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ABSTRACT

With the increasing demand for interpretability in machine learning, functional
ANOVA decomposition has gained renewed attention as a principled tool for
breaking down high-dimensional function into low-dimensional components that
reveal the contributions of different variable groups. Recently, Tensor Product
Neural Network (TPNN) has been developed and applied as basis functions in
the functional ANOVA model, referred to as ANOVA-TPNN. A disadvantage of
ANOVA-TPNN, however, is that the components to be estimated must be speci-
fied in advance, which makes it difficult to incorporate higher-order TPNNs into
the functional ANOVA model due to computational and memory constraints. In
this work, we propose Bayesian-TPNN, a Bayesian inference procedure for the
functional ANOVA model with TPNN basis functions, enabling the detection of
higher-order components with reduced computational cost compared to ANOVA-
TPNN. We develop an efficient MCMC algorithm and demonstrate that Bayesian-
TPNN performs well by analyzing multiple benchmark datasets. Theoretically, we
prove that the posterior of Bayesian-TPNN is consistent.

1 INTRODUCTION

As artificial intelligence (AI) models become increasingly complex, the demand for interpretability
has grown accordingly. To address this need, various interpretable models—including both post-
hoc explanations (Ribeiro et al., 2016; Lundberg & Lee, 2017) and inherently transparent models
(Agarwal et al., 2021; Koh et al., 2020; Radenovic et al., 2022; Park et al., 2025)—have been stud-
ied. Among various interpretable approaches, our study focuses on the functional ANOVA model,
a particularly important class of interpretable models that decompose a high-dimensional function
into a sum of low-dimensional functions called componenets or interactions. Notable examples of
the functional ANOVA model are the generalized additive Model (Hastie & Tibshirani, 1986), SS-
ANOVA (Gu & Wahba, 1993) and MARS (Friedman, 1991). Because complex structures of a given
high-dimensional model can be understood by interpreting low-dimensional components, the func-
tional ANOVA models have been extensively used in interpretable AI applications (Lengerich et al.,
2020; Märtens & Yau, 2020; Choi et al., 2025; Herren & Hahn, 2022).

In recent years, various neural networks have been developed to estimate components in the func-
tional ANOVA model. Neural Additive Models (NAM, Agarwal et al. (2021)) estimates each compo-
nent of the functional ANOVA model using deep neural networks (DNN), and Neural Basis Models
(NBM, Radenovic et al. (2022)) significantly reduce the computational burden of NAM by using
basis deep neural networks (DNN). NODE-GAM (Chang et al., 2021) can select and estimate the
components in the functional ANOVA model simultaneously, and Thielmann et al. (2024) proposes
NAMLSS, which modifies NAM to estimate the predictive distribution. Park et al. (2025) proposes
ANOVA-TPNN, which estimates the components under the uniqueness constraint and thus provides
a stable estimate of each component.

Existing neural-network approaches to functional ANOVA model require prohibitive computation
when the input dimension p is large, because the number of components—and thus the required
networks—grows exponentially. As a result, only 1–2 dimensional components are typically used,
yielding suboptimal prediction when higher-order interactions matter.

In this paper, we propose a Bayesian neural network (BNN) for the functional ANOVA model which
can estimate higher-order interactions (i.e., components whose input dimension is greater than 2)
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without requiring huge amounts of computing resources. The main idea of the proposed BNN is to
infer the architecture (the architectures of neural networks for each component) as well as the pa-
rameters (the weights and biases in each neural network). To explore higher posterior regions of the
architecture, a specially designed MCMC algorithm is developed which searches the architectures
in a stepwise manner (i.e., growing or pruning the current architecture) and thus huge computing
resources for memorizing and processing all of the predefined neural networks for the components
can be avoided.

Bayesian Neural Networks (BNN; MacKay (1992); Neal (2012); Wilson & Izmailov (2020); Iz-
mailov et al. (2021)) provide a principled Bayesian framework for training DNNs and have received
considerable attention in machine learning and AI. Compared to frequentist approaches, BNN of-
fers stronger generalization and better-calibrated uncertainty estimates (Wilson & Izmailov, 2020;
Izmailov et al., 2021), which enhance decision making. These properties have motivated applica-
tions in areas such as recommender systems (Wang et al., 2015), topic modeling (Gan et al., 2015),
and medical diagnosis (Filos et al., 2019). More recently, Bayesian neural networks (BNN) that
learn their own architectures have been actively studied. In particular, Kong et al. (2023) introduced
a node-sparse BNN, referred to as the masked BNN (mBNN), and established its theoretical proper-
ties. Nguyen et al. (2024) proposes S-RJMCMC, which explores architectures and weights by jointly
sampling parameters and altering the number of nodes.

This is the first work on BNN that efficiently estimates higher-order components in the functional
ANOVA model without requiring substantial computing resources. Our main contributions can be
outlined as follows.

• We propose a BNN for the functional ANOVA model called Bayesian-TPNN which treats
the architecture as a learnable parameter, and develop an MCMC algorithm which effi-
ciently explores high-posterior regions of the architecture.

• For theoretical justifications of the proposed BNN, we prove the posterior consistency of
the prediction model as well as each component.

• Through experiments on multiple real datasets, we show that the proposed BNN provides
more accurate and stable estimation and uncertainty quantification than other neural net-
works for the functional ANOVA model. On various synthetic datasets, we further show
that Bayesian-TPNN effectively estimates important higher-order components.

2 PRELIMINARIES

2.1 NOTATION

Let x = (x1, . . . , xp)
⊤ ∈ X be a p-dimensional input vector, where X = X1 × · · · × Xp ⊆ [0, 1]p.

We write [p] = {1, . . . , p} and its power set with cardinality d as power([p], d). For any component
S ⊆ [p], we denote xS = (xj , j ∈ S)⊤ and define XS =

∏
j∈S Xj . A function defined on XS

is denoted by fS . For any real-valued function f : X −→ R, we define the empirical ℓ2-norm as
∥f∥2,n := (

∑n
i=1 f(xi)

2/n)1/2, where x1, . . . ,xn are observed input vectors. We denote σ(·) as
the sigmoid function, i.e., σ(x) := 1/(1+ exp(−x)). We denote by µn the empirical distribution of
{x1, . . . ,xn}, and by µn,j the marginal distribution of µn on Xj .

2.2 PROBABILITY MODEL FOR THE LIKELIHOOD

We consider a nonparametric regression model in which the conditional distribution of Yi given xi

follows an exponential family (Brown et al., 2010; Chen, 2024):
Yi|xi ∼ Qf(xi),η (1)

for i = 1, ..., n, where f : X → R is a regression function and η is a nuisance parameter. Here, we
assume that Qf(x),η admits the density function qf(x),η defined as

qf(x),η(y) = exp

(
f(x)y −A(f(x))

η
+ S(y, η)

)
, (2)

where A(·) is the log-partition function, ensuring that the density integrates to one. We assume that
each input vector xi has been rescaled, yielding xi ∈ [0, 1]p for i = 1, ..., n.
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Example 1. Gaussian regression model: Consider the gaussian regression Y = f(x) + ϵ, where
ϵ ∼ N(0, σ2

ϵ ). In this case, the density in (2), corresponds to A(f(x)) := f(x)2/2 and S(y, η) :=
−y2/2η − (log 2πη)/2 with η = σ2

ϵ .

Example 2. Logistic regression model: For a binary outcome Y ∈ {0, 1}, consider the logistic
regression model Y |x ∼ Bernoulli(σ(f(x))). In this case, there is no nuisance parameter, i.e.,
η = 1. This distribution can be expressed as the exponential family with A(f(x)) := log(1+ ef(x))
and S(y, η) := 0.

Likelihood: Let D(n) = {(x1, y1), . . . , (xn, yn)} be given data which consist of n pairs of ob-
served input vectors and response variables. For the likelihood, we assume that yis are independent
realizations of Yi|xi ∼ Qf(xi),η, where f and η are the parameters to be inferred.

2.3 FUNCTIONAL ANOVA MODEL

For S ⊆ [p], we say that fS satisfies the sum-to-zero condition with respect to a probability measure
µ on X if

For S ⊆ [p], ∀ j ∈ S and ∀ xS\{j} ∈ XS\{j},

∫
Xj

fS(xS)µj(dxj) = 0 (3)

holds, where µj is the marginal probability measure of µ on Xj .
Theorem 2.1 (Functional ANOVA Decomposition (Hooker, 2007; Owen, 2013)). Any real-valued
function f defined on Rp can be uniquely decomposed as

f(x) =
∑
S⊆[p]

fS(xS), (4)

almost everywhere with respect to Πp
j=1µj , where each component fS satisfies the sum-to-zero con-

dition with respect to µ.

Theorem 2.1 guarantees a unique decomposition of any real-valued multivariate function f into the
components satisfying the sum-to-zero condition with respect to the probability measure µ. In (4),
we refer to fS as main effects when |S| = 1, as second-order interactions when |S| = 2, and so on.
For brevity, we use the empirical distribution µn for µ when referring to the sum-to-zero condition.

2.4 TENSOR PRODUCT NEURAL NETWORKS

In this subsection, we review Tensor Product Neural Network (TPNN) proposed by Park et al. (2025)
since we use it as a building block of our proposed BNN. TPNN is a specially designed neural
network to satisfy the sum-to-zero condition.

For each S ⊆ [p], TPNN is defined as fS(xS) =
∑KS

k=1 βS,kϕ(xS |S,BS,k,RS,k) for component
fS , where βS,k ∈ R, BS,k = (bS,j,k, j ∈ S) ∈ R|S|, and RS,k = (γS,j,k, j ∈ S) ∈ (0,∞)|S|. Here,
ϕ(xS |S,BS,k,RS,k) is defined as

ϕ(xS |S,BS,k,RS,k) :=
∏
j∈S

(
1− σ

(
xj − bS,j,k

γS,j,k

)
+ cj(bS,j,k, γS,j,k)σ

(
xj − bS,j,k

γS,j,k

))
, (5)

where

cj(b, γ) := −
(
1−

∫
Xj

σ

(
xj − b

γ

)
µn,j(dxj)

)/∫
Xj

σ

(
xj − b

γ

)
µn,j(dxj). (6)

The term cj(b, γ) is introduced to make ϕ(xS |S,BS,k,RS,k) satisfy the sum-to-zero condition.
Finally, Park et al. (2025) proposes ANOVA-TdPNN, which assumes that:

f(x) =
∑

S⊆[p],|S|≤d

KS∑
k=1

βS,kϕ(xS |S,BS,k,RS,k), (7)

3
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where d ∈ N+ and {KS , S ⊆ [p], |S| ≤ d} are hyperparameters. Since ϕ(·|S,BS,k,RS,k) satisfies
the sum-to-zero condition for any S ⊆ [p], fANOVA-TdPNN also satisfies the sum-to-zero condition.
Therefore, we can estimate the components uniquely by estimating the parameters in ANOVA-
TdPNN.

Here, d is the maximum order of components. Note that as the maximum order d increases, the
number of TPNNs in (7) grows exponentially; therefore, in practice d is set to 1 or 2 due to the
limitation of computing resources. In addition, choosing KSs is not easy. To further illustrate these
limitations, the experiments on the runtime of Bayesian-TPNN and ANOVA-T2PNN are presented
in Section G of Appendix.

3 BAYESIAN TENSOR PRODUCT NEURAL NETWORKS

Figure 1: Bayesian-TPNN with p = 4 and K = 5.

In (7), instead of fixing S, we treat S also as learn-
able parameters. That is, we consider the follow-
ing model:

f(x) =
K∑

k=1

βkϕ(x|Θk), (8)

where Θk = (Sk,bSk,k,ΓSk,k), Sk ⊆ [p], and
aim to learn K and (Sk, k ∈ [K]) as well as the
other parameters. Here,

bSk,k := (bj,k, j ∈ Sk) ∈ [0, 1]|Sk|,

ΓSk,k := (γj,k, j ∈ Sk) ∈ (0,∞)|Sk|.

for k ∈ [K]. Note that K and Sk are considered
to be the parameters defining the architecture, but
they cannot be updated by a gradient descent al-
gorithm since K and Sks are not numeric parameters. Instead, we adopt a Bayesian approach in
which K and Sks are explored via an MCMC algorithm. We refer to the resulting model as Bayesian
Tensor Product Neural Networks (Bayesian-TPNN). Bayesian-TPNN can be understood as an edge-
sparse shallow neural network when K is the number of hidden nodes and SK is the set of input
variables linked to the k-th hidden node through active edges. See Figure 1 for an illustration.

3.1 PRIOR

The parameters in Bayesian-TPNN consist of K, BK := (β1, ..., βK), SK := (Sk, k ∈ [K]),
bSK ,K := (bSk,k, k ∈ [K]), ΓSK ,K := (ΓSk,k, k ∈ [K]) and the nuisance parameter η if it exists
(e.g. the variance of the noise in the gaussian regression model). The parameters can be categorized
into the three groups: (1) K for the node-sparsity, (2) Sk, k = 1, . . . ,K for the edge sparsity, and
(3) all the other parameters including (bSk,k,ΓSk,k, k = 1, ...,K). We use a hierarchical prior for
these three groups of parameters.

Prior for K: We consider the following prior distribution for K:

π(K = k) ∝ exp(−C0k log n), for k = 0, ...,Kmax, (9)

where Kmax ∈ N+ and C0 > 0 are hyperparameters. This prior is motivated by Kong et al. (2023).

Prior for SK |K: Conditional on K, we assume a prior that Sks are independent and each Sk

follows the mixture distribution:
p∑

d=1

wdUniform
(
power([p], d)

)
, (10)

where wds are defined recursively as follows: wd ∝
(
1 − padding(d)

)∏
ℓ<d padding(ℓ) with

padding(ℓ) := αadding(1 + ℓ)−γadding . Here, padding is the probability of adding a variable to Sk, con-
trolled by hyperparameters αadding and γadding. This prior is inspired by Bayesian CART (Chipman
et al., 1998), where Sk denotes split variables.

4
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Prior for the numeric parameters given K and SK: All the remaining parameters are numerical
ones and hence we use standard priors for them.

• Conditional on K, we assume a prior that βks are independent and follow βk ∼ N(0, σ2
β),

where σβ > 0 is a hyperparameter.

• Conditional on Sk, we let bj,ks and γj,ks be all independent and bj,k ∼ Uniform(0, 1)
and γj,k ∼ Gamma(aγ , bγ) for j ∈ Sk and k ∈ [K], where aγ > 0 and bγ > 0 are
hyperparameters.

• For the nuisance parameter in the gaussian regression model, where the nuisance parameter
η corresponds to σ2, we set σ2 ∼ IG

(
v
2 ,

vλ
2

)
, where v > 0 and λ > 0 are hyperparameters

and IG(·, ·) is the inverse gamma distribution.

3.2 MCMC ALGORITHM FOR POSTERIOR SAMPLING

We now develop an MCMC algorithm for posterior sampling of Bayesian-TPNN. Our overall sam-
pling strategy is to update K, SK and the remaining numeric parameters iteratively using the cor-
responding Metropolis-Hastings (MH) algorithms, which is motivated by the MCMC algorithm of
Bayesian additive regression tree (Chipman et al., 2010). A novel part of our MCMC algorithm,
however, is to devise a specially designed proposal distribution in the MH algorithm such that the
proposal distribution encourages the MCMC algorithm to visit important higher-order interactions
more frequently. For this purpose, we introduce two special tools. First, we employ a pretrained
probability mass function pinput(·) on [p], which represents the importance of each input variable.
Further, let pinput(·|S) be the distribution pinput(·) restricted to S ⊆ [p]. See Remark at the end of this
subsection for the choice of pinput(·).
The second tool is a stepwise search. The stepwise search adds a new node by first copying one
of existing nodes and add an edge. By doing so, a newly added node has one more edges than the
copied node and thus corresponds to an interaction whose order is larger than the copied one by 1.
By keeping the copied node also in the model, we can avoid dramatic loss of accuracy.

To be more specific, let θ := (K,SK ,bSK ,K ,ΓSK ,K ,BK , η) be given current parameters. We up-
date these parameters by sequentially updating K, (SK ,bSK ,K ,ΓSK ,K ,BK) and the nuisance pa-
rameter η. We now describe these 3 updates.

Updating K: First, we devise a proposal distribution of Knew given K used in the MH algorithm.
For a given K, we set Knew as K − 1 or K + 1 with probability K/Kmax and 1 − K/Kmax

respectively. If Knew = K − 1, we remove one of (Sk,bSk,k,ΓSk,k, βk), k ∈ [K] from θ with
probability 1/K to have θnew.

For the case Knew = K + 1, the crucial mission is to design an appropriate proposal of
(Snew

K+1,b
new
Snew
K+1,K+1,Γ

new
Snew
K+1,K+1, β

new
K+1). Specifically, we first generate Snew

K+1 and then generate
(bnew

Snew
K+1,K+1,Γ

new
Snew
K+1,K+1, β

new
K+1) conditional on Snew

K+1. The proposal of Snew
K+1 consists of the fol-

lowing two alternations:

• Random: Generate Snew
K+1 from the prior distribution.

• Stepwise: Propose Snew
K+1 = Sk∗ ∪{jk∗}, where k∗ ∼ Uniform[K] and jk∗ ∼ pinput(·|Sc

k∗).

The MH algorithm randomly selects one of {Random, Stepwise} with probability M/(M + K),
and K/(M + K), where M > 0 is a hyperparameter. This proposal combines random and step-
wise search, where Snew

K+1 is sampled as a completely new index set from the prior with prob-
ability M/(M + K), or taken as a higher-order modification of one of S1, . . . , SK with prob-
ability K/(M + K). We employ Stepwise move to encourage the proposal distribution to ex-
plore higher-order interactions more frequently without losing much information in the current
model (i.e. keeping all of the components in the current model). Once Snew

K+1 is given, we gener-
ate (bnew

Snew
K+1,K+1,Γ

new
Snew
K+1,K+1, β

new
K+1) from the prior distribution. See Section A.1 of Appendix for

the acceptance probability for this proposal θnew and see Section C.5 of Appendix for experimental
results demonstrating the effectiveness of the proposed MH.

5
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Updating (Sk,bSk,k,ΓSk,k, βk) for k ∈ [K]: For a given k, we consider the following three
possible alterations of Sk and (bSk,k,ΓSk,k) for the proposal of (Snew

k ,bnew
Snew
k ,k,Γ

new
Snew
k ,k):

• Adding: Adding a new variable jnew, which is selected randomly from Sc
k according to

the probability distribution pinput(·|Sc
k), and generating bSk,jnew and γSk,jnew from the prior

distribution.
• Deleting: Uniformly at random, select an index j in Sk and delete it from Sk.
• Changing: Select an index j uniformly at random from Sk and index jnew from Sc

k accord-
ing to the probability distribution of pinput(·|Sc

k) and delete j from Sk and add jnew to Sk.
Then, generate bSk,jnew and γSk,jnew from the prior distribution.

The MH algorithm randomly selects one of {Adding, Deleting, Changing} with probability
(qadd, qdelete, qchange). This proposal distribution is a modification of one used in BART (Chipman
et al., 1998; Kapelner & Bleich, 2016) to grow/prune or modify a current decision tree. See Section
A.2 of Appendix for the acceptance probability of (Snew

k ,bnew
Snew
k ,k,Γ

new
Snew
k ,k).

Once (Sk,bSk,k,ΓSk,k) are updated, we update all of the numeric parameters (bSk,k,ΓSk,k, βk)
by the MH algorithm with the Langevin proposal (ros, 1978) to accelerate the convergence of the
MCMC algorithm further. Finally, we repeat this update for k ∈ [K] sequentially. See Appendix
A.3 for details and Section I for a toy example illustrating the proposed MCMC algorithm.

Updating the nuisance parameter η : In the gaussian regression model, the nuisance parameter
η corresponds to the error variance σ2

g . Since the conditional posterior distribution of σ2
g is Inverse

Gamma distribution, it is straightforward to draw σ2
g from π(σ2

g |others). Details are provided in
Section A.4 of Appendix.

Algorithm 1 MCMC algorithm of Bayesian TPNN.
Input {(xi, yi)}ni=1 : data, K : initial number of hidden nodes, Mmcmc : the number of MCMC
iterations,

1: for i : 1 to Mmcmc do
2: Update K
3: for k : 1 to K do
4: Update Sk,bSk,k,ΓSk,k

5: Update bSk,k,ΓSk,k, βk

6: end for
7: Update η
8: end for

Predictive Inference. Let θ̂1, ..., θ̂N denote samples drawn from the posterior distribution. The
predictive distribution is then estimated as p̂(y|x) =

∑N
i=1 p(y|x, θ̂i)/N .

Remark 3.1. When no prior information is available on the importance of input variables, we use a
uniform distribution for pinput. However, this noninformative choice often performs poorly when the
dimension p is large and higher-order interactions exist. Our numerical studies in Section C.4 reveal
that the choice of a good pinput is important for exploring higher-posterior regions. In practice, we
could specify pinput based on the importance measures of each input variable obtained by a standard
method such as Molnar (2020). That is, we let pinput(j) ∝ ωj , where ωj is an importance measure
of the input variable j ∈ [p]. In our numerical study, we use the global SHAP value (Molnar, 2020)
based on a pretrained Deep Neural Network (DNN) for the importance measure or the feature
importance using a pretrained eXtreme Gradient Boosting (XGB, Chen & Guestrin (2016)).

3.3 POSTERIOR CONSISTENCY

For theoretical justification of Bayesian-TPNN, in this section, we prove the posterior consistency of
Bayesian-TPNN. To avoid unnecessary technical difficulties, we assume that ϕ(x|Θk) in (8) satisfies
the sum-to-zero condition with respect to the uniform distribution. This can be done by using the
uniform distribution instead of the empirical distribution in (6).

6
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We assume that (x1, y1), ..., (xn, yn) are realizations of independent copies (X1, Y1), . . . , (Xn, Yn)
of (X, Y ) whose distribution Q0 is given as

X ∼ PX and Y |X = x ∼ Qf0(x),1,

where f0 is the true regression function. We let η = 1 for technical simplicity. Suppose that f0(x) =∑
S⊆[p] f0,S(xS), where each f0,S satisfies the sum-to-zero condition with respect to the uniform

distribution. We denote X(n) = {X1, ...,Xn} and Y (n) = {Y1, ..., Yn}. Let πξ(·) ∝ π(·)I(∥f∥∞ ≤
ξ), where π(·) is the prior distribution of f defined in Section 3.1. Under regularity conditions (S.1),
(S.2), (S.3) and (S.4) in Section M.2 of Appendix, Theorem 3.2 proves the posterior consistency
of each component of Bayesian-TPNN.

Theorem 3.2 (Posterior Consistency of Bayesian-TPNN). Assume that 0 < infx∈X pX(x) ≤
supx∈X pX(x) < ∞, where pX(x) is the density of PX. Then, there exists ξ > 0 such that for
any ε > 0, we have

πξ

(
f : ∥f0,S − fS∥2,n > ε

∣∣∣X(n), Y (n)
)
−→ 0 (11)

for all S ⊆ [p] in Qn
0 as n −→ ∞, where πξ(·|X(n), Y (n)) is the posterior distribution of Bayesian-

TPNN with the prior πξ.

4 EXPERIMENTS

We present the results of the numerical experiments in this section, while further results and com-
prehensive details regarding the datasets, implementations of baseline models, and hyperparameter
selections are provided in Sections B to H of Appendix.

4.1 PREDICTION PERFORMANCE

Table 1: The averaged prediction accuracies (the standard errors) on real datasets.
Interpretable model Blackbox model

Dataset Measure Bayesian
TPNN

ANOVA
TPNN NAM Linear XGB BART mBNN

ABALONE (Warwick et al., 1995)

RMSE ↓
(SE)

2.053
(0.26)

2.051
(0.21)

2.062
(0.23)

2.244
(0.22)

2.157
(0.24)

2.197
(0.26)

2.081
(0.24)

BOSTON (Harrison Jr & Rubinfeld, 1978) 3.654
(0.49)

3.671
(0.56)

3.832
(0.67)

5.892
(0.77)

4.130
(0.56)

4.073
(0.67)

4.277
(0.51)

MPG (Quinlan, 1993) 2.386
(0.41)

2.623
(0.38)

2.755
(0.41)

3.748
(0.41)

2.531
(0.26)

2.699
(0.43)

2.897
(0.42)

SERVO (Ulrich, 1986) 0.351
(0.02)

0.594
(0.04)

0.802
(0.04)

1.117
(0.04)

0.314
(0.04)

0.342
(0.04)

0.301
(0.04)

FICO (fic, 2018)

AUROC ↑
(SE)

0.793
(0.009)

0.802
(0.008)

0.764
(0.019)

0.690
(0.010)

0.793
(0.009)

0.701
(0.015)

0.740
(0.008)

BREAST (Wolberg et al., 1993) 0.998
(0.001)

0.998
(0.001)

0.976
(0.003)

0.922
(0.010)

0.995
(0.002)

0.977
(0.006)

0.978
(0.002)

CHURN (chu, 2017) 0.849
(0.008)

0.848
(0.006)

0.835
(0.008)

0.720
(0.002)

0.848
(0.006)

0.835
(0.008)

0.833
(0.008)

MADELON (Guyon, 2004) 0.854
(0.013)

0.587
(0.013)

0.644
(0.005)

0.548
(0.011)

0.884
(0.006)

0.751
(0.011)

0.650
(0.018)

Table 2: Comparison of Bayesian models in view of uncertainty quantification on real datasets.
Bayesian-TPNN BART mBNN

Dataset CRPS NLL CRPS NLL CRPS NLL

ABALONE 1.372 (0.19) 2.260 (0.16) 1.384 (0.18) 2.261 (0.16) 1.399 (0.16) 2.226 (0.16)
BOSTON 2.202 (0.23) 3.411 (0.37) 2.623 (0.25) 3.400 (0.42) 3.144 (0.39) 3.488 (0.26)

MPG 1.510 (0.43) 2.511 (0.21) 1.553 (0.27) 2.530 (0.20) 2.142 (0.42) 2.710 (0.24)
SERVO 0.194 (0.01) 0.836 (0.10) 0.202 (0.02) 0.849 (0.08) 0.185 (0.02) 0.321 (0.08)

Dataset ECE NLL ECE NLL ECE NLL

FICO 0.036 (0.004) 0.554 (0.007) 0.054 (0.011) 0.632 (0.012) 0.219 (0.032) 0.773 (0.046)
BREAST 0.129 (0.009) 0.211 (0.014) 0.118 (0.010) 0.143 (0.032) 0.292 (0.018) 0.523 (0.025)
CHURN 0.031 (0.001) 0.418 (0.008) 0.035 (0.001) 0.430 (0.010) 0.168 (0.037) 0.531 (0.036)

MADELON 0.076 (0.004) 0.478 (0.009) 0.066 (0.004) 0.685 (0.032) 0.252 (0.020) 0.840 (0.031)

We compare the prediction performance of Bayesian-TPNN with baseline models including
ANOVA-TPNN (Park et al., 2025), Neural Additive Models (NAM, Agarwal et al. (2021)), Lin-
ear model, XGB (Chen & Guestrin, 2016), Bayesian Additive Regression Trees (BART, Chipman
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et al. (2010), Linero (2025)) and mBNN (Kong et al., 2023). We analyze eight real datasets and split
each dataset into training and test sets with a ratio of 0.8 to 0.2. This random split is repeated five
times to obtain five prediction performance measures.

Table 1 reports the prediction accuracies (the Root Mean Square Error (RMSE) for regression tasks
and the Area Under the ROC Curve (AUROC) for classification tasks) of the Bayes estimator of
Bayesian-TPNN along with those of its competitors, where the best results are highlighted by bold.
Overall, Bayesian-TPNN achieves prediction performance comparable to that of the baseline mod-
els. Further details of the experiments are provided in Section B.3 of Appendix.

Table 2 compares Bayesian-TPNN with the baseline Bayesian models in view of uncertainty quan-
tification. As uncertainty quantification measures, we consider Continuous Ranked Probability Score
(CRPS, Gneiting & Raftery (2007)) and Negative Log-Likelihood (NLL) for regression tasks, and
Expected Calibration Error (ECE, Kumar et al. (2019)) together with NLL for classification tasks.
The results indicate that Bayesian-TPNN compares favorably with the baseline models in uncer-
tainty quantification, which is a bit surprising since Bayesian-TPNN is a transparent model while
the other Bayesian models are black-box models. The results of uncertainty quantification for non-
Bayesian models are presented in Section H.1 of Appendix, which are inferior to Bayesian models.

4.2 PERFORMANCE IN COMPONENT SELECTION

Table 3: Performance of component selection on synthetic datasets.

True model f(1) f(2) f(3)

Order Bayesian
TPNN

ANOVA
T2PNN NA2M Bayesian

TPNN
ANOVA
T2PNN NA2M Bayesian

TPNN
ANOVA
T2PNN NA2M

1 1.000
(0.000)

0.999
(0.001)

0.528
(0.023)

0.831
(0.008)

0.859
(0.010)

0.417
(0.015)

1.000
(0.000)

0.781
(0.021)

0.522
(0.011)

2 1.000
(0.000)

0.978
(0.007)

0.508
(0.024)

0.985
(0.003)

0.949
(0.003)

0.838
(0.009)

0.922
(0.019)

0.704
(0.007)

0.542
(0.017)

3 0.740
(0.022) — — 0.966

(0.018) — — 0.661
(0.022) — —

Table 4: Top 5 components: the important scores are normalized by their maximum.
Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Dataset Component Score Component Score Component Score Component Score Component Score

MADELON (49, 242, 319, 339) 1.000 (129, 443, 494) 0.472 (379, 443) 0.374 106 0.322 (242, 443) 0.301
SERVO 1 1.000 (1, 3, 4, 5) 0.554 4 0.202 (4, 6) 0.193 8 0.173

We investigate whether Bayesian-TPNN identifies the true signal components well similarly to
the setting in Park et al. (2025); Tsang et al. (2017). Synthetic datasets are generated from
Y = f (k)(x) + ϵ, k = 1, 2, 3, where f (k) is the true regression model and x ∈ R50. Details of
the experiment are described in Section B.5.

We define the importance score of each component as its ℓ2 -norm, i.e., ∥fS∥2,n. A large ∥fS∥2,n
implies fS is a signal. Table 3 reports the averages (standard errors) of AUROCs of the importance
scores obtained by Bayesian-TPNN, ANOVA-T2PNN, and NA2M for interaction order up to 3. Note
that extending ANOVA-T2PNN and NA2M to include the third order interactions requires additional
19, 600 neural networks, and so we give up ANOVA-T3PNN and NA3M due to the limitations of our
computational environment. Overall, Bayesian-TPNN achieves the best performance in component
selection across orders and datasets, and detects higher-order interactions reasonably well.

Table 4 presents the five most important components selected by Bayesian-TPNN on MADELON and
SERVO datasets. We use these datasets as they highlight the performance gap between models with
and without higher-order interactions. Notably, Bayesian-TPNN identifies a 4th-order interaction as
the most important component in the MADELON data, suggesting that its ability to capture higher-
order interactions largely explains its superior prediction performance over ANOVA-TPNN on these
datasets. See Section B.2 of Appendix for descriptions of the variables in MADELON and SERVO.

4.3 INTERPRETATION OF BAYESIAN-TPNN

The functional ANOVA model can provide various interpretations of the estimated prediction model
through the estimated components as Park et al. (2025) illustrates. In particular, by visualizing the
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Figure 2: Plots of the functional relations of the important main effects estimated by Bayesian-TPNN
on the BOSTON dataset. Each plot shows the Bayes estimate and 95% credible interval of each component.
Labels indicate the names of the input variables along with the normalized importance scores.

estimated components, we can understand how each group of input variables affects the response
variable. Figure 2 presents the plots of the functional relations for the important main effects esti-
mated by Bayesian-TPNN on the BOSTON dataset. Each plot shows the Bayes estimate and the 95%
credible interval of the selected component. The leftmost plot shows increasing trend, indicating that
as the average number of rooms per dwelling increases, the price of the housing increases as well.
The second plot reveals a strictly decreasing relationship between the proportion of lower status of
the population and the housing price. The third plot indicates that housing prices decrease sharply
once the crime rate exceeds a certain threshold. The fourth plot shows that houses located farther
from major employment centers are generally less expensive than those situated closer to such hubs.
More discussions about interpretation of Bayesian-TPNN are provided in Section E of Appendix.

4.4 APPLICATION TO CONCEPT BOTTLENECK MODELS

Concept Bottleneck Model (CBM, Koh et al. (2020)) is an interpretable model in which a CNN first
receives an image and predicts its concepts. These predicted concepts are then used to infer the target
label, enabling explainable predictions. To illustrate that Bayesian-TPNN can be amply combined
with CBM, we consider Independent Concept Bottleneck Models (ICBM, Koh et al. (2020)), in
which a CNN is first trained and then frozen, after which a final classifier is trained on the predicted
concepts. We compare Bayesian-TPNN with other baselines for learning the final classifier. In the
experiment, we use CELEBA-HQ (Lee et al., 2020) and CATDOG (Jikadara, 2023) datasets, where
we generate 5 concepts using GPT-5 (OpenAI, 2025), and we obtain the concept labels for each
image via CLIP (Radford et al., 2021). The target labels for CELEBA-HQ and CATDOG are gender
and cat/dog classification, respectively. The details are provided in Section B.4 of Appendix.

Table 5: Prediction performance with CBM on image datasets.
Dataset Measure Bayesian-TPNN ANOVA-T2PNN NA2M Linear

CELEBA-HQ AUROC ↑ 0.936 (0.002) 0.923 (0.002) 0.922 (0.002) 0.893 (0.003)
CATDOG AUROC ↑ 0.878 (0.002) 0.853 (0.002) 0.851 (0.002) 0.711 (0.001)

Table 5 presents the averages and standard errors of AUROCs when Bayesian-TPNN, ANOVA-
T2PNN, NA2M, and Linear model are used in the final classifier. Among them, Bayesian-TPNN
attains the highest prediction performance, which can be attributed to its capability to estimate
higher-order components.

5 CONCLUSION

We proposed Bayesian-TPNN, a novel Bayesian neural network for the functional ANOVA model
that can detect higher-order signal components effectively and thus achieve superior prediction per-
formance in view of prediction accuracy and uncertainty quantification. In addition, Bayesian-TPNN
is also theoretically sound since it achieves the posterior consistency.

We used a predefined distribution pinput for the selection probability of each input variable in the
MH algorithm. It would be interesting to update pinput along with the other parameters. For example,
it would be possible to let pinput(j) be proportional to the number of basis functions in the current
Bayesian-TPNN model which uses xj . This would be helpful when p is large. We will pursue this
algorithm in the near future.
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Reproducibility Statement. We have made significant efforts to ensure the reproducibility of
our results. The source code implementing our proposed model and experiments is provided in
the supplementary material. Detailed descriptions of the experimental setup, hyperparameters and
datasets are provided in Section B of Appendix. Additional ablation studies are reported in Section
C of Appendix.
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APPENDIX

A DETAILS OF THE MCMC ALGORITHM

For given data D(n), we denote x(n) = {x1, ...,xn}. Let ωj = pinput(j).

A.1 SAMPLING K VIA MH ALGORITHM

A.1.1 CASE OF Knew = K + 1

From current state θ = (K,SK ,bSK ,K ,ΓSK ,K ,BK , η), we propose a new state θnew using one of
{Random, Stepwise}. Here, θnew is defined as

θnew = (K + 1,SK+1,bSK+1,K+1,ΓSK+1,K+1,BK+1, η),

where

SK+1 = (SK , Snew
K+1),

bSK+1,K+1 = (bSK ,K ,bSnew
K+1,K+1),

ΓSK+1,K+1 = (ΓSK ,K ,ΓSnew
K+1,K+1),

BK+1 = (BK , βnew
K+1).

We accept the new state θnew with probability

Paccept = min

{
1,

n∏
i=1

qfθnew (xi),η(yi)

qfθ(xi),η(yi)

π(θnew)

π(θ)

q(θ|θnew)

q(θnew|θ)

}
,

where

fθ(x) =
∑

k∈[K]

βkϕ(x|Sk,bSk,k,ΓSk,k)

and

fθnew(x) = fθ(x) + βnew
K+1ϕ(x|Snew

K+1,bSnew
K+1,K+1,ΓSnew

K+1,K+1).

To compute the acceptance probability, we calculate the prior ratio π(θnew)/π(θ), and then the pro-
posal ratio q(θ|θnew)/q(θnew|θ).

Prior Ratio. The prior ratio is given as

π(θnew)

π(θ)
=

π(K + 1)π(SK+1|K + 1)π(bSK+1,K+1|SK+1)π
(
ΓSK+1,K+1|SK+1

)
π (BK+1|K + 1)

π(K)π(SK |K)π(bSK ,K |SK)π (ΓSK ,K |SK)π (BK |K)

=
π(SK+1)π(bSK+1,K+1)π(ΓSK+1,K+1)π(βK+1)

exp(C0 logn)
.

Proposal Ratio. For q(θ|θnew), we have

q(θ|θnew) = Pr(K = Knew − 1)Pr(Choose one of Knew TPNNs for deletion)

=
Knew

Kmax

1

Knew .

For a given θ, a new state θnew is proposed in two ways: (1) Random move or (2) Stepwise move.
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For Random move, we have

q(θnew|θ,Random) = π(SKnew)π(bSnew
K+1,K+1)π(ΓSnew

K+1,K+1)π(β
new
K+1). (12)

For Stepwise move, we have

q(θnew|θ,Stepwise) = Pr(Snew
K+1)π(bSnew

K+1,K+1)π(ΓSnew
K+1,K+1)π(β

new
K+1).

Here, Pr(Snew
K+1) is defined as

Pr(Snew
K+1) =

K∑
k=1

Pr(Choose Sk from SK)Pr(Snew
K+1 = Sk ∪ {jnew}, jnew ∈ Sc

k)

=

K∑
k=1

1

K
I(∃jnew ∈ Sc

k s.t Sk ∪ {jnew} = Snew
K+1)

ωjnew∑
l∈Sc

k
ωl

.

To sum up, we have

q(θnew|θ) = q(θnew|θ,Random)Pr(Random) + q(θnew|θ,Stepwise)Pr(Stepwise).

A.1.2 CASE OF Knew = K − 1

Since the acceptance probability of the case Knew = K− 1 can be easily computed by reversing the
steps in Section A.1.1, we omit the details here.

A.2 SAMPLING Sk,bk,Γk VIA MH ALGORITHM

Here, we consider three moves - {Adding, Deleting and Changing}. Each move is chosen with the
probabilities Pr(Adding) = qadd, Pr(Deleting) = qdelete, Pr(Changing) = qchange, respectively.

In Adding move, the proposal distribution generates Snew
k = Sk ∪ {jadding}, where jadding ∈ [p]\Sk

is chosen with a given weight vectorωωω := (ω1, ..., ωp). Note that the likelihood cannot be calculated
using Snew

k alone, where Snew
k is the index set generated by the proposal distribution. To address this,

we also generate bjadding,k and γjadding,k from Uniform(0, 1) and Gamma(aγ , bγ), respectively.

Furthermore, in Deleting move, a variable to be deleted is uniformly selected from Sk and the new
component Snew

k = Sk\{jdeleting} is proposed accordingly. This move also involves removing the
associated numeric parameters bjdeleting,k and γjdeleting,k from bSk,k and ΓSk,k, respectively.

Finally, in Changing move, we choose an element jchange in Sk and replace it with a randomly
selected jnew ∈ Sc

k. The corresponding bjchange,k and γjchange,k are then replaced by new values
generated from Uniform(0, 1) and Gamma(aγ , bγ), respectively. This move results in Snew

k =
(Sk\{jchange}) ∪ {jnew}.

Here, Adding and Deleting affect the dimensions of bSk,k and ΓSk,k, thus the algorithm corre-
sponds to RJMCMC (Green (1995)) which requires Jacobian computations. However, since we ap-
plied the identity transformation on the auxiliary variables which are generated to match the dimen-
sions, the Jacobian is simply 1. This allows us to easily compute the acceptance probability.

A.2.1 TRANSITION PROBABILITY FOR PROPOSAL DISTRIBUTION

For a given weight vector ωωω, the proposal distributions qωωω of Θnew
k = (Snew

k ,bSnew
k ,k,ΓSnew

k ,k) are
defined as:

qωωω(Θ
new
k |Θk,Adding) =

ωjadding∑
j∈Sc

k
ωj

π(bjadding,k)π(γjadding,k)

qωωω(Θ
new
k |,Θk,Deleting) =

1

|Sk|

qωωω(Θ
new
k |Θk,Changing) =

1

|Sk|
ωjnew∑
j∈Sc

k
ωj

π(bjnew,k)π(γjnew,k).
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To sum up, we have

qωωω(Θ
new
k |Θk) = qωωω(Θ

new
k |Θk,Adding)Pr(Adding)

+ qωωω(Θ
new
k |Θk,Deleting)Pr(Deleting)

+ qωωω(Θ
new
k |Θk,Changing)Pr(Changing).

A.2.2 POSTERIOR RATIO

We define λλλk := (λk,1, . . . , λk,n) where λk,i =
∑

j ̸=k βjϕ(xi|Θj) for i = 1, ..., n and the likeli-
hood L(Θk, βk,λλλk, η) :=

∏n
i=1 qλk,i+βkϕ(xi|Θk),η(yi).

Then, we have

π(Θk|βk,λλλk,D(n), η) ∝ π(y1, ..., yn|Θk, βk,λλλk,x
(n), η)π(Θk)

= L(Θk, βk,λλλk, η)π(Θk).

Thus the posterior ratio of Θnew
k = (Snew

k ,bSnew
k ,k,ΓSnew

k ,k) to Θk = (Sk,bSk,k,ΓSk,k) is given as

π(Θnew
k |βk,λλλk,D(n), η)

π(Θk|βk,λλλk,D(n), η)
=

L(Θnew
k , βk,λλλk, η)

L(Θk, βk,λλλk, η)

π(Θnew
k )

π(Θk)
.

A.2.3 ACCEPTANCE PROBABILITY

In this section, for notational simplicity, we denote the hyperparameters αadding and γadding as α and
γ, respectively.

For a proposed new state Θnew
k , we accept it with probability

Paccept = min

{
1,

π(Θnew
k |βk,λλλk,D(n), η)

π(Θk|βk,λλλk,D(n), η)

qωωω(Θk|Θnew
k )

qωωω(Θk|Θnew
k )

}
= min

{
1,

L(Θnew
k , βk,λλλk, η)

L(Θk, βk,λλλk, η)

π(Θnew
k )

π(Θk)

qωωω(Θk|Θnew
k )

qωωω(Θ
new
k |Θk)

}
.

Now, we will show how the product of the prior and proposal ratios is calculated in the case of
Adding, Deleting, and Changing.

For Adding, we have

π(Θnew
k )

π(Θk)

qωωω(Θk|Θnew
k )

qωωω(Θ
new
k |Θk)

= α|Snew
k |−γ 1− α(1 + |Snew

k |)−γ

1− α|Snew
k |−γ

1

p− |Snew
k |+ 1

Pr(Deleting)
Pr(Adding)

∑
l∈Sc

k
ωl

ωjadding
.

For Deleting, we have

π(Θnew
k )

π(Θk)

qωωω(Θk|Θnew
k )

qωωω(Θ
new
k |Θk)

=
1

α(1 + |Snew
k |)−γ

1− α(1 + |Snew
k |)−γ

1− α(2 + |Snew
k |)−γ

(p− |Snew
k |) Pr(Adding)

Pr(Deleting)
ωjdeleting∑
l∈Sc

k
ωl

.

For Changing, we have

π(Θnew
k )

π(Θk)

qωωω(Θk|Θnew
k )

qωωω(Θ
new
k |Θk)

=
ωjchange

∑
l∈Sc

k
ωl

ωjnew
∑

l∈(Snew
k )c ωl

.
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A.3 SAMPLING bSk,k , ΓSk,k AND βk VIA MH ALGORITHM

We use Langevin Dynamics (ros (1978)) as a proposal distribution for bSk,k, ΓSk,k and βk. That is,
bnew
Sk,k

, Γnew
Sk,k

and βnew
k are proposed as

(bnew
Sk,k

,Γnew
Sk,k

, βnew
k ) = (bSk,k,ΓSk,k, βk) +

ϵ2

2
U(bSk,k,ΓSk,k, βk) + ϵM,

where

U(bSk,k,ΓSk,k, βk) = ∇(bSk,k,ΓSk,k,βk) log π(bSk,k,ΓSk,k, βk|λk, Sk,D(n), η).

Here, M ∼ N(0, I), where I is the (2|Sk|+1)× (2|Sk|+1) identity matrix and ϵ > 0 is a step size.

We accept the proposal (bnew
Sk,k

,Γnew
Sk,k

, βnew
k ) with a probability Paccept given as

Paccept =

{
1,

L(Sk,b
new
Sk,k

,Γnew
Sk,k

, βnew
k ,λλλk, η)

L(Sk,bSk,k,ΓSk,k, βk,λλλk, η)

π(bnew
Sk,k

)

π(bSk,k)

π(Γnew
Sk,k

)

π(ΓSk,k)

π(βnew
k )

π(βk)
exp

(
− 1

2
(∥Mnew∥22 − ∥M∥22)

)}
,

where ∥ · ∥2 is the Euclidean norm for a vector and

Mnew = M+
ϵ

2
U(bSk,k,ΓSk,k, βk) +

ϵ

2
U(bnew

Sk,k
,Γnew

Sk,k
, βnew

k ).

For ∇(bSk,k,ΓSk,k,βk) log π(bSk,k,ΓSk,k, βk|λλλk, Sk,D(n), η), we will calculate

∇bSk,k
log π(bSk,k, |λλλk, βk, Sk,ΓSk,k,D(n), η),

∇ΓSk,k
log π(ΓSk,k|λλλk, βk, Sk,bSk,k,D(n), η),

and

∇βk
log π(βk|λλλk, Sk,bSk,k,ΓSk,k,D(n), η).

A.3.1 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO bSk,k

Without loss of generality, let Sk = {1, ..., d}.

Since

π(bSk,k|λλλk, βk, Sk,ΓSk,k,D(n), η) ∝ L(λλλk, βk, Sk,bSk,k,ΓSk,k, η),

the j-th gradient is given as

∂

∂bj,k
log π(bSk,k|λλλk, βk, Sk,ΓSk,k,D(n), η) =

∂

∂bj,k

n∑
i=1

log qf(xi),η(yi),

where f(xi) = λk,i + βk

∏
l∈Sk

ϕ(xi,l|{l}, bl,k, γl,k).
In turn, we have

∂

∂bj,k

n∑
i=1

log qf(xi),η(yi)

=

n∑
i=1

(
∂ log qf(xi),η(yi)

∂f(xi)

∂f(xi)

∂bj,k

)

= βk

n∑
i=1

∂ log qf(xi),η(yi)

∂f(xi)

∂ϕ(xi,j |{j}, bj,k, γj,k)
∂bj,k

∏
l ̸=j,l∈Sk

ϕ(xi,l|{l}, bl,k, γl,k)

 .
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Here,

ϕ(xi,j |{j}, bj,k, γj,k) = 1− σ

(
xi,j − bj,k

γj,k

)
+ cj(bj,k, γj,k)σ

(
xi,j − bj,k

γj,k

)
,

cj(bj,k, γj,k) = −
(
1− c̃j(bj,k, γj,k)

)/
c̃j(bj,k, γj,k),

where c̃j(b, γ) :=
∫
Xj

σ
(

u−b
γ

)
µn,j(du).

Then, we have

∂ϕ(xi,j |{j}, bj,k, γj,k)
∂bj,k

=− 1

γj,k
σ

(
xi,j − bj,k

γj,k

)∫
Xj

σ̃

(
u− bj,k
γj,k

)
µn,j(du)

+
1

γj,k c̃j(bj,k, γj,k)
σ̃

(
xi,j − bj,k

γj,k

)
,

where σ̃(x) := σ(x)(1− σ(x)).

A.3.2 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO ΓSk,k

Without loss of generality, we let Sk = {1, ..., d}. Similarly to Section A.3.1 of Appendix, we can
derive the gradient of the log posterior with respect to γj,k as

∂

∂γj,k
log π(ΓSk,k|λλλk, βk, Sk,ΓSk,k,D(n), η)

=

(
∂

∂γj,k

n∑
i=1

log qf(xi),η(yi)

)
+ (aγ − 1)

1

γj,k
− 1

bγ

From f(xi) = λk,i + βk

∏
l∈Sk

ϕ(xi,l|{l}, bl,k, γl,k), we have

∂

∂γj,k

n∑
i=1

log qf(xi),η(yi)

=

n∑
i=1

(
∂ log qf(xi),η(yi)

∂f(xi)

∂f(xi)

∂γj,k

)

= βk

n∑
i=1

∂ log qf(xi),η(yi)

∂f(xi)

∂ϕ(xi,j |{j}, bj,k, γj,k)
∂γj,k

∏
l ̸=j,l∈Sk

ϕ(xi,l|{l}, bl,k, γl,k)

 .

Here,

∂ϕ(xi,j |{j}, bj,k, γj,k)
∂γj,k

= −

∫
Xj

u−bj,k
γ2
j,k

σ̃
(

u−bj,k
γj,k

)
µn,j(du)

c̃j(bj,k, γj,k)2
σ

(
xi,j − bj,k

γj,k

)
− (cj(bj,k, γj,k)− 1)

xi,j − bj,k
γ2
j,k

σ̃

(
xi,j − bj,k

γj,k

)
.

A.3.3 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO βk

The gradient of the log posterior for βk is given as

∇βk
log π(βk|λk, Sk,bSk,k,ΓSk,k,D(n), η) =

n∑
i=1

∂ log qf(xi),η(yi)

∂f(xi)
ϕ(xi|Θk)−

βk

σ2
β

.
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A.4 SAMPLING NUISANCE PARAMETER η

We only consider the nuisance parameter in the gaussian regression model:

Yi|xi ∼ N(·|f(xi), σ
2
g)

for i = 1, ..., n, where σ2 is a nuisance parameter. When the prior distribution is an inverse gamma
distribution

σ2
g ∼ IG

(
v

2
,
vλ

2

)
, (13)

we have

σ2
g |K,BK ,SK ,bSK ,K ,ΓSK ,K ,D(n) ∼ IG

(
v

2
,

1
n

∑n
i=1(yi − f(xi))

2 + vλ

2

)
, (14)

and thus σ2
g can be sampled from the conditional posterior easily.
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B DETAILS OF THE EXPERIMENTS

B.1 DATA DESCRIPTION

Table 6: Descriptions of real datasets.
Dataset n p Task

ABALONE 4,178 8 Regression
BOSTON 506 13 Regression

MPG 398 7 Regression
SERVO 167 4 Regression

FICO 10,459 23 Classification
BREAST 569 30 Classification
CHURN 7,043 20 Classification

MADELON 4,400 500 Classification

CELEBA-HQ 30,000 — Classification
CATDOG 24,998 — Classification

B.2 FEATURE DESCRIPTIONS FOR MADELON AND SERVO DATASETS

Table 7: Feature index and its corresponding description for SERVO dataset.
Feature index Feature description

1 Proportional gain setting for the servo motor.
2 Velocity gain setting for the servo motor.
3 Presence of Motor type A
4 Presence of Motor type B
5 Presence of Motor type C
6 Presence of Motor type D
7 Presence of Motor type E
8 Presence of Screw type A
9 Presence of Screw type B
10 Presence of Screw type C
11 Presence of Screw type D
12 Presence of Screw type E

Table 7 presents the feature descriptions for SERVO dataset (Ulrich, 1986). MADELON (Guyon,
2004), introduced in the NIPS 2003 feature selection challenge, is a synthetic binary classification
dataset with 500 features, only a few of which are informative while many are redundant or irrele-
vant.

B.3 EXPERIMENT DETAILS FOR TABULAR DATASET

Data Preprocessing. All of the categorical input variables are encoded using the one-hot encod-
ing. For continuous ones, the inverse of the empirical marginal CDF is used to transform them to
their marginal ranks for Bayesian-TPNN and ANOVA-TPNN, whereas they are transformed via the
mean-variance standardization for other baseline models.

Implementation of baseline models. For implementation of baseline models, we proceed as fol-
lows.

• ANOVA-TPNN : we use the official source code provided in
https://github.com/ParkSeokhun/ANOVA-TPNN.

• NA1M : we use the official source code provided in
https://github.com/AmrMKayid/nam and NA2M is implemented by extending
the code of NA1M.

• Linear : We use ‘scikit-learn’ python package (Pedregosa et al., 2011).

• XGB : We use ‘xgboost’ python package (Chen & Guestrin, 2016).

• BART : We use ‘BayesTree’ R package (Chipman et al., 2010).

• mBNN : We use official code at https://github.com/ggong369/mBNN.
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Hyperparameters. For each model, we perform 5-fold cross validation over the following hyper-
parameter candidates to select the best configuration.

• Bayesian-TPNN

– We set the step size in Langevin proposal as 0.01 and qadd = 0.28, qdelete = 0.28 and
qchange = 0.44 as in Kapelner & Bleich (2016).

– We fix αadding = 0.95 and γadding = 2, as in Chipman et al. (2010).
– C0 ∈ {0.001, 0.005, 0.01}
– aγ ∈ {1, 2, 4}
– bγ ∈ {10−3, 5 · 10−3, 10−2}
– Kmax ∈ {100, 200, 300}
– σ2

β ∈ {10−4, 10−3, 10−2}
– M ∈ {1, 5}
– As in Chipman et al. (2010), for λ, we reparameterize it as qλ, where qλ = π(σ2 ≤
σ̂2

OLS) and σ̂2
OLS denotes the residual variance from estimated Linear model. The can-

didate values for qλ are {0.90, 0.95, 0.99}.
– We set MCMC iterations as 1000 after 1000 burn-in iterations.

• ANOVA-TPNN

– We set the hyperparameter candidates to be the same as those used in Park et al.
(2025).

– KS ∈ {10, 30, 50, 100}
– Adam optimizer with learning rate 5e-3.
– Batch size = 4,096
– Maximum order of component ∈ {1, 2}
– Epoch ∈ {500, 1000, 2000}

• NAM

– We set the architecture of the deep neural networks to three hidden layers with 64, 64,
and 32 units, following Agarwal et al. (2021).

– Adam optimizer with learning rate 5e-3 and weight decay 7.483e-9.
– Batch size = 4,096
– Maximum order of component ∈ {1, 2}
– Epoch ∈ {500, 1000, 2000}

• BART

– We set the hyperparmeter candidates similar to those in Chipman et al. (2010).
– Number of trees T ∈ {50, 100, 200}
– α = 0.95 and β = 2

– v ∈ {1, 3, 5}
– qλ ∈ {0.90, 0.95, 0.99}
– For σµ = 3/(k

√
T ), k ∈ {1, 2, 3, 5}.

– We set MCMC iterations as 1000 after 1000 burn-in iterations.

• XGB

– We consider the hyperparameter candidates used in Park et al. (2025).

• mBNN

– We consider the hyperparameter candidates similarly to Kong et al. (2023).
– Architecture ∈ { 2 hidden layers with 500 and 500 units, 2 hidden layers with 1000

and 1000 units }
– Sparsity hyperparameter λ ∈ {0.01, 0.1, 0.5}
– We set MCMC iterations as 1000 after 1000 burn-in iterations.
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Computational environments. In this paper, all experiments are conducted on a machine
equipped with an NVIDIA RTX 4000 GPU (24GB memory), an Intel(R) Xeon(R) Silver 4310 CPU
@ 2.10GHz, and 128GB RAM.

B.4 EXPERIMENT DETAILS FOR IMAGE DATASET

CNN model. For CNN that predicts concepts, we attach a linear head for each concept on top of
the pretrained ResNet18, and train both the ResNet-18 and the linear heads jointly.

Concept generating. Following Oikarinen et al. (2023), we use GPT-5 (OpenAI, 2025) to generate
concept dictionaries for CELEBA-HQ and CATDOG dataset. Specifically, we prompted GPT-5 as
follows:

• CelebAMask-HQ is a large-scale face image dataset containing 30,000 high-resolution face
images selected from CelebA, following CelebA-HQ. In this context, we aim to classify
gender using the CelebAMask-HQ dataset. Could you list five high-level binary concepts
that you consider most important for gender classification?

• When classifying images of cats and dogs, what are the five most important concepts to
consider?

Through GPT-5, we obtained a concept dictionary
{‘Facial hair’, ‘Makeup’, ‘Long hair’, ‘Angular contour’, ‘Accessories’}

for dataset CELEBA-HQ and another dictionary
{‘Pointed ear’, ‘Short snout’, ‘Almond eye’, ‘Slender/flexible body’, ‘Fine/uniform fur’}

for dataset CATDOG. Each concept c is divided into a positive part c+ and a negative part c−. For
example, concept ‘Makeup’ can be divided into ‘Makeup’ and ‘No Makeup’, and ‘Slender/flexible
body’ can be divided into ‘Slender/flexible body’ and ‘Bulky/varied body’. In turn, we use the pre-
trained CLIP encoder to convert c+ and c− as well as each image into embedding vectors. For each
concept, each image is then assigned a binary label by measuring which of the embeddings of c+
and c− the image embedding is closer to.

Hyperparameters. For ANOVA-T2PNN and NA2M are trained using the Adam optimizer with
a learning rate of 1e-3 and batch size of 512. For ANOVA-T2PNN, the numbers of basis KS are
all equal to K and K is determined using grid search on {10, 50, 100}. For the neural network in
NA2M, we set hidden layer with sizes (64,64,32). We implement Linear model as the linear logistic
regression using the ‘scikit-learn’ package (Pedregosa et al., 2011).

B.5 EXPERIMENT DETAILS FOR COMPONENT SELECTION

Table 8: Definitions of f (1), f (2) and f (3).
Function Equation

f(1)(x) πx1x2
√

2|x3| − sin−1(0.5x4) + log(|x3 + x5| + 1) +
x9

1 + |x10|

√
x7

1 + |x8|
− x2x7

f(2)(x) x1x2 + 2x3+x5+x6 + 2x3+x4+x5+x7 + sin(x7 sin(x8 + x9)) + arccos(0.9x10)

f(3)(x) tanh(x1x2 + x3x4)
√

|x5| + exp(x5 + x6) + log((x6x7x8)
2 + 1) + x9x10 +

1

1 + |x10|

Table 9: Distributions of input features for each synthetic function.
Function Distribution

f(1)(x) X1, X2, X3, X6, X7, X9 ∼iid U(0,1), X4, X5, X8, X10 ∼iid U(0.6,1) and X11, ..., X50 ∼iid U(-1,1)

f(2)(x) X1, ...., X50 ∼iid U(-1,1)
f(3)(x) X1, ...., X50 ∼iid U(-1,1)

We generate synthetic datasets from the regression model defined as

Y = f (k)(x) + ϵ,
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where ϵ ∼ N(0, σ2
ϵ ) and x ∈ R50. Here, f (k), k = 1, 2, 3 are true prediction model used in Tsang

et al. (2017) and defined in Table 8 and the input variables are generated from the distributions
in Table 9. Input variables indexed 1–10 are informative, as they affect the output, whereas input
variables 11–50 are non-informative. We choose σ2

ϵ such that the signal-to-noise ratio is 5.

To evaluate the ability to detect signal components, we conduct experiments in the same manner as
in Park et al. (2025). That is, we use AUROC based on the pairs of ∥f̂ (k)

S ∥2,n and r
(k)
S , computed

for all subsets S ⊆ [p] with |S| = 1, 2, 3, where f̂
(k)
S denotes the estimate of f

(k)
S in f (k) and

r
(k)
S = I(∥f (k)

S ∥2,n > 0) for k ∈ {1, 2, 3}.
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C ABLATION STUDIES

C.1 THE NUMBER OF BASIS K FOR VARIOUS VALUES C0

To evaluate the effect of C0 in (9) on the number of bases K, we conduct experiments with the
maximum number of bases Kmax set to 200, and 1000 iterations for both burn-in and MCMC up-
dates. Also, aγ and bγ are set to be 0.5 and we use ABALONE dataset. Figure 3 shows that K
decreases and RMSE increases as C0 increases. This result demonstrates that the hyperparameter
C0 effectively controls model complexity by regulating the number of bases K. A small value of C0

is recommended since an excessively large C0 can be detrimental to predictive performance.

Figure 3: Plots of the number of basis K and RMSEs on various C0 values.

C.2 IMPACT OF THE HYPERPARAMETERS aγ AND bγ ON PREDICTION PERFORMANCE

We conduct an experiment to evaluate the effect of shape parameter aγ and scale parameter bγ on
prediction performance. Except for aγ and bγ , the other hyperparameters of Bayesian-TPNN are set
identical to those in Section C.1 of Appendix, and we analyze ABALONE dataset. We observe that
prediction performance is relatively insensitive to the choice of the shape parameter aγ , whereas it
is somehow sensitive to the choice of the scale parameter bγ . Note that the scale of γ controls the
smoothness of each TPNN basis ϕ(x|Θ) and thus the smoothness of Bayesian-TPNN model.

Table 10: Prediction performance depends on various values of aγ and bγ .
bγ\aγ 0.5 1 2 3

1e-5 3.247 3.202 3.278 3.228

1e-4 3.224 3.215 3.184 3.175

0.01 3.211 3.182 3.184 3.175

0.1 3.213 3.258 3.282 3.343

C.3 IMPACT OF THE STEP SIZE IN THE LANGEVIN PROPOSAL

We conduct an experiment to investigate the effect of the step size in the Langevin proposal for
(bSk,k,ΓSk,k, βk). Except for the step size, the other hyperparameters of Bayesian-TPNN are set
identical to those in Section C.1 of Appendix, and we analyze ABALONE dataset. Table 11 presents
the prediction performances of Bayesian-TPNN for various step sizes. Our results show that overly
large step sizes in the Langevin proposal can degrade the prediction performance due to poor accep-
tance and unstable exploration, whereas a moderate range yields the best performance. Therefore, a
not too large step size is recommended in practice.

Table 11: Prediction performances of Bayesian-TPNN for various step sizes in the Langevin proposal .
Step size 0.01 0.02 0.04 0.08 0.1 0.2 0.3 0.4 0.5

RMSE 3.199 3.216 3.209 3.269 3.160 3.243 4.308 4.549 4.578
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C.4 IMPACT OF pINPUT ON ESTIMATING HIGHER-ORDER COMPONENTS

We conduct an experiment to evaluate the effects of using pinput other than the uniform distribu-
tion in the MH algorithm. We refer to the model with the uniform distribution for pinput as Uniform
Bayesian-TPNN, and the model where pinput is determined using the feature importance from a pre-
trained XGB as Bayesian-TPNN. Table 12 compares prediction performances of Uniform Bayesian-
TPNN (UBayesian-TPNN) and Bayesian-TPNN on MADELON dataset. To investigate why the pre-
diction performance improvement occurs when using the nonuniform pinput, we identify the 5 most
important components for each model whose results are presented in Table 13. UBayesian-TPNN
only detects two thrid-order interactions as signals and ignores even all of the main effects. In con-
trast, Bayesian-TPNN captures the fourth-order component as the most important but is also able to
capture other meaningful lower-order components including two main effects effectively.

We also analyze the synthetic datasets in Section 4.2 with UBayesian-TPNN, and the correspond-
ing results are reported in Table 14. These results amply imply that pinput plays an important role
in detecting higher-order components and leading to substantial improvements in both prediction
performance and component selection.

Table 12: Prediction performance on MADELON dataset.

Model UBayesian-TPNN Bayesian-TPNN

AUROC ↑ (SE) 0.739 (0.002) 0.854 (0.007)

Table 13: Top 5 components with the important scores normalized by the maximum.
Model Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Comp. Score Comp. Score Comp. Score Comp. Score Comp. Score

UBayesian-TPNN (203,289,421) 1.000 (30,149,212) 0.950 (148,176,298) 0.006 (75,232,442) 0.005 (64,373,379) 0.004
Bayesian-TPNN (49,242,319,339) 1.000 (129,443,494) 0.472 (379,443) 0.374 106 0.322 (242,443) 0.301

Table 14: Performance of component selection on the synthetic datasets.

True model f(1) f(2) f(3)

Order UBayesian
TPNN

Bayesian
TPNN

UBayesian
TPNN

Bayesian
TPNN

UBayesian
TPNN

Bayesian
TPNN

1 1.000
(0.000)

1.000
(0.000)

0.826
(0.024)

0.831
(0.008)

0.824
(0.009)

1.000
(0.000)

2 0.988
(0.010)

1.000
(0.000)

0.953
(0.006)

0.985
(0.003)

0.750
(0.006)

0.922
(0.019)

3 0.736
(0.050)

0.740
(0.022)

0.878
(0.020)

0.966
(0.018)

0.658
(0.011)

0.661
0.022

C.5 IMPACT OF STEPWISE SEARCH IN THE PROPOSAL OF K

We conduct an experiment to evaluate the effectiveness of Stepwise move in the proposal distri-
bution of K suggested in Section 3.2. We compare the performances of Bayesian-TPNN with and
without Stepwise move on MADELON dataset. Table 15 reports the averages and standard errors of
AUROCs, ECEs, and NLLs over 5 trials and Table 16 shows the top 5 important components. The
results suggest that the Stepwise move is helpful to detect higher-order interactions which in turn
leads to improvements in both prediction performance and uncertainty quantification.
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Table 15: Results of performance with and without Stepwise move.
With Stepwise move Without Stepwise move

AUROC ↑ (SE) 0.854 (0.007) 0.820 (0.002)
ECE ↓ (SE) 0.076 (0.004) 0.106 (0.007)
NLL ↓ (SE) 0.479 (0.009) 0.650 (0.005)

Table 16: Top 5 components with the important scores normalized by the maximum.
Model Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Comp. Score Comp. Score Comp. Score Comp. Score Comp. Score

With Stepwise move (49,242,319,339) 1.000 (129,443,494) 0.472 (379,443) 0.374 106 0.322 (242,443) 0.301
Without Stepwise move (129,242) 1.000 (29,339,379) 0.986 339 0.622 337 0.544 (242,443) 0.526

D EXPERIMENT FOR THE POISSON REGRESSION

In this section, we compare the prediction performance and uncertainty quantification of Bayesian-
TPNN with GBART (Linero, 2025) on the Poisson regression model. We consider the poisson re-
gression model defined as

Yi|xi ∼ Poisson(exp(f(xi))),

where f is the regression function. We generate a synthetic dataset of size 15,000 using the true
regression function f0 defined as

f0(x) = πx1x2
√

2|x3| − sin−1(0.5x4) + log(|x3 + x5|+ 1) +
x9

1 + |x10|

√
x7

1 + |x8|
− x2x7,

where input variable xi ∈ R10 are generated from Uniform(0, 1)10 for i = 1, ..., 15, 000. Table
17 presents the RMSE and NLL for Bayesian-TPNN and GBART, demonstrating that Bayesian-
TPNN achieves superior performance to GBART even in the Poisson regression. Here, the RMSE
is calculated between exp(f0(xi)) and exp(f̂(xi)) for i = 1, .., 15, 000, where f̂ is the Bayes
estimate. Figure 4 shows the scatter plot of predicted values exp(f̂(xi)) versus exp(f0(xi)) for
i = 1, ..., 15, 000. It implies that Bayesian-TPNN yields predictions much closer to the true values
compared to GBART.

Table 17: Prediction performance and uncertainty quantification on Poisson synthetic dataset.

Bayesian-TPNN GBART

RMSE ↓ 0.094 0.141
NLL ↓ 1.615 1.629

Figure 4: Scatter Plots between the true expectations and estimated ones.
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E EXPERIMENTS FOR INTERPRETABILITY

E.1 INTERPRETABILITY ON THE IMAGE DATASETS

In this section, we describe the local and global interpretations of CBM (Koh et al., 2020) with
Bayesian-TPNN on CELEBA-HQ and CATDOG datasets. Table 18 presents the description of con-
cepts used in CELEBA-HQ and CATDOG datasets.

Table 18: Description of image datasets.

Index CELEBA-HQ CATDOG

1 Facial hair Pointed ear
2 Makeup Short snout
3 Long hair Almond eye
4 Angular contour Slender/flexible body
5 Accessories Fine/uniform fur

Table 19: Normalized importance scores and ranks for the top 5 important components on the image
datasets.

CELEBA-HQ

Rank 1 2 3 4 5

Bayesian-TPNN Component index
Score

2
1.000

4
0.665

(2,3)
0.592

(2,4)
0.304

(1,5)
0.262

ANOVA-T2PNN
Component index

Score
(2,3)
1.000

1
0.482

(1,5)
0.284

4
0.262

5
0.211

Linear Component index
Score

2
1.000

1
0.783

4
0.549

5
0.328

3
0.304

CATDOG

Rank 1 2 3 4 5

Bayesian-TPNN Component index
Score

3
1.000

(3,4)
0.395

2
0.252

4
0.162

(2,3,4,5)
0.086

ANOVA-T2PNN
Component index

Score
(4,5)
1.000

3
0.883

(3,5)
0.882

4
0.716

(1,4)
0.453

Linear Component index
Score

5
1.000

1
0.698

3
0.352

2
0.023

4
0.021

Global interpretation. Table 19 shows the top 5 most important components along with their
importance scores (normalized by the maximum score) for Bayesian-TPNN, ANOVA-T2PNN and
Linear model. In CATDOG dataset, Bayesian-TPNN identifies the 4th-order component (2,3,4,5) as
an important component. It seems that complex interactions exists between the 5 concepts.

Figure 5: Examples of images misclassified by Linear model.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Local interpretation. Figure 5 presents two images where Bayesian-TPNN correctly classifies but
Linea model does not. For the CELEBA-HQ example image, Linear model incorrectly predicts it as
male, whereas the Bayesian-TPNN correctly predicts as female. The contributions of the important
components for this image are presented in Table 20. In Linear model, ‘Makeup’ gives a positive
contribution, which leads to a misclassification of the image as male. In contrast, in Bayesian-TPNN,
while the main effect of ‘Makeup’ still provides a positive contribution, the interactions between
(‘Makeup’, ‘Long hair’) and (‘Makeup’, ‘Angular contour’) yield negative contributions, resulting
in a correct prediction as female.

For the CATDOG example image, Linear model incorrectly predicts it as ‘dog’, whereas Bayesian-
TPNN correctly predicts as ‘cat’. Table 21 indicates that Linear model misclassifis the image as
‘dog’ due to the positive contribution of ‘Almond eye’. In contrast, although Bayesian-TPNN also
assigns a positive contribution to ‘Almond eye’, the higher-order interactions—(‘Almond eye’,
‘Slender/flexible body’) and (‘Short snout’, ‘Almond eye’, ‘Slender/flexible body’, ‘Fine/uniform
fur’)—provided much stronger negative contributions, leading to the correct classification as a cat.

These two examples strongly suggest that considering higher-order interactions between concepts is
necessary for the success of CBM.

Table 20: Prediction values of the 5 most important components for CELEBA-HQ image.

Bayesian-TPNN Component index 2 4 (2,3) (2,4) (1,5)
Contribution 0.297 0.184 -0.444 -0.323 -0.207

Linear Component index 1 2 3 4 5
Contribution -0.222 3.746 -1.510 -2.665 1.627

Table 21: Prediction values of the 5 most important components for CATDOG image.

Bayesian-TPNN Component 3 (3,4) 2 4 (2,3,4,5)
Contribution 0.618 -0.767 0.181 -0.778 -0.355

Linear Component 1 2 3 4 5
Contribution -4.304 -0.630 9.503 -2.463 -4.113

Table 22: Prediction performance on the image datasets.
Bayesian-TPNN with 5 concepts Linear with 10 concepts

CELEBA-HQ 0.936 (0.002) 0.899 (0.001)
CATDOG 0.878 (0.002) 0.869 (0.002)

Fewer concepts, better prediction performance. One may argue that 5 concepts are too small
for Linear model and Linear model would perform well with more concepts. To see the validity of
this argument, we compare predictive performance of Bayesian-TPNN with 5 concept and Linear
model with 10 concepts, where additional 5 concepts are generated through GPT-5: for CELEBA-
HQ dataset,

{‘Emphasized eyes’, ‘Prominent lips’, ‘Smooth skin’,
‘Pronounced cheekbones’, ‘High contrast’}

and for CATDOG dataset,

{‘Long tail’, ‘Retractable claws (hidden)’, ‘Upright sitting or crouching posture’,
‘Small mouth / Meowing shape’, ‘Ambush-like pose (crouched)’}.

Table 22 presents the averages and standrad errors of AUROCs for Bayesian-TPNN with 5 concepts
and Linear model with 10 concepts. While using more concepts with Linear model improves pre-
diction accuracy, Bayesian-TPNN is still superior to Linear model even though fewer concepts are
used in Bayesian-TPNN. This implies that capturing higher-order interactions plays a more critical
role in improving prediction performance than merely increasing the number of concepts. Quality
of concepts generated by GPT would be problematic.
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E.2 ADDITIONAL RESULTS OF LOCAL INTERPRETATION ON THE TABULAR DATASET

In this section, we describe the results of local interpretation on BOSTON dataset. Specifically, we
examine the contributions of the 5 most important components identified by Bayesian-TPNN in
Section 4.3 at a specific input vector x. For a given data point

x = (0.006, 18, 2.31, 0, 0.538, 6.58, 65.2, 4.09, 1, 296, 15.3, 396.9, 4.98),

the contributions of the 5 estimated components f̂{13}, f̂{6}, f̂{1}, f̂{8}, and f̂{1,6} by Bayesian-
TPNN are given as

(f̂{13}(x), f̂{6}(x), f̂{1}(x), f̂{8}(x), f̂{1,6}(x)) = (0.575,−0.108, 0.080,−0.002,−0.001).

In particular, the component f̂{13} makes a substantial positive contribution to the housing price.
That is, the price of the house for a given input vector x is high because of the main effect x13.
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F EXPERIMENT FOR STABILITY OF COMPONENT ESTIMATION

Park et al. (2025) demonstrated, both theoretically and empirically, that TPNN reliably estimates
the components of the functional ANOVA model. In this section, we investigate whether Bayesian-
TPNN exhibits the same stability in component estimation. For this analysis, we randomly split
the dataset into training and test datasets. From this, we obtain estimators for the components. We
repeat this procedure five times to obtain five estimators for each component. We then calculate the
stability score using these estimators. Specifically, following Park et al. (2025), for predefined data
{x1, ...,xn}, we use the stability score defined as

SC(fS) :=
1

n

n∑
i=1

∑5
j=1(f

j
S(xi)− f̄S(xi))

2∑5
j=1(f

j
S(xi))2

,

where f j
S is the estimated component for S obtained from the j-th fold and f̄S(x) =

∑5
j=1 f

j
S(x)/5.

Finally, we use SCd(f) := 1∑d
k=1 (

p
k)

∑
S⊆[p],|S|≤d SC(fS) to compare the stability in component

estimation between Bayesian-TPNN, ANOVA-TPNN and NAM.

Table 23 presents the results of stability scores SC1(f) for Bayesian-TPNN, ANOVA-T1PNN and
NA1M, where ANOVA-T1PNN and NA1M estimate only the main effects. Table 24 shows of stabil-
ity scores SC2(f) for Bayesian-TPNN, ANOVA-T2PNN and NA2M, where ANOVA-T2PNN and
NA2M estimate up to second-order components. These results imply that Bayesian-TPNN estimates
the components more stably than ANOVA-TPNN and NAM. Note that for MADELON dataset, which
has an input dimension of 500, we could not train ANOVA-T2PNN and NA2M due to the computa-
tional environment, and thus their stability scores could not be calculated.

Table 23: Stability scores of Bayesian-TPNN, ANOVA-T1PNN and NA1M.

Dataset Bayesian
TPNN

ANOVA
T1PNN NA1M

ABALONE 0.087 0.405 0.555
BOSTON 0.368 0.425 0.583

MPG 0.222 0.411 0.472
SERVO 0.339 0.651 0.481

FICO 0.130 0.287 0.607
BREAST 0.100 0.286 0.569
CHURN 0.111 0.558 0.569

MADELON 0.520 0.685 0.785

Table 24: Stability scores of Bayeisan-TPNN, ANOVA-T2PNN and NA2M.

Dataset Bayesian
TPNN

ANOVA
T2PNN NA2M

ABALONE 0.400 0.340 0.770
BOSTON 0.615 0.380 0.705

MPG 0.340 0.370 0.560
SERVO 0.445 0.575 0.665

FICO 0.525 0.540 0.790
BREAST 0.630 0.675 0.730
CHURN 0.520 0.755 0.730

MADELON 0.475 — —
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G COMPARISON OF CONVERGENCE SPEED AND RUNTIME IN MCMC
ALGORITHM

In this section, we evaluate the convergence speed and runtime of MCMC algorithms for Bayesian-
TPNN. Specifically, we compare its convergence speed with that of mBNN, and its runtime with
those of ANOVA-T2PNN and mBNN. In Bayesian-TPNN, we set Kmax = 100. For mBNN, we use
two hidden layers with 500 units each and set the number of HMC steps to 30. For ANOVA-T2PNN,
we set KS = 10.

Figure 6 shows the RMSE trajectories across MCMC iterations on BOSTON dataset for Bayesian-
TPNN and mBNN. Table 25 presents the runtime comparison of Bayesian-TPNN , mBNN with
2,000 iterations and ANOVA-T2PNN with 2,000 epochs on real datasets. The best results are high-
lighted by bold. In the experiments on FICO, CHURN, and BREAST datasets, the runtime difference
between Bayesian-TPNN and ANOVA-T2PNN become more pronounced. This is because, after
data preprocessing, the input dimensions are 23, 46, and 30, respectively. As the number of neural
networks required in ANOVA-T2PNN increases rapidly with the input dimension, the runtime in-
creases considerably. Note that for the MADELON dataset, where the input dimension is 500, training
ANOVA-T2PNN is infeasible because the number of neural networks to be trained is 125, 250.

These results imply that Bayesian-TPNN converges faster in terms of MCMC iterations compared
to mBNN. Moreover, its overall runtime is shorter than both mBNN and ANOVA-T2PNN. In par-
ticular, Bayesian-TPNN runs significantly faster than ANOVA-T2PNN, and this advantage becomes
more pronounced as the input dimension p increases.

Table 25: Runtime of Bayesian-TPNN, ANOVA-T2PNN and mBNN (sec).
Dataset Bayesian-TPNN ANOVA-T2PNN mBNN

ABALONE 475 326 1,273

BOSTON 181 577 266

MPG 156 227 275

SERVO 159 400 242

FICO 943 3,530 4,198

BREAST 181 2,363 310

CHURN 686 7,772 2,756

MADELON 345 — 894

Figure 6: The RMSE trajectories across MCMC iterations for Bayesian-TPNN and mBNN.
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H ADDITIONAL EXPERIMENTS FOR UNCERTAINTY QUANTIFICATION

H.1 UNCERTAINTY QUANTIFICATION ON NON-BAYESIAN MODELS.

We report the performance of uncertainty quantification for non-Bayesian models including
ANOVA-TPNN, NAM, XGB and Linear model, in Table 26. These results indicate that Bayesian-
TPNN outperforms the non-bayesian models in view of uncertainty quantification.

Table 26: Uncertainty quantifications for non-bayesian models on real datasets.
Dataset ANOVA-TPNN NAM XGB Linear

CRPS NLL CRPS NLL CRPS NLL CRPS NLL

ABALONE 1.578 (0.16) — 1.901 (0.27) — 1.668 (0.16) — 1.638 (0.15) —
BOSTON 4.464 (0.71) — 3.147 (0.35) — 3.241 (0.27) — 4.291 (0.44) —

MPG 2.478 (0.45) — 3.314 (1.07) — 2.343 (0.35) — 2.990 (0.32) —
SERVO 0.595 (0.02) — 0.868 (0.39) — 0.215 (0.03) — 0.910 (0.04) —

ECE NLL ECE NLL ECE NLL ECE NLL

FICO 0.063 (0.017) 0.583 (0.018) 0.198 (0.007) 0.681 (0.012) 0.096 (0.026) 0.620 (0.015) 0.055 (0.014) 0.593 (0.017)
BREAST 0.100 (0.030) 0.423 (0.071) 0.284 (0.022) 0.511 (0.033) 0.063 (0.012) 0.878 (0.172) 0.102 (0.015) 0.216 (0.039)
CHURN 0.053 (0.004) 0.444 (0.011) 0.318 (0.007) 0.718 (0.008) 0.131 (0.006) 0.594 (0.021) 0.078 (0.004) 0.573 (0.002)

MADELON 0.354 (0.014) 0.752 (0.003) 0.156 (0.009) 0.735 (0.016) 0.147 (0.008) 0.703 (0.035) 0.232 (0.011) 0.736 (0.016)

H.2 EXPERIMENT FOR OUT-OF-DISTRIBUTION DETECTION

Here, we conduct experiments to evaluate whether each model appropriately captures uncertainty on
out-of-distribution data in binary classification. As a measure of uncertainty for out-of-distribution
data, we use the maximum predicted probability (Mukhoti et al., 2023). Specifically, we denote the
in-distribution dataset by {xin

1 , ...,x
in
N1

} and the out-of-distribution dataset by {xout
1 , ...,xout

N2
} with

corresponding predictive probabilities p̂(xin
i ) for i = 1, ..., N1 and p̂(xout

i ) for i = 1, ..., N2.

Let p̂max(x) = max{p̂(x), 1 − p̂(x)}. For evaluation, we assign label 1 to the in-distribution data
and label 0 to the out-of-distribution data. Then, we compute the AUROC between the labels and
the transformed scores 1+log2 p̂max(x

in
i ) or 1+log2 p̂max(x

out
i ). Intuitively, predictive probabilities

close to 0.5 reflect model uncertainty, and such cases can be identified as out-of-distribution.

We randomly sample a subset which size of 500 from the MADELON dataset, standardized it, and
use it as an out-of-distribution dataset. For each dataset FICO, BREAST, and CHURN, we randomly
split the data into training and test datasets. In turn, we train Bayesian-TPNN and baseline models
using the training dataset. We then compute the AUROC treating the test dataset as the in-distribution
dataset. We repeat this procedure 5 times, and Table 27 presents the averages and standard errors of
AUROCs for Bayesian-TPNN and baseline models on FICO, BREAST and CHURN datasets. These
results demonstrate that Bayesian-TPNN outperforms the baseline models, achieving substantially
superior performance in out-of-distribution detection.

Table 27: AUROC Results on in-distribution and out-of-distribution detection.
Dataset Bayesian-TPNN ANOVA-TPNN NAM Linear XGB BART mBNN

FICO 0.606 (0.013) 0.446 (0.020) 0.455 (0.032) 0.191 (0.002) 0.605 (0.018) 0.667 (0.004) 0.519 (0.014)
BREAST 0.903 (0.015) 0.542 (0.021) 0.534 (0.041) 0.112 (0.010) 0.827 (0.022) 0.664 (0.023) 0.503 (0.051)
CHURN 0.724 (0.006) 0.570 (0.040) 0.533 (0.040) 0.442 (0.006) 0.420 (0.014) 0.598 (0.009) 0.599 (0.039)
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I VISUAL ILLUSTRATION FOR PROPOSAL

In this section, we describe the visual explanation of the proposal in Section 3.2. Given Bayesian-
TPNN as in Figure 7, we explain the updating of K and the updating of SK .

Figure 7: Bayesian-TPNN with p = 4,K = 3.

I.1 UPDATING K

For a given K, we propose Knew = K − 1 or Knew = K + 1. Here, we describe only Random and
Stepwise moves, corresponding to the case where Knew = K + 1. In the case of Random move,
a node is randomly generated and its edges are randomly assigned. For Stepwise move, a node is
first selected from the existing nodes, and then a new edge is added to create a new node. Figure 8
presents an overall illustration for these moves.

Figure 8: Visual explanation for alternations in the proposal distribution of K.

I.2 UPDATING Sk

Figure 9 illustrates how the edges change when applying Adding, Deleting, or Changing moves to
a given current state.
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Figure 9: Visual explanation for alternations in the proposal distribution of Sk.

J EMPIRICAL EVALUATION UNDER MINIBATCH SETTINGS

We conduct an additional experiment to empirically verify that our MCMC algorithm performs well
when mini-batches are used. When estimating Bayesian-TPNN with mini-batched data, we refer
to it as MBayesian-TPNN. Here, for ABALONE and FICO datasets, we set the size of mini-batch
as 1,000 and 2,000, respectively. Table 28 presents the averages and standard errors of prediction
performance and the uncertainty quantifications of Bayesian-TPNN and MBayesian-TPNN for 5
trials on ABALONE and FICO datasets. These results suggest that training with mini-batches does
not significantly reduce prediction performance and uncertainty quantification. In practice, these
findings indicate that using mini-batches is practically acceptable, as it does not lead to meaningful
degradation in performance or uncertainty estimation.

Table 28: Results of MBayesian-TPNN.

RMSE/AUROC CRPS/ECE NLL

Bayesian-TPNN MBayesian-TPNN Bayesian-TPNN MBayesian-TPNN Bayesian-TPNN MBayesian-TPNN

ABALONE 2.053 (0.26) 2.081 (0.24) 1.372 (0.19) 1.391 (0.17) 2.260 (0.16) 2.280 (0.18)

FICO 0.793 (0.009) 0.788 (0.005) 0.036 (0.004) 0.038 (0.003) 0.554 (0.007) 0.564 (0.003)
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K COMPARISON WITH DEEP ENSEMBLE

In this section, we conduct additional experiment to compare Bayesian-TPNN with Deep Ensemble
(Lakshminarayanan et al., 2017). Here, we consider candidates for each hyperparmeter of Deep
Ensemble as below.

• The number of MLPs : {5, 50, 100}
• MLP architectures : {(50), (100), (256, 128, 64), (512, 256, 128)}
• Learning rates : {1e− 4, 1e− 3, 1e− 2}
• Epochs : {100, 200, 500, 1000}
• Weight for L2 regularization : {1e− 3, 1e− 2, 1e− 1}

Table 29 presents the averages of RMSE, AUROC, CRPS, ECE and NLLs for 5 trials on real
datasets. These results show that the performance of Bayesian-TPNN is comparable to that of Deep
Ensemble in terms of both prediction accuracy and uncertainty quantification.

Table 29: Results of Bayesian-TPNN and Deep Ensemble.

RMSE/AUROC CRPS/ECE NLL

Bayesian-TPNN Deep Ensemble Bayesian-TPNN Deep Ensemble Bayesian-TPNN Deep Ensemble

ABALONE 2.053 (0.26) 2.121 (0.23) 1.372 (0.19) 1.498 (0.17) 2.260 (0.16) 2.036 (0.15)
BOSTON 3.654 (0.49) 3.922 (0.57) 2.202 (0.23) 2.458 (0.22) 3.411 (0.37) 3.747 (0.40)

MPG 2.386 (0.41) 2.257 (0.14) 1.510 (0.43) 1.481 (0.11) 2.511 (0.21) 2.769 (0.47)
SERVO 0.351 (0.02) 0.398 (0.03) 0.194 (0.01) 0.179 (0.01) 0.836 (0.10) 0.701 (0.04)

FICO 0.793 (0.009) 0.773 (0.024) 0.036 (0.004) 0.057 (0.033) 0.554 (0.007) 0.577 (0.034)
BREAST 0.998 (0.001) 0.993 (0.003) 0.129 (0.009) 0.075 (0.017) 0.211 (0.014) 0.133 (0.041)
CHURN 0.849 (0.008) 0.841 (0.013) 0.031 (0.001) 0.039 (0.002) 0.418 (0.008) 0.424 (0.018)

MADELON 0.854 (0.013) 0.616 (0.029) 0.076 (0.004) 0.137 (0.061) 0.478 (0.009) 0.719 (0.049)
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L APPLICATIONS TO GENOMIC DATASET

We conduct additional experiment to explore the applicability of Bayesian-TPNN to genomics
dataset GSE43358 (Fumagalli et al., 2013). GSE43358 is a gene expression dataset with n = 57
samples and p = 54, 675 features and we perform a classification task distinguishing between
HER2-positive and non–HER2-positive cases. Table 30 shows that the averages and standard errors
of prediction performance for Bayesian-TPNN, Linear model and XGB for 5 trials. For Bayesian-
TPNN and XGB, the hyperparameters are optimized as in the experiment for other real datasets.
Note that because the input dimension p is too large, both ANOVA-TPNN and NAM could not be
trained within our computational environment. The results in Table 30 indicate that the interpretable
Bayesian-TPNN achieves prediction performance comparable to that of the black-box model XGB
on GSE43358 dataset.

Table 31 reports the top 10 most important components in Bayesian-TPNN with the normalized
importance score. Here, we use the importance score defined in Section 4.2, and the normalized
score represents each importance value divided by the maximum importance score. Note that one
of the third order interactions is detected by Bayesian-TPNN. The results in Table 31 indicate that
higher-order interactions (beyond the second order) play a crucial role, which provides a plausible
explanation for the inferior prediction performance of the linear model. Moreover, this highlights the
necessity of an interpretable model such as Bayesian-TPNN, which is capable of estimating such
higher-order interactions.

Table 30: Results of baseline models on GSE43358 dataset.

Model Bayesian-TPNN ANOVA-TPNN NAM Linear XGB

AUROC 0.949 (0.017) – – 0.545 (0.001) 0.953 (0.041)

Table 31: Top 10 important components.

Rank Component of GenBank accession numbers Normalized Score

1 S69189 1.000
2 BF357738 0.924
3 (BC000129, R80390) 0.701
4 AF307338 0.569
5 NM 018297 0.410
6 BF061275 0.375
7 AF319440 0.365
8 (BE741754, AB037854, AK024890) 0.334
9 AI368358 0.292
10 BE672684 0.218
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M NOTATIONS AND REGULARITY CONDITIONS FOR THE PROOFS

M.1 ADDITIONAL NOTATIONS

For two positive sequences {an} and {bn}, we write an ≲ bn if there exists a constant C > 0
such that an ≤ Cbn for all n ∈ N. The notation an = o(bn) indicates that the ratio an/bn
converges to zero as n −→ ∞. We denote N (ϵ,F , d) the ϵ-covering number of the function class
F with respect to the semimetric d. For a given vector v = (v1, ..., vN ), we define its ℓ2 norm
as ∥v∥22 :=

∑N
i=1 v

2
i . Given a real-valued function f : X → R, we define its sup-norm as

∥f∥∞ := supx∈X |f(x)|. We define population ℓp-norm with respect to a probability measure µ

on X as ∥f∥p,µ := (
∫
x∈X f(x)pµ(dx))1/p. Let Pn

X =
∏n

i=1, where PXi
is the probability distribu-

tion of Xi for i = 1, ..., n. For two given densities p1 and p2, we define the Kullback-Leibler (KL)
divergence as

K(p1, p2) :=

∫
log(p1(v)/p2(v))p1(v)dv,

and let V (p1, p2) :=
∫
| log(p1(v)/p2(v))−K(p1, p2)|2p1(v)dv.

M.2 REGULARITY CONDITIONS

(S.1) For a distribution PX, there exist a density pX with respect to the Lebesgue measure on Rp,
that is bounded away from zero and infinity, i.e.,

0 < inf
x∈X

pX(x) ≤ sup
x∈X

pX(x) < ∞.

(S.2) The true function f0,S is L-Lipschitz continuous, i.e.,

|f0,S(x)− f0,S(x
′)| ≤ L∥x− x′∥2

for some positive constant L and all x,x′ ∈ X . Additionally, f0,S is assumed to be bounded
in the supremum norm by a positive constant F , i.e., ∥f0,S∥∞ ≤ F . We denote the above
conditions compactly as f0,S ∈ LipL,F . Moreover, we say that f0 ∈ Lip0,L,F if f0,S ∈
LipL,F for all S ⊆ [p].

(S.3) The log-partition function A(·) is differentiable with a bounded second derivative over
[−F, F ], i.e., there exists a positive constant CA such that

1/CA ≤ Ä(x) ≤ CA

for all x ∈ [−F, F ].
(S.4) Kmax is assumed to grow at a rate Kmax = O(n).
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N POSTERIOR CONSISTENCY OF BAYESIAN-TPNN

We first prove the posterior consistency of f since it plays an important role in the proof of the
posterior consistency of each component fS .

N.1 POSTERIOR CONSISTENCY OF f0

Theorem N.1 (Posterior Consistency of Bayesian-TPNN). We assumes that (S.1), (S.2), (S.3) and

(S.4). Then, for any ε > 0 and ξ ≥ 2pF + ε
√

2
CA

, it holds that

πξ

(
f : ∥f0 − f∥2,n > ε

∣∣∣X(n), Y (n)
)
−→ 0 (15)

in Qn
0 as n −→ ∞, where Qn

0 is the probability distribution of (X(n), Y (n)).

N.2 PROOF OUTLINE

Consider a function class F =
⋃Kmax

K=1 F(K) that satisfies the sum-to-zero condition with respect to
uniform distribution on (0,1). Here, F(K) is defined as

F(K) =

{
f :f(x) =

K∑
k=1

βkϕ(x|Sk,bSk,k,ΓSk,k),

βk ∈ R,
bSk,k ∈ [0, 1]|Sk|,

ΓSk,k ∈ (0,∞)|Sk| for k = 1, ...,K

}
,

where

ϕ(x|Sk,bSk,k,ΓSk
, k) =

∏
j∈Sk

(
1− σ

(
xj − bj,k

γj,k

)
+ cj(bj,k, γj,k)σ

(
xj − bj,k

γj,k

))
and

cj(bj,k, γj,k) = −
1−

∫ 1

0
σ

(
xj−bj,k
γj,k

)
dxj∫ 1

0
σ

(
xj−bj,k
γj,k

)
dxj

.

For any f ∈ F(K), we denote it as fK,B,b,Γ, where

B = (βk, k ∈ [K]), b = (bSk,k, k ∈ [K]) and Γ = (ΓSk,k, k ∈ [K]).

Our goal is to show that

lim
n→∞

En
0 [πξ(∥f − f0∥2,n > ε|X(n), Y (n))] = 0 (16)

for any ε > 0.

We prove (16) using following two steps.

(P.1) For given data x(n), we prove that

lim
n→∞

En
0 [πξ(∥f − f0∥2,n > ε|X(n), Y (n))|X(n) = x(n)] = 0

for any ε > 0.
(P.2) Finally, we show that

lim
n→∞

En
0 [πξ(∥f − f0∥2,n > ε|X(n), Y (n))] = 0

for any ε > 0.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

We first verify the following three conditions: there exists Fn ⊆ F and positive constants δ, C1, C2

such that

logN (δ,Fn, ∥ · ∥∞) < nC1, (17)

π

(
f ∈ F : ∥f − f0∥∞ ≤ ε

√
2

CA

)
> exp(−nC2), (18)

π(F\Fn) < exp(−(2C2 + 2)n). (19)

After that, we will show that these three conditions imply the posterior consistency in Step (P.1) by
checking the conditions in Ghosal et al. (1999).

N.3 VERIFYING CONDITION (17)

We consider a sieve Fn = ∪Mn

K=1Fn(K), where

Fn(K) =

{
f :f(x) =

K∑
k=1

βkϕ(x|Sk,bSk,k,ΓSk,k),

βk ∈ [−n, n],

bSk,k ∈ [0, 1]|Sk|

ΓSk,k ∈ (0, n]|Sk| for k = 1, ..,K

}
,

where Mn = ⌊C3nε
2

logn ⌋ and C3 will be determined later.

Also, we consider a more general function class as :

Gn(K) =

{
f : f(x) =

K∑
k=1

βkϕ(x|Sk,bSk,k,ΓSk,k, cSk,k),

βk ∈ [−n, n],

bSk,k ∈ [0, 1]|Sk|,

ΓSk,k ∈ (0, n]|Sk|,

cSk,k ∈ [−2n, 2n]|Sk| for k = 1, ..,K

}
,

(20)

where the function ϕ is defined as

ϕ(x|Sk,bSk,k,ΓSk,k, cSk,k) =
∏
j∈Sk

(
1− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

))
.

and the vector cSk,k is defined as cSk,k = (cj,k, j ∈ Sk).

For all j, k, we have ∫ 1

0

σ

(
x− bj,k
γj,k

)
dx ≥

∫ 1

bj,k

σ

(
x− bj,k
γj,k

)
dx

≥ Cσ,j,k,

where Cσ,j,k is a positive constant and thus, we have |cj(bj,k, γj,k)| ≤ Cσ, ∀j, k for some positive
constant Cσ . Hence, for all K ∈ [Kmax],

Fn(K) ⊆ Gn(K), (21)

whenever n is sufficiently large. Therefore, it suffices to verify Condition (17) over

Gn =

Mn⋃
K=1

Gn(K). (22)
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Lemma N.2. For any integer K, we have

N (ϵ,Gn(K), ∥ · ∥∞) ≤
(
1 +

K2p+4n3p+1

ϵ

)K(1+3p)

.

Proof.)

First, since the maximum dimension of parameters in Gn(K) is K(1+3p), we consider K(1+3p)-
dimensional hypercube [−2n, 2n]K(1+3p). Then, we have

N (ϵ1, [−2n, 2n]K(1+3p), ∥ · ∥1) ≤
(
N (ϵ1, [−2n, 2n], ∥ · ∥1)

)K(1+3p)

≤
(
1 +

4n

ϵ1

)K(1+3p)

.

For SK = (Sk, k ∈ [K]), we define S := (BK ,bSK ,K ,ΓSK ,K , cSK ,K), where
BK = (β1, ..., βK),

bSK ,K = (bSk,k, k ∈ [K]),

ΓSK ,K = (ΓSk,k, k ∈ [K]),

cSK ,K = (cSk,k, k ∈ [K]).

Let
{
S1, ...,SN (ϵ1,[−n,n]K(1+3p),∥·∥1)

}
be an ϵ1-cover of [−2n, 2n]K(1+3p), and for given S ∈

[−2n, 2n]K(1+3p), let S̃ be an element in the ϵ1-cover such that ∥S− S̃∥1 ≤ ϵ1.

Note that for any fΘ ∈ Gn(K), we have

fS(x) =

K∑
k=1

βk

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k),

where

ϕ(xj |{j}, bj,k, γj,k, cj,k) = 1− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

)
with |cj,k| ≤ 2n. Then, for any fS ∈ Gn(K), we have

sup
x

∣∣∣∣fS(x)− fS̃(x)

∣∣∣∣
≤ sup

x

K∑
k=1

∣∣∣∣βk

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)− β̃k

∏
j∈Sk

ϕ(xj |{j}, b̃j,k, γ̃j,k, c̃j,k)
∣∣∣∣

≤ sup
x

K∑
k=1

(∣∣∣∣βk

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)− β̃k

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)
∣∣∣∣

+

∣∣∣∣β̃k

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)− β̃k

∏
j∈Sk

ϕ(xj |{j}, b̃j,k, γ̃j,k, c̃j,k)
∣∣∣∣).

(23)

Upper bound of first term in (23). Since∣∣∣∣ ∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)
∣∣∣∣ = ∣∣∣∣ ∏

j∈Sk

(
1− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

))∣∣∣∣
≤
∏
j∈Sk

(∣∣∣∣1− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

)∣∣∣∣)
≤
∏
j∈Sk

(1 + 2n)

≤ (1 + 2n)p,
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we have

sup
x

K∑
k=1

∣∣∣∣βk

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)− β̃k

∏
j∈Sk

ϕ(xj |{j}, bj,k, γj,k, cj,k)
∣∣∣∣

≤ sup
x

K∑
k=1

(1 + 2n)|Sk||βk − β̃k|

≤ (1 + 2n)pϵ1.

Upper bound of second term in (23). Using direct calculation and triangle inequality, we have∣∣∣∣β̃k

∏
j∈Sk

(
ϕ(xj |{j}, bj,k, γj,k, cj,k)− ϕ(xj |{j}, b̃j,k, γ̃j,k, c̃j,k)

)∣∣∣∣
=

∣∣∣∣β̃k

∏
j∈Sk

(
σ

(
xj − b̃j,k

γ̃j,k

)
− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

))∣∣∣∣
= |β̃k|

∏
j∈Sk

∣∣∣∣σ(xj − b̃j,k
γ̃j,k

)
− σ

(
xj − bj,k

γj,k

)
+ cj,kσ

(
xj − bj,k

γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

)∣∣∣∣
≤ n

∏
j∈Sk

(∣∣∣∣σ(xj − b̃j,k
γ̃j,k

)
− σ

(
xj − bj,k

γj,k

)∣∣∣∣+ ∣∣∣∣cj,kσ(xj − bj,k
γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

)∣∣∣∣).
Since σ(·) is Lipschitz function, we have∣∣∣∣σ(xj − b̃j,k

γ̃j,k

)
− σ

(
xj − bj,k

γj,k

)∣∣∣∣
≤
∣∣∣∣xj − b̃j,k

γ̃j,k
− xj − bj,k

γj,k

∣∣∣∣
≤
(∣∣∣∣xj − b̃j,k

γ̃j,k
− xj − bj,k

γ̃j,k

∣∣∣∣+ ∣∣∣∣xj − bj,k
γ̃j,k

− xj − bj,k
γj,k

∣∣∣∣)
≤ 2n2

(
|b̃j,k − bj,k|+ |γ̃j,k − γj,k|

)
.

Similarly, we have∣∣∣∣cj,kσ(xj − bj,k
γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

)∣∣∣∣
≤
∣∣∣∣cj,kσ(xj − bj,k

γj,k

)
− c̃j,kσ

(
xj − bj,k

γj,k

)∣∣∣∣+ ∣∣∣∣c̃j,kσ(xj − bj,k
γj,k

)
− c̃j,kσ

(
xj − b̃j,k

γ̃j,k

)∣∣∣∣
≤ 4n3

(
|cj,k − c̃j,k|+ |b̃j,k − bj,k|+ |γ̃j,k − γj,k|

)
.

To sum up, the upper bound of (23) is

sup
x

|fS(x)− fS̃(x)| ≤ K

(
(1 + 2n)pϵ1 + 2p+3n3p+1ϵp1

)
≤ K(2n)3p+1ϵ1.

Let ϵ = K(2n)3p+1ϵ1. Then, we conclude that

N (ϵ,Gn(K), ∥ · ∥∞) ≤
(
1 +

2K(2n)3p+2

ϵ

)K(1+3p)

.
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Using Lemma N.2, we have

N (δ,Fn, ∥ · ∥∞) ≤
Mn∑
K=1

(
1 +

2K(2n)3p+2

δ

)K(1+3p)

≤ Mn

(
1 +

2Mn(2n)
3p+2

δ

)Mn(1+3p)

.

Let δ = ε/8. Finally, we choose C3 such that

logN (δ,Fn, ∥ · ∥∞) ≤ logMn +Mn(1 + 3p) log

(
1 +

2Mn(2n)
3p+2

δ

)
< nε2/10.

Condition (17) is satisfied by letting C1 = ε2/10.

N.4 VERIFYING CONDITION (18)

For S ⊆ [p], using Theorem 3.3 in Park et al. (2025), there exist TPNNs such that∥∥∥f0,S − fkS ,B̂S,kS
,b̂S,kS

,Γ̂S,kS

∥∥∥
∞

≤ CS

k
1/|S|
S + 1

(24)

for some positive constant CS . Here, β̂S,ks are uniformly bounded, i.e., |β̂S,k| ≤ cS for some
positive constant cS and γ̂j,k = 1/k3S for all j, k as specified in Theorem 3.3 of Park et al. (2025).

Let kn,S such that

CS

k
1/|S|
n,S + 1

≤ ε
√
2/(
√
CA · 3 · 2p). (25)

Let kn =
∑

S⊆[p] kn,S and fkn,B̂kn ,b̂kn ,Γ̂kn
=
∑

S⊆[p] fkn,S ,B̂S,kn,S
,b̂S,kn,S

,Γ̂S,kn,S
. For notational

simplicity, we write B̂kn , b̂kn and Γ̂kn simply as B̂, b̂ and Γ̂, respectively. Since

∥f0 − fkn,B,b,Γ∥∞
≤ ∥f0 − fkn,B̂,b̂,Γ̂∥∞ + ∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ + ∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞, (26)

we have

π

(
f ∈ F : ∥f − f0∥∞ ≤ ε

3

√
2

CA

)
≥ π(K = kn)

( ∏
S′⊆[p]

π(S = S′)

)
(27)

× π

({
∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ ≤ ε

3

√
2

CA

}⋂{
∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ ≤ ε

3

√
2

CA

})
.

(28)

Therefore, it remains to derive the lower bounds for (27) and (28).

Lower bound of (27). We have

π(K = kn)

( ∏
S′⊆[p]

π(S = S′)

)
=

( ∏
S′⊆[p]

π(S = S′)

)
exp(−C0kn log n)∑Kmax

k=0 exp(−C0k log n)

> exp(−d1n)

for some positive constant d1.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Lower bound of (28). For any B = (βk, k ∈ [kn]) ∈ Rk, we have

∥fkn,B,b̂,Γ̂ − fkn,B̂,b̂,Γ̂∥∞ ≤ sup
x

kn∑
k=1

∣∣∣∣βk

∏
j∈Sk

ϕ(xj |{j}, b̂j,k, γ̂j,k)− β̂k

∏
j∈Sk

ϕ(xj |{j}, b̂j,k, γ̂j,k)
∣∣∣∣

≤ sup
x

kn∑
k=1

∣∣∣∣(βk − β̂k)
∏
j∈Sk

ϕ(xj |{j}, b̂j,k, γ̂j,k)
∣∣∣∣

≤
kn∑
k=1

∣∣∣∣(βk − β̂k)(1 + Cσ)
p

∣∣∣∣ (29)

≤ (1 + Cσ)
p∥B − B̂∥1

≤ (1 + Cσ)
p
√
kn∥B − B̂∥2.

That is, we have{
∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ ≤ ε

3

√
2

CA

}
⊇
{
∥B − B̂∥2 ≤ ((1 + Cσ)

p
√

kn)
−1 ε

3

√
2

CA

}
.

Furthermore, direct calculation yields

∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ = sup
x

kn∑
k=1

|βk|
∣∣∣∣ ∏
j∈Sk

(
ϕ(xj |{j}, b̂j,k, γ̂j,k)− ϕ(xj |{j}, bj,k, γj,k)

)∣∣∣∣
≤ (1 + Cσ) sup

x

kn∑
k=1

|βk|
∣∣∣∣ ∏
j∈Sk

(
xj − b̂j,k

γ̂j,k
− xj − bj,k

γj,k

)∣∣∣∣
= (1 + Cσ) sup

x

kn∑
k=1

|βk|
∣∣∣∣ ∏
j∈Sk

(
bj,k − b̂j,k

γ̂j,k
+ (xj − bj,k)

γj,k − γ̂j,k
γj,kγ̂j,k

)∣∣∣∣
≤ (1 + Cσ) sup

x

kn∑
k=1

|βk|
∏
j∈Sk

(∣∣∣∣bj,k − b̂j,k
γ̂j,k

∣∣∣∣+ 2

∣∣∣∣γj,k − γ̂j,k
γj,kγ̂j,k

∣∣∣∣).
Let Cn,j,k =

|γ̂j,k|
2

(
ε

3ξ(1+Cσ)kn

√
2

CA

)1/|Sk|

. If |γj,k − γ̂j,k| ≤ ϵ1, we have

∣∣∣∣γj,k − γ̂j,k
γ̂j,kγj,k

∣∣∣∣ ≤ ϵ1
γ̂j,k(γ̂j,k − ϵ1)

≤ 1

4

(
ε

3ξkn

√
2

CA

)1/|Sk|

,

where ϵ1 =
Cn,j,k|γ̂j,k|
2+Cn,j,k

. Therefore, if

|βk| ≤ ξ,

|bj,k − b̂j,k| ≤ 2Cn,j,k,

|γj,k − γ̂j,k| ≤
Cn,j,kn

|γ̂j,k|
2 + Cn,j,k

hold, we have

∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ ≤ ε

3

√
2

CA
. (30)
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That is, we have{
∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ ≤ ε

3

√
2

CA

}⋂{
∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ ≤ ε

3

√
2

CA

}
⊇
{
∥B − B̂∥2 ≤ ((1 + Cσ)

p
√
kn)

−1 ε

3

√
2

CA
,

|βj | ≤ ξ,

|bj,k − b̂j,k| ≤ 2Cn,j,k,

|γj,k − γ̂j,k| ≤
Cn,j,k|γ̂j,k|
2 + Cn,j,k

, ∀j ∈ Sk, ∀k ∈ [kn]

}
.

It implies that

π

({
∥fkn,B̂,b̂,Γ̂ − fkn,B,b̂,Γ̂∥∞ ≤ ε

3

√
2

CA

}⋂{
∥fkn,B,b̂,Γ̂ − fkn,B,b,Γ∥∞ ≤ ε

3

√
2

CA

})
≥ π(∥B − B̂∥2 ≤ ((1 + Cσ)

p
√

kn)
−1ε

√
2/(3

√
CA), |βk| ≤ ξ, ∀k ∈ [kn]) (31)

× π(|bj,k − b̂j,k| ≤ 2Cn,j,k, ∀j ∈ Sk, ∀k ∈ [kn]) (32)

× π

(
|γj,k − γ̂j,k| ≤

Cn,j,k

1 + Cn,j,k
|γ̂j,k|, ∀j ∈ Sk, ∀k ∈ [kn]

)
. (33)

Now, we will show that these three probabilities sufficiently large.

Lower bound of (31). Since{
∥B − B̂∥2 ≤ ((1 + Cσ)

p
√
kn)

−1ε
√
2/(3

√
CA), |βk| ≤ ξ, ∀k ∈ [kn]

}
⊇
{
|βk − β̂k| ≤ ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA), |βk| ≤ ξ,∀k ∈ [kn]

}
⊇
{
|βk − β̂k| ≤ ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA), ∀k ∈ [kn]

}
(34)

for sufficiently large n, it suffices to get the lower bound of π(|βk − β̂k| ≤ ((1 +

Cσ)
pkn)

−1ε
√
2/(3

√
CA)) for k ∈ [kn].

For k ∈ [kn], we let
Ik =

[
β̂k ± ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA)]

and we have
π(|βk − β̂k| ≤ ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA))

=

∫
Ik

1√
2πσβ

exp

(
− β2

k

2σ2
β

)
dβk

≥ |Ik|
1√
2πσβ

exp

(
− (maxS cS + ((1 + Cσ)

pkn)
−1ε

√
2/(3

√
CA))

2

2σ2
β

)
(35)

> exp(−d1n)

for some positive constant d1, where (35) is derived from |β̂k| ≤ maxS cS .

Lower bound of (32). Since
π
(
|bj,k − b̂j,k| ≤ 2Cn,j,k

)
= 4Cn,j,k

for all j ∈ Sk, k ∈ [kn], we have

π
(
|bj,k − b̂j,k| ≤ 2Cn,j,k, ∀j ∈ Sk, ∀k ∈ [kn]

)
=

∏
k∈[kn],j∈Sk

4Cn,j,k

> exp(−d2n)

for some positive constant d2.
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Lower bound of (33). Using direct calculation, we have

π

(
|γj,k − γ̂j,k| ≤

Cn,j,k

2 + Cn,j,k
γ̂j,k

)
≥
(
2Cn,j,kγ̂j,k
2 + Cn,j,k

)
min

x∈[Ln,Un]
pdfγ(x)

=

(
2Cn,j,kγ̂j,k
2 + Cn,j,k

)
b
aγ
γ

Γ(aγ)
min

x∈[Ln,Un]
xaγ−1 exp(−bγx),

where Ln = γ̂j,k − Cn,j,kγ̂j,k

2+Cn,j,k
and Un = γ̂j,k +

Cn,j,kγ̂j,k

2+Cn,j,k
.

Note that 1/k3n ≤ γ̂i,j ≤ 1. For aγ > 1, we have

min
x∈[Ln,Un]

xaγ−1 ≥ Laγ−1
n

=

(
2γ̂j,k

2 + Cn,j,k

)ar−1

> exp(−d3n)

for some positive constant d3 and for aγ < 1, we have

min
x∈[Ln,Un]

xaγ−1 ≥ Uaγ−1
n

=

(
γ̂j,k

)1−aγ

> exp(−d4n)

for some positive constant d4. Furthermore, we have

min
x∈[Ln,Un]

exp(−bγx) ≥ exp(−bγUn)

≥ exp(−2bγ γ̂i,j)

> exp(−2d5n)

and
2Cn,j,kγ̂j,k
2 + Cn,j,k

> exp(−2d7n)

for some positive constants d6 and d7. Finally, the proof is completed by letting C2 =
∑7

i=1 di.

N.5 VERIFYING CONDITION (19)

We will verify Condition (19) with the constant C3.

We let

Z1 =
{
K > Mn

}
,

Z2 =
{
{K ≤ Mn} ∩ {∃k ∈ [K] such that |βk| > n}

}
,

Z3 =
{
{K ≤ Mn} ∩ {∃k ∈ [K] such that ΓSk,k ∈ (n,∞)|Sk|}

}
.

Since

π(F\Fn) = π(Z1 ∪ Z2 ∪ Z3),

the upper bound of π(F\Fn) is

π(F\Fn)

≤ π(K > Mn) (36)
+ π(K ≤ Mn)π(∃k ∈ [K] such that |βk| > n|K ≤ Mn) (37)

+ π(K ≤ Mn)π(∃k ∈ [K] such that ΓSk,k ∈ (n,∞)|Sk||K ≤ Mn). (38)
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Upper bound of (36). For Mn = ⌊C3nε
2

logn ⌋, we have

π(K > Mn) =

∑Kmax

k=Mn+1 exp(−kC0 log n)∑Kmax

k=0 exp(−kC0 log n)

≤ exp(−MnC0 log n).

Since C3 > C2+2
C0 logn for sufficiently large n, we have

π(K > Mn) exp((C2 + 2)n) −→ 0 as n −→ ∞.

Upper bound of (37). We have

π(∃k ∈ [K] such that |βk| > n|K ≤ Mn) ≤ Mnπ(|β1| > n)

≤ 2Mn exp

(
− n2

2σ2
β

)
,

where σ2
β is a constant. That is, we conclude that

π(∃k ∈ [K] such that |βk| > n|K ≤ Mn) exp((C2 + 2)n) −→ 0 as n −→ ∞.

Upper bound of (36). For any j, k, using Markov inequality, we have

π(γj,k > n) ≤ E
[
exp

(
bγγj,k

2

)]
exp

(
− bγn

2

)
=

(
1

2

)−aγ

exp

(
− bγn

2

)
.

Since

π(∃k ∈ [K] such that ΓSk,k ∈ (n,∞)|Sk||K ≤ Mn) ≤ Mnπ(γ1,1 > n),

we have

π(∃k ∈ [K] such that ΓSk,k ∈ (n,∞)|Sk||K ≤ Mn) exp((C2 + 2)n) −→ 0 as n −→ ∞,

where aγ and bγ are positive constants.

N.6 VERIFICATION OF THE CONDITIONS IN GHOSAL ET AL. (1999)

For given data x(n), let qf,i be the probability density of Qf(xi) for i = 1, ..., n. From Theorem 2
of Ghosal et al. (1999), it suffices to verify that for every f0 ∈ Lip0,L,F , there exists a sieve Fn

ξ ,
constants δ < ε/4, C5, C6 > 0 and C1 < ε2/8 such that the following three conditions hold with
respect to the ∥ · ∥2,n.

logN
(
δ,Fn

ξ , ∥ · ∥2,n
)
< nC1, (39)

πξ

(
f ∈ Fξ :

1

n

n∑
i=1

K(qf0,i, qf,i) ≤ ε2
)

> exp(−nC5), (40)

πξ

(
Fξ\Fn

ξ

)
< exp(−nC6). (41)

To complete the proof of Theorem N.1, we will verify that the three conditions (39), (40), and (41)
for given data x(n).

Verifying Condition (39).

Condition (39) holds under Condition (17).
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Verifying Condition (40).

By using a direct calculation, for i = 1, ..., n, we have

K(qf0,i, qf,i) =

∫ (
(f0(xi)− f(xi))y −A(f0(xi)) +A(f(xi))

)
qf0,i(y)dy (42)

=

(
(f0(xi)− f(xi))E[Yi]−A(f0(xi)) +A(f(xi))

)
(43)

=

(
(f0(xi)− f(xi))Ȧ(f0(xi))−A(f0(xi)) +A(f(xi))

)
. (44)

Using Talyor expansion, we have

K(qf0,i, qf,i) =
1

2
Ä(x̃)(f0(xi)− f(xi))

2,

where x̃ ∈ [−F, F ]. That is, we have

1

n

n∑
i=1

K(qf0,i, qf,i) ≤
CA

2
∥f0 − f∥22,n.

When ξ ≥ 2PF + ε
√

2
CA

, we have

πξ

(
f ∈ Fξ : ∥f − f0∥2,n ≤ ε

√
2

CA

)
≥ π

(
f ∈ Fξ : ∥f − f0∥2,n ≤ ε

√
2

CA

)
.

Therefore, the proof is done by Condition (18).

Verifying Condition (41).

Since

πξ(F\Fn) ≤ π(F\Fn)

π(∥f ∥∞ ≤ ξ)

≤ π(F\Fn)

π

(
∥f − f0∥∞ ≤ ε

√
2

CA

)
≤ exp(−(C5 + 2)n)

for 2pF + ε
√

2
CA

≤ ξ, the condition (41) holds for C6 = C5 + 2 by condition (18) and (19).

N.7 STEP (P.2)

Since (P.1) holds for arbitary x(n), we conclude that

lim
n→∞

En
0 [πξ(∥f − f0∥2,n > ε|X(n), Y (n))] = 0

for any ε > 0.
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O PROOF OF THEOREM 3.2

The proof consists of the following 4 steps.

(STEP E.1)
We first establish the rate at which the posterior concentrates under the population ℓ2 norm; specifi-
cally, we demonstrate that

En
0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,PX
> ε|X(n), Y (n)

)]
−→ 0, (45)

for any ε > 0.

(STEP E.2)
Based on (45), we establish that the following holds for any subset S ⊆ [p].

En
0

[
πξ

(
f ∈ Fn

ξ : ∥fS − f0,S∥2,PX
> ε|X(n), Y (n)

)]
−→ 0, (46)

for any ε > 0.

(STEP E.3)
We reformulate (46) in terms of the empirical ℓ2 norm. Specifically, we demonstrate that

En
0

[
πξ

(
f ∈ Fn

ξ : ∥fS − f0,S∥2,n > ε|X(n), Y (n)
)]

−→ 0, (47)

for any ε > 0.

(STEP E.4)
The last step is to verify

En
0

[
πξ(Fξ\Fn

ξ |X(n), Y (n))
]
−→ 0 (48)

as n → ∞.

O.1 VERIFYING (STEP D.1)

To verify (STEP D.1), we rely on the following lemma, whose proof is provided in Theorem 19.3
of Györfi et al. (2006).
Lemma O.1 (Theorem 19.3 of Györfi et al. (2006)). Let X,X1, . . . ,Xn be independent and iden-
tically distributed random vectors with values in Rd. Let K1,K2 ≥ 1 be constants and let G be a
class of functions g : Rd → R with the properties

|g(x)| ≤ K1, E[g(X)2] ≤ K2E[g(X)]. (49)

Let 0 < κ < 1 and ζ > 0. Assume that
√
nκ

√
1− κ

√
ζ ≥ 288max

{
2K1,

√
2K2

}
(50)

and that, for all x1, . . . ,xn ∈ Rd and for all t ≥ ζ
8 ,

√
nκ(1− κ)t

96
√
2max {K1, 2K2}

≥
∫ √

t

κ(1−κ)t
16max{K1,2K2}

√√√√logN

(
u,

{
g ∈ G :

1

n

n∑
i=1

g (xi)
2 ≤ 16t

}
, || · ||1,n

)
du.

(51)

Then,

Pn
X

(
sup
g∈G

∣∣E[g(X)]− 1
n

∑n
i=1 g (Xi)

∣∣
ζ + E[g(X)]

> κ

)
≤ 60 exp

(
− nζκ2(1− κ)

Cg max {K2
1 ,K2}

)
for some positive constant Cg .
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Since Fn
ξ depends on the dataset X(n), we will apply Lemma O.1 to the function class Gn

ξ defined
as

Gn
ξ =

Mn⋃
K=1

Gn
ξ (K),

where Gn
ξ (K) = {f ∈ Gn(K) : ∥f∥∞ ≤ ξ}. Here, Gn(K) is defined in (20).

Since

N (ϵ,Gn
ξ , ∥ · ∥∞) ≤ N (ϵ,Gn, ∥ · ∥∞)

≤ Mn

(
1 +

Mn2
p+3n3p+1

ϵ

)Mn(1+3p)

,

we can easily verify that conditions (49), (50), and (51) hold for K1 = K2 = 4ξ2, κ = 1
4 , ζ = ε2,

and G = {g : g = (f0 − f)2, f ∈ Gn
ξ }. That is, we have

Pn
X

(
sup
f∈Fn

ξ

∣∣||f − f0||22,PX
− ||f − f0||22,n

∣∣
ε2 + ||f − f0||22,PX

>
1

4

)
≤ 60 exp

(
− nε2/8

Cg · 16ξ4

)
.

We define An :=

{
X(n) : supf∈Fn

ξ

|||f−f0||22,PX−||f−f0||22,n|
ε2+||f−f0||22,PX

≤ 1
4

}
. Then, we have

En
0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,PX
> ε|X(n), Y (n)

)]
≤ En

0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,PX
> ε|X(n), Y (n)

)
I(X(n) ∈ An)

]
+ Pn

X(Ac
n)

≤ En
0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,n > ε/
√
2|X(n), Y (n)

)]
+ Pn

X(Ac
n)

−→ 0

as n −→ ∞.

O.2 VERIFYING (STEP D.2)

For f ∈ Fn
ξ , we have

f(x) =
∑
S⊆[p]

fS(xS),

where fS satisfies the sum-to-zero condition with respect to the uniform distribution on (0, 1).

Consider positive constants C7 and C8 such that

C7 ≤ inf
x∈X

pX(x) ≤ sup
x∈X

pX(x) ≤ C8. (52)

Therefore, using the inequality (52), for all S ⊆ [p], we have

∥f0 − f∥2,PX
≥

√
C7

∫
X
(f0(x)− f(x))2dx

=

√√√√C7

∑
S⊆[p]

∫
XS

(f0,S(xS)− fS(xS))2dxS (53)

≥ C9∥fP,S − f0,S∥2,PX
,

where (53) is derived from the sum-to-zero condition with respect to the uniform distribution on
(0, 1) and C9 =

√
C7/C8.
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Hence, we conclude that

En
0

[
πξ

(
f ∈ Fn

ξ : ∥fS − f0,S∥2,PX
> ε|X(n), Y (n)

)]
≤ En

0

[
πξ

(
f ∈ Fn

ξ : ∥f − f0∥2,PX
> εC9|X(n), Y (n)

)]
−→ 0,

as n −→ ∞.

O.3 VERIFYING (STEP D.3)

Following the same approach as in the proof of (STEP D.1), and applying Lemma O.1 to the func-
tion class G = {g : g = (f0,S − fS)

2, f ∈ Gn
ξ }, we have

lim
n→∞

En
0

[
πξ

(
f ∈ Fn

ξ : ∥fS − f0,S∥2,n > ε
∣∣∣X(n), Y (n)

)]
= 0.

O.4 VERIFYING THE (STEP D.4)

Since

πξ(Fξ\Fn
ξ )

πξ(Bn)
≤ exp(−2n)

for given data x(n), using Lemma 1 in Ghosal & Van Der Vaart (2007), we conclude that

lim
n→∞

En
0

[
πξ(Fξ\Fn

ξ |X(n), Y (n))
∣∣∣X(n) = x(n)

]
= 0.

Since it holds for arbitrary x(n), the proof is completed.
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