consists

of a discretization in the virtual valuation space.

An important technical tool that we use is a concentration bound

that first appeared in [6] and was also used in [15, 20]. The version

of the bound we use is the one from [15] and its formal statement

can be found in Lemma B.1 in Appendix B. Essentially, this result

shows that, for a sufficiently large number of samples, the expected

revenue of any fixed auction with respect to the uniform distribu-

tion on the samples is close to its expected revenue with respect to

the true distribution. In order to get a uniform convergence result

we need to restrict the number of different auctions we consider. To

that end, we first show that discretizing the valuation space will not

change the modified revenue of the optimal auction too much. The

proof is an adaptation of Lemma 6.3 in [15] that allows us to handle

the extra term in the modified revenue objective. For completeness,

we provide a short proof in Appendix B

Lemma 4.6 (Adaptation of Lemma 6.3 [15]). Given any prod-

uct value distribution F = 𝐹1 × . . . × 𝐹𝑛 where 𝐹𝑖 is supported on

[0, 1],∀𝑖 ∈ [𝑛], and any 𝜀 > 0, let F̂ be the distribution that is ob-

tained by rounding the values of F to the closest multiple of 𝜀 from

below. Let ÕPT(F ), ÕPT(F̂ ) be the optimal modified revenue with

respect F , F̂ . Then, we have ÕPT(F̂ ) ≥ ÕPT(F ) − 𝑘 · 𝜀, where 𝑘 is

the number of slots.

The next step, which is the point of departure from [15], is to

consider the class of threshold mechanisms. Intuitively, these are

mechanisms that round down the virtual values of the bidders to

the closest multiple of some given resolution 𝛽. This idea is inspired

by the concept of 𝑡-level auctions that appeared in [32].

Definition 4.7. Let F = 𝐹1×. . .×𝐹𝑛 be the valuation distribution
of 𝑛 bidders, where 𝐹𝑖 is supported on [0, 1],∀𝑖 ∈ [𝑛] . Let S be the

state space of the MDP, 𝛾 be the discount factor, ctr ∈ [0, 1] be the
click-through rate,𝑘 be the number of slots and𝑉 : S → [0, 𝑘/(1−𝛾)]
be a value function. We say that an auction𝑀 is a threshold auction

at resolution 𝛽 with respect to the modified revenue objective if:

• For every input 𝑣 = (𝑣1, . . . , 𝑣𝑛) and every bidder 𝑖 ∈ [𝑛]
the mechanism uses a non-decreasing mapping 𝜎𝑖 : [0, 1] →
{−∞} ∪

{
−2𝑘
1−𝛾 ,

−2𝑘
1−𝛾 + 𝛽, . . . , 1

}
.

• The mechanism allocates to the set of bidders𝑊 with 0 <

|𝑊 | ≤ 𝑘 that maximize

ctr ·
∑︁
𝑖∈𝑊

𝜎𝑖 (𝑣𝑖 )

+ 𝛾
(

E
ctr
′∼𝑃𝑊 ( · |ctr)

[
𝑉 (ctr′)

]
− E

ctr
′∼𝑃∅ ( · |ctr)

[
𝑉 (ctr′)

] )
,

if this quantity is non-negative, and does not allocate to any

bidder otherwise.

The payment rule of the auction is the one that makes it truthful, i.e.,

follows Myerson’s payment rule.

We now show that there is a threshold auction at some appro-

priate resolution whose modified revenue is close to the modified

revenue of the optimal auction.

Lemma 4.8. Let F = 𝐹1 × . . . × 𝐹𝑛 be the valuation distribution of

𝑛 bidders, where 𝐹𝑖 is supported on [0, 1],∀𝑖 ∈ [𝑛] . Let 𝜙𝑖 : [0, 1] →
(−∞, 1] be the (ironed) virtual valuation function of bidder 𝑖 . Let S be

the state space of the MDP, 𝛾 be the discount factor, ctr ∈ [0, 1] be the
click-through rate,𝑘 be the number of slots and𝑉 : S → [0, 𝑘/(1−𝛾)]
be a value function. Let 𝜀 > 0. Then, there is a threshold auction𝑀 at

resolution 𝜀/𝑘 which has modified revenue R̃ev(𝑀, F ) that satisfies
R̃ev(𝑀, F ) ≥ ÕPT(F ) − 𝜀 ,

where ÕPT(F ) is the optimal modified revenue with respect to F .
We next show how we can get uniform convergence result for

auctions that have this structure, when the valuation distributions

are discrete. Crucially, by doing the discretization in the virtual

value space we are able to avoid the dependence on 𝑛𝑘 when we

take the union bound over all the possible threshold mechanisms

in our uniform convergence argument.

6
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Lemma 4.9. Given any product value distribution F = 𝐹1× . . .×𝐹𝑛
where every 𝐹𝑖 has support 𝐵 ⊆ [0, 1], and any 𝜀 > 0, 𝛿 > 0, there is

an algorithm that takes as input𝑚 i.i.d. samples from F and outputs

an auction whose modified revenue is at least ÕPT(F ) − 𝜀, with
probability at least 1 − 𝛿 , whenever

𝑚 = 𝑂

(
𝑛 · |𝐵 | · 𝑘4
𝜀2 (1 − 𝛾)2

log(1/𝛿)
)
,

where ÕPT(F ) is the optimal modified revenue with respect to F .
Moreover, the running time of the algorithm is poly(𝑚, |S|) .

Combining the results we have discussed so far, we show how to

construct an approximately optimal mechanism when the valuation

distributions are continuous. The formal statement of the result

can be found in Theorem B.2 in Appendix B. The algorithm, which

appears in Algorithm 2 in Appendix B, consists of the following

main steps. First, it draws a large enough number of samples from

F . Then, it rounds down all the samples to multiples of𝑂 (𝜀/𝑘) and
considers the empirical distribution 𝐹 on the samples. Subsequently,

it computes the (ironed) virtual values 𝜙𝑖 with respect to F̂ . Given
any input profile 𝑣 = (𝑣1, . . . , 𝑣𝑛), it first rounds down the values

of each 𝑣𝑖 to multiples of 𝑂 (𝜀/𝑘), denoted by 𝑣̂𝑖 , and estimates the

virtual values 𝜙𝑖 (𝑣̂𝑖 ) . Finally, it rounds down 𝜙𝑖 (𝑣̂𝑖 ) to multiples of

𝑂 (𝜀/𝑘), denoted by𝑤𝑖 , and allocates the slots to the set of bidders

𝑊 that maximize the modified virtual welfare objective with re-

spect to the values𝑤𝑖 , assuming that this objective is non-negative.

It is worth mentioning that we can output a description of this

mechanism in polynomial time in the parameters of the problem,

however running it and computing its modified revenue requires

time poly(𝑛𝑘 ).
We are now ready to present our approximately optimal policy

estimator. The high-level idea of our approach it to estimate an

approximately optimal policy with respect to the empirical MDP

using the value iteration algorithm, where in every step we perform

an approximately optimal update using the result from Theorem B.2.

We are able to show that these approximately optimal updates

suffice in order to end up with an approximately optimal policy.

Theorem 4.10. Let 𝜀, 𝛿 > 0 be the error bound and the confi-

dence bound, respectively. Let 𝛾 be the discount factor of the MDP

and 𝑛 be the number of bidders. Then, Algorithm 1 given 𝑀 =

𝑂

(
|S | ·𝑛 ·𝑘5
𝜀3 (1−𝛾 )12 log(1/𝛿)

)
samples from the valuation distribution of the

bidders F = 𝐹1 × . . .×𝐹𝑛 and 𝑁 = 𝑂

(
log( |S | · |W|/𝛿 )
(1−𝛾 )6𝜀2

)
samples from

the generator of theMDP for every state-output pair (ctr,𝑊 ) ∈ S×W,

outputs a policy 𝜋 which, with probability at least 1 − 𝛿 satisfies
| |𝑉 𝜋 −𝑉★ | |∞ ≤ 𝜀 .

Moreover, the running time of the algorithm is polynomial in the

number of samples.

The proof follows by combining results we have discussed so far

and can be found in Appendix B.

5 CONSTANT-FACTOR APPROXIMATION
SIMPLE MECHANISM

As discussed in Section 3, the revenue-optimal mechanism is a

Myerson’s auction with modified virtual value. However, Myerson’s

Algorithm 1 Approximately Optimal Policy Estimator from Sam-

ples

1: Input: Accuracy parameter 𝜀, confidence parameter 𝛿 , discount

factor 𝛾 , number of bidders 𝑛, sample access to the generator of

the MDP, sample access F = 𝐹1× . . .×𝐹𝑛 where 𝐹𝑖 is valuation

distribution for bidder 𝑖 .

2: Output: A policy 𝜋 : S → A with the guarantee that, with

probability 1 − 𝛿, | |𝑉 𝜋 −𝑉★ | |∞ ≤ 𝜀.
3: 𝐾 ← 𝑂

(
log(1/( (1−𝛾 )𝜀 ) )

1−𝛾

)
iterations.

4: 𝑁 ← 𝑂

(
log( |S | · |W|/𝛿 )
(1−𝛾 )6𝜀2

)
samples from the MDP generator for

every (ctr,𝑊 ) ∈ S ×W .

5: 𝑀 = 𝑂

(
|S | ·𝑛 ·𝑘5
𝜀3 (1−𝛾 )12 log(1/𝛿)

)
total samples from the valuation

distribution F , where 𝐶 is some absolute constant.

6: Draw 𝑁 samples from the generator of the MDP for every

(ctr,𝑊 ) ∈ S ×W .

7: Let 𝑃𝑊 (ctr|ctr) = count(ctr′ |ctr,𝑊 )/𝑁,∀(ctr′, ctr,𝑊 ) ∈ S ×
S ×W .

8: for 𝑘 = 1 . . . 𝐾 do
9: Run the algorithm from Theorem B.2 using𝑀/(𝐾 · |S|) fresh

samples from F to estimate𝑉 (𝑘 ) (ctr) = max𝑎∈A 𝑅(ctr, 𝑎) +
𝛾
∑
ctr
′∈S E𝑊 ∼D𝑎 [𝑃𝑊 (ctr′ |ctr)]𝑉 (𝑘 ) (ctr′),∀ctr ∈ S.

10: end for
11: For every state ctr ∈ S return an 𝜀-optimal solu-

tion to the problem 𝜋 (ctr) = argmax𝑎∈A 𝑅(ctr, 𝑎) +
𝛾
∑
ctr
′∈S E𝑊 ∼D𝑎 [𝑃𝑊 (ctr′ |ctr)]𝑉 (𝑘 ) (ctr′) using the algo-

rithm from Theorem B.2.

auction can be quite complex in general, even in the single-slot

setting. In this section, we focus on designing a simple mechanism,

for single slots, to achieve a constant-approximation to the optimal

mechanism characterized in Section 3.1, following the spirit of the

area of “simple versus optimal mechanism” [23]. In particular, our

aim is to design a mechanism that is similar in spirit to a second-

price auction with personalized reserves. The version of such an

auction that is most relevant to this section works as follows. First

we remove all advertisers whose bid is below their personalized

reserve. Among the remaining bidders, we allocate to the highest

bidder and charge them the larger of their reserve and the second-

highest remaining bid. This is known as a second-price auction with

eager reserves [34]. Note that this section focuses on the Bayesian

MechanismDesign settingwhere the transition probability function

𝑃𝑖 (·|ctr), value function𝑉 ∗, and value distributions 𝐹𝑖 are all known.
The main challenge of designing a good simple mechanism to

achieve a constant-factor approximation to the optimal mechanism

is that we need to take both the revenue guarantee in each round

and the MDP transition into account. For example, if we have a

simple auction that achieves a good revenue in round 𝑡 but leads to

a bad transition for the user’s click-through rate in the next round,

then this may hurt the revenue dramatically in the long run. In

an extreme case, the user may leave the platform and the seller

loses all future revenue if our proposed simple mechanism incurs a

terrible transition.

Given the above intuition, the key to our simple mechanism

is to ensure that (i) we can obtain a constant approximation to
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the optimal mechanism in each round and (ii) the transitions of

our simple mechanism exactly matches the transition of the MDP

induced by the optimal mechanism. In this section, we assume

that each ad comes with a quality signal 𝑞𝑖 ∈ {1,−1} and that

the transition functions depend only on the quality and not the

actual ad shown. We refer to an ad with 𝑞𝑖 = 1 as a good ad and

an ad with 𝑞𝑖 = −1 as a bad ad, although we do not require the

assumption that showing a good ad is “better” than showing a

bad ad. A formal description of the mechanism can be found in

Mechanism 5 in Appendix C.1. Our main result in this section is

the following theorem.

Theorem 5.1. Assume that the set of qualities has cardinality 2

and that the user state transitions depend only on the ad’s quality.

Given a policy 𝜋∗ with value function𝑉 ∗, there is a policy 𝜋 that, for

each state (i.e., in every round), the policy uses a two-stage second-price

auction with personalized reserves and obtains an 8-approximation to

the long-term discounted revenue obtained by 𝜋∗. In fact, 𝑉 𝜋 (ctr) ≥
1

8
𝑉 ∗ (ctr) for all ctr ∈ S.

Remark 5.2. Let 𝑆Good (resp. 𝑆Bad) be the set of “good” (resp. “bad”)

ads and 𝑘 = min{|𝑆Good |, |𝑆Bad |}. If 𝑘 ≥ 2 then our proof shows that

𝑉 𝜋 (ctr) ≥ 1

4

(
1 − 1

𝑘

)
𝑉 ∗ (ctr) for all ctr ∈ S. Thus, as the number of

good and bad ads tend to infinity, we obtain a 4-approximation.

Our key building block is the following mechanism.

Lemma 5.3. For any state of the MDP, there is a two-stage second-

price mechanism 𝑥 with the following guarantee. Given a mechanism

𝑥∗ and a disjoint partition 𝑆1, 𝑆2 of [𝑛], the mechanism guarantees:

(1) The mechanism 𝑥 allocates to some bidder in 𝑆1 with the same

probability as 𝑥∗ and also for 𝑆2. In other words

∑
𝑖∈𝑆 𝑗 𝑥𝑖 =∑

𝑖∈𝑆 𝑗 𝑥
∗
𝑖
for 𝑗 ∈ {1, 2}.

(2) The revenue that 𝑥 obtains from 𝑆1 is at least 1/4 of the

revenue that 𝑥∗ obtains from 𝑆1.

We now provide a high-level description on how to use the

mechanism from Lemma 5.3 to prove Theorem 5.1; the details are

in Appendix C.2. Given a state ctr of the MDP, we let 𝑆Good =

{𝑖 : 𝑞𝑖 = 1} be the set of good ads and 𝑆Bad = {𝑖 : 𝑞𝑖 = −1}
be the set of bad ads. We first compute the revenue contribution

from 𝑆Good and 𝑆Bad according to 𝑥∗ for the current round. Let this
be 𝑅Good and 𝑅Bad, respectively. Assume that 𝑅Good ≥ 𝑅Bad; the
argument is analogous when 𝑅Bad ≥ 𝑅Good. We set 𝑆1 = 𝑆Good
and 𝑆2 = 𝑆Bad and run the mechanism from Lemma 5.3. The second

guarantee from Lemma 5.3 ensures that the revenue that we obtain

from 𝑆Good is at least 𝑅Good/4. Since 𝑅Good ≥ 𝑅Bad, it follows that
we have an 8-approximation to the revenue that is obtained from

𝑥∗. Finally, note that the first guarantee of Lemma 5.3 and the fact

that the transition depends only on the quality of the ad, it follows

that we can exactly track the state transition of 𝑥∗.
We conclude this section by discussing the main ideas of the

proof of Lemma 5.3. If |𝑆1 | = 1 then in 𝑥∗, the sole bidder in 𝑆1 is
simply facing a reserve price that is determined by the other bidders.

Thus, we offer this bidder the item at the same reserve price. The

more interesting case is when |𝑆1 | ≥ 2. In the classical setting, it

is known that the following mechanism yields a 2-approximation

to the optimal revenue [18, 23, 34]. First, reject every bidder 𝑖 with

𝜙𝑖 (𝑣𝑖 ) < 0 and then run a second-price auction among the remain-

ing bidders. A naive extension would be to replace 𝜙𝑖 with the

modified virtual value and 0 with the largest modified virtual value

among bidders in 𝑆2. However, this could allocate to a bidder whose

(unmodified) virtual value is negative which is a technical challenge

for the analysis. Thus, we add one additional step to increase the

reserve of all but one of the bidders in 𝑆1 to ensure that they are

only allocated when their virtual value is non-negative. Since this

decreases the probability that a bidder in 𝑆1 wins, we compensate

by decreasing the reserve of the remaining bidder. This turns out

to make the analysis significantly simpler since the analysis can

focus on the bidders with increased reserves. Finally, we allocate

to an arbitrary bidder in 𝑆2 (say, for free) with some probability to

obtain the first guarantee of Lemma 5.3.

6 DISCUSSIONS AND FUTUREWORK
Beyond binary types. The characterization of the optimal MDP

mechanism and our learning result in Section 3 and 4 do not require

that the types are binary. On the other hand, we did make small

use of the binary types in Section 5 in designing a simple two-stage

mechanism. However, it is straightforward to extend the analysis

to the case where the bidders can be partitioned into 𝑘 “categories”

in which case we would achieve a 4𝑘-approximation. We leave it

as another open question to see whether it is possible to obtain a

𝑂 (1)-approximation, or even a 𝑜 (𝑘)-approximation.

Better than 8-approximation for simple auctions. We do not be-

lieve that the constant of 8 is tight in Theorem 5.1. In fact, as the

number of good and bad advertisers grows, we are able to improve

the constant arbitrary close to 4. Moreover, we note that when

splitting it up into good and bad ads, we only focus on the revenue

from one of the groups which incurs a factor 2 in the constant. Thus

we conjecture that the constant can be made closer to 2.

Dependence on state. The mechanisms we described in this paper

require knowledge of the user’s state (i.e., its CTR). A natural ques-

tion to ask is whether or not this is necessary. First, we note that a

static mechanism has no hope of approximating the optimal MDP

mechanism. Indeed, consider the following simple example. There

are three CTR states {0, 1/2, 1} and two advertisers. Advertiser 1 al-

ways has value 𝜀 for some small 𝜀 and is a good ad while advertiser

2 has value 1 and is a bad ad. The transitions are defined as follows.

We assume 0 is an absorbing state. In states
1/2 and 1, showing a

good ad causes a deterministic transition to 1 while showing a bad

ad causes a deterministic transition to 0 and
1/2, respectively. The

initial state is
1/2. In this case, the optimal mechanism is to alternate

between showing a good and bad ad to achieve per-round revenue

of roughly 1/2. On the other hand, any static mechanism can ob-

tain per-round revenue of at most 𝜀. However, this example does

not necessarily rule out a dynamic, but stateless mechanism. For

instance, one can consider using the past history of the shown ads

and one can also observe “bandit-style” feedback to obtain some

estimate of the user CTR. We leave this as yet another challenging

open question to explore.
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Appendix

A OMITTED PROOFS FROM SECTION 3
Proof of Theorem 3.1. For a mechanism 𝑎 ∈ A, let 𝑥𝑎 denote

the allocation of 𝑎 with the payment defined as discussed in Sub-

section 2.1. We begin with the Bellman equations which assert

that

𝑉 ∗ (ctr) = max

𝑎∈A

{
𝑅(𝑎, ctr) + 𝛾 · E

ctr
′∼𝑃 ( · |𝑎,ctr)

[
𝑉 ∗ (ctr′)

]}
. (A.1)

Let 𝑋𝑎 be the random set that gives the winning set of advertisers

in the auction. Observe that

E
ctr
′∼𝑃 ( · |𝑎,ctr)

[
𝑉 ∗ (ctr′)

]
= E

[
E
ctr
′

[
𝑉 ∗ (ctr′) |𝑋𝑎

] ]
=

∑︁
𝑊 ⊆[𝑛]
|𝑊 | ≤𝑘

E
ctr
′

[
𝑉 ∗ (ctr′) |𝑋𝑎 =𝑊

]
· 𝑃 (𝑋𝑎 =𝑊 )

=
∑︁

𝑊 ⊆[𝑛]
|𝑊 | ≤𝑘

E
ctr
′∼𝑃𝑊 ( · |ctr)

[
𝑉 ∗ (ctr′)

]
· E
𝑣

[
𝑥𝑎𝑊 (𝑣)

]
, (A.2)

where in the last equality, we used that 𝑃 (𝑋𝑎 =𝑊 ) = E𝑣
[
𝑥𝑎
𝑊
(𝑣)

]
.

Let𝑀𝑊 (ctr) = 𝛾 ·Ectr′∼𝑃𝑊 ( · |ctr) [𝑉 ∗ (ctr′)]. Plugging Eq. (A.2) into
Eq. (A.1), we get that

𝑉 ∗ (ctr) = max

𝑎∈𝐴

{ ∑︁
𝑊 ⊆[𝑛]
0< |𝑊 | ≤𝑘

[
ctr · E

𝑣

[
𝑥𝑎𝑊 (𝑣)

∑︁
𝑖∈𝑊

𝜙𝑖 (𝑣𝑖 )
]

+ E
𝑣

[
𝑥𝑎𝑊 (𝑣) ·𝑀𝑊 (ctr)

] ]
+ E
𝑣

[
𝑥𝑎
0
(𝑣) ·𝑀∅ (ctr)

]}
= max

𝑎∈A

{ ∑︁
𝑊 ⊆[𝑛]
0< |𝑊 | ≤𝑘

[
E
𝑣

[
𝑥𝑎𝑊 (𝑣) ·

(
ctr ·

∑︁
𝑖∈𝑊

𝜙𝑖 (𝑣𝑖 )

+𝑀𝑊 (ctr) −𝑀∅ (ctr)
) ] ]}
+𝑀∅ (ctr) . (A.3)

In the first equality, we used that

𝑅(𝑎, ctr) =
∑︁

𝑊 ⊆[𝑛]
0< |𝑊 | ≤𝑘

ctr · E
𝑣

[
𝑥𝑎𝑊 (𝑣) ·

∑︁
𝑖∈𝑊

𝜙𝑖 (𝑣𝑖 )
]

and also that𝑀𝑊 (ctr) is independent of the current values 𝑣 and
so E

ctr
′∼𝑃𝑊 ( · |ctr) [𝑉 ∗ (ctr′)] ·E𝑣

[
𝑥𝑎
𝑊
(𝑣)

]
= E𝑣

[
𝑥𝑎
𝑊
(𝑣) ·𝑀𝑊 (ctr)

]
.

In the second equality, we used that

𝑥𝑎∅ (𝑣) = 1 −
∑︁

𝑊 ⊆[𝑛]
0< |𝑊 | ≤𝑘

𝑥𝑎𝑊 (𝑣).

Finally, observe that we can optimize Eq. (A.3) by finding a set𝑊

with 0 < |𝑊 | ≤ 𝑘 that maximizes ctr · ∑𝑖∈𝑊 𝜙𝑖 (𝑣𝑖 ) +𝑀𝑊 (ctr) −
𝑀∅ (ctr) if this quantity is positive. Otherwise, the mechanism does

allocate to any advertiser. □

B OMITTED PROOFS FROM SECTION 4
Proof of Lemma 4.1. Let 𝑉★

be the optimal value function of

the true MDP. Notice that 𝑉★
is independent of the randomness

used in the estimation of 𝑃 . We construct this MDP in the following

way: for every (ctr,𝑊 , ctr′) ∈ S ×W × S, we set 𝑃𝑊 (ctr′ |ctr) =
count(ctr′ |ctr,𝑊 )/𝑁 , where count(ctr′ |ctr,𝑊 ) is the number of

transitions we observe in the samples from ctr to ctr
′
when the

outcome is𝑊 . Thus, by using a Hoeffding bound and taking a union

bound over S ×W we see that with probability at least 1 − 𝛿 it

holds that for every (ctr,𝑊 ) ∈ S ×W

|⟨𝑃𝑊 (·|ctr) − 𝑃𝑊 (·|ctr),𝑉★⟩| ≤ 1

1 − 𝛾 ·
√︂

2 log(2|S| |W|/𝛿)
𝑁

.

Thus, with probability 1 − 𝛿 we have that for every state ctr ∈ S
and auction 𝑎 ∈ A it holds����〈 E

𝑊 ∼D𝑎
[𝑃𝑊 (·|ctr)] − E

𝑊 ∼D𝑎
[𝑃𝑊 (·|ctr)],𝑉★

〉���� =���� E
𝑊 ∼D𝑎

[〈
𝑃𝑊 (·|ctr) − 𝑃𝑊 (·|ctr),𝑉★

〉]���� ≤
E

𝑊 ∼D𝑎

[���〈𝑃𝑤 (·|ctr) − 𝑃𝑊 (·|ctr),𝑉★
〉���] ≤

1

1 − 𝛾 ·
√︂

2 log(2|S| |W|/𝛿)
𝑁

.

For the rest of the proof we condition on the previous event.

Let 𝜋 be some fixed (deterministic) policy. For every (ctr, 𝑎) ∈
S × A we define the operator 𝑃𝜋 as follows

𝑃𝜋(ctr,𝑎),(ctr′,𝑎′ ) = E
𝑊 ∼D𝑎

[𝑃𝑊 (ctr′ |ctr)] if 𝑎′ = 𝜋 (ctr′)

𝑃𝜋(ctr,𝑎),(ctr′,𝑎′ ) = 0 otherwise .

Similarly, we define the operator 𝑃𝜋

𝑃𝜋(ctr,𝑎),(ctr′,𝑎′ ) = E
𝑊 ∼D𝑎

[𝑃𝑊 (ctr′ |ctr)] if 𝑎′ = 𝜋 (ctr′)

𝑃𝜋(ctr,𝑎),(ctr′,𝑎′ ) = 0 otherwise .

Moreover, recall that 𝑃 (ctr,𝑎),ctr′ = E𝑊 ∼D𝑎 [𝑃𝑊 (ctr′ |ctr)],∀(ctr, 𝑎) ∈
S × A, ctr′ ∈ S. Similarly for 𝑃 (ctr,𝑎),ctr′ .

We start with the proof of the second inequality. Let T be the

Bellman update rule w.r.t. the true MDP and T̂ be the Bellman

update rule w.r.t. the empirical MDP, i.e.,

T (𝑉 ) (ctr) = max

𝑎∈A

{
𝑅(ctr, 𝑎) + ⟨ E

𝑊 ∼D𝑎
[𝑃𝑊 (·|ctr)],𝑉 ⟩

}
T (𝑄) (ctr, 𝑎) = 𝑅(ctr, 𝑎) +

∑︁
ctr
′∈S

E
𝑊 ∼D𝑎

[𝑃𝑊 (ctr′ |ctr)] · max

𝑎∈A
𝑄 (ctr, 𝑎) ,

and similarly for T̂ . For the optimal𝑄-functions𝑄★, 𝑄∗ of the true
and the empirical MDP we have that

| |𝑄★ −𝑄★ | |∞ = | |T𝑄★ − T̂𝑄★ | |∞
≤ ||T𝑄★ − 𝑅 − 𝑃𝜋

★

𝑄★ | |∞ + ||𝑅 + 𝑃𝜋
★

𝑄★ − T̂𝑄★ | |∞
= 𝛾 | |𝑃𝜋

★

𝑄★ − 𝑃𝜋
★

𝑄★ | |∞ + 𝛾 | |𝑃𝜋
★

𝑄★ − 𝑃𝜋
★

𝑄★ | |∞
= 𝛾 | | (𝑃 − 𝑃)𝑉★ | |∞ + 𝛾 | |𝑃 (𝑉★ −𝑉★) | |∞
≤ 𝛾 | | (𝑃 − 𝑃)𝑉★ | |∞ + 𝛾 | |𝑉★ −𝑉★ | |∞
≤ 𝛾 | | (𝑃 − 𝑃)𝑉★ | |∞ + 𝛾 | |𝑄★ −𝑄★ | |∞ ,
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so solving for | |𝑄★ −𝑄★ | |∞ gives

| |𝑄★ −𝑄★ | |∞ ≤
𝛾

1 − 𝛾 | | (𝑃 − 𝑃)𝑉
★ | |∞

≤ 𝛾

(1 − 𝛾)2
·
√︂

2 log(2|S| |W|/𝛿)
𝑁

.

Finally, to get the desired inequality notice that

| |𝑉★ −𝑉★ | |∞ ≤ ||𝑄★ −𝑄★ | |∞ .

We now shift our attention to the first inequality.

𝑄𝜋 (ctr, 𝑎) = 𝑅(ctr, 𝑎) + 𝛾 ⟨ E
𝑊 ∼D𝑎

[𝑃𝑊 (·|ctr)],𝑉 𝜋 ⟩ =⇒

𝑄𝜋 = 𝑅 + 𝛾𝑃𝜋𝑄𝜋 =⇒
𝑄𝜋 = (𝐼 − 𝛾𝑃𝜋 )−1𝑅 ,

where the last step follows by the fact that (𝐼 − 𝛾𝑃𝜋 ) is a bounded
linear operator on the vector space S × A with respect to the sup-

norm and the Neumann series converges in the operator norm,

so the inverse of the operator exists and is given by the formula

(𝐼 − 𝛾𝑃𝜋 )−1 = ∑∞
𝛾=0 𝛾

𝑖 (𝑃𝜋 )𝑖 . Similarly, we have

𝑄𝜋 = (𝐼 − 𝛾𝑃𝜋 )−1𝑅 .

Equipped with the above notation, we can write

𝑄𝜋 −𝑄𝜋 = (𝐼 − 𝛾𝑃𝜋 )−1𝑅 − (𝐼 − 𝛾𝑃𝜋 )−1𝑅

= (𝐼 − 𝛾𝑃𝜋 )−1
(
(𝐼 − 𝛾𝑃𝜋 ) − (𝐼 − 𝛾𝑃𝜋 )

)
𝑄𝜋

= 𝛾 (𝐼 − 𝛾𝑃𝜋 )−1 (𝑃𝜋 − 𝑃𝜋 )𝑄𝜋

= 𝛾 (𝐼 − 𝛾𝑃𝜋 )−1 (𝑃 − 𝑃)𝑉 𝜋 .

We can write

(𝐼 − 𝛾𝑃𝜋 )−1 =
∑︁
𝛾=0

𝛾𝑖 (𝑃𝜋 )𝑖 ,

where | | (𝑃𝜋 )𝑖 | |∞ = 1. Thus, we have

| |𝛾 (𝐼 − 𝛾𝑃𝜋 )−1 (𝑃 − 𝑃)𝑉 𝜋 | |∞ ≤ 𝛾
∞∑︁
𝑖=0

| |𝛾𝑖 (𝑃𝜋 )𝑖 (𝑃 − 𝑃)𝑉 𝜋 | |∞

≤ 𝛾
∞∑︁
𝑖=0

𝛾𝑖 | | (𝑃 − 𝑃)𝑉 𝜋 | |∞

≤ 𝛾

(1 − 𝛾) | | (𝑃 − 𝑃)𝑉
𝜋 | |∞, .

We now focus on the term | | (𝑃 − 𝑃)𝑉 𝜋 | |∞ .We have that

| | (𝑃 − 𝑃)𝑉 𝜋 | |∞ ≤

||(𝑃 − 𝑃)𝑉★ | |∞ + ||(𝑃 − 𝑃) (𝑉 𝜋 −𝑉★) | |∞ ≤

||(𝑃 − 𝑃)𝑉★ | |∞ + 2| |𝑉 𝜋 −𝑉★ | |∞ ≤

||(𝑃 − 𝑃)𝑉★ | |∞ + 2| |𝑉 𝜋 −𝑉★ | |∞ + 2| |𝑉★ −𝑉★ | |∞ ≤

||(𝑃 − 𝑃)𝑉★ | |∞ + 2| |𝑉 𝜋 −𝑉★ | |∞ + 2| |𝑄★ −𝑄★ | |∞ ≤

1

1 − 𝛾 ·
√︂

2 log(2|S| |W|/𝛿)
𝑁

+ 2𝜀opt+

2

𝛾

(1 − 𝛾)2
·
√︂

2 log(2|S| |W|/𝛿)
𝑁

≤

2𝜀opt + 3
𝛾

(1 − 𝛾)2
·
√︂

2 log(2|S| |W|/𝛿)
𝑁

,

where 𝜀opt = | |𝑉 𝜋 −𝑉★ | |∞ . Combining the above inequalities, we

get that

| |𝑄𝜋 −𝑄𝜋 | |∞ ≤
2𝛾𝜀opt

1 − 𝛾 + 3
𝛾2

(1 − 𝛾)3
·
√︂

2 log(2|S| |W|/𝛿)
𝑁

.

Finally, applying the inequality

| |𝑉 𝜋 −𝑉 𝜋 | |∞ ≤ ||𝑄𝜋 −𝑄𝜋 | |∞ ,

gives the desired result. □

Proof of Theorem 4.2. Let

𝐿𝑉 𝜋 (ctr) = 𝑉
★(ctr) −𝑉 𝜋 (ctr)

ctr
★ = argmax

ctr∈S
𝐿𝑉 𝜋 (ctr) .

Consider the state ctr
★ ∈ S and let 𝑎 = 𝜋★(ctr★), 𝑏 = 𝜋 (ctr★). By

definition, we have that

𝑅(ctr★, 𝑏) + 𝛾
∑︁
ctr
′
E

𝑊 ∼D𝑏
[𝑃𝑊 (ctr′ |ctr★)] ·𝑉 (ctr′) ≥

𝑅(ctr★, 𝑎) + 𝛾
∑︁
ctr
′
E

𝑊 ∼D𝑎
[𝑃𝑊 (ctr′ |ctr★)] ·𝑉 (ctr′) − 𝜀′ =⇒

𝑅(ctr★, 𝑏) + 𝛾
∑︁
ctr
′
E

𝑊 ∼D𝑏
[𝑃𝑊 (ctr′ |ctr★)] · (𝑉★(ctr′) + 𝜀opt) ≥

𝑅(ctr★, 𝑎) + 𝛾
∑︁
ctr
′
E

𝑊 ∼D𝑎
[𝑃𝑊 (ctr′ |ctr★)] · (𝑉★(ctr′) − 𝜀opt) − 𝜀′ =⇒

𝑅(ctr★, 𝑏) + 𝛾
∑︁
ctr
′
E

𝑊 ∼D𝑏
[𝑃𝑊 (ctr′ |ctr★)] ·𝑉★(ctr′) ≥

𝑅(ctr★, 𝑎) + 𝛾
∑︁
ctr
′
E

𝑊 ∼D𝑎
[𝑃𝑊 (ctr′ |ctr★)] ·𝑉★(ctr′) − 2𝛾𝜀opt − 𝜀′ =⇒

𝑅(ctr★, 𝑎) − 𝑅(ctr★, 𝑏) ≤

2𝛾𝜀opt + 𝜀′ + 𝛾
∑︁

ctr
′∈S
( E
𝑊 ∼D𝑏

[𝑃𝑊 (ctr′ |ctr★)]−

E
𝑊 ∼D𝑎

[𝑃𝑊 (ctr′ |ctr★)])𝑉★(ctr′) ,

where the first derivation follows from the property of 𝑉 and the

remaining ones by rearranging the terms. By definition, we have
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that

𝐿𝑉 𝜋 (ctr
∗) = 𝑉★(ctr★) −𝑉 𝜋 (ctr★)

= 𝑅(ctr★, 𝑎) − 𝑅(ctr★, 𝑏)+

𝛾
∑︁

ctr
′∈S
( E
𝑊 ∼D𝑎

[𝑃𝑊 (ctr′ |ctr★)]𝑉★(ctr′)−

E
𝑊 ∼D𝑏

[𝑃𝑊 (ctr′ |ctr★)]𝑉 𝜋 (ctr′))

Substituting the previous inequality to this one we get

𝐿𝑉 𝜋 (ctr
∗) ≤ 2𝛾𝜀opt + 𝜀′ + 𝛾

∑︁
ctr
′∈S
( E
𝑊 ∼D𝑏

[𝑃𝑊 (ctr′ |ctr★)]𝑉★(ctr′)−

E
𝑊 ∼D𝑎

[𝑃𝑊 (ctr′ |ctr★)]𝑉★(ctr′) + E
𝑊 ∼D𝑎

[𝑃𝑊 (ctr′ |ctr★)]𝑉★(ctr′)−

E
𝑊 ∼D𝑏

[𝑃𝑊 (ctr′ |ctr★)]𝑉 𝜋 (ctr′)) =⇒

𝐿𝑉 𝜋 (ctr
∗) ≤ 2𝛾𝜀opt + 𝜀′+

𝛾
∑︁

ctr
′∈S

E
𝑊 ∼D𝑏

[𝑃𝑊 (ctr′ |ctr★)] (𝑉★(ctr′) −𝑉 𝜋 (ctr′)) .

By definition, 𝑉★(ctr′) −𝑉 𝜋 (ctr′) ≤ 𝐿𝑉 𝜋 (ctr∗). Thus, we get

𝐿𝑉 𝜋 (ctr
∗) ≤ 2𝛾𝜀opt + 𝜀′ + 𝛾𝐿𝑉 𝜋 (ctr

∗) ,

so the result follows by solving for 𝐿𝑉 𝜋 (ctr∗). □

Proof of Theorem 4.3. Notice that

| |𝑉 (𝑘 ) −𝑉★ | |∞ ≤ ||T𝑉 (𝑘−1) − T𝑉★ | |∞ + ||𝜀𝑘−1 | |∞
≤ 𝛾 | |𝑉 (𝑘−1) −𝑉★ | |∞ + 𝜀 .

Thus, applying the inequality recursively we see that

| |𝑉 (𝑘 ) −𝑉★ | |∞ ≤ 𝛾𝑘 | |𝑉★ | |∞ +
𝐾∑︁
𝑘=1

𝛾𝑘−𝑖𝜀

≤ 𝛾𝑘 | |𝑉★ | |∞ +
𝜀

1 − 𝛾 .

In order to prove the desired bound we use Theorem 4.2 and we

get

| |𝑉 𝜋𝑘 −𝑉★ | |∞ ≤
2𝛾 | |𝑉 (𝑘 ) −𝑉★ | |∞ + 𝜀′

1 − 𝛾

≤ 2𝛾

1 − 𝛾 ·
(
𝛾𝑘 | |𝑉★ | |∞ +

𝜀

1 − 𝛾 +
𝜀′

2𝛾

)
≤ 2𝛾

(1 − 𝛾)2
·
(
𝛾𝑘 + 𝜀 + (1 − 𝛾)𝜀

′

2𝛾

)
.

□

Proof of Theorem 4.4. From Lemma 4.1 we know that con-

structing the emprical MDP using 𝑁 = 𝑂

(
log( |S | · |W|/𝛿 )
(1−𝛾 )6𝜀2

)
samples

from every state-output pair we have that, with probability at least

1 − 𝛿 , | |𝑉★ −𝑉★ | |∞ ≤ 𝜀/3 and | |𝑉 𝜋 −𝑉 𝜋 | | ≤ 2𝛾𝜀opt/(1 − 𝛾) + 𝜀/6,
for any policy 𝜋 , where 𝜀opt = | |𝑉 𝜋 − 𝑉★ | |∞. In the empirical

MDP 𝑃 we can run exact value iteration (i.e., solve with 𝜀𝑘 = 0)

for 𝑂

(
ln(1/(𝜀 (1−𝛾 ) ) )

1−𝛾

)
iterations and using the guarantees of The-

orem 4.3 we estimate a policy 𝜋𝑘 such that | |𝑉 𝜋𝑘 − 𝑉★ | |∞ ≤

(1−𝛾)𝜀/12. Thus, for this policy we have that | |𝑉 𝜋𝑘 −𝑉 𝜋𝑘 | |∞ ≤ 𝜀/3.
Combining these three inequalities, we have that

| |𝑉 𝜋𝑘 −𝑉★ | |∞ ≤ ||𝑉 𝜋𝑘 −𝑉 𝜋𝑘 | |∞ + ||𝑉 𝜋𝑘 −𝑉★ | |∞ + ||𝑉★ −𝑉★ | |∞
≤ 𝜀 . □

Lemma B.1 ([15]). Let 𝑓 : X𝑛 → [0, 1], where X is some measur-

able set. Let {𝐹𝑖 }𝑖∈[𝑛] be distributions onX, and let F = 𝐹1× . . .×𝐹𝑛 .
Suppose 𝜇 = E(𝑣1,...,𝑣𝑛 )∼F [𝑓 (𝑣1, . . . , 𝑣𝑛)] . Let 𝑣𝑖1 , . . . , 𝑣𝑖𝑚 be𝑚 i.i.d.

samples from 𝐹𝑖 . Let𝑈𝑖 be the uniform distribution over {𝑣𝑖1 , . . . , 𝑣𝑖𝑚 }
and𝑈 = 𝑈1 × . . . ×𝑈𝑛 . Then, we have

Pr
𝑣𝑖 𝑗 ∼𝐹𝑖 ,∀𝑖∈[𝑛], 𝑗∈[𝑚]

[���� E
(𝑣̂1,...,𝑣̂𝑛 )∼𝑈

𝑓 (𝑣̂1, . . . , 𝑣̂𝑛) − 𝜇
���� ≥ 2𝜀

]
≤ 2𝑒

−2𝑚𝜀2
4𝜇+𝜀 −ln(𝜀 ) .

Proof of Lemma 4.6. In order to prove the result we show that

given the optimal mechanism𝑀 for F we can construct a mecha-

nism𝑀 that achieves revenue on F̂ that is at most 𝑘 ·𝜀 worse. From
Theorem 3.1 we know that for every input 𝑣1, . . . , 𝑣𝑛 ,𝑀 allocates

the slots to a set of bidders𝑊, 0 ≤ |𝑊 | ≤ 𝑘 , that maximize∑︁
𝑖∈𝑊

𝜙𝑖 (𝑣𝑖 ) + 𝛾
(

E
ctr
′∼𝑃𝑊 ( · |ctr)

[
𝑉 ∗ (ctr′)

]
− E

ctr
′∼𝑃∅ ( · |ctr)

[
𝑉 ∗ (ctr′)

] )
,

where 𝜙𝑖 if the (ironed) virtual value of bidder 𝑖 . We assume without

loss of generality that𝑀 breaks ties deterministically among sets of

bidders that maximize this quantity. We define the allocation rule

of𝑀 for the distribution F̂ as follows.

• Let 𝑣̂ = (𝑣̂1, . . . , 𝑣̂𝑛) ∈ {0, 𝜀, . . . , ℎ}𝑛 be the reported value

profile.

• For every bidder 𝑖 ∈ [𝑛] sample 𝑣𝑖 from 𝐹𝑖 conditioned on

𝑣̂𝑖 ≤ 𝑣𝑖 < 𝑣̂𝑖 + 𝜀.
• Use the allocation rule of𝑀 on (𝑣1, . . . , 𝑣𝑛) .

We first show that there is a payment rule that makes𝑀 truthful.

Suppose that we fix the (internal) randomness used in the second

step. Then, for every bidder 𝑖 ∈ [𝑛], holding the bids of the rest

fixed, the allocation rule is a step function. Therefore, we can make

the rule IC by charging the winners the minimum bid they would

need to submit to be part of the winning set. Since the mechanism

is IC for every realization of its random bits, it is IC overall.

The next step is to compare the expected modified revenue of

𝑀 w.r.t. F̂ to the expected modified revenue of 𝑀 w.r.t. 𝐹 . In or-

der to do so, we couple two random variables, the modified rev-

enue of 𝑀 over a sample 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∼ F and the modi-

fied revenue of 𝑀 over a sample 𝑣̂ = (𝑣̂1, . . . , 𝑣̂𝑛) ∼ F̂ . To be

more precise, we will couple valuation profiles 𝑣, 𝑣̂ so that 𝑣 is

the output of the random redraw (i.e., step 2 of 𝑀.). For each

such pair, by definition of 𝑀 , the allocation is the same as in 𝑀.

Therefore, the contribution to the modified revenue of the term

𝛾

(
E
ctr
′∼𝑃𝑊 ( · |ctr) [𝑉 ∗ (ctr′)] − Ectr′∼𝑃∅ ( · |ctr) [𝑉

∗ (ctr′)]
)
is the same

across the two mechanisms. Let us now focus on the payments.

Suppose that𝑊★
is the winning set. By definition, the winning

threshold of every 𝑖 ∈ 𝑊★
in 𝑀 is obtained by rounding down

the winning threshold of 𝑖 in𝑀 to closest multiple of 𝜀. Thus, the

payments of every bidder are at most 𝜀 worse. Hence, we see that
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the expected modified revenue of𝑀 is at most 𝑘 · 𝜀 worse than the

expected modified revenue of𝑀. □

Proof of Lemma 4.8. Let 𝑀★
be the optimal mechanism, 𝑣 =

(𝑣1, . . . , 𝑣𝑛) be some valuation profile and let𝑊★
be the set of bid-

ders thatM★
allocates the slots to under input 𝑣 .Consider threshold

auction that rounds down the ironed virtual value𝜙𝑖 (𝑣𝑖 ) of each bid-
der to the closest multiple of 𝜀/𝑘 in {−∞}∪

{
−2𝑘
1−𝛾 ,

−2𝑘
1−𝛾 + 𝜀/𝑘, . . . , 1

}
.

Let 𝜙𝑖 (𝑣𝑖 ) denote the rounded virtual value. It is not hard to see

that if 𝜙𝑖 (𝑣𝑖 ) = −∞ then 𝑖 ∉𝑊 ∗, since 𝜙𝑖 (𝑣𝑖 ) < 2𝑘/(1−𝛾). Assume

that 𝑖 ∈𝑊 ∗. Then ∑
𝑗∈𝑊★\{𝑖 } 𝜙 𝑗 (𝑣 𝑗 ) ≤ 𝑘 and

𝛾

(
E

ctr
′∼𝑃𝑊 ( · |ctr)

[
𝑉 (ctr′)

]
− E

ctr
′∼𝑃∅ ( · |ctr)

[
𝑉 (ctr′)

] )
≤ 𝑘

1 − 𝛾 ,

so the modified virtual value of𝑊★
is negative. Let𝑊★

be the set

of bidders selected by𝑀 . Then, we have that

ctr ·
∑︁
𝑖∈𝑊★

𝜙𝑖 (𝑣𝑖 )

+ 𝛾
(

E
ctr
′∼𝑃

𝑊★ ( · |ctr)

[
𝑉 (ctr′)

]
− E

ctr
′∼𝑃∅ ( · |ctr)

[
𝑉 (ctr′)

] )
≥

ctr ·
∑︁
𝑖∈𝑊★

𝜙𝑖 (𝑣𝑖 )

+ 𝛾
(

E
ctr
′∼𝑃𝑊★ ( · |ctr)

[
𝑉 (ctr′)

]
− E

ctr
′∼𝑃∅ ( · |ctr)

[
𝑉 (ctr′)

] )
≥

ctr ·
∑︁
𝑖∈𝑊★

𝜙𝑖 (𝑣𝑖 )

+ 𝛾
(

E
ctr
′∼𝑃𝑊★ ( · |ctr)

[
𝑉 (ctr′)

]
− E

ctr
′∼𝑃∅ ( · |ctr)

[
𝑉 (ctr′)

] )
− 𝑘 · (𝜀/𝑘) .

Thus, for every bid profile 𝑣 the modified virtual welfare of 𝑀 is

at most 𝜀 worse than the modified virtual welfare of the optimal

mechanism. The result follows by integrating over all the valuation

profiles. □

Proof of Lemma 4.9. Based on Lemma 4.8 we know that there

is a threshold auction at resolution 𝜀/(2𝑘) whose modified revenue

is at most 𝜀/2 worse than the optimal one. Since any tie-breaking

rule gives the same revenue in expectation, we can assume w.l.o.g.

that it is deterministic. For every bidder 𝑖 ∈ [𝑛] and every valuation
𝑣𝑖 𝑗 ∈ 𝐵 such threshold auctions have

𝑘 (4𝑘+1−𝛾 )
𝜀 (1−𝛾 ) + 1 possible map-

pings for 𝑣𝑖 𝑗 . Thus, since every threshold auction can be described

by such a mapping there are at most

𝐿 ≤
(
𝑘 (4𝑘 + 1 − 𝛾)
𝜀 (1 − 𝛾) + 1

)𝑛 |𝐵 |
,

different such mappings. For every such mapping 𝜎 a mechanism

𝑀𝜎
9
treats 𝜎 as the virtual value function and then allocates the

slots to the set of at most 𝑘 bidders that maximize the modified

virtual welfare. Since the values are bounded by 1 and there are

𝑘 slots, we know that the modified revenue is at most 𝑘/(1 − 𝛾) .
Let 𝑓𝜎 be the modified revenue of 𝑀𝜎 . Then, we use Lemma B.1

on every 𝑓𝜎 by scaling them appropriately so that the modified

9
In order for this to be a truthful mechanism we need the mapping to be monotone,

but we only need an upper bound on the number of such mechanisms.

revenue is in [0, 1], and we set the approximation parameter to be

𝜀̃ = (1 − 𝛾)𝜀/(4𝑘2) by taking

𝑚 = 𝑂

(
𝑛 · |𝐵 | · 𝑘4
𝜀2 (1 − 𝛾)2

log(1/𝛿)
)
.

Let 𝜇̃ be an upper bound on the expected modified revenue of𝑀𝜎 .

We denote by R̃ev(𝑀𝜎 , F ) the modified revenue of𝑀𝜎 with respect

to F and by R̃ev(𝑀𝜎 , F̂ ) the modified revenue of𝑀𝜎 with respect

to F̂ Hence, for each such function we have

Pr[|R̃ev(𝑀𝜎 , F ) − R̃ev(𝑀𝜎 , F̂ ) | ≥ 𝜀/(4𝑘)]

≤ 2𝑒
2𝑚𝜀2

4𝜇+𝜀 −ln(𝜀̃ )

≤ 𝛿/𝐿 .
Thus, by taking a union bound over all 𝑀𝜎 we can see that with

probability at least 1 − 𝛿 for any 𝜎 it holds that

|R̃ev(𝑀𝜎 , F ) − R̃ev(𝑀𝜎 , F̂ ) | ≤ 𝜀/(4𝑘) .
Notice that it is not computationally efficient to output the best

threshold mechanism with respect to the empirical distribution.

Thus, we take the following approach. First, we compute the (ironed)

virtual values 𝜙𝑖 w.r.t. the empirical distribution F ,∀𝑖 ∈ [𝑛] . This
can be done in polynomial time in the number of samples𝑚 using

the result of [17]. Then, we output the mechanism 𝑀 which, for

every input profile 𝑣 rounds the virtual values (w.r.t.F ) to the closest
multiple of 𝜀/(4𝑘) and selects the set𝑊 that maximizes themodified

virtual welfare. This mechanism has modified revenue w.r.t. the

empirical distribution F̂ at most 𝜀/4 worse than the optimal w.r.t.

F̂ . Thus, it also has modified revenue at most 𝜀/4 worse than the

optimal threshold mechanism w.r.t. F̂ . Thus, the modified revenue

of M̂ w.r.t. F is at most 𝜀/2 worse than that of the optimal threshold

mechanism w.r.t. the true distribution F , which in turn is at most

𝜀/2 worse than the optimal modified revenue w.r.t. F . Hence, we
see the modified revenue of𝑀 w.r.t. F is at most 𝜀 worse than the

optimal. □

Algorithm 2 Approximately Optimal Modified Revenue Mecha-

nism from Samples

1: Input:𝑚 i.i.d. samples from F = 𝐹1 × . . .× 𝐹𝑛 , where each 𝐹𝑖 is
supported on [0, 1], discount factor 𝛾 , number of slots 𝑘 , value

function 𝑉 : S → [0, 𝑘/(1 − 𝛾)], transition kernel of the MDP

𝑃 , approximation parameter 𝜀.

2: Output: A truthful mechanism.

3: Round all the samples down to the closest multiple of 𝜀/(2𝑘).
4: Let F̂ = 𝐹1 × . . . × 𝐹𝑛 be the empirical distribution on the

rounded𝑚 samples

5: 𝜙𝑖 ← ironed virtual value of bidder 𝑖 w.r.t. 𝐹,∀𝑖 ∈ [𝑛]
6: 𝑀 ← output of Algorithm 3 with inputs {𝜙𝑖 }𝑖∈[𝑛] ,𝑉 ,𝛾, 𝑃, and

resolution 𝛽 = 𝜀/(4𝑘) .
7: 𝑀 ← the mechanism that rounds down all of its inputs to

multiples of 𝜀/(2𝑘) and then runs𝑀

8: ÔPT(F ) ← revenue of𝑀 w.r.t. F̂ .
9: Return𝑀, ÔPT(F ).
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Algorithm 3 Rounded Virtual Value Mechanism

1: Input: Ironed virtual value functions {𝜙𝑖 }𝑖∈[𝑛] , discount factor
𝛾 , number of slots 𝑘 , value function 𝑉 : S → [0, 𝑘/(1 − 𝛾)],
transition kernel of the MDP 𝑃 , resolution parameter 𝛽 , valua-

tion profile 𝑣 = (𝑣1, . . . , 𝑣𝑛) .
2: Output: Allocation of the slots.

3: 𝑣̂𝑖 ← closest rounded down value of 𝜙𝑖 (𝑣𝑖 ) in {−∞} ∪{
−2𝑘
1−𝛾 ,

−2𝑘
1−𝛾 + 𝛽, . . . , 1

}
.

4: 𝑅 ← max
0< |𝑊 | ≤𝑘 ctr ·

∑
𝑖∈𝑊 𝑣̂𝑖 +𝛾 (Ectr′∼𝑃𝑊 ( · |ctr) [𝑉 (ctr′)] −

E
ctr
′∼𝑃∅ ( · |ctr) [𝑉 (ctr

′)]) .
5: 𝑊★ ← argmax

0< |𝑊 | ≤𝑘 ctr · ∑
𝑖∈𝑊 𝑣̂𝑖 +

𝛾 (E
ctr
′∼𝑃𝑊 ( · |ctr) [𝑉 (ctr′)] − Ectr′∼𝑃∅ ( · |ctr) [𝑉 (ctr

′)]) .
6: if 𝑅 < 0 then
7: Return ∅.
8: else
9: Return𝑊★.

10: end if

Theorem B.2. Given any product value distribution F = 𝐹1 ×
. . . × 𝐹𝑛 where every 𝐹𝑖 is supported on [0, 1], and any 𝜀 > 0, 𝛿 > 0,

Algorithm 2 takes as input𝑚 i.i.d. samples from F and outputs an

auction𝑀 that achieves modified revenue at least ÕPT(F ) − 𝜀, with
probability at least 1 − 𝛿 , whenever

𝑚 = 𝑂

(
𝑛 · 𝑘5

𝜀3 (1 − 𝛾)2
log(1/𝛿)

)
,

as well as an estimate ÔPT(F ) with the property |ÔPT(F )−ÕPT(F )| ≤
𝜀.Moreover, the running time of the algorithm to output𝑀 is poly(𝑚)
and the running time to output the estimate of the modified revenue

is poly(𝑚,𝑛𝑘 ) .

Proof of Theorem B.2. This is a corollary of Lemma 4.6 and

Lemma 4.9. By doing a discretization in the valuation distribution

with parameter 𝜀/2𝑘 we know that the modified revenue decreases

by at most 𝜀/2. Then, we can use Lemma 4.9 with parameter 𝜀/2,
so overall the modified revenue loss is at most 𝜀. In order to output

the estimate of the revenue, we need to run the mechanism on

the empirical distribution we have constructed, which takes time

poly(𝑚,𝑛𝑘 ). □

Proof of Theorem 4.10. This result is, essentially, a corollary

of various results we have shown so far. First, notice that by tak-

ing 𝑂

(
log( |S | · |W|/𝛿 )
(1−𝛾 )6𝜀2

)
from every state-outcome pair (ctr,𝑊 ) ∈

S ×W and constructing the empirical MDP 𝑃 guarantees that (cf.

Lemma 4.1), with probability at least 1 − 𝛿/2, for any policy 𝜋

| |𝑉 𝜋 −𝑉 𝜋 | |∞ ≤
2𝛾𝜀opt

1 − 𝛾 +
𝜀

6

| |𝑉★ −𝑉★ | |∞ ≤
𝜀

3

,

where 𝜀opt = | |𝑉 𝜋 −𝑉★ | |∞ .We call this event E0 and we condition
on it for the rest of the proof. Thus, it suffices to compute a policy

𝜋 for which | |𝑉 𝜋 −𝑉★ | |∞ = 𝑂 ((1 − 𝛾)𝜀) . To that end, Theorem 4.3

shows that if run value iteration for 𝑘 rounds in the empirical

MDP, estimate every update with accuracy 𝜀′, and define 𝜋𝑘 to be

an 𝜀′-greedy policy with respect to 𝑉 (𝑘 ) , then | |𝑉 𝜋𝑘 − 𝑉★ | |∞ ≤
6𝛾

(1−𝛾 )2 ·
(
𝛾𝑘 + 𝜀′

)
. Thus, by choosing 𝜀′ = 𝑂 ((1 − 𝛾)3𝜀), 𝐾 =

𝑂

(
log(1/( (1−𝛾 )𝜀 ) )

1−𝛾

)
we end up with | |𝑉 𝜋𝐾 −𝑉★ | |∞ ≤ (1 − 𝛾)𝜀/12.

Hence, plugging in the guarantees of Theorem B.2 with accuracy

𝜀′ = 𝑂 ((1 − 𝛾)3𝜀), and confidence 𝛿/(2𝑘 |S|) we see that that with
probability at least 1 − 𝛿/2 all the calls will return an 𝜀′-optimal

auction as well as their (expected) revenue with accuracy 𝜀′ . The
number of samples from F needed for each iteration and each state

is

𝑚 = 𝑂

(
𝑛 · 𝑘5

𝜀3 (1 − 𝛾)11
log( |S|/𝛿)

)
.

We call this event E1 and we condition on it for the rest of the proof.

The total number of samples we draw from F = 𝐹1 × . . . × 𝐹𝑛 is

𝑂 (𝐾 · |S| ·𝑚) .

The previous discussion shows that by choosing the constants

appropriately, under E0, E1, the policy 𝜋𝐾 satisfies | |𝑉 𝜋𝐾 −𝑉★ | |∞ ≤
(1 − 𝛾)𝜀/12, which implies that | |𝑉 𝜋𝐾 −𝑉 𝜋𝐾 | |∞ ≤ 𝜀/3. Thus, we
have that

| |𝑉★ −𝑉 𝜋𝐾 | |∞
≤ ||𝑉★ −𝑉★ | |∞ + ||𝑉★ −𝑉 𝜋𝐾 | |∞ + ||𝑉 𝜋𝐾 −𝑉 𝜋𝐾 | |∞ ≤ 𝜀 .

□

C OMITTED DETAILS FROM SECTION 5
C.1 Description and Analysis of the Mechanism

from Lemma 5.3
In this subsection, we discuss themechanism described in Lemma 5.3

and prove the lemma.

First, we provide a high-level overview of Mechanism 4 and

explain some of the intricacies in its design. Let 𝑥∗ refer to the

optimal MDP mechanism described in Corollary 3.4. We begin by

ignoring the bidders in 𝑆2 and first describe the allocation to bidders

in 𝑆1. We will return to how we allocate to bidders in 𝑆2 at the end

of our high-level discussion.

Sketch of our proof of Lemma 5.3. One can think of each of the

bidders in 𝑆1 as facing a reserve price set using their own modified

virtual value and the highest modified virtual value from the bidders

in 𝑆2. Note that if |𝑆1 | = 1 then this turns out to be very straightfor-

ward. In 𝑥∗, the sole bidder in 𝑆1 is facing a threshold price from its

own reserve and the competition from 𝑆2. So, in Mechanism 4, we

simply set this as its reserve price. This extracts the same revenue

from all bidders in 𝑆1 as 𝑥
∗
does.

From now on, we assume that |𝑆1 | ≥ 2 and our goal now is

to show that Mechanism 4 can extract at least (1 − 1/|𝑆1 |) ≥ 1/2
fraction of the revenue from 𝑆1 that 𝑥

∗
extracts. At this point, we

note a technical issue that arises. If the modified virtual value for a

bidder 𝑖 is constructed by adding a positive correction term, it may

be that when advertiser 𝑖 wins, their (unmodified) virtual value is

negative. Constructing a simple auction using negative virtual value

reserves is not something that needed to be addressed in prior works

on simple one-shot auctions, and turns out to be slightly tricky.

To fix this, in the mechanism, we consider an auxiliary auction 𝑥 ′

which is identical to 𝑥∗ except (i) it does not allocate to bidders in 𝑆2
14
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and (ii) it sets an additional reserve to bidders in 𝑆1 to ensure they

only win when their (unmodified) virtual value is non-negative.

This also had the additional benefit that the revenue that 𝑥 ′ extracts
from 𝑆1 is no less than the revenue that 𝑥∗ extracts from 𝑆1. We

remark that even though 𝑥 ′ extracts at least as much revenue from

𝑆1 as 𝑥
∗
, it may not be that 𝑥 ′ is an optimal mechanism. The reason

is that 𝑥 ′ allocates less often than 𝑥∗ and so the MDP transitions

under 𝑥 ′ and 𝑥∗ are different.
At this point, we could turn 𝑥 ′ into a simple auction for bidders

in 𝑆1 by running a second price auction with the reserves used in 𝑥 ′.
This would yield a simple auction which allocates to an advertiser in

𝑆1 with exactly the same probability as 𝑥 ′ does and 2-approximate

the contribution from 𝑆1. The only issue is that 𝑥 ′ may allocate to

a bidder in 𝑆1 with probability less than 𝑥∗. So, we must somehow

increase the probability that 𝑥 ′ allocates to a bidder. We do this as

follows. Recall that we assume |𝑆1 | ≥ 2. From 𝑆1, we remove the

bidder that is contributing the least amount of revenue according

to 𝑥 ′. Since we remove the bidder that is contributing the least

revenue, we only lose at most 1/2 of the revenue. Let 𝑖∗ denote the
identity of the removed bidder. Now observe that, if we reintroduce

this bidder with a reserve of 0 then we allocate to a bidder in 𝑆1 with

probability 1. Analogously, if we set an infinite reserve for 𝑖∗ then
we allocate to a bidder in 𝑆1 with probability no more than 𝑥 ′ did.
However, we can tune this reserve so that the probability, over the

value distribution, with which we allocate to a bidder in 𝑆1 exactly

matches that of 𝑥∗. Moreover, as we shall prove in Lemma C.2,

running a second price auction with these new reserves extracts at

least 1/2 revenue that 𝑥 ′ does from 𝑆1 \ {𝑖∗} which in turn is at least

1/4 of the revenue that 𝑥 ′ extracts from 𝑆1. We thus conclude that

the second price auction with these new reserves 4-approximate

the revenue from 𝑆1 (according to 𝑥
∗
).

The above describes the first stage of the two-stage second-price

auction. At this point, we have matched the probability of allocating

to 𝑆1 and have extracted good revenue from 𝑆1. It remains to match

the probability of allocating to 𝑆2. For this, with a well-chosen

probability, we run a second price auction with no reserves for the

bidders in 𝑆2. This probability is chosen to guarantee that Mecha-

nism 4 allocates to some bidder in 𝑆2 with the same probability as

𝑥∗.
We split the proof of Lemma 5.3 into parts. Lemma C.1 shows

that allocation of Mechanism 4 matches that of 𝑥∗ and Lemma C.3

gives the revenue guarantee for Mechanism 4.

Lemma C.1. Let 𝑆1, 𝑆2 be disjoint sets such that 𝑆1 ∪ 𝑆2 = [𝑛].
Then Mechanism 4, given input 𝑆1, 𝑆2, outputs an ad in 𝑆1 (resp. 𝑆2)

with exactly the same probability as the optimal MDP mechanism

described in Corollary 3.4.

Proof. We focus on the case where |𝑆1 | ≥ 2 since if |𝑆1 | = 1

then the only bidder in 𝑆1 is facing the same (random) reserve in

Mechanism 4 as it is in 𝑥∗.
Let 𝑖∗ be as defined in Line 13. Note that the allocation 𝑥 ′ defined

in Line 12 allocates as long as some ad 𝑖 ∈ 𝑆1 exceeds their reserve
of 𝑟𝑖 as defined in Line 11. By definition of 𝑟𝑖 , this probability is at

most 𝑝1. Next, 𝑝
′
1
is the probability that some bidder in 𝑆1 \ {𝑖∗}

exceeds their reserve 𝑟𝑖 which is at most the 𝑝1. In Line 16, we

set the reserve of 𝑖∗ so that the probability that advertiser 𝑖∗ fails
to meet their reserve is 1 − 𝜌1 = (1 − 𝑝1)/(1 − 𝑝′

1
). Therefore

Mechanism 4 Two-stage second-price auction with (𝑆1, 𝑆2)
1: Input: Value distribution F𝑖 for each bidder 𝑖 , current state ctr,

disjoint sets 𝑆1, 𝑆2 such that 𝑆1 ∪ 𝑆2 = [𝑛], optimal mechanism

𝑥∗ from Corollary 3.4.

2: Output: A two-stage second-price auction with reserves that

allocates to 𝑆1 (resp. 𝑆2) with the same probability as the optimal

mechanism from Corollary 3.4.

3: Let 𝑅 𝑗 =
∑
𝑖∈𝑆 𝑗 E𝑣

[
𝑥∗
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
for 𝑗 ∈ {1, 2}.

4: Let 𝑝 𝑗 =
∑
𝑖∈𝑆 𝑗 E𝑣

[
𝑥∗
𝑖
(𝑣)

]
for 𝑗 ∈ {1, 2}.

5: For each 𝑖 ∈ 𝑆2, sample 𝑣̃𝑖 ∼ 𝐹𝑖 .
6: Let 𝜙 = max𝑖∈𝑆2 𝜙𝑖 (𝑣̃𝑖 , ctr) and

Δ𝑖 = 𝛾

(
E

ctr
′∼𝑃𝑖 ( · |ctr)

[
𝑉 ∗ (ctr′)

]
− E

ctr
′∼𝑃0 ( · |ctr)

[
𝑉 ∗ (ctr′)

] )
.

7: if |𝑆1 | = 1 then
8: Let 𝑖 be the only bidder in 𝑆1 and set 𝑟𝑖 = 𝜙

−1
𝑖
(max{−Δ𝑖 , 𝜙 −

Δ𝑖 }/ctr) as its reserve price.
9: Allocate to bidder 𝑖 if they meet their reserve.

10: else
11: Let 𝑟𝑖 = 𝜙

−1
𝑖
(max{−Δ𝑖 , 𝜙 − Δ𝑖 , 0}/ctr).

12: Define the allocation 𝑥 ′
𝑖
(𝑣) = 𝑥∗

𝑖
(𝑣) · I[𝑖 ∈ 𝑆1 ∧𝜙𝑖 (𝑣𝑖 ) ≥ 0].

13: Let 𝑖∗ ∈ argmin𝑖∈𝑆1 {E𝑣
[
𝑥 ′
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
}.

14: Let 𝑝′
1
= Pr[∃𝑖 ∈ 𝑆1 \ {𝑖∗}, 𝑣𝑖 ≥ 𝑟𝑖 ].

15: Let 𝜌1 = 1 − (1 − 𝑝1)/(1 − 𝑝′
1
).

16: Redefine 𝑟𝑖∗ = 𝐹
−1
𝑖∗ (1 − 𝜌1).

17: Run a second price auction with reserves 𝑟𝑖 for all advertisers

𝑖 ∈ 𝑆1.
18: end if
19: If there is no winner so far then with probability 𝑝2/(1 − 𝑝1)

run a second price auction with no reserves for all advertisers

𝑖 ∈ 𝑆2.

the probability that some advertiser in 𝑆1 exceeds their reserve is

exactly 1 − (1 − 𝜌1) (1 − 𝑝′
1
) = 𝑝1. This latter probability is exactly

that probability that an ad is shown by 𝑥∗ and by the second price

auction in Line 17. Finally, note that by Line 19, an ad in 𝑆2 is shown

with probability 𝑝2. □

Before we prove Lemma C.3, we require the following lemma.

This lemma states that second pricewith reserves is a 2-approximation

to the optimal mechanism with the same reserves. This can be

viewed as an extension on previous results due to [23], [18], and

[34] which prove this for the monopoly reserve.

Lemma C.2. Suppose we have 𝑛 independent bidders with virtual

value functions 𝜙1, . . . , 𝜙𝑛 . Let 𝑟1, . . . , 𝑟𝑛 be such that 𝑟𝑖 ≥ 𝜙−1𝑖 (0) for
all 𝑖 . Let 𝑧∗ be the revenue-optimal auction that allocates to bidder 𝑖

only if their value is at least 𝑟𝑖 . Then running a second price auction

with reserve 𝑟𝑖 for bidder 𝑖 extracts at least 1/2 the revenue as 𝑧∗.

Proof. Let 𝑥 be the allocation of the second price auction with

reserve 𝑟𝑖 for bidder 𝑖 . Let E1 = {𝑣 : 𝑥 (𝑣) = 𝑧∗ (𝑣)} and E2 = {𝑣 :
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𝑥 (𝑣) ≠ 𝑧∗ (𝑣)}. Then

E
𝑣

[
𝑛∑︁
𝑖=1

𝑥𝑖 (𝑣)𝜙𝑖 (𝑣𝑖 )
]
≥ E
𝑣

[
𝑛∑︁
𝑖=1

𝑥𝑖 (𝑣)𝜙𝑖 (𝑣𝑖 )I[E1]
]

= E
𝑣

[
𝑛∑︁
𝑖=1

𝑧∗𝑖 (𝑣)𝜙𝑖 (𝑣𝑖 )I[E1]
]
,

(C.1)

where the inequality is because if 𝑣𝑖 ≥ 𝑟𝑖 then 𝜙𝑖 (𝑣𝑖 ) ≥ 0 and

𝑥𝑖 (𝑣) = 1 only if 𝑣𝑖 ≥ 𝑟𝑖 .
Next, let 𝑝𝑖 (𝑣) be the revenue generated by SPA with reserves

𝑟1, . . . , 𝑟𝑛 when the bidder values are 𝑣 = (𝑣1, . . . , 𝑣𝑛). We claim

that on the event E2, we have

∑
𝑖∈[𝑛] 𝑝𝑖 (𝑣) ≥

∑𝑛
𝑖=1 𝑧

∗
𝑖
(𝑣)𝑣𝑖 . In-

deed, if

∑𝑛
𝑖=1 𝑧

∗
𝑖
(𝑣) = 0 then this is trivial. On the other hand, if∑

𝑖 𝑧
∗
𝑖
(𝑣) ≥ 1 and 𝑥 ≠ 𝑧∗ then there must be at least two bid-

ders that exceed their reserve (otherwise, we must have 𝑥 = 𝑧∗

since there is only one eligible bidder). In SPA with reserves, the

payment is at least the second-highest value which is at least the

value of the advertiser that wins the auction according to 𝑧∗. Thus,∑
𝑖∈[𝑛] 𝑝𝑖 (𝑣) ≥

∑𝑛
𝑖=1 𝑧

∗
𝑖
(𝑣)𝑣𝑖 . Therefore,

E
𝑣

[
𝑛∑︁
𝑖=1

𝑝𝑖 (𝑣)I[E2]
]
≥ E
𝑣

[
𝑛∑︁
𝑖=1

𝑧∗𝑖 (𝑣𝑖 )𝑣𝑖 I[E2]
]

≥ E
𝑣

[
𝑛∑︁
𝑖=1

𝑧∗𝑖 (𝑣𝑖 )𝜙𝑖 (𝑣𝑖 )I[E2]
]
,

(C.2)

where the last inequality is because value is always an upper bound

on the virtual value. Note that the left-hand-side of both Eq. (C.1)

and Eq. (C.2) give the value of SPA with reserves so combining the

two equations completes the proof of the lemma. □

Lemma C.3. Fix a state 𝑠 and disjoint sets 𝑆1, 𝑆2 such that 𝑆1 ∪
𝑆2 = [𝑛]. The auction in Mechanism 4 obtains revenue at least

1

4
·∑

𝑖∈𝑆1 E𝑣
[
𝑥∗
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
.

Recall

∑
𝑖∈𝑆1 E𝑣

[
𝑥∗
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
is the revenue contributed by ad-

vertisers in 𝑆1 in 𝑥
∗
.

Proof. First, we claim that, with the allocation defined in Line 12,

we have E𝑣
[
𝑥 ′
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
≥ E𝑣

[
𝑥∗
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
for all 𝑖 ∈ 𝑆1. Indeed,

for 𝑖 ∈ 𝑆1, we have
E
𝑣

[
𝑥∗𝑖 (𝑣)𝜙𝑖 (𝑣𝑖 )

]
= E
𝑣

[
𝑥∗𝑖 (𝑣)𝜙𝑖 (𝑣𝑖 )I[𝜙𝑖 (𝑣𝑖 ) < 0]

]
+ E
𝑣

[
𝑥∗𝑖 (𝑣)𝜙𝑖 (𝑣𝑖 )I[𝜙𝑖 (𝑣𝑖 ) ≥ 0]

]
≤ E
𝑣

[
𝑥∗𝑖 (𝑣)𝜙𝑖 (𝑣𝑖 )I[𝜙𝑖 (𝑣𝑖 ) ≥ 0]

]
= E
𝑣

[
𝑥 ′𝑖 (𝑣)𝜙𝑖 (𝑣𝑖 )

]
.

Hence the mechanism 𝑥 ′ obtains at least as much as revenue as

𝑥∗. We now show that the second price auction defined in Line 17

extracts at least a 1/4 of the revenue from 𝑥 ′ (and thus, from 𝑥∗).
First, suppose that there is only one bidder in 𝑆1. Let 𝑖 be this

single bidder. In this case, in 𝑥∗, bidder 𝑖 is just facing a threshold
price set by its own reserve and the competition from 𝑆2. In this

case, Mechanism 4 sets this threshold as a reserve for bidder 𝑖 .

On the other hand, suppose there are at least two bidders in 𝑆1.

Let 𝑥 ′′ be the auction with the same allocation as 𝑥 ′ except 𝑥 ′′
𝑖∗ (𝑣) =

0 for all 𝑣 . Then the auction 𝑥 ′′ extracts at least (1 − 1/|𝑆1 |) ≥ 1/2
fraction of the revenue from 𝑥 ′. From Lemma C.2, a SPA auction

with the same reserves 𝑟𝑖 for bidders in 𝑆1 \{𝑖∗} extracts at least 1/2
of the revenue as 𝑥 ′′. Thus, SPA with reserves defined in Line 17

extracts at least 1/2 of the revenue as 𝑥 ′′ so is at least 1/4 of the
revenue as 𝑥∗. □

C.2 Other Omitted Proofs from Section 5
Mechanism 5 describes the final mechanism. The following lemma

shows that Mechanism 5 extracts at least 1/8 of the (present) rev-
enue that 𝑥∗ extracts in each state while maintaining the same

transitions as 𝑥∗.

Lemma C.4. Mechanism 5 shows a good (resp. bad) ad with exactly

the same probability as 𝑥∗ and extracts at least 1/8-fraction of the

revenue from 𝑥∗ at each state.

Proof. The lemma follows directly from Lemma 5.3 and the

fact that max{𝑅Good, 𝑅Bad} is already a 1/2-approximation to the

revenue extracted from 𝑥∗ at each state. □

Mechanism 5 Simple mechanism in each round of the MDP

1: Input: Value distribution F𝑖 for each bidder 𝑖 , current state ctr,

qualities 𝑞1, . . . , 𝑞𝑛 , optimal mechanism 𝑥∗ from Corollary 3.4.

2: Let 𝑆Good = {𝑖 : 𝑞𝑖 = 1} and 𝑆Bad = {𝑖 : 𝑞𝑖 = −1}.
3: Let 𝑅Good =

∑
𝑖∈𝑆Good E𝑣

[
𝑥∗
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
and 𝑅Bad =∑

𝑖∈𝑆Bad E𝑣
[
𝑥∗
𝑖
(𝑣)𝜙𝑖 (𝑣𝑖 )

]
.

4: if 𝑅Good ≥ 𝑅Bad then
5: Run Mechanism 4 (Appendix C.1) with 𝑆1 = 𝑆Good and

𝑆2 = 𝑆Bad.

6: else
7: Run Mechanism 4 (Appendix C.1) with 𝑆1 = 𝑆Bad and 𝑆2 =

𝑆Good.

8: end if

We have proved that we can 8-approximate the revenue at each

state andmaintain the transition probability the same as the optimal

mechanism. We now show how this implies an 8-approximation

to the optimal MDP policy, thus proving the main theorem in this

section.

Proof of Theorem 5.1. Recall that the discounted reward for

a policy 𝜋 is

E
𝜋

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(ctr𝑡 , 𝑎𝑡 )
]
=

∞∑︁
𝑡=0

𝛾𝑡 E
𝜋
[𝑅(ctr𝑡 , 𝑎𝑡 )]

=

∞∑︁
𝑡=0

𝛾𝑡 E
𝜋

[
E [𝑅(ctr𝑡 , 𝑎𝑡 ) |ctr𝑡 ]

]
.

Let 𝜋 correspond to the policy by runningMechanism 5 in each state

and let 𝜋∗ correspond to the optimal MDP policy from Corollary 3.4.

Let 𝑎𝑡 (resp. 𝑎
∗
𝑡 ) denote the (random) auction chosen by 𝜋 (resp. 𝜋∗)

at time 𝑡 . Note that, conditioned on ctr𝑡 , both 𝑎𝑡 and 𝑎
∗
𝑡 are actually

deterministic. Then, by Lemma C.4, we have E [𝑅(ctr𝑡 , 𝑎𝑡 ) |ctr𝑡 ] ≥
1

8
E

[
𝑅(ctr𝑡 , 𝑎∗𝑡 ) |ctr𝑡

]
. Since the distribution of ctr𝑡 under policy 𝜋

or 𝜋∗ is the same, taking expectations on both sides completes the

proof. □
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