
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BAYESIAN NEURAL NETWORKS FOR FUNCTIONAL
ANOVA MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

With the increasing demand for interpretability in machine learning, functional
ANOVA decomposition has gained renewed attention as a principled tool for
breaking down high-dimensional function into low-dimensional components that
reveal the contributions of different variable groups. Recently, Tensor Product
Neural Network (TPNN) has been developed and applied as basis functions in
the functional ANOVA model, referred to as ANOVA-TPNN. A disadvantage of
ANOVA-TPNN, however, is that the components to be estimated must be speci-
fied in advance, which makes it difficult to incorporate higher-order TPNNs into
the functional ANOVA model due to computational and memory constraints. In
this work, we propose Bayesian-TPNN, a Bayesian inference procedure for the
functional ANOVA model with TPNN basis functions, enabling the detection of
higher-order components with reduced computational cost compared to ANOVA-
TPNN. We develop an efficient MCMC algorithm and demonstrate that Bayesian-
TPNN performs well by analyzing multiple benchmark datasets. Theoretically, we
prove that the posterior of Bayesian-TPNN is consistent.

1 INTRODUCTION

As artificial intelligence (AI) models become increasingly complex, the demand for interpretability
has grown accordingly. To address this need, various interpretable models—including both post-
hoc explanations (Ribeiro et al., 2016; Lundberg & Lee, 2017) and inherently transparent models
(Agarwal et al., 2021; Koh et al., 2020; Radenovic et al., 2022; Park et al., 2025)—have been stud-
ied. Among various interpretable approaches, our study focuses on the functional ANOVA model,
a particularly important class of interpretable models that decompose a high-dimensional function
into a sum of low-dimensional functions called componenets or interactions. Notable examples of
the functional ANOVA model are the generalized additive Model (Hastie & Tibshirani, 1986), SS-
ANOVA (Gu & Wahba, 1993) and MARS (Friedman, 1991). Because complex structures of a given
high-dimensional model can be understood by interpreting low-dimensional components, the func-
tional ANOVA models have been extensively used in interpretable AI applications (Lengerich et al.,
2020; Märtens & Yau, 2020; Choi et al., 2025; Herren & Hahn, 2022).

In recent years, various neural networks have been developed to estimate components in the func-
tional ANOVA model. Neural Additive Models (NAM, Agarwal et al. (2021)) estimates each compo-
nent of the functional ANOVA model using deep neural networks (DNN), and Neural Basis Models
(NBM, Radenovic et al. (2022)) significantly reduce the computational burden of NAM by using
basis deep neural networks (DNN). NODE-GAM (Chang et al., 2021) can select and estimate the
components in the functional ANOVA model simultaneously, and Thielmann et al. (2024) proposes
NAMLSS, which modifies NAM to estimate the predictive distribution. Park et al. (2025) proposes
ANOVA-TPNN, which estimates the components under the uniqueness constraint and thus provides
a stable estimate of each component.

Existing neural-network approaches to functional ANOVA model require prohibitive computation
when the input dimension p is large, because the number of components—and thus the required
networks—grows exponentially. As a result, only 1–2 dimensional components are typically used,
yielding suboptimal prediction when higher-order interactions matter.

In this paper, we propose a Bayesian neural network (BNN) for the functional ANOVA model which
can estimate higher-order interactions (i.e., components whose input dimension is greater than 2)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

without requiring huge amounts of computing resources. The main idea of the proposed BNN is to
infer the architecture (the architectures of neural networks for each component) as well as the pa-
rameters (the weights and biases in each neural network). To explore higher posterior regions of the
architecture, a specially designed MCMC algorithm is developed which searches the architectures
in a stepwise manner (i.e., growing or pruning the current architecture) and thus huge computing
resources for memorizing and processing all of the predefined neural networks for the components
can be avoided.

Bayesian Neural Networks (BNN; MacKay (1992); Neal (2012); Wilson & Izmailov (2020); Iz-
mailov et al. (2021)) provide a principled Bayesian framework for training DNNs and have received
considerable attention in machine learning and AI. Compared to frequentist approaches, BNN of-
fers stronger generalization and better-calibrated uncertainty estimates (Wilson & Izmailov, 2020;
Izmailov et al., 2021), which enhance decision making. These properties have motivated applica-
tions in areas such as recommender systems (Wang et al., 2015), topic modeling (Gan et al., 2015),
and medical diagnosis (Filos et al., 2019). More recently, Bayesian neural networks (BNN) that
learn their own architectures have been actively studied. In particular, Kong et al. (2023) introduced
a node-sparse BNN, referred to as the masked BNN (mBNN), and established its theoretical proper-
ties. Nguyen et al. (2024) proposes S-RJMCMC, which explores architectures and weights by jointly
sampling parameters and altering the number of nodes.

This is the first work on BNN that efficiently estimates higher-order components in the functional
ANOVA model without requiring substantial computing resources. Our main contributions can be
outlined as follows.

• We propose a BNN for the functional ANOVA model called Bayesian-TPNN which treats
the architecture as a learnable parameter, and develop an MCMC algorithm which effi-
ciently explores high-posterior regions of the architecture.

• For theoretical justifications of the proposed BNN, we prove the posterior consistency of
the prediction model as well as each component.

• Through experiments on multiple real datasets, we show that the proposed BNN provides
more accurate and stable estimation and uncertainty quantification than other neural net-
works for the functional ANOVA model. On various synthetic datasets, we further show
that Bayesian-TPNN effectively estimates important higher-order components.

2 PRELIMINARIES

2.1 NOTATION

Let x = (x1, . . . , xp)
⊤ ∈ X be a p-dimensional input vector, where X = X1 × · · · × Xp ⊆ [0, 1]p.

We write [p] = {1, . . . , p} and its power set with cardinality d as power([p], d). For any component
S ⊆ [p], we denote xS = (xj , j ∈ S)⊤ and define XS =

∏
j∈S Xj . A function defined on XS

is denoted by fS . For any real-valued function f : X −→ R, we define the empirical ℓ2-norm as
∥f∥2,n := (

∑n
i=1 f(xi)

2/n)1/2, where x1, . . . ,xn are observed input vectors. We denote σ(·) as
the sigmoid function, i.e., σ(x) := 1/(1+ exp(−x)). We denote by µn the empirical distribution of
{x1, . . . ,xn}, and by µn,j the marginal distribution of µn on Xj .

2.2 PROBABILITY MODEL FOR THE LIKELIHOOD

We consider a nonparametric regression model in which the conditional distribution of Yi given xi

follows an exponential family (Brown et al., 2010; Chen, 2024):
Yi|xi ∼ Qf(xi),η (1)

for i = 1, ..., n, where f : X → R is a regression function and η is a nuisance parameter. Here, we
assume that Qf(x),η admits the density function qf(x),η defined as

qf(x),η(y) = exp

(
f(x)y −A(f(x))

η
+ S(y, η)

)
, (2)

where A(·) is the log-partition function, ensuring that the density integrates to one. We assume that
each input vector xi has been rescaled, yielding xi ∈ [0, 1]p for i = 1, ..., n.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Example 1. Gaussian regression model: Consider the gaussian regression Y = f(x) + ϵ, where
ϵ ∼ N(0, σ2

ϵ). In this case, the density in (2), corresponds to A(f(x)) := f(x)2/2 and S(y, η) :=
−y2/2η − (log 2πη)/2 with η = σ2

ϵ .

Example 2. Logistic regression model: For a binary outcome Y ∈ {0, 1}, consider the logistic
regression model Y |x ∼ Bernoulli(σ(f(x))). In this case, there is no nuisance parameter, i.e.,
η = 1. This distribution can be expressed as the exponential family with A(f(x)) := log(1+ ef(x))
and S(y, η) := 0.

Likelihood: Let D(n) = {(x1, y1), . . . , (xn, yn)} be given data which consist of n pairs of ob-
served input vectors and response variables. For the likelihood, we assume that yis are independent
realizations of Yi|xi ∼ Qf(xi),η, where f and η are the parameters to be inferred.

2.3 FUNCTIONAL ANOVA MODEL

For S ⊆ [p], we say that fS satisfies the sum-to-zero condition with respect to a probability measure
µ on X if

For S ⊆ [p], ∀ j ∈ S and ∀ xS\{j} ∈ XS\{j},

∫
Xj

fS(xS)µj(dxj) = 0 (3)

holds, where µj is the marginal probability measure of µ on Xj .
Theorem 2.1 (Functional ANOVA Decomposition (Hooker, 2007; Owen, 2013)). Any real-valued
function f defined on Rp can be uniquely decomposed as

f(x) =
∑
S⊆[p]

fS(xS), (4)

almost everywhere with respect to Πp
j=1µj , where each component fS satisfies the sum-to-zero con-

dition with respect to µ.

Theorem 2.1 guarantees a unique decomposition of any real-valued multivariate function f into the
components satisfying the sum-to-zero condition with respect to the probability measure µ. In (4),
we refer to fS as main effects when |S| = 1, as second-order interactions when |S| = 2, and so on.
For brevity, we use the empirical distribution µn for µ when referring to the sum-to-zero condition.

2.4 TENSOR PRODUCT NEURAL NETWORKS

In this subsection, we review Tensor Product Neural Network (TPNN) proposed by Park et al. (2025)
since we use it as a building block of our proposed BNN. TPNN is a specially designed neural
network to satisfy the sum-to-zero condition.

For each S ⊆ [p], TPNN is defined as fS(xS) =
∑KS

k=1 βS,kϕ(xS |S,BS,k,RS,k) for component
fS , where βS,k ∈ R, BS,k = (bS,j,k, j ∈ S) ∈ R|S|, and RS,k = (γS,j,k, j ∈ S) ∈ (0,∞)|S|. Here,
ϕ(xS |S,BS,k,RS,k) is defined as

ϕ(xS |S,BS,k,RS,k) :=
∏
j∈S

(
1− σ

(
xj − bS,j,k

γS,j,k

)
+ cj(bS,j,k, γS,j,k)σ

(
xj − bS,j,k

γS,j,k

))
, (5)

where

cj(b, γ) := −
(
1−

∫
Xj

σ

(
xj − b

γ

)
µn,j(dxj)

)/∫
Xj

σ

(
xj − b

γ

)
µn,j(dxj). (6)

The term cj(b, γ) is introduced to make ϕ(xS |S,BS,k,RS,k) satisfy the sum-to-zero condition.
Finally, Park et al. (2025) proposes ANOVA-TdPNN, which assumes that:

f(x) =
∑

S⊆[p],|S|≤d

KS∑
k=1

βS,kϕ(xS |S,BS,k,RS,k), (7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where d ∈ N+ and {KS , S ⊆ [p], |S| ≤ d} are hyperparameters. Since ϕ(·|S,BS,k,RS,k) satisfies
the sum-to-zero condition for any S ⊆ [p], fANOVA-TdPNN also satisfies the sum-to-zero condition.
Therefore, we can estimate the components uniquely by estimating the parameters in ANOVA-
TdPNN.

Here, d is the maximum order of components. Note that as the maximum order d increases, the
number of TPNNs in (7) grows exponentially; therefore, in practice d is set to 1 or 2 due to the
limitation of computing resources. In addition, choosing KSs is not easy. To further illustrate these
limitations, the experiments on the runtime of Bayesian-TPNN and ANOVA-T2PNN are presented
in Section G of Appendix.

3 BAYESIAN TENSOR PRODUCT NEURAL NETWORKS

Figure 1: Bayesian-TPNN with p = 4 and K = 5.

In (7), instead of fixing S, we treat S also as learn-
able parameters. That is, we consider the follow-
ing model:

f(x) =
K∑

k=1

βkϕ(x|Θk), (8)

where Θk = (Sk,bSk,k,ΓSk,k), Sk ⊆ [p], and
aim to learn K and (Sk, k ∈ [K]) as well as the
other parameters. Here,

bSk,k := (bj,k, j ∈ Sk) ∈ [0, 1]|Sk|,

ΓSk,k := (γj,k, j ∈ Sk) ∈ (0,∞)|Sk|.

for k ∈ [K]. Note that K and Sk are considered
to be the parameters defining the architecture, but
they cannot be updated by a gradient descent al-
gorithm since K and Sks are not numeric parameters. Instead, we adopt a Bayesian approach in
which K and Sks are explored via an MCMC algorithm. We refer to the resulting model as Bayesian
Tensor Product Neural Networks (Bayesian-TPNN). Bayesian-TPNN can be understood as an edge-
sparse shallow neural network when K is the number of hidden nodes and SK is the set of input
variables linked to the k-th hidden node through active edges. See Figure 1 for an illustration.

3.1 PRIOR

The parameters in Bayesian-TPNN consist of K, BK := (β1, ..., βK), SK := (Sk, k ∈ [K]),
bSK ,K := (bSk,k, k ∈ [K]), ΓSK ,K := (ΓSk,k, k ∈ [K]) and the nuisance parameter η if it exists
(e.g. the variance of the noise in the gaussian regression model). The parameters can be categorized
into the three groups: (1) K for the node-sparsity, (2) Sk, k = 1, . . . ,K for the edge sparsity, and
(3) all the other parameters including (bSk,k,ΓSk,k, k = 1, ...,K). We use a hierarchical prior for
these three groups of parameters.

Prior for K: We consider the following prior distribution for K:

π(K = k) ∝ exp(−C0k log n), for k = 0, ...,Kmax, (9)

where Kmax ∈ N+ and C0 > 0 are hyperparameters. This prior is motivated by Kong et al. (2023).

Prior for SK |K: Conditional on K, we assume a prior that Sks are independent and each Sk

follows the mixture distribution:
p∑

d=1

wdUniform
(
power([p], d)

)
, (10)

where wds are defined recursively as follows: wd ∝
(
1 − padding(d)

)∏
ℓ<d padding(ℓ) with

padding(ℓ) := αadding(1 + ℓ)−γadding . Here, padding is the probability of adding a variable to Sk, con-
trolled by hyperparameters αadding and γadding. This prior is inspired by Bayesian CART (Chipman
et al., 1998), where Sk denotes split variables.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Prior for the numeric parameters given K and SK: All the remaining parameters are numerical
ones and hence we use standard priors for them.

• Conditional on K, we assume a prior that βks are independent and follow βk ∼ N(0, σ2
β),

where σβ > 0 is a hyperparameter.

• Conditional on Sk, we let bj,ks and γj,ks be all independent and bj,k ∼ Uniform(0, 1)
and γj,k ∼ Gamma(aγ , bγ) for j ∈ Sk and k ∈ [K], where aγ > 0 and bγ > 0 are
hyperparameters.

• For the nuisance parameter in the gaussian regression model, where the nuisance parameter
η corresponds to σ2, we set σ2 ∼ IG

(
v
2 ,

vλ
2

)
, where v > 0 and λ > 0 are hyperparameters

and IG(·, ·) is the inverse gamma distribution.

3.2 MCMC ALGORITHM FOR POSTERIOR SAMPLING

We now develop an MCMC algorithm for posterior sampling of Bayesian-TPNN. Our overall sam-
pling strategy is to update K, SK and the remaining numeric parameters iteratively using the cor-
responding Metropolis-Hastings (MH) algorithms, which is motivated by the MCMC algorithm of
Bayesian additive regression tree (Chipman et al., 2010). A novel part of our MCMC algorithm,
however, is to devise a specially designed proposal distribution in the MH algorithm such that the
proposal distribution encourages the MCMC algorithm to visit important higher-order interactions
more frequently. For this purpose, we introduce two special tools. First, we employ a pretrained
probability mass function pinput(·) on [p], which represents the importance of each input variable.
Further, let pinput(·|S) be the distribution pinput(·) restricted to S ⊆ [p]. See Remark at the end of this
subsection for the choice of pinput(·).
The second tool is a stepwise search. The stepwise search adds a new node by first copying one
of existing nodes and add an edge. By doing so, a newly added node has one more edges than the
copied node and thus corresponds to an interaction whose order is larger than the copied one by 1.
By keeping the copied node also in the model, we can avoid dramatic loss of accuracy.

To be more specific, let θ := (K,SK ,bSK ,K ,ΓSK ,K ,BK , η) be given current parameters. We up-
date these parameters by sequentially updating K, (SK ,bSK ,K ,ΓSK ,K ,BK) and the nuisance pa-
rameter η. We now describe these 3 updates.

Updating K: First, we devise a proposal distribution of Knew given K used in the MH algorithm.
For a given K, we set Knew as K − 1 or K + 1 with probability K/Kmax and 1 − K/Kmax

respectively. If Knew = K − 1, we remove one of (Sk,bSk,k,ΓSk,k, βk), k ∈ [K] from θ with
probability 1/K to have θnew.

For the case Knew = K + 1, the crucial mission is to design an appropriate proposal of
(Snew

K+1,b
new
Snew
K+1,K+1,Γ

new
Snew
K+1,K+1, β

new
K+1). Specifically, we first generate Snew

K+1 and then generate
(bnew

Snew
K+1,K+1,Γ

new
Snew
K+1,K+1, β

new
K+1) conditional on Snew

K+1. The proposal of Snew
K+1 consists of the fol-

lowing two alternations:

• Random: Generate Snew
K+1 from the prior distribution.

• Stepwise: Propose Snew
K+1 = Sk∗ ∪{jk∗}, where k∗ ∼ Uniform[K] and jk∗ ∼ pinput(·|Sc

k∗).

The MH algorithm randomly selects one of {Random, Stepwise} with probability M/(M + K),
and K/(M + K), where M > 0 is a hyperparameter. This proposal combines random and step-
wise search, where Snew

K+1 is sampled as a completely new index set from the prior with prob-
ability M/(M + K), or taken as a higher-order modification of one of S1, . . . , SK with prob-
ability K/(M + K). We employ Stepwise move to encourage the proposal distribution to ex-
plore higher-order interactions more frequently without losing much information in the current
model (i.e. keeping all of the components in the current model). Once Snew

K+1 is given, we gener-
ate (bnew

Snew
K+1,K+1,Γ

new
Snew
K+1,K+1, β

new
K+1) from the prior distribution. See Section A.1 of Appendix for

the acceptance probability for this proposal θnew and see Section C.5 of Appendix for experimental
results demonstrating the effectiveness of the proposed MH.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Updating (Sk,bSk,k,ΓSk,k, βk) for k ∈ [K]: For a given k, we consider the following three
possible alterations of Sk and (bSk,k,ΓSk,k) for the proposal of (Snew

k ,bnew
Snew
k ,k,Γ

new
Snew
k ,k):

• Adding: Adding a new variable jnew, which is selected randomly from Sc
k according to

the probability distribution pinput(·|Sc
k), and generating bSk,jnew and γSk,jnew from the prior

distribution.
• Deleting: Uniformly at random, select an index j in Sk and delete it from Sk.
• Changing: Select an index j uniformly at random from Sk and index jnew from Sc

k accord-
ing to the probability distribution of pinput(·|Sc

k) and delete j from Sk and add jnew to Sk.
Then, generate bSk,jnew and γSk,jnew from the prior distribution.

The MH algorithm randomly selects one of {Adding, Deleting, Changing} with probability
(qadd, qdelete, qchange). This proposal distribution is a modification of one used in BART (Chipman
et al., 1998; Kapelner & Bleich, 2016) to grow/prune or modify a current decision tree. See Section
A.2 of Appendix for the acceptance probability of (Snew

k ,bnew
Snew
k ,k,Γ

new
Snew
k ,k).

Once (Sk,bSk,k,ΓSk,k) are updated, we update all of the numeric parameters (bSk,k,ΓSk,k, βk)
by the MH algorithm with the Langevin proposal (ros, 1978) to accelerate the convergence of the
MCMC algorithm further. Finally, we repeat this update for k ∈ [K] sequentially. See Appendix
A.3 for details and Section I for a toy example illustrating the proposed MCMC algorithm.

Updating the nuisance parameter η : In the gaussian regression model, the nuisance parameter
η corresponds to the error variance σ2

g . Since the conditional posterior distribution of σ2
g is Inverse

Gamma distribution, it is straightforward to draw σ2
g from π(σ2

g |others). Details are provided in
Section A.4 of Appendix.

Algorithm 1 MCMC algorithm of Bayesian TPNN.
Input {(xi, yi)}ni=1 : data, K : initial number of hidden nodes, Mmcmc : the number of MCMC
iterations,

1: for i : 1 to Mmcmc do
2: Update K
3: for k : 1 to K do
4: Update Sk,bSk,k,ΓSk,k

5: Update bSk,k,ΓSk,k, βk

6: end for
7: Update η
8: end for

Predictive Inference. Let θ̂1, ..., θ̂N denote samples drawn from the posterior distribution. The
predictive distribution is then estimated as p̂(y|x) =

∑N
i=1 p(y|x, θ̂i)/N .

Remark 3.1. When no prior information is available on the importance of input variables, we use a
uniform distribution for pinput. However, this noninformative choice often performs poorly when the
dimension p is large and higher-order interactions exist. Our numerical studies in Section C.4 reveal
that the choice of a good pinput is important for exploring higher-posterior regions. In practice, we
could specify pinput based on the importance measures of each input variable obtained by a standard
method such as Molnar (2020). That is, we let pinput(j) ∝ ωj , where ωj is an importance measure
of the input variable j ∈ [p]. In our numerical study, we use the global SHAP value (Molnar, 2020)
based on a pretrained Deep Neural Network (DNN) for the importance measure or the feature
importance using a pretrained eXtreme Gradient Boosting (XGB, Chen & Guestrin (2016)).

3.3 POSTERIOR CONSISTENCY

For theoretical justification of Bayesian-TPNN, in this section, we prove the posterior consistency of
Bayesian-TPNN. To avoid unnecessary technical difficulties, we assume that ϕ(x|Θk) in (8) satisfies
the sum-to-zero condition with respect to the uniform distribution. This can be done by using the
uniform distribution instead of the empirical distribution in (6).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We assume that (x1, y1), ..., (xn, yn) are realizations of independent copies (X1, Y1), . . . , (Xn, Yn)
of (X, Y) whose distribution Q0 is given as

X ∼ PX and Y |X = x ∼ Qf0(x),1,

where f0 is the true regression function. We let η = 1 for technical simplicity. Suppose that f0(x) =∑
S⊆[p] f0,S(xS), where each f0,S satisfies the sum-to-zero condition with respect to the uniform

distribution. We denote X(n) = {X1, ...,Xn} and Y (n) = {Y1, ..., Yn}. Let πξ(·) ∝ π(·)I(∥f∥∞ ≤
ξ), where π(·) is the prior distribution of f defined in Section 3.1. Under regularity conditions (S.1),
(S.2), (S.3) and (S.4) in Section M.2 of Appendix, Theorem 3.2 proves the posterior consistency
of each component of Bayesian-TPNN.

Theorem 3.2 (Posterior Consistency of Bayesian-TPNN). Assume that 0 < infx∈X pX(x) ≤
supx∈X pX(x) < ∞, where pX(x) is the density of PX. Then, there exists ξ > 0 such that for
any ε > 0, we have

πξ

(
f : ∥f0,S − fS∥2,n > ε

∣∣∣X(n), Y (n)
)
−→ 0 (11)

for all S ⊆ [p] in Qn
0 as n −→ ∞, where πξ(·|X(n), Y (n)) is the posterior distribution of Bayesian-

TPNN with the prior πξ.

4 EXPERIMENTS

We present the results of the numerical experiments in this section, while further results and com-
prehensive details regarding the datasets, implementations of baseline models, and hyperparameter
selections are provided in Sections B to H of Appendix.

4.1 PREDICTION PERFORMANCE

Table 1: The averaged prediction accuracies (the standard errors) on real datasets.
Interpretable model Blackbox model

Dataset Measure Bayesian
TPNN

ANOVA
TPNN NAM Linear XGB BART mBNN

ABALONE (Warwick et al., 1995)

RMSE ↓
(SE)

2.053
(0.26)

2.051
(0.21)

2.062
(0.23)

2.244
(0.22)

2.157
(0.24)

2.197
(0.26)

2.081
(0.24)

BOSTON (Harrison Jr & Rubinfeld, 1978) 3.654
(0.49)

3.671
(0.56)

3.832
(0.67)

5.892
(0.77)

4.130
(0.56)

4.073
(0.67)

4.277
(0.51)

MPG (Quinlan, 1993) 2.386
(0.41)

2.623
(0.38)

2.755
(0.41)

3.748
(0.41)

2.531
(0.26)

2.699
(0.43)

2.897
(0.42)

SERVO (Ulrich, 1986) 0.351
(0.02)

0.594
(0.04)

0.802
(0.04)

1.117
(0.04)

0.314
(0.04)

0.342
(0.04)

0.301
(0.04)

FICO (fic, 2018)

AUROC ↑
(SE)

0.793
(0.009)

0.802
(0.008)

0.764
(0.019)

0.690
(0.010)

0.793
(0.009)

0.701
(0.015)

0.740
(0.008)

BREAST (Wolberg et al., 1993) 0.998
(0.001)

0.998
(0.001)

0.976
(0.003)

0.922
(0.010)

0.995
(0.002)

0.977
(0.006)

0.978
(0.002)

CHURN (chu, 2017) 0.849
(0.008)

0.848
(0.006)

0.835
(0.008)

0.720
(0.002)

0.848
(0.006)

0.835
(0.008)

0.833
(0.008)

MADELON (Guyon, 2004) 0.854
(0.013)

0.587
(0.013)

0.644
(0.005)

0.548
(0.011)

0.884
(0.006)

0.751
(0.011)

0.650
(0.018)

Table 2: Comparison of Bayesian models in view of uncertainty quantification on real datasets.
Bayesian-TPNN BART mBNN

Dataset CRPS NLL CRPS NLL CRPS NLL

ABALONE 1.372 (0.19) 2.260 (0.16) 1.384 (0.18) 2.261 (0.16) 1.399 (0.16) 2.226 (0.16)
BOSTON 2.202 (0.23) 3.411 (0.37) 2.623 (0.25) 3.400 (0.42) 3.144 (0.39) 3.488 (0.26)

MPG 1.510 (0.43) 2.511 (0.21) 1.553 (0.27) 2.530 (0.20) 2.142 (0.42) 2.710 (0.24)
SERVO 0.194 (0.01) 0.836 (0.10) 0.202 (0.02) 0.849 (0.08) 0.185 (0.02) 0.321 (0.08)

Dataset ECE NLL ECE NLL ECE NLL

FICO 0.036 (0.004) 0.554 (0.007) 0.054 (0.011) 0.632 (0.012) 0.219 (0.032) 0.773 (0.046)
BREAST 0.129 (0.009) 0.211 (0.014) 0.118 (0.010) 0.143 (0.032) 0.292 (0.018) 0.523 (0.025)
CHURN 0.031 (0.001) 0.418 (0.008) 0.035 (0.001) 0.430 (0.010) 0.168 (0.037) 0.531 (0.036)

MADELON 0.076 (0.004) 0.478 (0.009) 0.066 (0.004) 0.685 (0.032) 0.252 (0.020) 0.840 (0.031)

We compare the prediction performance of Bayesian-TPNN with baseline models including
ANOVA-TPNN (Park et al., 2025), Neural Additive Models (NAM, Agarwal et al. (2021)), Lin-
ear model, XGB (Chen & Guestrin, 2016), Bayesian Additive Regression Trees (BART, Chipman

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

et al. (2010), Linero (2025)) and mBNN (Kong et al., 2023). We analyze eight real datasets and split
each dataset into training and test sets with a ratio of 0.8 to 0.2. This random split is repeated five
times to obtain five prediction performance measures.

Table 1 reports the prediction accuracies (the Root Mean Square Error (RMSE) for regression tasks
and the Area Under the ROC Curve (AUROC) for classification tasks) of the Bayes estimator of
Bayesian-TPNN along with those of its competitors, where the best results are highlighted by bold.
Overall, Bayesian-TPNN achieves prediction performance comparable to that of the baseline mod-
els. Further details of the experiments are provided in Section B.3 of Appendix.

Table 2 compares Bayesian-TPNN with the baseline Bayesian models in view of uncertainty quan-
tification. As uncertainty quantification measures, we consider Continuous Ranked Probability Score
(CRPS, Gneiting & Raftery (2007)) and Negative Log-Likelihood (NLL) for regression tasks, and
Expected Calibration Error (ECE, Kumar et al. (2019)) together with NLL for classification tasks.
The results indicate that Bayesian-TPNN compares favorably with the baseline models in uncer-
tainty quantification, which is a bit surprising since Bayesian-TPNN is a transparent model while
the other Bayesian models are black-box models. The results of uncertainty quantification for non-
Bayesian models are presented in Section H.1 of Appendix, which are inferior to Bayesian models.

4.2 PERFORMANCE IN COMPONENT SELECTION

Table 3: Performance of component selection on synthetic datasets.

True model f(1) f(2) f(3)

Order Bayesian
TPNN

ANOVA
T2PNN NA2M Bayesian

TPNN
ANOVA
T2PNN NA2M Bayesian

TPNN
ANOVA
T2PNN NA2M

1 1.000
(0.000)

0.999
(0.001)

0.528
(0.023)

0.831
(0.008)

0.859
(0.010)

0.417
(0.015)

1.000
(0.000)

0.781
(0.021)

0.522
(0.011)

2 1.000
(0.000)

0.978
(0.007)

0.508
(0.024)

0.985
(0.003)

0.949
(0.003)

0.838
(0.009)

0.922
(0.019)

0.704
(0.007)

0.542
(0.017)

3 0.740
(0.022) — — 0.966

(0.018) — — 0.661
(0.022) — —

Table 4: Top 5 components: the important scores are normalized by their maximum.
Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Dataset Component Score Component Score Component Score Component Score Component Score

MADELON (49, 242, 319, 339) 1.000 (129, 443, 494) 0.472 (379, 443) 0.374 106 0.322 (242, 443) 0.301
SERVO 1 1.000 (1, 3, 4, 5) 0.554 4 0.202 (4, 6) 0.193 8 0.173

We investigate whether Bayesian-TPNN identifies the true signal components well similarly to
the setting in Park et al. (2025); Tsang et al. (2017). Synthetic datasets are generated from
Y = f (k)(x) + ϵ, k = 1, 2, 3, where f (k) is the true regression model and x ∈ R50. Details of
the experiment are described in Section B.5.

We define the importance score of each component as its ℓ2 -norm, i.e., ∥fS∥2,n. A large ∥fS∥2,n
implies fS is a signal. Table 3 reports the averages (standard errors) of AUROCs of the importance
scores obtained by Bayesian-TPNN, ANOVA-T2PNN, and NA2M for interaction order up to 3. Note
that extending ANOVA-T2PNN and NA2M to include the third order interactions requires additional
19, 600 neural networks, and so we give up ANOVA-T3PNN and NA3M due to the limitations of our
computational environment. Overall, Bayesian-TPNN achieves the best performance in component
selection across orders and datasets, and detects higher-order interactions reasonably well.

Table 4 presents the five most important components selected by Bayesian-TPNN on MADELON and
SERVO datasets. We use these datasets as they highlight the performance gap between models with
and without higher-order interactions. Notably, Bayesian-TPNN identifies a 4th-order interaction as
the most important component in the MADELON data, suggesting that its ability to capture higher-
order interactions largely explains its superior prediction performance over ANOVA-TPNN on these
datasets. See Section B.2 of Appendix for descriptions of the variables in MADELON and SERVO.

4.3 INTERPRETATION OF BAYESIAN-TPNN

The functional ANOVA model can provide various interpretations of the estimated prediction model
through the estimated components as Park et al. (2025) illustrates. In particular, by visualizing the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Plots of the functional relations of the important main effects estimated by Bayesian-TPNN
on the BOSTON dataset. Each plot shows the Bayes estimate and 95% credible interval of each component.
Labels indicate the names of the input variables along with the normalized importance scores.

estimated components, we can understand how each group of input variables affects the response
variable. Figure 2 presents the plots of the functional relations for the important main effects esti-
mated by Bayesian-TPNN on the BOSTON dataset. Each plot shows the Bayes estimate and the 95%
credible interval of the selected component. The leftmost plot shows increasing trend, indicating that
as the average number of rooms per dwelling increases, the price of the housing increases as well.
The second plot reveals a strictly decreasing relationship between the proportion of lower status of
the population and the housing price. The third plot indicates that housing prices decrease sharply
once the crime rate exceeds a certain threshold. The fourth plot shows that houses located farther
from major employment centers are generally less expensive than those situated closer to such hubs.
More discussions about interpretation of Bayesian-TPNN are provided in Section E of Appendix.

4.4 APPLICATION TO CONCEPT BOTTLENECK MODELS

Concept Bottleneck Model (CBM, Koh et al. (2020)) is an interpretable model in which a CNN first
receives an image and predicts its concepts. These predicted concepts are then used to infer the target
label, enabling explainable predictions. To illustrate that Bayesian-TPNN can be amply combined
with CBM, we consider Independent Concept Bottleneck Models (ICBM, Koh et al. (2020)), in
which a CNN is first trained and then frozen, after which a final classifier is trained on the predicted
concepts. We compare Bayesian-TPNN with other baselines for learning the final classifier. In the
experiment, we use CELEBA-HQ (Lee et al., 2020) and CATDOG (Jikadara, 2023) datasets, where
we generate 5 concepts using GPT-5 (OpenAI, 2025), and we obtain the concept labels for each
image via CLIP (Radford et al., 2021). The target labels for CELEBA-HQ and CATDOG are gender
and cat/dog classification, respectively. The details are provided in Section B.4 of Appendix.

Table 5: Prediction performance with CBM on image datasets.
Dataset Measure Bayesian-TPNN ANOVA-T2PNN NA2M Linear

CELEBA-HQ AUROC ↑ 0.936 (0.002) 0.923 (0.002) 0.922 (0.002) 0.893 (0.003)
CATDOG AUROC ↑ 0.878 (0.002) 0.853 (0.002) 0.851 (0.002) 0.711 (0.001)

Table 5 presents the averages and standard errors of AUROCs when Bayesian-TPNN, ANOVA-
T2PNN, NA2M, and Linear model are used in the final classifier. Among them, Bayesian-TPNN
attains the highest prediction performance, which can be attributed to its capability to estimate
higher-order components.

5 CONCLUSION

We proposed Bayesian-TPNN, a novel Bayesian neural network for the functional ANOVA model
that can detect higher-order signal components effectively and thus achieve superior prediction per-
formance in view of prediction accuracy and uncertainty quantification. In addition, Bayesian-TPNN
is also theoretically sound since it achieves the posterior consistency.

We used a predefined distribution pinput for the selection probability of each input variable in the
MH algorithm. It would be interesting to update pinput along with the other parameters. For example,
it would be possible to let pinput(j) be proportional to the number of basis functions in the current
Bayesian-TPNN model which uses xj . This would be helpful when p is large. We will pursue this
algorithm in the near future.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. We have made significant efforts to ensure the reproducibility of
our results. The source code implementing our proposed model and experiments is provided in
the supplementary material. Detailed descriptions of the experimental setup, hyperparameters and
datasets are provided in Section B of Appendix. Additional ablation studies are reported in Section
C of Appendix.

REFERENCES

Brownian dynamics as smart monte carlo simulation. The Journal of Chemical Physics, 69(10):
4628–4633, 1978.

Telco customer churn. kaggle, 2017. https://www.kaggle.com/datasets/blastchar/telco-customer-
churn/data.

Fico heloc. FICO Explainable Learning Challenge, 2018. https://community.fico.com/s/
explainable-machine-learning-challenge.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
Advances in neural information processing systems, 34:4699–4711, 2021.

Lawrence D. Brown, T. Tony Cai, and Harrison H. Zhou. Nonparametric regression in exponential
families. The Annals of Statistics, 38(4):2005 – 2046, 2010. doi: 10.1214/09-AOS762. URL
https://doi.org/10.1214/09-AOS762.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. Node-gam: Neural generalized additive
model for interpretable deep learning. arXiv preprint arXiv:2106.01613, 2021.

Juntong Chen. Estimating a regression function in exponential families by model selection.
Bernoulli, 30(2):1669–1693, 2024.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bayesian cart model search. Journal
of the American Statistical Association, 93(443):935–948, 1998.

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian additive regression
trees. Annals of Appied Statistics, 2010.

Yongchan Choi, Seokhun Park, Chanmoo Park, Dongha Kim, and Yongdai Kim. Meta-anova:
screening interactions for interpretable machine learning. Journal of the Korean Statistical Soci-
ety, pp. 1–18, 2025.

Angelos Filos, Sebastian Farquhar, Aidan N Gomez, Tim GJ Rudner, Zachary Kenton, Lewis Smith,
Milad Alizadeh, Arnoud De Kroon, and Yarin Gal. A systematic comparison of bayesian deep
learning robustness in diabetic retinopathy tasks. arXiv preprint arXiv:1912.10481, 2019.

Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics, 19(1):1–67,
1991.

D Fumagalli, A Blanchet-Cohen, D Brown, C Desmedt, D Gacquer, S Michiels, F Rothé, S Ma-
jjaj, R Salgado, D Larsimont, M Maetens, M Piccart, V Detours, C Sotiriou, and B Haibe-
Kains. Gse43358: Transfer of clinically relevant gene expression signatures in breast cancer:
from affymetrix microarray to illumina rna-sequencing technology, 2013. URL https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43358. Accessed: 2025-11-17.

Zhe Gan, Changyou Chen, Ricardo Henao, David Carlson, and Lawrence Carin. Scalable deep
poisson factor analysis for topic modeling. In International Conference on Machine Learning,
pp. 1823–1832. PMLR, 2015.

Subhashis Ghosal and Aad Van Der Vaart. Convergence rates of posterior distributions for noniid
observations. 2007.

10

https://doi.org/10.1214/09-AOS762
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43358
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43358

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Subhashis Ghosal, Jayanta K Ghosh, and RV Ramamoorthi. Posterior consistency of dirichlet mix-
tures in density estimation. The Annals of Statistics, 27(1):143–158, 1999.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378, 2007.

Peter J. Green. Reversible jump markov chain monte carlo computation and bayesian model deter-
mination. Biometrika, 82(4):711–732, 12 1995. ISSN 0006-3444. doi: 10.1093/biomet/82.4.711.
URL https://doi.org/10.1093/biomet/82.4.711.

Chong Gu and Grace Wahba. Smoothing spline anova with component-wise bayesian “confidence
intervals”. Journal of Computational and Graphical Statistics, 2(1):97–117, 1993. doi: 10.
1080/10618600.1993.10474601. URL https://doi.org/10.1080/10618600.1993.
10474601.

Isabelle Guyon. Madelon. UCI Machine Learning Repository, 2004. DOI:
https://doi.org/10.24432/C5602H.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of non-
parametric regression. Springer Science & Business Media, 2006.

David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air.
Journal of environmental economics and management, 5(1):81–102, 1978.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical science, 1(3):297–
310, 1986.

Andrew Herren and P Richard Hahn. Statistical aspects of shap: Functional anova for model inter-
pretation. arXiv preprint arXiv:2208.09970, 2022.

Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of depen-
dent variables. Journal of computational and graphical statistics, 16(3):709–732, 2007.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What are
bayesian neural network posteriors really like? In International conference on machine learn-
ing, pp. 4629–4640. PMLR, 2021.

Bhavik Jikadara. Dog and cat classification dataset. https://www.kaggle.com/datasets/
bhavikjikadara/dog-and-cat-classification-dataset, 2023.

Adam Kapelner and Justin Bleich. bartmachine: Machine learning with bayesian additive regression
trees. Journal of Statistical Software, 70:1–40, 2016.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

Insung Kong, Dongyoon Yang, Jongjin Lee, Ilsang Ohn, Gyuseung Baek, and Yongdai Kim. Masked
bayesian neural networks: Theoretical guarantee and its posterior inference. In International
conference on machine learning, pp. 17462–17491. PMLR, 2023.

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. Advances in neural
information processing systems, 32, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
facial image manipulation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

11

https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1080/10618600.1993.10474601
https://doi.org/10.1080/10618600.1993.10474601
https://www.kaggle.com/datasets/bhavikjikadara/dog-and-cat-classification-dataset
https://www.kaggle.com/datasets/bhavikjikadara/dog-and-cat-classification-dataset

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benjamin Lengerich, Sarah Tan, Chun-Hao Chang, Giles Hooker, and Rich Caruana. Purifying
interaction effects with the functional anova: An efficient algorithm for recovering identifiable
additive models. In International Conference on Artificial Intelligence and Statistics, pp. 2402–
2412. PMLR, 2020.

Antonio R Linero. Generalized bayesian additive regression trees models: Beyond conditional con-
jugacy. Journal of the American Statistical Association, 120(549):356–369, 2025.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural compu-
tation, 4(3):448–472, 1992.

Kaspar Märtens and Christopher Yau. Neural decomposition: Functional anova with variational
autoencoders. In International conference on artificial intelligence and statistics, pp. 2917–2927.
PMLR, 2020.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Jishnu Mukhoti, Andreas Kirsch, Joost Van Amersfoort, Philip HS Torr, and Yarin Gal. Deep de-
terministic uncertainty: A new simple baseline. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 24384–24394, 2023.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Nhat Minh Nguyen, Minh-Ngoc Tran, and Rohitash Chandra. Sequential reversible jump mcmc for
dynamic bayesian neural networks. Neurocomputing, 564:126960, 2024.

Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
models. arXiv preprint arXiv:2304.06129, 2023.

OpenAI. Introducing gpt-5, August 2025. URL https://openai.com/index/
introducing-gpt-5/. Accessed: 2025-09-17.

Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/
mc/, 2013.

Seokhun Park, Insung Kong, Yongchan Choi, Chanmoo Park, and Yongdai Kim. Tensor product
neural networks for functional anova model. International conference on machine learning, 2025.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

R. Quinlan. Auto MPG. UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C5859H.

Filip Radenovic, Abhimanyu Dubey, and Dhruv Mahajan. Neural basis models for interpretability.
Advances in Neural Information Processing Systems, 35:8414–8426, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

12

https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://artowen.su.domains/mc/
https://artowen.su.domains/mc/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Anton Frederik Thielmann, René-Marcel Kruse, Thomas Kneib, and Benjamin Säfken. Neural
additive models for location scale and shape: A framework for interpretable neural regression
beyond the mean. In International Conference on Artificial Intelligence and Statistics, pp. 1783–
1791. PMLR, 2024.

Michael Tsang, Dehua Cheng, and Yan Liu. Detecting statistical interactions from neural network
weights. arXiv preprint arXiv:1705.04977, 2017.

Karl Ulrich. Servo. UCI Machine Learning Repository, 1986. DOI:
https://doi.org/10.24432/C5Q30F.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender sys-
tems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1235–1244, 2015.

Nash Warwick, Sellers Tracy, Talbot Simon, Cawthorn Andrew, and Ford Wes. Abalone. UCI
Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C55C7W.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in neural information processing systems, 33:4697–4708, 2020.

William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Diag-
nostic). UCI Machine Learning Repository, 1993. DOI: https://doi.org/10.24432/C5DW2B.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A DETAILS OF THE MCMC ALGORITHM

For given data D(n), we denote x(n) = {x1, ...,xn}. Let ωj = pinput(j).

A.1 SAMPLING K VIA MH ALGORITHM

A.1.1 CASE OF Knew = K + 1

From current state θ = (K,SK ,bSK ,K ,ΓSK ,K ,BK , η), we propose a new state θnew using one of
{Random, Stepwise}. Here, θnew is defined as

θnew = (K + 1,SK+1,bSK+1,K+1,ΓSK+1,K+1,BK+1, η),

where

SK+1 = (SK , Snew
K+1),

bSK+1,K+1 = (bSK ,K ,bSnew
K+1,K+1),

ΓSK+1,K+1 = (ΓSK ,K ,ΓSnew
K+1,K+1),

BK+1 = (BK , βnew
K+1).

We accept the new state θnew with probability

Paccept = min

{
1,

n∏
i=1

qfθnew (xi),η(yi)

qfθ(xi),η(yi)

π(θnew)

π(θ)

q(θ|θnew)

q(θnew|θ)

}
,

where

fθ(x) =
∑

k∈[K]

βkϕ(x|Sk,bSk,k,ΓSk,k)

and

fθnew(x) = fθ(x) + βnew
K+1ϕ(x|Snew

K+1,bSnew
K+1,K+1,ΓSnew

K+1,K+1).

To compute the acceptance probability, we calculate the prior ratio π(θnew)/π(θ), and then the pro-
posal ratio q(θ|θnew)/q(θnew|θ).

Prior Ratio. The prior ratio is given as

π(θnew)

π(θ)
=

π(K + 1)π(SK+1|K + 1)π(bSK+1,K+1|SK+1)π
(
ΓSK+1,K+1|SK+1

)
π (BK+1|K + 1)

π(K)π(SK |K)π(bSK ,K |SK)π (ΓSK ,K |SK)π (BK |K)

=
π(SK+1)π(bSK+1,K+1)π(ΓSK+1,K+1)π(βK+1)

exp(C0 logn)
.

Proposal Ratio. For q(θ|θnew), we have

q(θ|θnew) = Pr(K = Knew − 1)Pr(Choose one of Knew TPNNs for deletion)

=
Knew

Kmax

1

Knew .

For a given θ, a new state θnew is proposed in two ways: (1) Random move or (2) Stepwise move.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For Random move, we have

q(θnew|θ,Random) = π(SKnew)π(bSnew
K+1,K+1)π(ΓSnew

K+1,K+1)π(β
new
K+1). (12)

For Stepwise move, we have

q(θnew|θ,Stepwise) = Pr(Snew
K+1)π(bSnew

K+1,K+1)π(ΓSnew
K+1,K+1)π(β

new
K+1).

Here, Pr(Snew
K+1) is defined as

Pr(Snew
K+1) =

K∑
k=1

Pr(Choose Sk from SK)Pr(Snew
K+1 = Sk ∪ {jnew}, jnew ∈ Sc

k)

=

K∑
k=1

1

K
I(∃jnew ∈ Sc

k s.t Sk ∪ {jnew} = Snew
K+1)

ωjnew∑
l∈Sc

k
ωl

.

To sum up, we have

q(θnew|θ) = q(θnew|θ,Random)Pr(Random) + q(θnew|θ,Stepwise)Pr(Stepwise).

A.1.2 CASE OF Knew = K − 1

Since the acceptance probability of the case Knew = K− 1 can be easily computed by reversing the
steps in Section A.1.1, we omit the details here.

A.2 SAMPLING Sk,bk,Γk VIA MH ALGORITHM

Here, we consider three moves - {Adding, Deleting and Changing}. Each move is chosen with the
probabilities Pr(Adding) = qadd, Pr(Deleting) = qdelete, Pr(Changing) = qchange, respectively.

In Adding move, the proposal distribution generates Snew
k = Sk ∪ {jadding}, where jadding ∈ [p]\Sk

is chosen with a given weight vectorωωω := (ω1, ..., ωp). Note that the likelihood cannot be calculated
using Snew

k alone, where Snew
k is the index set generated by the proposal distribution. To address this,

we also generate bjadding,k and γjadding,k from Uniform(0, 1) and Gamma(aγ , bγ), respectively.

Furthermore, in Deleting move, a variable to be deleted is uniformly selected from Sk and the new
component Snew

k = Sk\{jdeleting} is proposed accordingly. This move also involves removing the
associated numeric parameters bjdeleting,k and γjdeleting,k from bSk,k and ΓSk,k, respectively.

Finally, in Changing move, we choose an element jchange in Sk and replace it with a randomly
selected jnew ∈ Sc

k. The corresponding bjchange,k and γjchange,k are then replaced by new values
generated from Uniform(0, 1) and Gamma(aγ , bγ), respectively. This move results in Snew

k =
(Sk\{jchange}) ∪ {jnew}.

Here, Adding and Deleting affect the dimensions of bSk,k and ΓSk,k, thus the algorithm corre-
sponds to RJMCMC (Green (1995)) which requires Jacobian computations. However, since we ap-
plied the identity transformation on the auxiliary variables which are generated to match the dimen-
sions, the Jacobian is simply 1. This allows us to easily compute the acceptance probability.

A.2.1 TRANSITION PROBABILITY FOR PROPOSAL DISTRIBUTION

For a given weight vector ωωω, the proposal distributions qωωω of Θnew
k = (Snew

k ,bSnew
k ,k,ΓSnew

k ,k) are
defined as:

qωωω(Θ
new
k |Θk,Adding) =

ωjadding∑
j∈Sc

k
ωj

π(bjadding,k)π(γjadding,k)

qωωω(Θ
new
k |,Θk,Deleting) =

1

|Sk|

qωωω(Θ
new
k |Θk,Changing) =

1

|Sk|
ωjnew∑
j∈Sc

k
ωj

π(bjnew,k)π(γjnew,k).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

To sum up, we have

qωωω(Θ
new
k |Θk) = qωωω(Θ

new
k |Θk,Adding)Pr(Adding)

+ qωωω(Θ
new
k |Θk,Deleting)Pr(Deleting)

+ qωωω(Θ
new
k |Θk,Changing)Pr(Changing).

A.2.2 POSTERIOR RATIO

We define λλλk := (λk,1, . . . , λk,n) where λk,i =
∑

j ̸=k βjϕ(xi|Θj) for i = 1, ..., n and the likeli-
hood L(Θk, βk,λλλk, η) :=

∏n
i=1 qλk,i+βkϕ(xi|Θk),η(yi).

Then, we have

π(Θk|βk,λλλk,D(n), η) ∝ π(y1, ..., yn|Θk, βk,λλλk,x
(n), η)π(Θk)

= L(Θk, βk,λλλk, η)π(Θk).

Thus the posterior ratio of Θnew
k = (Snew

k ,bSnew
k ,k,ΓSnew

k ,k) to Θk = (Sk,bSk,k,ΓSk,k) is given as

π(Θnew
k |βk,λλλk,D(n), η)

π(Θk|βk,λλλk,D(n), η)
=

L(Θnew
k , βk,λλλk, η)

L(Θk, βk,λλλk, η)

π(Θnew
k)

π(Θk)
.

A.2.3 ACCEPTANCE PROBABILITY

In this section, for notational simplicity, we denote the hyperparameters αadding and γadding as α and
γ, respectively.

For a proposed new state Θnew
k , we accept it with probability

Paccept = min

{
1,

π(Θnew
k |βk,λλλk,D(n), η)

π(Θk|βk,λλλk,D(n), η)

qωωω(Θk|Θnew
k)

qωωω(Θk|Θnew
k)

}
= min

{
1,

L(Θnew
k , βk,λλλk, η)

L(Θk, βk,λλλk, η)

π(Θnew
k)

π(Θk)

qωωω(Θk|Θnew
k)

qωωω(Θ
new
k |Θk)

}
.

Now, we will show how the product of the prior and proposal ratios is calculated in the case of
Adding, Deleting, and Changing.

For Adding, we have

π(Θnew
k)

π(Θk)

qωωω(Θk|Θnew
k)

qωωω(Θ
new
k |Θk)

= α|Snew
k |−γ 1− α(1 + |Snew

k |)−γ

1− α|Snew
k |−γ

1

p− |Snew
k |+ 1

Pr(Deleting)
Pr(Adding)

∑
l∈Sc

k
ωl

ωjadding
.

For Deleting, we have

π(Θnew
k)

π(Θk)

qωωω(Θk|Θnew
k)

qωωω(Θ
new
k |Θk)

=
1

α(1 + |Snew
k |)−γ

1− α(1 + |Snew
k |)−γ

1− α(2 + |Snew
k |)−γ

(p− |Snew
k |) Pr(Adding)

Pr(Deleting)
ωjdeleting∑
l∈Sc

k
ωl

.

For Changing, we have

π(Θnew
k)

π(Θk)

qωωω(Θk|Θnew
k)

qωωω(Θ
new
k |Θk)

=
ωjchange

∑
l∈Sc

k
ωl

ωjnew
∑

l∈(Snew
k)c ωl

.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 SAMPLING bSk,k , ΓSk,k AND βk VIA MH ALGORITHM

We use Langevin Dynamics (ros (1978)) as a proposal distribution for bSk,k, ΓSk,k and βk. That is,
bnew
Sk,k

, Γnew
Sk,k

and βnew
k are proposed as

(bnew
Sk,k

,Γnew
Sk,k

, βnew
k) = (bSk,k,ΓSk,k, βk) +

ϵ2

2
U(bSk,k,ΓSk,k, βk) + ϵM,

where

U(bSk,k,ΓSk,k, βk) = ∇(bSk,k,ΓSk,k,βk) log π(bSk,k,ΓSk,k, βk|λk, Sk,D(n), η).

Here, M ∼ N(0, I), where I is the (2|Sk|+1)× (2|Sk|+1) identity matrix and ϵ > 0 is a step size.

We accept the proposal (bnew
Sk,k

,Γnew
Sk,k

, βnew
k) with a probability Paccept given as

Paccept =

{
1,

L(Sk,b
new
Sk,k

,Γnew
Sk,k

, βnew
k ,λλλk, η)

L(Sk,bSk,k,ΓSk,k, βk,λλλk, η)

π(bnew
Sk,k

)

π(bSk,k)

π(Γnew
Sk,k

)

π(ΓSk,k)

π(βnew
k)

π(βk)
exp

(
− 1

2
(∥Mnew∥22 − ∥M∥22)

)}
,

where ∥ · ∥2 is the Euclidean norm for a vector and

Mnew = M+
ϵ

2
U(bSk,k,ΓSk,k, βk) +

ϵ

2
U(bnew

Sk,k
,Γnew

Sk,k
, βnew

k).

For ∇(bSk,k,ΓSk,k,βk) log π(bSk,k,ΓSk,k, βk|λλλk, Sk,D(n), η), we will calculate

∇bSk,k
log π(bSk,k, |λλλk, βk, Sk,ΓSk,k,D(n), η),

∇ΓSk,k
log π(ΓSk,k|λλλk, βk, Sk,bSk,k,D(n), η),

and

∇βk
log π(βk|λλλk, Sk,bSk,k,ΓSk,k,D(n), η).

A.3.1 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO bSk,k

Without loss of generality, let Sk = {1, ..., d}.

Since

π(bSk,k|λλλk, βk, Sk,ΓSk,k,D(n), η) ∝ L(λλλk, βk, Sk,bSk,k,ΓSk,k, η),

the j-th gradient is given as

∂

∂bj,k
log π(bSk,k|λλλk, βk, Sk,ΓSk,k,D(n), η) =

∂

∂bj,k

n∑
i=1

log qf(xi),η(yi),

where f(xi) = λk,i + βk

∏
l∈Sk

ϕ(xi,l|{l}, bl,k, γl,k).
In turn, we have

∂

∂bj,k

n∑
i=1

log qf(xi),η(yi)

=

n∑
i=1

(
∂ log qf(xi),η(yi)

∂f(xi)

∂f(xi)

∂bj,k

)

= βk

n∑
i=1

∂ log qf(xi),η(yi)

∂f(xi)

∂ϕ(xi,j |{j}, bj,k, γj,k)
∂bj,k

∏
l ̸=j,l∈Sk

ϕ(xi,l|{l}, bl,k, γl,k)

 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Here,

ϕ(xi,j |{j}, bj,k, γj,k) = 1− σ

(
xi,j − bj,k

γj,k

)
+ cj(bj,k, γj,k)σ

(
xi,j − bj,k

γj,k

)
,

cj(bj,k, γj,k) = −
(
1− c̃j(bj,k, γj,k)

)/
c̃j(bj,k, γj,k),

where c̃j(b, γ) :=
∫
Xj

σ
(

u−b
γ

)
µn,j(du).

Then, we have

∂ϕ(xi,j |{j}, bj,k, γj,k)
∂bj,k

=− 1

γj,k
σ

(
xi,j − bj,k

γj,k

)∫
Xj

σ̃

(
u− bj,k
γj,k

)
µn,j(du)

+
1

γj,k c̃j(bj,k, γj,k)
σ̃

(
xi,j − bj,k

γj,k

)
,

where σ̃(x) := σ(x)(1− σ(x)).

A.3.2 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO ΓSk,k

Without loss of generality, we let Sk = {1, ..., d}. Similarly to Section A.3.1 of Appendix, we can
derive the gradient of the log posterior with respect to γj,k as

∂

∂γj,k
log π(ΓSk,k|λλλk, βk, Sk,ΓSk,k,D(n), η)

=

(
∂

∂γj,k

n∑
i=1

log qf(xi),η(yi)

)
+ (aγ − 1)

1

γj,k
− 1

bγ

From f(xi) = λk,i + βk

∏
l∈Sk

ϕ(xi,l|{l}, bl,k, γl,k), we have

∂

∂γj,k

n∑
i=1

log qf(xi),η(yi)

=

n∑
i=1

(
∂ log qf(xi),η(yi)

∂f(xi)

∂f(xi)

∂γj,k

)

= βk

n∑
i=1

∂ log qf(xi),η(yi)

∂f(xi)

∂ϕ(xi,j |{j}, bj,k, γj,k)
∂γj,k

∏
l ̸=j,l∈Sk

ϕ(xi,l|{l}, bl,k, γl,k)

 .

Here,

∂ϕ(xi,j |{j}, bj,k, γj,k)
∂γj,k

= −

∫
Xj

u−bj,k
γ2
j,k

σ̃
(

u−bj,k
γj,k

)
µn,j(du)

c̃j(bj,k, γj,k)2
σ

(
xi,j − bj,k

γj,k

)
− (cj(bj,k, γj,k)− 1)

xi,j − bj,k
γ2
j,k

σ̃

(
xi,j − bj,k

γj,k

)
.

A.3.3 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO βk

The gradient of the log posterior for βk is given as

∇βk
log π(βk|λk, Sk,bSk,k,ΓSk,k,D(n), η) =

n∑
i=1

∂ log qf(xi),η(yi)

∂f(xi)
ϕ(xi|Θk)−

βk

σ2
β

.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.4 SAMPLING NUISANCE PARAMETER η

We only consider the nuisance parameter in the gaussian regression model:

Yi|xi ∼ N(·|f(xi), σ
2
g)

for i = 1, ..., n, where σ2 is a nuisance parameter. When the prior distribution is an inverse gamma
distribution

σ2
g ∼ IG

(
v

2
,
vλ

2

)
, (13)

we have

σ2
g |K,BK ,SK ,bSK ,K ,ΓSK ,K ,D(n) ∼ IG

(
v

2
,

1
n

∑n
i=1(yi − f(xi))

2 + vλ

2

)
, (14)

and thus σ2
g can be sampled from the conditional posterior easily.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B DETAILS OF THE EXPERIMENTS

B.1 DATA DESCRIPTION

Table 6: Descriptions of real datasets.
Dataset n p Task

ABALONE 4,178 8 Regression
BOSTON 506 13 Regression

MPG 398 7 Regression
SERVO 167 4 Regression

FICO 10,459 23 Classification
BREAST 569 30 Classification
CHURN 7,043 20 Classification

MADELON 4,400 500 Classification

CELEBA-HQ 30,000 — Classification
CATDOG 24,998 — Classification

B.2 FEATURE DESCRIPTIONS FOR MADELON AND SERVO DATASETS

Table 7: Feature index and its corresponding description for SERVO dataset.
Feature index Feature description

1 Proportional gain setting for the servo motor.
2 Velocity gain setting for the servo motor.
3 Presence of Motor type A
4 Presence of Motor type B
5 Presence of Motor type C
6 Presence of Motor type D
7 Presence of Motor type E
8 Presence of Screw type A
9 Presence of Screw type B
10 Presence of Screw type C
11 Presence of Screw type D
12 Presence of Screw type E

Table 7 presents the feature descriptions for SERVO dataset (Ulrich, 1986). MADELON (Guyon,
2004), introduced in the NIPS 2003 feature selection challenge, is a synthetic binary classification
dataset with 500 features, only a few of which are informative while many are redundant or irrele-
vant.

B.3 EXPERIMENT DETAILS FOR TABULAR DATASET

Data Preprocessing. All of the categorical input variables are encoded using the one-hot encod-
ing. For continuous ones, the inverse of the empirical marginal CDF is used to transform them to
their marginal ranks for Bayesian-TPNN and ANOVA-TPNN, whereas they are transformed via the
mean-variance standardization for other baseline models.

Implementation of baseline models. For implementation of baseline models, we proceed as fol-
lows.

• ANOVA-TPNN : we use the official source code provided in
https://github.com/ParkSeokhun/ANOVA-TPNN.

• NA1M : we use the official source code provided in
https://github.com/AmrMKayid/nam and NA2M is implemented by extending
the code of NA1M.

• Linear : We use ‘scikit-learn’ python package (Pedregosa et al., 2011).

• XGB : We use ‘xgboost’ python package (Chen & Guestrin, 2016).

• BART : We use ‘BayesTree’ R package (Chipman et al., 2010).

• mBNN : We use official code at https://github.com/ggong369/mBNN.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Hyperparameters. For each model, we perform 5-fold cross validation over the following hyper-
parameter candidates to select the best configuration.

• Bayesian-TPNN

– We set the step size in Langevin proposal as 0.01 and qadd = 0.28, qdelete = 0.28 and
qchange = 0.44 as in Kapelner & Bleich (2016).

– We fix αadding = 0.95 and γadding = 2, as in Chipman et al. (2010).
– C0 ∈ {0.001, 0.005, 0.01}
– aγ ∈ {1, 2, 4}
– bγ ∈ {10−3, 5 · 10−3, 10−2}
– Kmax ∈ {100, 200, 300}
– σ2

β ∈ {10−4, 10−3, 10−2}
– M ∈ {1, 5}
– As in Chipman et al. (2010), for λ, we reparameterize it as qλ, where qλ = π(σ2 ≤
σ̂2

OLS) and σ̂2
OLS denotes the residual variance from estimated Linear model. The can-

didate values for qλ are {0.90, 0.95, 0.99}.
– We set MCMC iterations as 1000 after 1000 burn-in iterations.

• ANOVA-TPNN

– We set the hyperparameter candidates to be the same as those used in Park et al.
(2025).

– KS ∈ {10, 30, 50, 100}
– Adam optimizer with learning rate 5e-3.
– Batch size = 4,096
– Maximum order of component ∈ {1, 2}
– Epoch ∈ {500, 1000, 2000}

• NAM

– We set the architecture of the deep neural networks to three hidden layers with 64, 64,
and 32 units, following Agarwal et al. (2021).

– Adam optimizer with learning rate 5e-3 and weight decay 7.483e-9.
– Batch size = 4,096
– Maximum order of component ∈ {1, 2}
– Epoch ∈ {500, 1000, 2000}

• BART

– We set the hyperparmeter candidates similar to those in Chipman et al. (2010).
– Number of trees T ∈ {50, 100, 200}
– α = 0.95 and β = 2

– v ∈ {1, 3, 5}
– qλ ∈ {0.90, 0.95, 0.99}
– For σµ = 3/(k

√
T), k ∈ {1, 2, 3, 5}.

– We set MCMC iterations as 1000 after 1000 burn-in iterations.

• XGB

– We consider the hyperparameter candidates used in Park et al. (2025).

• mBNN

– We consider the hyperparameter candidates similarly to Kong et al. (2023).
– Architecture ∈ { 2 hidden layers with 500 and 500 units, 2 hidden layers with 1000

and 1000 units }
– Sparsity hyperparameter λ ∈ {0.01, 0.1, 0.5}
– We set MCMC iterations as 1000 after 1000 burn-in iterations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Computational environments. In this paper, all experiments are conducted on a machine
equipped with an NVIDIA RTX 4000 GPU (24GB memory), an Intel(R) Xeon(R) Silver 4310 CPU
@ 2.10GHz, and 128GB RAM.

B.4 EXPERIMENT DETAILS FOR IMAGE DATASET

CNN model. For CNN that predicts concepts, we attach a linear head for each concept on top of
the pretrained ResNet18, and train both the ResNet-18 and the linear heads jointly.

Concept generating. Following Oikarinen et al. (2023), we use GPT-5 (OpenAI, 2025) to generate
concept dictionaries for CELEBA-HQ and CATDOG dataset. Specifically, we prompted GPT-5 as
follows:

• CelebAMask-HQ is a large-scale face image dataset containing 30,000 high-resolution face
images selected from CelebA, following CelebA-HQ. In this context, we aim to classify
gender using the CelebAMask-HQ dataset. Could you list five high-level binary concepts
that you consider most important for gender classification?

• When classifying images of cats and dogs, what are the five most important concepts to
consider?

Through GPT-5, we obtained a concept dictionary
{‘Facial hair’, ‘Makeup’, ‘Long hair’, ‘Angular contour’, ‘Accessories’}

for dataset CELEBA-HQ and another dictionary
{‘Pointed ear’, ‘Short snout’, ‘Almond eye’, ‘Slender/flexible body’, ‘Fine/uniform fur’}

for dataset CATDOG. Each concept c is divided into a positive part c+ and a negative part c−. For
example, concept ‘Makeup’ can be divided into ‘Makeup’ and ‘No Makeup’, and ‘Slender/flexible
body’ can be divided into ‘Slender/flexible body’ and ‘Bulky/varied body’. In turn, we use the pre-
trained CLIP encoder to convert c+ and c− as well as each image into embedding vectors. For each
concept, each image is then assigned a binary label by measuring which of the embeddings of c+
and c− the image embedding is closer to.

Hyperparameters. For ANOVA-T2PNN and NA2M are trained using the Adam optimizer with
a learning rate of 1e-3 and batch size of 512. For ANOVA-T2PNN, the numbers of basis KS are
all equal to K and K is determined using grid search on {10, 50, 100}. For the neural network in
NA2M, we set hidden layer with sizes (64,64,32). We implement Linear model as the linear logistic
regression using the ‘scikit-learn’ package (Pedregosa et al., 2011).

B.5 EXPERIMENT DETAILS FOR COMPONENT SELECTION

Table 8: Definitions of f (1), f (2) and f (3).
Function Equation

f(1)(x) πx1x2
√

2|x3| − sin−1(0.5x4) + log(|x3 + x5| + 1) +
x9

1 + |x10|

√
x7

1 + |x8|
− x2x7

f(2)(x) x1x2 + 2x3+x5+x6 + 2x3+x4+x5+x7 + sin(x7 sin(x8 + x9)) + arccos(0.9x10)

f(3)(x) tanh(x1x2 + x3x4)
√

|x5| + exp(x5 + x6) + log((x6x7x8)
2 + 1) + x9x10 +

1

1 + |x10|

Table 9: Distributions of input features for each synthetic function.
Function Distribution

f(1)(x) X1, X2, X3, X6, X7, X9 ∼iid U(0,1), X4, X5, X8, X10 ∼iid U(0.6,1) and X11, ..., X50 ∼iid U(-1,1)

f(2)(x) X1,, X50 ∼iid U(-1,1)
f(3)(x) X1,, X50 ∼iid U(-1,1)

We generate synthetic datasets from the regression model defined as

Y = f (k)(x) + ϵ,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where ϵ ∼ N(0, σ2
ϵ) and x ∈ R50. Here, f (k), k = 1, 2, 3 are true prediction model used in Tsang

et al. (2017) and defined in Table 8 and the input variables are generated from the distributions
in Table 9. Input variables indexed 1–10 are informative, as they affect the output, whereas input
variables 11–50 are non-informative. We choose σ2

ϵ such that the signal-to-noise ratio is 5.

To evaluate the ability to detect signal components, we conduct experiments in the same manner as
in Park et al. (2025). That is, we use AUROC based on the pairs of ∥f̂ (k)

S ∥2,n and r
(k)
S , computed

for all subsets S ⊆ [p] with |S| = 1, 2, 3, where f̂
(k)
S denotes the estimate of f

(k)
S in f (k) and

r
(k)
S = I(∥f (k)

S ∥2,n > 0) for k ∈ {1, 2, 3}.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C ABLATION STUDIES

C.1 THE NUMBER OF BASIS K FOR VARIOUS VALUES C0

To evaluate the effect of C0 in (9) on the number of bases K, we conduct experiments with the
maximum number of bases Kmax set to 200, and 1000 iterations for both burn-in and MCMC up-
dates. Also, aγ and bγ are set to be 0.5 and we use ABALONE dataset. Figure 3 shows that K
decreases and RMSE increases as C0 increases. This result demonstrates that the hyperparameter
C0 effectively controls model complexity by regulating the number of bases K. A small value of C0

is recommended since an excessively large C0 can be detrimental to predictive performance.

Figure 3: Plots of the number of basis K and RMSEs on various C0 values.

C.2 IMPACT OF THE HYPERPARAMETERS aγ AND bγ ON PREDICTION PERFORMANCE

We conduct an experiment to evaluate the effect of shape parameter aγ and scale parameter bγ on
prediction performance. Except for aγ and bγ , the other hyperparameters of Bayesian-TPNN are set
identical to those in Section C.1 of Appendix, and we analyze ABALONE dataset. We observe that
prediction performance is relatively insensitive to the choice of the shape parameter aγ , whereas it
is somehow sensitive to the choice of the scale parameter bγ . Note that the scale of γ controls the
smoothness of each TPNN basis ϕ(x|Θ) and thus the smoothness of Bayesian-TPNN model.

Table 10: Prediction performance depends on various values of aγ and bγ .
bγ\aγ 0.5 1 2 3

1e-5 3.247 3.202 3.278 3.228

1e-4 3.224 3.215 3.184 3.175

0.01 3.211 3.182 3.184 3.175

0.1 3.213 3.258 3.282 3.343

C.3 IMPACT OF THE STEP SIZE IN THE LANGEVIN PROPOSAL

We conduct an experiment to investigate the effect of the step size in the Langevin proposal for
(bSk,k,ΓSk,k, βk). Except for the step size, the other hyperparameters of Bayesian-TPNN are set
identical to those in Section C.1 of Appendix, and we analyze ABALONE dataset. Table 11 presents
the prediction performances of Bayesian-TPNN for various step sizes. Our results show that overly
large step sizes in the Langevin proposal can degrade the prediction performance due to poor accep-
tance and unstable exploration, whereas a moderate range yields the best performance. Therefore, a
not too large step size is recommended in practice.

Table 11: Prediction performances of Bayesian-TPNN for various step sizes in the Langevin proposal .
Step size 0.01 0.02 0.04 0.08 0.1 0.2 0.3 0.4 0.5

RMSE 3.199 3.216 3.209 3.269 3.160 3.243 4.308 4.549 4.578

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.4 IMPACT OF pINPUT ON ESTIMATING HIGHER-ORDER COMPONENTS

We conduct an experiment to evaluate the effects of using pinput other than the uniform distribu-
tion in the MH algorithm. We refer to the model with the uniform distribution for pinput as Uniform
Bayesian-TPNN, and the model where pinput is determined using the feature importance from a pre-
trained XGB as Bayesian-TPNN. Table 12 compares prediction performances of Uniform Bayesian-
TPNN (UBayesian-TPNN) and Bayesian-TPNN on MADELON dataset. To investigate why the pre-
diction performance improvement occurs when using the nonuniform pinput, we identify the 5 most
important components for each model whose results are presented in Table 13. UBayesian-TPNN
only detects two thrid-order interactions as signals and ignores even all of the main effects. In con-
trast, Bayesian-TPNN captures the fourth-order component as the most important but is also able to
capture other meaningful lower-order components including two main effects effectively.

We also analyze the synthetic datasets in Section 4.2 with UBayesian-TPNN, and the correspond-
ing results are reported in Table 14. These results amply imply that pinput plays an important role
in detecting higher-order components and leading to substantial improvements in both prediction
performance and component selection.

Table 12: Prediction performance on MADELON dataset.

Model UBayesian-TPNN Bayesian-TPNN

AUROC ↑ (SE) 0.739 (0.002) 0.854 (0.007)

Table 13: Top 5 components with the important scores normalized by the maximum.
Model Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Comp. Score Comp. Score Comp. Score Comp. Score Comp. Score

UBayesian-TPNN (203,289,421) 1.000 (30,149,212) 0.950 (148,176,298) 0.006 (75,232,442) 0.005 (64,373,379) 0.004
Bayesian-TPNN (49,242,319,339) 1.000 (129,443,494) 0.472 (379,443) 0.374 106 0.322 (242,443) 0.301

Table 14: Performance of component selection on the synthetic datasets.

True model f(1) f(2) f(3)

Order UBayesian
TPNN

Bayesian
TPNN

UBayesian
TPNN

Bayesian
TPNN

UBayesian
TPNN

Bayesian
TPNN

1 1.000
(0.000)

1.000
(0.000)

0.826
(0.024)

0.831
(0.008)

0.824
(0.009)

1.000
(0.000)

2 0.988
(0.010)

1.000
(0.000)

0.953
(0.006)

0.985
(0.003)

0.750
(0.006)

0.922
(0.019)

3 0.736
(0.050)

0.740
(0.022)

0.878
(0.020)

0.966
(0.018)

0.658
(0.011)

0.661
0.022

C.5 IMPACT OF STEPWISE SEARCH IN THE PROPOSAL OF K

We conduct an experiment to evaluate the effectiveness of Stepwise move in the proposal distri-
bution of K suggested in Section 3.2. We compare the performances of Bayesian-TPNN with and
without Stepwise move on MADELON dataset. Table 15 reports the averages and standard errors of
AUROCs, ECEs, and NLLs over 5 trials and Table 16 shows the top 5 important components. The
results suggest that the Stepwise move is helpful to detect higher-order interactions which in turn
leads to improvements in both prediction performance and uncertainty quantification.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 15: Results of performance with and without Stepwise move.
With Stepwise move Without Stepwise move

AUROC ↑ (SE) 0.854 (0.007) 0.820 (0.002)
ECE ↓ (SE) 0.076 (0.004) 0.106 (0.007)
NLL ↓ (SE) 0.479 (0.009) 0.650 (0.005)

Table 16: Top 5 components with the important scores normalized by the maximum.
Model Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Comp. Score Comp. Score Comp. Score Comp. Score Comp. Score

With Stepwise move (49,242,319,339) 1.000 (129,443,494) 0.472 (379,443) 0.374 106 0.322 (242,443) 0.301
Without Stepwise move (129,242) 1.000 (29,339,379) 0.986 339 0.622 337 0.544 (242,443) 0.526

D EXPERIMENT FOR THE POISSON REGRESSION

In this section, we compare the prediction performance and uncertainty quantification of Bayesian-
TPNN with GBART (Linero, 2025) on the Poisson regression model. We consider the poisson re-
gression model defined as

Yi|xi ∼ Poisson(exp(f(xi))),

where f is the regression function. We generate a synthetic dataset of size 15,000 using the true
regression function f0 defined as

f0(x) = πx1x2
√

2|x3| − sin−1(0.5x4) + log(|x3 + x5|+ 1) +
x9

1 + |x10|

√
x7

1 + |x8|
− x2x7,

where input variable xi ∈ R10 are generated from Uniform(0, 1)10 for i = 1, ..., 15, 000. Table
17 presents the RMSE and NLL for Bayesian-TPNN and GBART, demonstrating that Bayesian-
TPNN achieves superior performance to GBART even in the Poisson regression. Here, the RMSE
is calculated between exp(f0(xi)) and exp(f̂(xi)) for i = 1, .., 15, 000, where f̂ is the Bayes
estimate. Figure 4 shows the scatter plot of predicted values exp(f̂(xi)) versus exp(f0(xi)) for
i = 1, ..., 15, 000. It implies that Bayesian-TPNN yields predictions much closer to the true values
compared to GBART.

Table 17: Prediction performance and uncertainty quantification on Poisson synthetic dataset.

Bayesian-TPNN GBART

RMSE ↓ 0.094 0.141
NLL ↓ 1.615 1.629

Figure 4: Scatter Plots between the true expectations and estimated ones.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E EXPERIMENTS FOR INTERPRETABILITY

E.1 INTERPRETABILITY ON THE IMAGE DATASETS

In this section, we describe the local and global interpretations of CBM (Koh et al., 2020) with
Bayesian-TPNN on CELEBA-HQ and CATDOG datasets. Table 18 presents the description of con-
cepts used in CELEBA-HQ and CATDOG datasets.

Table 18: Description of image datasets.

Index CELEBA-HQ CATDOG

1 Facial hair Pointed ear
2 Makeup Short snout
3 Long hair Almond eye
4 Angular contour Slender/flexible body
5 Accessories Fine/uniform fur

Table 19: Normalized importance scores and ranks for the top 5 important components on the image
datasets.

CELEBA-HQ

Rank 1 2 3 4 5

Bayesian-TPNN Component index
Score

2
1.000

4
0.665

(2,3)
0.592

(2,4)
0.304

(1,5)
0.262

ANOVA-T2PNN
Component index

Score
(2,3)
1.000

1
0.482

(1,5)
0.284

4
0.262

5
0.211

Linear Component index
Score

2
1.000

1
0.783

4
0.549

5
0.328

3
0.304

CATDOG

Rank 1 2 3 4 5

Bayesian-TPNN Component index
Score

3
1.000

(3,4)
0.395

2
0.252

4
0.162

(2,3,4,5)
0.086

ANOVA-T2PNN
Component index

Score
(4,5)
1.000

3
0.883

(3,5)
0.882

4
0.716

(1,4)
0.453

Linear Component index
Score

5
1.000

1
0.698

3
0.352

2
0.023

4
0.021

Global interpretation. Table 19 shows the top 5 most important components along with their
importance scores (normalized by the maximum score) for Bayesian-TPNN, ANOVA-T2PNN and
Linear model. In CATDOG dataset, Bayesian-TPNN identifies the 4th-order component (2,3,4,5) as
an important component. It seems that complex interactions exists between the 5 concepts.

Figure 5: Examples of images misclassified by Linear model.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Local interpretation. Figure 5 presents two images where Bayesian-TPNN correctly classifies but
Linea model does not. For the CELEBA-HQ example image, Linear model incorrectly predicts it as
male, whereas the Bayesian-TPNN correctly predicts as female. The contributions of the important
components for this image are presented in Table 20. In Linear model, ‘Makeup’ gives a positive
contribution, which leads to a misclassification of the image as male. In contrast, in Bayesian-TPNN,
while the main effect of ‘Makeup’ still provides a positive contribution, the interactions between
(‘Makeup’, ‘Long hair’) and (‘Makeup’, ‘Angular contour’) yield negative contributions, resulting
in a correct prediction as female.

For the CATDOG example image, Linear model incorrectly predicts it as ‘dog’, whereas Bayesian-
TPNN correctly predicts as ‘cat’. Table 21 indicates that Linear model misclassifis the image as
‘dog’ due to the positive contribution of ‘Almond eye’. In contrast, although Bayesian-TPNN also
assigns a positive contribution to ‘Almond eye’, the higher-order interactions—(‘Almond eye’,
‘Slender/flexible body’) and (‘Short snout’, ‘Almond eye’, ‘Slender/flexible body’, ‘Fine/uniform
fur’)—provided much stronger negative contributions, leading to the correct classification as a cat.

These two examples strongly suggest that considering higher-order interactions between concepts is
necessary for the success of CBM.

Table 20: Prediction values of the 5 most important components for CELEBA-HQ image.

Bayesian-TPNN Component index 2 4 (2,3) (2,4) (1,5)
Contribution 0.297 0.184 -0.444 -0.323 -0.207

Linear Component index 1 2 3 4 5
Contribution -0.222 3.746 -1.510 -2.665 1.627

Table 21: Prediction values of the 5 most important components for CATDOG image.

Bayesian-TPNN Component 3 (3,4) 2 4 (2,3,4,5)
Contribution 0.618 -0.767 0.181 -0.778 -0.355

Linear Component 1 2 3 4 5
Contribution -4.304 -0.630 9.503 -2.463 -4.113

Table 22: Prediction performance on the image datasets.
Bayesian-TPNN with 5 concepts Linear with 10 concepts

CELEBA-HQ 0.936 (0.002) 0.899 (0.001)
CATDOG 0.878 (0.002) 0.869 (0.002)

Fewer concepts, better prediction performance. One may argue that 5 concepts are too small
for Linear model and Linear model would perform well with more concepts. To see the validity of
this argument, we compare predictive performance of Bayesian-TPNN with 5 concept and Linear
model with 10 concepts, where additional 5 concepts are generated through GPT-5: for CELEBA-
HQ dataset,

{‘Emphasized eyes’, ‘Prominent lips’, ‘Smooth skin’,
‘Pronounced cheekbones’, ‘High contrast’}

and for CATDOG dataset,

{‘Long tail’, ‘Retractable claws (hidden)’, ‘Upright sitting or crouching posture’,
‘Small mouth / Meowing shape’, ‘Ambush-like pose (crouched)’}.

Table 22 presents the averages and standrad errors of AUROCs for Bayesian-TPNN with 5 concepts
and Linear model with 10 concepts. While using more concepts with Linear model improves pre-
diction accuracy, Bayesian-TPNN is still superior to Linear model even though fewer concepts are
used in Bayesian-TPNN. This implies that capturing higher-order interactions plays a more critical
role in improving prediction performance than merely increasing the number of concepts. Quality
of concepts generated by GPT would be problematic.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.2 ADDITIONAL RESULTS OF LOCAL INTERPRETATION ON THE TABULAR DATASET

In this section, we describe the results of local interpretation on BOSTON dataset. Specifically, we
examine the contributions of the 5 most important components identified by Bayesian-TPNN in
Section 4.3 at a specific input vector x. For a given data point

x = (0.006, 18, 2.31, 0, 0.538, 6.58, 65.2, 4.09, 1, 296, 15.3, 396.9, 4.98),

the contributions of the 5 estimated components f̂{13}, f̂{6}, f̂{1}, f̂{8}, and f̂{1,6} by Bayesian-
TPNN are given as

(f̂{13}(x), f̂{6}(x), f̂{1}(x), f̂{8}(x), f̂{1,6}(x)) = (0.575,−0.108, 0.080,−0.002,−0.001).

In particular, the component f̂{13} makes a substantial positive contribution to the housing price.
That is, the price of the house for a given input vector x is high because of the main effect x13.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F EXPERIMENT FOR STABILITY OF COMPONENT ESTIMATION

Park et al. (2025) demonstrated, both theoretically and empirically, that TPNN reliably estimates
the components of the functional ANOVA model. In this section, we investigate whether Bayesian-
TPNN exhibits the same stability in component estimation. For this analysis, we randomly split
the dataset into training and test datasets. From this, we obtain estimators for the components. We
repeat this procedure five times to obtain five estimators for each component. We then calculate the
stability score using these estimators. Specifically, following Park et al. (2025), for predefined data
{x1, ...,xn}, we use the stability score defined as

SC(fS) :=
1

n

n∑
i=1

∑5
j=1(f

j
S(xi)− f̄S(xi))

2∑5
j=1(f

j
S(xi))2

,

where f j
S is the estimated component for S obtained from the j-th fold and f̄S(x) =

∑5
j=1 f

j
S(x)/5.

Finally, we use SCd(f) := 1∑d
k=1 (

p
k)

∑
S⊆[p],|S|≤d SC(fS) to compare the stability in component

estimation between Bayesian-TPNN, ANOVA-TPNN and NAM.

Table 23 presents the results of stability scores SC1(f) for Bayesian-TPNN, ANOVA-T1PNN and
NA1M, where ANOVA-T1PNN and NA1M estimate only the main effects. Table 24 shows of stabil-
ity scores SC2(f) for Bayesian-TPNN, ANOVA-T2PNN and NA2M, where ANOVA-T2PNN and
NA2M estimate up to second-order components. These results imply that Bayesian-TPNN estimates
the components more stably than ANOVA-TPNN and NAM. Note that for MADELON dataset, which
has an input dimension of 500, we could not train ANOVA-T2PNN and NA2M due to the computa-
tional environment, and thus their stability scores could not be calculated.

Table 23: Stability scores of Bayesian-TPNN, ANOVA-T1PNN and NA1M.

Dataset Bayesian
TPNN

ANOVA
T1PNN NA1M

ABALONE 0.087 0.405 0.555
BOSTON 0.368 0.425 0.583

MPG 0.222 0.411 0.472
SERVO 0.339 0.651 0.481

FICO 0.130 0.287 0.607
BREAST 0.100 0.286 0.569
CHURN 0.111 0.558 0.569

MADELON 0.520 0.685 0.785

Table 24: Stability scores of Bayeisan-TPNN, ANOVA-T2PNN and NA2M.

Dataset Bayesian
TPNN

ANOVA
T2PNN NA2M

ABALONE 0.400 0.340 0.770
BOSTON 0.615 0.380 0.705

MPG 0.340 0.370 0.560
SERVO 0.445 0.575 0.665

FICO 0.525 0.540 0.790
BREAST 0.630 0.675 0.730
CHURN 0.520 0.755 0.730

MADELON 0.475 — —

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G COMPARISON OF CONVERGENCE SPEED AND RUNTIME IN MCMC
ALGORITHM

In this section, we evaluate the convergence speed and runtime of MCMC algorithms for Bayesian-
TPNN. Specifically, we compare its convergence speed with that of mBNN, and its runtime with
those of ANOVA-T2PNN and mBNN. In Bayesian-TPNN, we set Kmax = 100. For mBNN, we use
two hidden layers with 500 units each and set the number of HMC steps to 30. For ANOVA-T2PNN,
we set KS = 10.

Figure 6 shows the RMSE trajectories across MCMC iterations on BOSTON dataset for Bayesian-
TPNN and mBNN. Table 25 presents the runtime comparison of Bayesian-TPNN , mBNN with
2,000 iterations and ANOVA-T2PNN with 2,000 epochs on real datasets. The best results are high-
lighted by bold. In the experiments on FICO, CHURN, and BREAST datasets, the runtime difference
between Bayesian-TPNN and ANOVA-T2PNN become more pronounced. This is because, after
data preprocessing, the input dimensions are 23, 46, and 30, respectively. As the number of neural
networks required in ANOVA-T2PNN increases rapidly with the input dimension, the runtime in-
creases considerably. Note that for the MADELON dataset, where the input dimension is 500, training
ANOVA-T2PNN is infeasible because the number of neural networks to be trained is 125, 250.

These results imply that Bayesian-TPNN converges faster in terms of MCMC iterations compared
to mBNN. Moreover, its overall runtime is shorter than both mBNN and ANOVA-T2PNN. In par-
ticular, Bayesian-TPNN runs significantly faster than ANOVA-T2PNN, and this advantage becomes
more pronounced as the input dimension p increases.

Table 25: Runtime of Bayesian-TPNN, ANOVA-T2PNN and mBNN (sec).
Dataset Bayesian-TPNN ANOVA-T2PNN mBNN

ABALONE 475 326 1,273

BOSTON 181 577 266

MPG 156 227 275

SERVO 159 400 242

FICO 943 3,530 4,198

BREAST 181 2,363 310

CHURN 686 7,772 2,756

MADELON 345 — 894

Figure 6: The RMSE trajectories across MCMC iterations for Bayesian-TPNN and mBNN.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H ADDITIONAL EXPERIMENTS FOR UNCERTAINTY QUANTIFICATION

H.1 UNCERTAINTY QUANTIFICATION ON NON-BAYESIAN MODELS.

We report the performance of uncertainty quantification for non-Bayesian models including
ANOVA-TPNN, NAM, XGB and Linear model, in Table 26. These results indicate that Bayesian-
TPNN outperforms the non-bayesian models in view of uncertainty quantification.

Table 26: Uncertainty quantifications for non-bayesian models on real datasets.
Dataset ANOVA-TPNN NAM XGB Linear

CRPS NLL CRPS NLL CRPS NLL CRPS NLL

ABALONE 1.578 (0.16) — 1.901 (0.27) — 1.668 (0.16) — 1.638 (0.15) —
BOSTON 4.464 (0.71) — 3.147 (0.35) — 3.241 (0.27) — 4.291 (0.44) —

MPG 2.478 (0.45) — 3.314 (1.07) — 2.343 (0.35) — 2.990 (0.32) —
SERVO 0.595 (0.02) — 0.868 (0.39) — 0.215 (0.03) — 0.910 (0.04) —

ECE NLL ECE NLL ECE NLL ECE NLL

FICO 0.063 (0.017) 0.583 (0.018) 0.198 (0.007) 0.681 (0.012) 0.096 (0.026) 0.620 (0.015) 0.055 (0.014) 0.593 (0.017)
BREAST 0.100 (0.030) 0.423 (0.071) 0.284 (0.022) 0.511 (0.033) 0.063 (0.012) 0.878 (0.172) 0.102 (0.015) 0.216 (0.039)
CHURN 0.053 (0.004) 0.444 (0.011) 0.318 (0.007) 0.718 (0.008) 0.131 (0.006) 0.594 (0.021) 0.078 (0.004) 0.573 (0.002)

MADELON 0.354 (0.014) 0.752 (0.003) 0.156 (0.009) 0.735 (0.016) 0.147 (0.008) 0.703 (0.035) 0.232 (0.011) 0.736 (0.016)

H.2 EXPERIMENT FOR OUT-OF-DISTRIBUTION DETECTION

Here, we conduct experiments to evaluate whether each model appropriately captures uncertainty on
out-of-distribution data in binary classification. As a measure of uncertainty for out-of-distribution
data, we use the maximum predicted probability (Mukhoti et al., 2023). Specifically, we denote the
in-distribution dataset by {xin

1 , ...,x
in
N1

} and the out-of-distribution dataset by {xout
1 , ...,xout

N2
} with

corresponding predictive probabilities p̂(xin
i) for i = 1, ..., N1 and p̂(xout

i) for i = 1, ..., N2.

Let p̂max(x) = max{p̂(x), 1 − p̂(x)}. For evaluation, we assign label 1 to the in-distribution data
and label 0 to the out-of-distribution data. Then, we compute the AUROC between the labels and
the transformed scores 1+log2 p̂max(x

in
i) or 1+log2 p̂max(x

out
i). Intuitively, predictive probabilities

close to 0.5 reflect model uncertainty, and such cases can be identified as out-of-distribution.

We randomly sample a subset which size of 500 from the MADELON dataset, standardized it, and
use it as an out-of-distribution dataset. For each dataset FICO, BREAST, and CHURN, we randomly
split the data into training and test datasets. In turn, we train Bayesian-TPNN and baseline models
using the training dataset. We then compute the AUROC treating the test dataset as the in-distribution
dataset. We repeat this procedure 5 times, and Table 27 presents the averages and standard errors of
AUROCs for Bayesian-TPNN and baseline models on FICO, BREAST and CHURN datasets. These
results demonstrate that Bayesian-TPNN outperforms the baseline models, achieving substantially
superior performance in out-of-distribution detection.

Table 27: AUROC Results on in-distribution and out-of-distribution detection.
Dataset Bayesian-TPNN ANOVA-TPNN NAM Linear XGB BART mBNN

FICO 0.606 (0.013) 0.446 (0.020) 0.455 (0.032) 0.191 (0.002) 0.605 (0.018) 0.667 (0.004) 0.519 (0.014)
BREAST 0.903 (0.015) 0.542 (0.021) 0.534 (0.041) 0.112 (0.010) 0.827 (0.022) 0.664 (0.023) 0.503 (0.051)
CHURN 0.724 (0.006) 0.570 (0.040) 0.533 (0.040) 0.442 (0.006) 0.420 (0.014) 0.598 (0.009) 0.599 (0.039)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

I VISUAL ILLUSTRATION FOR PROPOSAL

In this section, we describe the visual explanation of the proposal in Section 3.2. Given Bayesian-
TPNN as in Figure 7, we explain the updating of K and the updating of SK .

Figure 7: Bayesian-TPNN with p = 4,K = 3.

I.1 UPDATING K

For a given K, we propose Knew = K − 1 or Knew = K + 1. Here, we describe only Random and
Stepwise moves, corresponding to the case where Knew = K + 1. In the case of Random move,
a node is randomly generated and its edges are randomly assigned. For Stepwise move, a node is
first selected from the existing nodes, and then a new edge is added to create a new node. Figure 8
presents an overall illustration for these moves.

Figure 8: Visual explanation for alternations in the proposal distribution of K.

I.2 UPDATING Sk

Figure 9 illustrates how the edges change when applying Adding, Deleting, or Changing moves to
a given current state.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 9: Visual explanation for alternations in the proposal distribution of Sk.

J EMPIRICAL EVALUATION UNDER MINIBATCH SETTINGS

We conduct an additional experiment to empirically verify that our MCMC algorithm performs well
when mini-batches are used. When estimating Bayesian-TPNN with mini-batched data, we refer
to it as MBayesian-TPNN. Here, for ABALONE and FICO datasets, we set the size of mini-batch
as 1,000 and 2,000, respectively. Table 28 presents the averages and standard errors of prediction
performance and the uncertainty quantifications of Bayesian-TPNN and MBayesian-TPNN for 5
trials on ABALONE and FICO datasets. These results suggest that training with mini-batches does
not significantly reduce prediction performance and uncertainty quantification. In practice, these
findings indicate that using mini-batches is practically acceptable, as it does not lead to meaningful
degradation in performance or uncertainty estimation.

Table 28: Results of MBayesian-TPNN.

RMSE/AUROC CRPS/ECE NLL

Bayesian-TPNN MBayesian-TPNN Bayesian-TPNN MBayesian-TPNN Bayesian-TPNN MBayesian-TPNN

ABALONE 2.053 (0.26) 2.081 (0.24) 1.372 (0.19) 1.391 (0.17) 2.260 (0.16) 2.280 (0.18)

FICO 0.793 (0.009) 0.788 (0.005) 0.036 (0.004) 0.038 (0.003) 0.554 (0.007) 0.564 (0.003)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

K COMPARISON WITH DEEP ENSEMBLE

In this section, we conduct additional experiment to compare Bayesian-TPNN with Deep Ensemble
(Lakshminarayanan et al., 2017). Here, we consider candidates for each hyperparmeter of Deep
Ensemble as below.

• The number of MLPs : {5, 50, 100}
• MLP architectures : {(50), (100), (256, 128, 64), (512, 256, 128)}
• Learning rates : {1e− 4, 1e− 3, 1e− 2}
• Epochs : {100, 200, 500, 1000}
• Weight for L2 regularization : {1e− 3, 1e− 2, 1e− 1}

Table 29 presents the averages of RMSE, AUROC, CRPS, ECE and NLLs for 5 trials on real
datasets. These results show that the performance of Bayesian-TPNN is comparable to that of Deep
Ensemble in terms of both prediction accuracy and uncertainty quantification.

Table 29: Results of Bayesian-TPNN and Deep Ensemble.

RMSE/AUROC CRPS/ECE NLL

Bayesian-TPNN Deep Ensemble Bayesian-TPNN Deep Ensemble Bayesian-TPNN Deep Ensemble

ABALONE 2.053 (0.26) 2.121 (0.23) 1.372 (0.19) 1.498 (0.17) 2.260 (0.16) 2.036 (0.15)
BOSTON 3.654 (0.49) 3.922 (0.57) 2.202 (0.23) 2.458 (0.22) 3.411 (0.37) 3.747 (0.40)

MPG 2.386 (0.41) 2.257 (0.14) 1.510 (0.43) 1.481 (0.11) 2.511 (0.21) 2.769 (0.47)
SERVO 0.351 (0.02) 0.398 (0.03) 0.194 (0.01) 0.179 (0.01) 0.836 (0.10) 0.701 (0.04)

FICO 0.793 (0.009) 0.773 (0.024) 0.036 (0.004) 0.057 (0.033) 0.554 (0.007) 0.577 (0.034)
BREAST 0.998 (0.001) 0.993 (0.003) 0.129 (0.009) 0.075 (0.017) 0.211 (0.014) 0.133 (0.041)
CHURN 0.849 (0.008) 0.841 (0.013) 0.031 (0.001) 0.039 (0.002) 0.418 (0.008) 0.424 (0.018)

MADELON 0.854 (0.013) 0.616 (0.029) 0.076 (0.004) 0.137 (0.061) 0.478 (0.009) 0.719 (0.049)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

L APPLICATIONS TO GENOMIC DATASET

We conduct additional experiment to explore the applicability of Bayesian-TPNN to genomics
dataset GSE43358 (Fumagalli et al., 2013). GSE43358 is a gene expression dataset with n = 57
samples and p = 54, 675 features and we perform a classification task distinguishing between
HER2-positive and non–HER2-positive cases. Table 30 shows that the averages and standard errors
of prediction performance for Bayesian-TPNN, Linear model and XGB for 5 trials. For Bayesian-
TPNN and XGB, the hyperparameters are optimized as in the experiment for other real datasets.
Note that because the input dimension p is too large, both ANOVA-TPNN and NAM could not be
trained within our computational environment. The results in Table 30 indicate that the interpretable
Bayesian-TPNN achieves prediction performance comparable to that of the black-box model XGB
on GSE43358 dataset.

Table 31 reports the top 10 most important components in Bayesian-TPNN with the normalized
importance score. Here, we use the importance score defined in Section 4.2, and the normalized
score represents each importance value divided by the maximum importance score. Note that one
of the third order interactions is detected by Bayesian-TPNN. The results in Table 31 indicate that
higher-order interactions (beyond the second order) play a crucial role, which provides a plausible
explanation for the inferior prediction performance of the linear model. Moreover, this highlights the
necessity of an interpretable model such as Bayesian-TPNN, which is capable of estimating such
higher-order interactions.

Table 30: Results of baseline models on GSE43358 dataset.

Model Bayesian-TPNN ANOVA-TPNN NAM Linear XGB

AUROC 0.949 (0.017) – – 0.545 (0.001) 0.953 (0.041)

Table 31: Top 10 important components.

Rank Component of GenBank accession numbers Normalized Score

1 S69189 1.000
2 BF357738 0.924
3 (BC000129, R80390) 0.701
4 AF307338 0.569
5 NM 018297 0.410
6 BF061275 0.375
7 AF319440 0.365
8 (BE741754, AB037854, AK024890) 0.334
9 AI368358 0.292
10 BE672684 0.218

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

M NOTATIONS AND REGULARITY CONDITIONS FOR THE PROOFS

M.1 ADDITIONAL NOTATIONS

For two positive sequences {an} and {bn}, we write an ≲ bn if there exists a constant C > 0
such that an ≤ Cbn for all n ∈ N. The notation an = o(bn) indicates that the ratio an/bn
converges to zero as n −→ ∞. We denote N (ϵ,F , d) the ϵ-covering number of the function class
F with respect to the semimetric d. For a given vector v = (v1, ..., vN), we define its ℓ2 norm
as ∥v∥22 :=

∑N
i=1 v

2
i . Given a real-valued function f : X → R, we define its sup-norm as

∥f∥∞ := supx∈X |f(x)|. We define population ℓp-norm with respect to a probability measure µ

on X as ∥f∥p,µ := (
∫
x∈X f(x)pµ(dx))1/p. Let Pn

X =
∏n

i=1, where PXi
is the probability distribu-

tion of Xi for i = 1, ..., n. For two given densities p1 and p2, we define the Kullback-Leibler (KL)
divergence as

K(p1, p2) :=

∫
log(p1(v)/p2(v))p1(v)dv,

and let V (p1, p2) :=
∫
| log(p1(v)/p2(v))−K(p1, p2)|2p1(v)dv.

M.2 REGULARITY CONDITIONS

(S.1) For a distribution PX, there exist a density pX with respect to the Lebesgue measure on Rp,
that is bounded away from zero and infinity, i.e.,

0 < inf
x∈X

pX(x) ≤ sup
x∈X

pX(x) < ∞.

(S.2) The true function f0,S is L-Lipschitz continuous, i.e.,

|f0,S(x)− f0,S(x
′)| ≤ L∥x− x′∥2

for some positive constant L and all x,x′ ∈ X . Additionally, f0,S is assumed to be bounded
in the supremum norm by a positive constant F , i.e., ∥f0,S∥∞ ≤ F . We denote the above
conditions compactly as f0,S ∈ LipL,F . Moreover, we say that f0 ∈ Lip0,L,F if f0,S ∈
LipL,F for all S ⊆ [p].

(S.3) The log-partition function A(·) is differentiable with a bounded second derivative over
[−F, F], i.e., there exists a positive constant CA such that

1/CA ≤ Ä(x) ≤ CA

for all x ∈ [−F, F].
(S.4) Kmax is assumed to grow at a rate Kmax = O(n).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

N POSTERIOR CONSISTENCY OF BAYESIAN-TPNN

We first prove the posterior consistency of f since it plays an important role in the proof of the
posterior consistency of each component fS .

N.1 POSTERIOR CONSISTENCY OF f0

Theorem N.1 (Posterior Consistency of Bayesian-TPNN). We assumes that (S.1), (S.2), (S.3) and

(S.4). Then, for any ε > 0 and ξ ≥ 2pF + ε
√

2
CA

, it holds that

πξ

(
f : ∥f0 − f∥2,n > ε

∣∣∣X(n), Y (n)
)
−→ 0 (15)

in Qn
0 as n −→ ∞, where Qn

0 is the probability distribution of (X(n), Y (n)).

N.2 PROOF OUTLINE

Consider a function class F =
⋃Kmax

K=1 F(K) that satisfies the sum-to-zero condition with respect to
uniform distribution on (0,1). Here, F(K) is defined as

F(K) =

{
f :f(x) =

K∑
k=1

βkϕ(x|Sk,bSk,k,ΓSk,k),

βk ∈ R,
bSk,k ∈ [0, 1]|Sk|,

ΓSk,k ∈ (0,∞)|Sk| for k = 1, ...,K

}
,

where

ϕ(x|Sk,bSk,k,ΓSk
, k) =

∏
j∈Sk

(
1− σ

(
xj − bj,k

γj,k

)
+ cj(bj,k, γj,k)σ

(
xj − bj,k

γj,k

))
and

cj(bj,k, γj,k) = −
1−

∫ 1

0
σ

(
xj−bj,k
γj,k

)
dxj∫ 1

0
σ

(
xj−bj,k
γj,k

)
dxj

.

For any f ∈ F(K), we denote it as fK,B,b,Γ, where

B = (βk, k ∈ [K]), b = (bSk,k, k ∈ [K]) and Γ = (ΓSk,k, k ∈ [K]).

Our goal is to show that

lim
n→∞

En
0 [πξ(∥f − f0∥2,n > ε|X(n), Y (n))] = 0 (16)

for any ε > 0.

We prove (16) using following two steps.

(P.1) For given data x(n), we prove that

lim
n→∞

En
0 [πξ(∥f − f0∥2,n > ε|X(n), Y (n))|X(n) = x(n)] = 0

for any ε > 0.
(P.2) Finally, we show that

lim
n→∞

En
0 [πξ(∥f − f0∥2,n > ε|X(n), Y (n))] = 0

for any ε > 0.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

We first verify the following three conditions: there exists Fn ⊆ F and positive constants δ, C1, C2

such that

logN (δ,Fn, ∥ · ∥∞) < nC1, (17)

π

(
f ∈ F : ∥f − f0∥∞ ≤ ε

√
2

CA

)
> exp(−nC2), (18)

π(F\Fn) < exp(−(2C2 + 2)n). (19)

After that, we will show that these three conditions imply the posterior consistency in Step (P.1) by
checking the conditions in Ghosal et al. (1999).

N.3 VERIFYING CONDITION (17)

We consider a sieve Fn = ∪Mn

K=1Fn(K), where

Fn(K) =

{
f :f(x) =

K∑
k=1

βkϕ(x|Sk,bSk,k,ΓSk,k),

βk ∈ [−n, n],

bSk,k ∈ [0, 1]|Sk|

ΓSk,k ∈ (0, n]|Sk| for k = 1, ..,K

}
,

where Mn = ⌊C3nε
2

logn ⌋ and C3 will be determined later.

Also, we consider a more general function class as :

Gn(K) =

{
f : f(x) =

K∑
k=1

βkϕ(x|Sk,bSk,k,ΓSk,k, cSk,k),

βk ∈ [−n, n],

bSk,k ∈ [0, 1]|Sk|,

ΓSk,k ∈ (0, n]|Sk|,

cSk,k ∈ [−2n, 2n]|Sk| for k = 1, ..,K

}
,

(20)

where the function ϕ is defined as

ϕ(x|Sk,bSk,k,ΓSk,k, cSk,k) =
∏
j∈Sk

(
1− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

))
.

and the vector cSk,k is defined as cSk,k = (cj,k, j ∈ Sk).

For all j, k, we have ∫ 1

0

σ

(
x− bj,k
γj,k

)
dx ≥

∫ 1

bj,k

σ

(
x− bj,k
γj,k

)
dx

≥ Cσ,j,k,

where Cσ,j,k is a positive constant and thus, we have |cj(bj,k, γj,k)| ≤ Cσ, ∀j, k for some positive
constant Cσ . Hence, for all K ∈ [Kmax],

Fn(K) ⊆ Gn(K), (21)

whenever n is sufficiently large. Therefore, it suffices to verify Condition (17) over

Gn =

Mn⋃
K=1

Gn(K). (22)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Lemma N.2. For any integer K, we have

N (ϵ,Gn(K), ∥ · ∥∞) ≤
(
1 +

K2p+4n3p+1

ϵ

)K(1+3p)

.

Proof.)

First, since the maximum dimension of parameters in Gn(K) is K(1+3p), we consider K(1+3p)-
dimensional hypercube [−2n, 2n]K(1+3p). Then, we have

N (ϵ1, [−2n, 2n]K(1+3p), ∥ · ∥1) ≤
(
N (ϵ1, [−2n, 2n], ∥ · ∥1)

)K(1+3p)

≤
(
1 +

4n

ϵ1

)K(1+3p)

.

For SK = (Sk, k ∈ [K]), we define S := (BK ,bSK ,K ,ΓSK ,K , cSK ,K), where
BK = (β1, ..., βK),

bSK ,K = (bSk,k, k ∈ [K]),

ΓSK ,K = (ΓSk,k, k ∈ [K]),

cSK ,K = (cSk,k, k ∈ [K]).

Let
{
S1, ...,SN (ϵ1,[−n,n]K(1+3p),∥·∥1)

}
be an ϵ1-cover of [−2n, 2n]K(1+3p), and for given S ∈

[−2n, 2n]K(1+3p), let S̃ be an element in the ϵ1-cover such that ∥S− S̃∥1 ≤ ϵ1.

Note that for any fΘ ∈ Gn(K), we have

fS(x) =

K∑
k=1

βk

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k),

where

ϕ(xj |{j}, bj,k, γj,k, cj,k) = 1− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

)
with |cj,k| ≤ 2n. Then, for any fS ∈ Gn(K), we have

sup
x

∣∣∣∣fS(x)− fS̃(x)

∣∣∣∣
≤ sup

x

K∑
k=1

∣∣∣∣βk

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)− β̃k

∏
j∈Sk

ϕ(xj |{j}, b̃j,k, γ̃j,k, c̃j,k)
∣∣∣∣

≤ sup
x

K∑
k=1

(∣∣∣∣βk

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)− β̃k

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)
∣∣∣∣

+

∣∣∣∣β̃k

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)− β̃k

∏
j∈Sk

ϕ(xj |{j}, b̃j,k, γ̃j,k, c̃j,k)
∣∣∣∣).

(23)

Upper bound of first term in (23). Since∣∣∣∣ ∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)
∣∣∣∣ = ∣∣∣∣ ∏

j∈Sk

(
1− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

))∣∣∣∣
≤
∏
j∈Sk

(∣∣∣∣1− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

)∣∣∣∣)
≤
∏
j∈Sk

(1 + 2n)

≤ (1 + 2n)p,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

we have

sup
x

K∑
k=1

∣∣∣∣βk

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)− β̃k

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)
∣∣∣∣

≤ sup
x

K∑
k=1

(1 + 2n)|Sk||βk − β̃k|

≤ (1 + 2n)pϵ1.

Upper bound of second term in (23). Using direct calculation and triangle inequality, we have∣∣∣∣β̃k

∏
j∈Sk

(
ϕ(xj |{j}, bj,k, γj,k, cj,k)− ϕ(xj |{j}, b̃j,k, γ̃j,k, c̃j,k)

)∣∣∣∣
=

∣∣∣∣β̃k

∏
j∈Sk

(
σ

(
xj − b̃j,k

γ̃j,k

)
− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

))∣∣∣∣
= |β̃k|

∏
j∈Sk

∣∣∣∣σ(xj − b̃j,k
γ̃j,k

)
− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

)∣∣∣∣
≤ n

∏
j∈Sk

(∣∣∣∣σ(xj − b̃j,k
γ̃j,k

)
− σ

(
xj − bj,k

γj,k

)∣∣∣∣+ ∣∣∣∣cj,kσ(xj − bj,k
γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

)∣∣∣∣).
Since σ(·) is Lipschitz function, we have∣∣∣∣σ(xj − b̃j,k

γ̃j,k

)
− σ

(
xj − bj,k

γj,k

)∣∣∣∣
≤
∣∣∣∣xj − b̃j,k

γ̃j,k
− xj − bj,k

γj,k

∣∣∣∣
≤
(∣∣∣∣xj − b̃j,k

γ̃j,k
− xj − bj,k

γ̃j,k

∣∣∣∣+ ∣∣∣∣xj − bj,k
γ̃j,k

− xj − bj,k
γj,k

∣∣∣∣)
≤ 2n2

(
|b̃j,k − bj,k|+ |γ̃j,k − γj,k|

)
.

Similarly, we have∣∣∣∣cj,kσ(xj − bj,k
γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

)∣∣∣∣
≤
∣∣∣∣cj,kσ(xj − bj,k

γj,k

)
− c̃j,kσ

(
xj − bj,k

γj,k

)∣∣∣∣+ ∣∣∣∣c̃j,kσ(xj − bj,k
γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

)∣∣∣∣
≤ 4n3

(
|cj,k − c̃j,k|+ |b̃j,k − bj,k|+ |γ̃j,k − γj,k|

)
.

To sum up, the upper bound of (23) is

sup
x

|fS(x)− fS̃(x)| ≤ K

(
(1 + 2n)pϵ1 + 2p+3n3p+1ϵp1

)
≤ K(2n)3p+1ϵ1.

Let ϵ = K(2n)3p+1ϵ1. Then, we conclude that

N (ϵ,Gn(K), ∥ · ∥∞) ≤
(
1 +

2K(2n)3p+2

ϵ

)K(1+3p)

.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Using Lemma N.2, we have

N (δ,Fn, ∥ · ∥∞) ≤
Mn∑
K=1

(
1 +

2K(2n)3p+2

δ

)K(1+3p)

≤ Mn

(
1 +

2Mn(2n)
3p+2

δ

)Mn(1+3p)

.

Let δ = ε/8. Finally, we choose C3 such that

logN (δ,Fn, ∥ · ∥∞) ≤ logMn +Mn(1 + 3p) log

(
1 +

2Mn(2n)
3p+2

δ

)
< nε2/10.

Condition (17) is satisfied by letting C1 = ε2/10.

N.4 VERIFYING CONDITION (18)

For S ⊆ [p], using Theorem 3.3 in Park et al. (2025), there exist TPNNs such that∥∥∥f0,S − fkS ,B̂S,kS
,b̂S,kS

,Γ̂S,kS

∥∥∥
∞

≤ CS

k
1/|S|
S + 1

(24)

for some positive constant CS . Here, β̂S,ks are uniformly bounded, i.e., |β̂S,k| ≤ cS for some
positive constant cS and γ̂j,k = 1/k3S for all j, k as specified in Theorem 3.3 of Park et al. (2025).

Let kn,S such that

CS

k
1/|S|
n,S + 1

≤ ε
√
2/(
√
CA · 3 · 2p). (25)

Let kn =
∑

S⊆[p] kn,S and fkn,B̂kn ,b̂kn ,Γ̂kn
=
∑

S⊆[p] fkn,S ,B̂S,kn,S
,b̂S,kn,S

,Γ̂S,kn,S
. For notational

simplicity, we write B̂kn , b̂kn and Γ̂kn simply as B̂, b̂ and Γ̂, respectively. Since

∥f0 − fkn,B,b,Γ∥∞
≤ ∥f0 − fkn,B̂,b̂,Γ̂∥∞ + ∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ + ∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞, (26)

we have

π

(
f ∈ F : ∥f − f0∥∞ ≤ ε

3

√
2

CA

)
≥ π(K = kn)

(∏
S′⊆[p]

π(S = S′)

)
(27)

× π

({
∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ ≤ ε

3

√
2

CA

}⋂{
∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ ≤ ε

3

√
2

CA

})
.

(28)

Therefore, it remains to derive the lower bounds for (27) and (28).

Lower bound of (27). We have

π(K = kn)

(∏
S′⊆[p]

π(S = S′)

)
=

(∏
S′⊆[p]

π(S = S′)

)
exp(−C0kn log n)∑Kmax

k=0 exp(−C0k log n)

> exp(−d1n)

for some positive constant d1.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Lower bound of (28). For any B = (βk, k ∈ [kn]) ∈ Rk, we have

∥fkn,B,b̂,Γ̂ − fkn,B̂,b̂,Γ̂∥∞ ≤ sup
x

kn∑
k=1

∣∣∣∣βk

∏
j∈Sk

ϕ(xj |{j}, b̂j,k, γ̂j,k)− β̂k

∏
j∈Sk

ϕ(xj |{j}, b̂j,k, γ̂j,k)
∣∣∣∣

≤ sup
x

kn∑
k=1

∣∣∣∣(βk − β̂k)
∏
j∈Sk

ϕ(xj |{j}, b̂j,k, γ̂j,k)
∣∣∣∣

≤
kn∑
k=1

∣∣∣∣(βk − β̂k)(1 + Cσ)
p

∣∣∣∣ (29)

≤ (1 + Cσ)
p∥B − B̂∥1

≤ (1 + Cσ)
p
√
kn∥B − B̂∥2.

That is, we have{
∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ ≤ ε

3

√
2

CA

}
⊇
{
∥B − B̂∥2 ≤ ((1 + Cσ)

p
√

kn)
−1 ε

3

√
2

CA

}
.

Furthermore, direct calculation yields

∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ = sup
x

kn∑
k=1

|βk|
∣∣∣∣ ∏
j∈Sk

(
ϕ(xj |{j}, b̂j,k, γ̂j,k)− ϕ(xj |{j}, bj,k, γj,k)

)∣∣∣∣
≤ (1 + Cσ) sup

x

kn∑
k=1

|βk|
∣∣∣∣ ∏
j∈Sk

(
xj − b̂j,k

γ̂j,k
− xj − bj,k

γj,k

)∣∣∣∣
= (1 + Cσ) sup

x

kn∑
k=1

|βk|
∣∣∣∣ ∏
j∈Sk

(
bj,k − b̂j,k

γ̂j,k
+ (xj − bj,k)

γj,k − γ̂j,k
γj,kγ̂j,k

)∣∣∣∣
≤ (1 + Cσ) sup

x

kn∑
k=1

|βk|
∏
j∈Sk

(∣∣∣∣bj,k − b̂j,k
γ̂j,k

∣∣∣∣+ 2

∣∣∣∣γj,k − γ̂j,k
γj,kγ̂j,k

∣∣∣∣).
Let Cn,j,k =

|γ̂j,k|
2

(
ε

3ξ(1+Cσ)kn

√
2

CA

)1/|Sk|

. If |γj,k − γ̂j,k| ≤ ϵ1, we have

∣∣∣∣γj,k − γ̂j,k
γ̂j,kγj,k

∣∣∣∣ ≤ ϵ1
γ̂j,k(γ̂j,k − ϵ1)

≤ 1

4

(
ε

3ξkn

√
2

CA

)1/|Sk|

,

where ϵ1 =
Cn,j,k|γ̂j,k|
2+Cn,j,k

. Therefore, if

|βk| ≤ ξ,

|bj,k − b̂j,k| ≤ 2Cn,j,k,

|γj,k − γ̂j,k| ≤
Cn,j,kn

|γ̂j,k|
2 + Cn,j,k

hold, we have

∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ ≤ ε

3

√
2

CA
. (30)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

That is, we have{
∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ ≤ ε

3

√
2

CA

}⋂{
∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ ≤ ε

3

√
2

CA

}
⊇
{
∥B − B̂∥2 ≤ ((1 + Cσ)

p
√
kn)

−1 ε

3

√
2

CA
,

|βj | ≤ ξ,

|bj,k − b̂j,k| ≤ 2Cn,j,k,

|γj,k − γ̂j,k| ≤
Cn,j,k|γ̂j,k|
2 + Cn,j,k

, ∀j ∈ Sk, ∀k ∈ [kn]

}
.

It implies that

π

({
∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ ≤ ε

3

√
2

CA

}⋂{
∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ ≤ ε

3

√
2

CA

})
≥ π(∥B − B̂∥2 ≤ ((1 + Cσ)

p
√

kn)
−1ε

√
2/(3

√
CA), |βk| ≤ ξ, ∀k ∈ [kn]) (31)

× π(|bj,k − b̂j,k| ≤ 2Cn,j,k, ∀j ∈ Sk, ∀k ∈ [kn]) (32)

× π

(
|γj,k − γ̂j,k| ≤

Cn,j,k

1 + Cn,j,k
|γ̂j,k|, ∀j ∈ Sk, ∀k ∈ [kn]

)
. (33)

Now, we will show that these three probabilities sufficiently large.

Lower bound of (31). Since{
∥B − B̂∥2 ≤ ((1 + Cσ)

p
√
kn)

−1ε
√
2/(3

√
CA), |βk| ≤ ξ, ∀k ∈ [kn]

}
⊇
{
|βk − β̂k| ≤ ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA), |βk| ≤ ξ,∀k ∈ [kn]

}
⊇
{
|βk − β̂k| ≤ ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA), ∀k ∈ [kn]

}
(34)

for sufficiently large n, it suffices to get the lower bound of π(|βk − β̂k| ≤ ((1 +

Cσ)
pkn)

−1ε
√
2/(3

√
CA)) for k ∈ [kn].

For k ∈ [kn], we let
Ik =

[
β̂k ± ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA)]

and we have
π(|βk − β̂k| ≤ ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA))

=

∫
Ik

1√
2πσβ

exp

(
− β2

k

2σ2
β

)
dβk

≥ |Ik|
1√
2πσβ

exp

(
− (maxS cS + ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA))

2

2σ2
β

)
(35)

> exp(−d1n)

for some positive constant d1, where (35) is derived from |β̂k| ≤ maxS cS .

Lower bound of (32). Since
π
(
|bj,k − b̂j,k| ≤ 2Cn,j,k

)
= 4Cn,j,k

for all j ∈ Sk, k ∈ [kn], we have

π
(
|bj,k − b̂j,k| ≤ 2Cn,j,k, ∀j ∈ Sk, ∀k ∈ [kn]

)
=

∏
k∈[kn],j∈Sk

4Cn,j,k

> exp(−d2n)

for some positive constant d2.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Lower bound of (33). Using direct calculation, we have

π

(
|γj,k − γ̂j,k| ≤

Cn,j,k

2 + Cn,j,k
γ̂j,k

)
≥
(
2Cn,j,kγ̂j,k
2 + Cn,j,k

)
min

x∈[Ln,Un]
pdfγ(x)

=

(
2Cn,j,kγ̂j,k
2 + Cn,j,k

)
b
aγ
γ

Γ(aγ)
min

x∈[Ln,Un]
xaγ−1 exp(−bγx),

where Ln = γ̂j,k − Cn,j,kγ̂j,k

2+Cn,j,k
and Un = γ̂j,k +

Cn,j,kγ̂j,k

2+Cn,j,k
.

Note that 1/k3n ≤ γ̂i,j ≤ 1. For aγ > 1, we have

min
x∈[Ln,Un]

xaγ−1 ≥ Laγ−1
n

=

(
2γ̂j,k

2 + Cn,j,k

)ar−1

> exp(−d3n)

for some positive constant d3 and for aγ < 1, we have

min
x∈[Ln,Un]

xaγ−1 ≥ Uaγ−1
n

=

(
γ̂j,k

)1−aγ

> exp(−d4n)

for some positive constant d4. Furthermore, we have

min
x∈[Ln,Un]

exp(−bγx) ≥ exp(−bγUn)

≥ exp(−2bγ γ̂i,j)

> exp(−2d5n)

and
2Cn,j,kγ̂j,k
2 + Cn,j,k

> exp(−2d7n)

for some positive constants d6 and d7. Finally, the proof is completed by letting C2 =
∑7

i=1 di.

N.5 VERIFYING CONDITION (19)

We will verify Condition (19) with the constant C3.

We let

Z1 =
{
K > Mn

}
,

Z2 =
{
{K ≤ Mn} ∩ {∃k ∈ [K] such that |βk| > n}

}
,

Z3 =
{
{K ≤ Mn} ∩ {∃k ∈ [K] such that ΓSk,k ∈ (n,∞)|Sk|}

}
.

Since

π(F\Fn) = π(Z1 ∪ Z2 ∪ Z3),

the upper bound of π(F\Fn) is

π(F\Fn)

≤ π(K > Mn) (36)
+ π(K ≤ Mn)π(∃k ∈ [K] such that |βk| > n|K ≤ Mn) (37)

+ π(K ≤ Mn)π(∃k ∈ [K] such that ΓSk,k ∈ (n,∞)|Sk||K ≤ Mn). (38)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Upper bound of (36). For Mn = ⌊C3nε
2

logn ⌋, we have

π(K > Mn) =

∑Kmax

k=Mn+1 exp(−kC0 log n)∑Kmax

k=0 exp(−kC0 log n)

≤ exp(−MnC0 log n).

Since C3 > C2+2
C0 logn for sufficiently large n, we have

π(K > Mn) exp((C2 + 2)n) −→ 0 as n −→ ∞.

Upper bound of (37). We have

π(∃k ∈ [K] such that |βk| > n|K ≤ Mn) ≤ Mnπ(|β1| > n)

≤ 2Mn exp

(
− n2

2σ2
β

)
,

where σ2
β is a constant. That is, we conclude that

π(∃k ∈ [K] such that |βk| > n|K ≤ Mn) exp((C2 + 2)n) −→ 0 as n −→ ∞.

Upper bound of (36). For any j, k, using Markov inequality, we have

π(γj,k > n) ≤ E
[
exp

(
bγγj,k

2

)]
exp

(
− bγn

2

)
=

(
1

2

)−aγ

exp

(
− bγn

2

)
.

Since

π(∃k ∈ [K] such that ΓSk,k ∈ (n,∞)|Sk||K ≤ Mn) ≤ Mnπ(γ1,1 > n),

we have

π(∃k ∈ [K] such that ΓSk,k ∈ (n,∞)|Sk||K ≤ Mn) exp((C2 + 2)n) −→ 0 as n −→ ∞,

where aγ and bγ are positive constants.

N.6 VERIFICATION OF THE CONDITIONS IN GHOSAL ET AL. (1999)

For given data x(n), let qf,i be the probability density of Qf(xi) for i = 1, ..., n. From Theorem 2
of Ghosal et al. (1999), it suffices to verify that for every f0 ∈ Lip0,L,F , there exists a sieve Fn

ξ ,
constants δ < ε/4, C5, C6 > 0 and C1 < ε2/8 such that the following three conditions hold with
respect to the ∥ · ∥2,n.

logN
(
δ,Fn

ξ , ∥ · ∥2,n
)
< nC1, (39)

πξ

(
f ∈ Fξ :

1

n

n∑
i=1

K(qf0,i, qf,i) ≤ ε2
)

> exp(−nC5), (40)

πξ

(
Fξ\Fn

ξ

)
< exp(−nC6). (41)

To complete the proof of Theorem N.1, we will verify that the three conditions (39), (40), and (41)
for given data x(n).

Verifying Condition (39).

Condition (39) holds under Condition (17).

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Verifying Condition (40).

By using a direct calculation, for i = 1, ..., n, we have

K(qf0,i, qf,i) =

∫ (
(f0(xi)− f(xi))y −A(f0(xi)) +A(f(xi))

)
qf0,i(y)dy (42)

=

(
(f0(xi)− f(xi))E[Yi]−A(f0(xi)) +A(f(xi))

)
(43)

=

(
(f0(xi)− f(xi))Ȧ(f0(xi))−A(f0(xi)) +A(f(xi))

)
. (44)

Using Talyor expansion, we have

K(qf0,i, qf,i) =
1

2
Ä(x̃)(f0(xi)− f(xi))

2,

where x̃ ∈ [−F, F]. That is, we have

1

n

n∑
i=1

K(qf0,i, qf,i) ≤
CA

2
∥f0 − f∥22,n.

When ξ ≥ 2PF + ε
√

2
CA

, we have

πξ

(
f ∈ Fξ : ∥f − f0∥2,n ≤ ε

√
2

CA

)
≥ π

(
f ∈ Fξ : ∥f − f0∥2,n ≤ ε

√
2

CA

)
.

Therefore, the proof is done by Condition (18).

Verifying Condition (41).

Since

πξ(F\Fn) ≤ π(F\Fn)

π(∥f ∥∞ ≤ ξ)

≤ π(F\Fn)

π

(
∥f − f0∥∞ ≤ ε

√
2

CA

)
≤ exp(−(C5 + 2)n)

for 2pF + ε
√

2
CA

≤ ξ, the condition (41) holds for C6 = C5 + 2 by condition (18) and (19).

N.7 STEP (P.2)

Since (P.1) holds for arbitary x(n), we conclude that

lim
n→∞

En
0 [πξ(∥f − f0∥2,n > ε|X(n), Y (n))] = 0

for any ε > 0.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

O PROOF OF THEOREM 3.2

The proof consists of the following 4 steps.

(STEP E.1)
We first establish the rate at which the posterior concentrates under the population ℓ2 norm; specifi-
cally, we demonstrate that

En
0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,PX
> ε|X(n), Y (n)

)]
−→ 0, (45)

for any ε > 0.

(STEP E.2)
Based on (45), we establish that the following holds for any subset S ⊆ [p].

En
0

[
πξ

(
f ∈ Fn

ξ : ∥fS − f0,S∥2,PX
> ε|X(n), Y (n)

)]
−→ 0, (46)

for any ε > 0.

(STEP E.3)
We reformulate (46) in terms of the empirical ℓ2 norm. Specifically, we demonstrate that

En
0

[
πξ

(
f ∈ Fn

ξ : ∥fS − f0,S∥2,n > ε|X(n), Y (n)
)]

−→ 0, (47)

for any ε > 0.

(STEP E.4)
The last step is to verify

En
0

[
πξ(Fξ\Fn

ξ |X(n), Y (n))
]
−→ 0 (48)

as n → ∞.

O.1 VERIFYING (STEP D.1)

To verify (STEP D.1), we rely on the following lemma, whose proof is provided in Theorem 19.3
of Györfi et al. (2006).
Lemma O.1 (Theorem 19.3 of Györfi et al. (2006)). Let X,X1, . . . ,Xn be independent and iden-
tically distributed random vectors with values in Rd. Let K1,K2 ≥ 1 be constants and let G be a
class of functions g : Rd → R with the properties

|g(x)| ≤ K1, E[g(X)2] ≤ K2E[g(X)]. (49)

Let 0 < κ < 1 and ζ > 0. Assume that
√
nκ

√
1− κ

√
ζ ≥ 288max

{
2K1,

√
2K2

}
(50)

and that, for all x1, . . . ,xn ∈ Rd and for all t ≥ ζ
8 ,

√
nκ(1− κ)t

96
√
2max {K1, 2K2}

≥
∫ √

t

κ(1−κ)t
16max{K1,2K2}

√√√√logN

(
u,

{
g ∈ G :

1

n

n∑
i=1

g (xi)
2 ≤ 16t

}
, || · ||1,n

)
du.

(51)

Then,

Pn
X

(
sup
g∈G

∣∣E[g(X)]− 1
n

∑n
i=1 g (Xi)

∣∣
ζ + E[g(X)]

> κ

)
≤ 60 exp

(
− nζκ2(1− κ)

Cg max {K2
1 ,K2}

)
for some positive constant Cg .

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Since Fn
ξ depends on the dataset X(n), we will apply Lemma O.1 to the function class Gn

ξ defined
as

Gn
ξ =

Mn⋃
K=1

Gn
ξ (K),

where Gn
ξ (K) = {f ∈ Gn(K) : ∥f∥∞ ≤ ξ}. Here, Gn(K) is defined in (20).

Since

N (ϵ,Gn
ξ , ∥ · ∥∞) ≤ N (ϵ,Gn, ∥ · ∥∞)

≤ Mn

(
1 +

Mn2
p+3n3p+1

ϵ

)Mn(1+3p)

,

we can easily verify that conditions (49), (50), and (51) hold for K1 = K2 = 4ξ2, κ = 1
4 , ζ = ε2,

and G = {g : g = (f0 − f)2, f ∈ Gn
ξ }. That is, we have

Pn
X

(
sup
f∈Fn

ξ

∣∣||f − f0||22,PX
− ||f − f0||22,n

∣∣
ε2 + ||f − f0||22,PX

>
1

4

)
≤ 60 exp

(
− nε2/8

Cg · 16ξ4

)
.

We define An :=

{
X(n) : supf∈Fn

ξ

|||f−f0||22,PX−||f−f0||22,n|
ε2+||f−f0||22,PX

≤ 1
4

}
. Then, we have

En
0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,PX
> ε|X(n), Y (n)

)]
≤ En

0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,PX
> ε|X(n), Y (n)

)
I(X(n) ∈ An)

]
+ Pn

X(Ac
n)

≤ En
0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,n > ε/
√
2|X(n), Y (n)

)]
+ Pn

X(Ac
n)

−→ 0

as n −→ ∞.

O.2 VERIFYING (STEP D.2)

For f ∈ Fn
ξ , we have

f(x) =
∑
S⊆[p]

fS(xS),

where fS satisfies the sum-to-zero condition with respect to the uniform distribution on (0, 1).

Consider positive constants C7 and C8 such that

C7 ≤ inf
x∈X

pX(x) ≤ sup
x∈X

pX(x) ≤ C8. (52)

Therefore, using the inequality (52), for all S ⊆ [p], we have

∥f0 − f∥2,PX
≥

√
C7

∫
X
(f0(x)− f(x))2dx

=

√√√√C7

∑
S⊆[p]

∫
XS

(f0,S(xS)− fS(xS))2dxS (53)

≥ C9∥fP,S − f0,S∥2,PX
,

where (53) is derived from the sum-to-zero condition with respect to the uniform distribution on
(0, 1) and C9 =

√
C7/C8.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Hence, we conclude that

En
0

[
πξ

(
f ∈ Fn

ξ : ∥fS − f0,S∥2,PX
> ε|X(n), Y (n)

)]
≤ En

0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,PX
> εC9|X(n), Y (n)

)]
−→ 0,

as n −→ ∞.

O.3 VERIFYING (STEP D.3)

Following the same approach as in the proof of (STEP D.1), and applying Lemma O.1 to the func-
tion class G = {g : g = (f0,S − fS)

2, f ∈ Gn
ξ }, we have

lim
n→∞

En
0

[
πξ

(
f ∈ Fn

ξ : ∥fS − f0,S∥2,n > ε
∣∣∣X(n), Y (n)

)]
= 0.

O.4 VERIFYING THE (STEP D.4)

Since

πξ(Fξ\Fn
ξ)

πξ(Bn)
≤ exp(−2n)

for given data x(n), using Lemma 1 in Ghosal & Van Der Vaart (2007), we conclude that

lim
n→∞

En
0

[
πξ(Fξ\Fn

ξ |X(n), Y (n))
∣∣∣X(n) = x(n)

]
= 0.

Since it holds for arbitrary x(n), the proof is completed.

50

	Introduction
	Preliminaries
	Notation
	Probability model for the likelihood
	Functional ANOVA model
	Tensor Product Neural Networks

	Bayesian Tensor Product Neural Networks
	Prior
	MCMC Algorithm for Posterior Sampling
	Posterior consistency

	Experiments
	Prediction performance
	Performance in component selection
	Interpretation of Bayesian-TPNN
	Application to Concept Bottleneck Models

	Conclusion
	Details of the MCMC algorithm
	Sampling K via MH algorithm
	Case of Knew = K+1
	Case of Knew = K-1

	Sampling Sk,bk,k via MH algorithm
	Transition probability for proposal distribution
	Posterior Ratio
	Acceptance probability

	Sampling bSk,k, Sk,k and k via MH algorithm
	Calculating the Gradient of the Log-Posterior with respect to bSk,k
	Calculating the Gradient of the Log-Posterior with respect to Sk,k
	Calculating the Gradient of the Log-Posterior with respect to k

	Sampling Nuisance parameter

	Details of the experiments
	Data description
	Feature descriptions for Madelon and Servo datasets
	Experiment details for tabular dataset
	Experiment details for image dataset
	Experiment details for component selection

	Ablation studies
	The number of basis K for various values C0
	Impact of the hyperparameters a and b on prediction performance
	Impact of the step size in the Langevin proposal
	Impact of pinput on estimating higher-order components
	Impact of stepwise search in the proposal of K

	Experiment for the Poisson regression
	Experiments for interpretability
	Interpretability on the Image datasets
	Additional results of local interpretation on the Tabular dataset

	Experiment for stability of component estimation
	Comparison of convergence speed and runtime in MCMC algorithm
	Additional experiments for uncertainty quantification
	Uncertainty quantification on non-Bayesian models.
	Experiment for out-of-distribution detection

	Visual illustration for Proposal
	Updating K
	Updating Sk

	Empirical Evaluation under Minibatch Settings
	Comparison with Deep Ensemble
	Applications to Genomic Dataset
	Notations and regularity conditions for the proofs
	Additional Notations
	Regularity Conditions

	Posterior consistency of Bayesian-TPNN
	Posterior consistency of f0
	Proof outline
	Verifying Condition (17)
	Verifying Condition (18)
	Verifying Condition (19)
	Verification of the Conditions in ghosal1999posterior
	STEP (P.2)

	Proof of Theorem 3.2
	Verifying (STEP D.1)
	Verifying (STEP D.2)
	Verifying (STEP D.3)
	Verifying the (STEP D.4)

