Under review as a conference paper at ICLR 2026

BAYESIAN NEURAL NETWORKS FOR FUNCTIONAL
ANOVA MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

With the increasing demand for interpretability in machine learning, functional
ANOVA decomposition has gained renewed attention as a principled tool for
breaking down high-dimensional function into low-dimensional components that
reveal the contributions of different variable groups. Recently, Tensor Product
Neural Network (TPNN) has been developed and applied as basis functions in
the functional ANOVA model, referred to as ANOVA-TPNN. A disadvantage of
ANOVA-TPNN, however, is that the components to be estimated must be speci-
fied in advance, which makes it difficult to incorporate higher-order TPNNs into
the functional ANOVA model due to computational and memory constraints. In
this work, we propose Bayesian-TPNN, a Bayesian inference procedure for the
functional ANOVA model with TPNN basis functions, enabling the detection of
higher-order components with reduced computational cost compared to ANOVA-
TPNN. We develop an efficient MCMC algorithm and demonstrate that Bayesian-
TPNN performs well by analyzing multiple benchmark datasets. Theoretically, we
prove that the posterior of Bayesian-TPNN is consistent.

1 INTRODUCTION

As artificial intelligence (AI) models become increasingly complex, the demand for interpretability
has grown accordingly. To address this need, various interpretable models—including both post-
hoc explanations (Ribeiro et al., 2016} [Lundberg & Leel |2017) and inherently transparent models
(Agarwal et al.} 2021; Koh et al., [2020; [Radenovic et al.| 2022; [Park et al., 2025)—have been stud-
ied. Among various interpretable approaches, our study focuses on the functional ANOVA model,
a particularly important class of interpretable models that decompose a high-dimensional function
into a sum of low-dimensional functions called componenets or interactions. Notable examples of
the functional ANOVA model are the generalized additive Model (Hastie & Tibshirani, [1986)), SS-
ANOVA (Gu & Wahba, [1993) and MARS (Friedmanl |[1991)). Because complex structures of a given
high-dimensional model can be understood by interpreting low-dimensional components, the func-
tional ANOVA models have been extensively used in interpretable Al applications (Lengerich et al.,
2020; Mirtens & Yau, [2020; |Choi et al., 2025; [Herren & Hahnl, [2022)).

In recent years, various neural networks have been developed to estimate components in the func-
tional ANOVA model. Neural Additive Models (NAM, Agarwal et al.|(2021))) estimates each compo-
nent of the functional ANOVA model using deep neural networks (DNN), and Neural Basis Models
(NBM, [Radenovic et al.| (2022)) significantly reduce the computational burden of NAM by using
basis deep neural networks (DNN). NODE-GAM (Chang et al.l [2021) can select and estimate the
components in the functional ANOVA model simultaneously, and Thielmann et al. (2024)) proposes
NAMLSS, which modifies NAM to estimate the predictive distribution. [Park et al.[(2025) proposes
ANOVA-TPNN, which estimates the components under the uniqueness constraint and thus provides
a stable estimate of each component.

Existing neural-network approaches to functional ANOVA model require prohibitive computation
when the input dimension p is large, because the number of components—and thus the required
networks—grows exponentially. As a result, only 1-2 dimensional components are typically used,
yielding suboptimal prediction when higher-order interactions matter.

In this paper, we propose a Bayesian neural network (BNN) for the functional ANOVA model which
can estimate higher-order interactions (i.e., components whose input dimension is greater than 2)

Under review as a conference paper at ICLR 2026

without requiring huge amounts of computing resources. The main idea of the proposed BNN is to
infer the architecture (the architectures of neural networks for each component) as well as the pa-
rameters (the weights and biases in each neural network). To explore higher posterior regions of the
architecture, a specially designed MCMC algorithm is developed which searches the architectures
in a stepwise manner (i.e., growing or pruning the current architecture) and thus huge computing
resources for memorizing and processing all of the predefined neural networks for the components
can be avoided.

Bayesian Neural Networks (BNN; MacKay| (1992); |[Neal| (2012); Wilson & Izmailov| (2020); [Iz-
mailov et al.[(2021)) provide a principled Bayesian framework for training DNNs and have received
considerable attention in machine learning and Al. Compared to frequentist approaches, BNN of-
fers stronger generalization and better-calibrated uncertainty estimates (Wilson & Izmailov, 2020;
Izmailov et al., [2021)), which enhance decision making. These properties have motivated applica-
tions in areas such as recommender systems (Wang et al.| |2015), topic modeling (Gan et al.,|2015),
and medical diagnosis (Filos et al., 2019). More recently, Bayesian neural networks (BNN) that
learn their own architectures have been actively studied. In particular, Kong et al.|(2023) introduced
a node-sparse BNN, referred to as the masked BNN (mBNN), and established its theoretical proper-
ties. Nguyen et al.| (2024) proposes S-RIMCMC, which explores architectures and weights by jointly
sampling parameters and altering the number of nodes.

This is the first work on BNN that efficiently estimates higher-order components in the functional
ANOVA model without requiring substantial computing resources. Our main contributions can be
outlined as follows.

* We propose a BNN for the functional ANOVA model called Bayesian-TPNN which treats
the architecture as a learnable parameter, and develop an MCMC algorithm which effi-
ciently explores high-posterior regions of the architecture.

* For theoretical justifications of the proposed BNN, we prove the posterior consistency of
the prediction model as well as each component.

* Through experiments on multiple real datasets, we show that the proposed BNN provides
more accurate and stable estimation and uncertainty quantification than other neural net-
works for the functional ANOVA model. On various synthetic datasets, we further show
that Bayesian-TPNN effectively estimates important higher-order components.

2 PRELIMINARIES

2.1 NOTATION

Letx = (21,...,7,) | € X be a p-dimensional input vector, where X = X; x - x X, C [0, 1]P.
We write [p] = {1,...,p} and its power set with cardinality d as power([p], d). For any component
S C [p], we denote xg = (z;,7 € S)" and define Xg = [T;cs X A function defined on Xg

is denoted by fg. For any real-valued function f : X — R, we define the empirical ¢5-norm as

I £llzm = (O, f(x:)?/n) /2, where x, ..., x, are observed input vectors. We denote o(-) as
the sigmoid function, i.e., o(x) := 1/(1 4+ exp(—x)). We denote by 1, the empirical distribution of
{x1,...,%xp}, and by pu,, ; the marginal distribution of yx,, on X.

2.2 PROBABILITY MODEL FOR THE LIKELIHOOD

We consider a nonparametric regression model in which the conditional distribution of Y; given x;
follows an exponential family (Brown et al.,|2010; |Chenl, 2024):

Yi|x; ~ Qf(xi),n (D
fori =1,...,n, where f : X — R is a regression function and 7 is a nuisance parameter. Here, we
assume that Q) ,, admits the density function gy), defined as

(f(X)y _nA(f(X)) n S(y,n)), @)

where A(-) is the log-partition function, ensuring that the density integrates to one. We assume that
each input vector x; has been rescaled, yielding x; € [0, 1]? fori =1, ..., n.

qf(x).m(y) = exp

Under review as a conference paper at ICLR 2026

Example 1. Gaussian regression model: _Consider the gaussian regression Y = f(x) + ¢, where
€ ~ N(0,02). In this case, the density in (2), corresponds to A(f(x)) := f(x)?/2 and S(y,n) :=
—y?/2n — (log 27n) /2 with n = o2.

Example 2. Logistic regression model: For a binary outcome Y € {0, 1}, consider the logistic
regression model Y|x ~ Bernoulli(o(f(x))). In this case, there is no nuisance parameter, i.e.,

n = 1. This distribution can be expressed as the exponential family with A(f(x)) := log(1 +ef®))
and S(y,n) := 0.

Likelihood: Let D™ = {(x1,%1),...,(Xn,¥n)} be given data which consist of 7 pairs of ob-
served input vectors and response variables. For the likelihood, we assume that y;s are independent

realizations of Y;|x; ~ Qj(x,),,, Where f and 7 are the parameters to be inferred.

2.3 FUNCTIONAL ANOVA MODEL

For S C [p], we say that fg satisfies the sum-to-zero condition with respect to a probability measure
won X if

For S C [p}, Vje SandVXS\{j} S XS\{j}a / fg(xs)uj(dxj) =0 3)
X

holds, where p; is the marginal probability measure of y on X;.

Theorem 2.1 (Functional ANOVA Decomposition (Hooker, 2007; Owenl, [2013)). Any real-valued
function f defined on RP can be uniquely decomposed as

fx) =" falxs),)
SClp]

almost everywhere with respect to H?Zl 5, where each component fg satisfies the sum-to-zero con-
dition with respect to [u.

Theorem [2.1) guarantees a unique decomposition of any real-valued multivariate function f into the
components satisfying the sum-to-zero condition with respect to the probability measure . In (@),
we refer to fg as main effects when |S| = 1, as second-order interactions when |.S| = 2, and so on.
For brevity, we use the empirical distribution ,, for when referring to the sum-to-zero condition.

2.4 TENSOR PRODUCT NEURAL NETWORKS

In this subsection, we review Tensor Product Neural Network (TPNN) proposed by [Park et al.|(2025))
since we use it as a building block of our proposed BNN. TPNN is a specially designed neural
network to satisfy the sum-to-zero condition.

For each S C [p], TPNN is defined as fs(xs) = Zfzsl Bs.kd(xs]S, Bs. i, Rs,k) for component
sz where ﬁ&k S R, %S,k = (b&j&,j S S) (S R‘S‘, and 9{5’};9 = (Ws7j,k,j S S) S (O, OO)'Sl. Here,
d(xs|S, Bs i, Rs i) is defined as

d(xs]S, B, Rsx) = [| (1 - U(M> + Cj(bs,j,kﬁs,j,k)ﬂ(w)) Q)

jes VS,5,k VS,5,k

where

cj(b,y) = —<1 - /Xj o (xjv_ b) Nn,j(dffj))//xj o (%V_ b) i, (dazj). ()

The term c;(b,y) is introduced to make ¢(xg|S, Bk, Rs i) satisfy the sum-to-zero condition.
Finally, Park et al.[(2025) proposes ANOVA-T?PNN, which assumes that:

Ks
F) = > > Bskd(xslS, Bk, Rsx), (7

SClpl,|S|<d k=1

Under review as a conference paper at ICLR 2026

where d € N and {Kg, S C [p], |S] < d} are hyperparameters. Since ¢(-|S, B s i, Rs i) satisfies
the sum-to-zero condition for any S C [p], fanova.Tépnn also satisfies the sum-to-zero condition.
Therefore, we can estimate the components uniquely by estimating the parameters in ANOVA-
T?PNN.

Here, d is the maximum order of components. Note that as the maximum order d increases, the
number of TPNNs in (7) grows exponentially; therefore, in practice d is set to 1 or 2 due to the
limitation of computing resources. In addition, choosing Kgs is not easy. To further illustrate these
limitations, the experiments on the runtime of Bayesian-TPNN and ANOVA-T2PNN are presented
in Section[G|of Appendix.

3 BAYESIAN TENSOR PRODUCT NEURAL NETWORKS

In (7)), instead of fixing .S, we treat S also as learn-
able parameters. That is, we consider the follow-

ing model: Input TPNNs
K A #(x|©1)
(&L
Fx) = Bro(x|O%), ®
k=1 #(x|02)
(L9
where O, = (Sk,bs, &, si.k) Sk C [p], and " .
aim to learn K and (S, k € [K]) as well as the $(x183) \Output)
Y S
other parameters. Here,
P $(x/04)
b,k = (b, € Sk) € [0, 115, (x4)
Tk i= (Vjk,J € Sk) € (O,oo)‘s’“‘. $(x/©5)

for k € [K]. Note that K and Sy, are considered

to be the parameters defining the architecture, but Figure 1: Bayesian-TPNN with p = 4 and K = 5.
they cannot be updated by a gradient descent al-

gorithm since K and Sys are not numeric parameters. Instead, we adopt a Bayesian approach in
which K and Sys are explored via an MCMC algorithm. We refer to the resulting model as Bayesian
Tensor Product Neural Networks (Bayesian-TPNN). Bayesian-TPNN can be understood as an edge-
sparse shallow neural network when K is the number of hidden nodes and Sk is the set of input
variables linked to the k-th hidden node through active edges. See Figure|[I|for an illustration.

3.1 PRIOR

The parameters in Bayesian-TPNN consist of K, Bx := (81,...,0k), Sk := (Sk, k € [K]),
bs, .k = (bs, i,k € [K]), I's;.x := (s, k, k € [K]) and the nuisance parameter 7 if it exists
(e.g. the variance of the noise in the gaussian regression model). The parameters can be categorized
into the three groups: (1) K for the node-sparsity, (2) Si,k = 1,..., K for the edge sparsity, and
(3) all the other parameters including (bs, x,I's, x,k = 1, ..., K'). We use a hierarchical prior for
these three groups of parameters.

Prior for K: We consider the following prior distribution for K:
(K = k) x exp(—Coklogn), for k=0,..., Knax, 9
where Kp,,x € Ny and Cy > 0 are hyperparameters. This prior is motivated by [Kong et al.|(2023).

Prior for Si|K: Conditional on K, we assume a prior that Sis are independent and each S
follows the mixture distribution:

P
Z wqUniform (power([p], d)), (10)
d=1
where wgs are defined recursively as follows: wy o (1 - paddmg(d)) [1o g Padding (£) with
PDadding (£) := Qaading (1 + £) Y4z, Here, paading 1S the probability of adding a variable to Sy, con-
trolled by hyperparameters aqding and Yadding- This prior is inspired by Bayesian CART (Chipman
et al.,[1998)), where .S;; denotes split variables.

Under review as a conference paper at ICLR 2026

Prior for the numeric parameters given X and Si: All the remaining parameters are numerical
ones and hence we use standard priors for them.
* Conditional on K, we assume a prior that 3;s are independent and follow 35, ~ N (0, ag),
where o > 0 is a hyperparameter.

* Conditional on S, we let b; s and ~; s be all independent and b; , ~ Uniform(0, 1)
and v, ~ Gamma(a,,b,) for j € S, and k € [K], where a, > 0 and b, > 0 are
hyperparameters.

* For the nuisance parameter in the gaussian regression model, where the nuisance parameter

n corresponds to o2, we set 2 ~ IG(%, %), where v > 0 and A > 0 are hyperparameters

and IG(+, -) is the inverse gamma distribution.

3.2 MCMC ALGORITHM FOR POSTERIOR SAMPLING

We now develop an MCMC algorithm for posterior sampling of Bayesian-TPNN. Our overall sam-
pling strategy is to update K, Sx and the remaining numeric parameters iteratively using the cor-
responding Metropolis-Hastings (MH) algorithms, which is motivated by the MCMC algorithm of
Bayesian additive regression tree (Chipman et al.| 2010). A novel part of our MCMC algorithm,
however, is to devise a specially designed proposal distribution in the MH algorithm such that the
proposal distribution encourages the MCMC algorithm to visit important higher-order interactions
more frequently. For this purpose, we introduce two special tools. First, we employ a pretrained
probability mass function pinpu(-) on [p], which represents the importance of each input variable.
Further, let pinpu(-|.S) be the distribution pjypy(-) restricted to S C [p]. See Remark at the end of this
subsection for the choice of pinput(-)-

The second tool is a stepwise search. The stepwise search adds a new node by first copying one
of existing nodes and add an edge. By doing so, a newly added node has one more edges than the
copied node and thus corresponds to an interaction whose order is larger than the copied one by 1.
By keeping the copied node also in the model, we can avoid dramatic loss of accuracy.

To be more specific, let 0 := (K, Sk, bs, k,'sk i, Bk,n) be given current parameters. We up-
date these parameters by sequentially updating K, (Sk, bs, x, s, i, Bk) and the nuisance pa-
rameter 7. We now describe these 3 updates.

Updating K: First, we devise a proposal distribution of K™ given K used in the MH algorithm.
For a given K, we set K™ as K — 1 or K + 1 with probability K/K.x and 1 — K/Kax
respectively. If K"V = K — 1, we remove one of (Sk, bs, k, s, k;Bk), k € [K] from 6 with
probability 1/K to have 6"V,

For the case K" = K 4 1, the crucial mission is to design an appropriate proposal of
(S;gil,b‘ggm LK +1’F[~196¥“4}17 k41> B3 1)- Specifically, we first generate S3¢Y, and then generate

new new new 111 new new 1
(bs??.@KH’ PS}?L,K—&-I’ B 1) conditional on S%Y ;. The proposal of SiEY | consists of the fol-

lowing two alternations:

* Random: Generate S%Y | from the prior distribution.

* Stepwise: Propose S| = Sk« U{j~ }, where k* ~ Uniform[K] and ji- ~ pinput(-|S§-)-

The MH algorithm randomly selects one of {Random, Stepwise} with probability M /(M + K),
and K/(M + K), where M > 0 is a hyperparameter. This proposal combines random and step-
wise search, where S| is sampled as a completely new index set from the prior with prob-
ability M /(M + K), or taken as a higher-order modification of one of Si,..., Sk with prob-
ability K/(M + K). We employ Stepwise move to encourage the proposal distribution to ex-
plore higher-order interactions more frequently without losing much information in the current
model (i.e. keeping all of the components in the current model). Once S%Y; is given, we gener-

ate (b‘g?g‘g’w+ LTSS g B3,) from the prior distribution. See Section of Appendix for

the acceptance probability for this proposal "% and see Section [C.5]of Appendix for experimental
results demonstrating the effectiveness of the proposed MH.

Under review as a conference paper at ICLR 2026

Updating (Si,bs, x,I's, k,0r) for k € [K]: For a given k, we consider the following three

possible alterations of Sy, and (bs; , I's,. k) for the proposal of (S™, b 1, T'gw .):

* Adding: Adding a new variable 7"V, which is selected randomly from S} according to
the probability distribution pinput(~|S,§), and generating bg, jwv and g, jev from the prior
distribution.

* Deleting: Uniformly at random, select an index j in Sy and delete it from S}.

» Changing: Select an index j uniformly at random from S}, and index 5"V from S}, accord-
ing to the probability distribution of pinpu(-|S5) and delete j from Sy, and add ;"% to S.
Then, generate bg, jw and g, j from the prior distribution.

The MH algorithm randomly selects one of {Adding, Deleting, Changing} with probability
(Qadd; Qdeletes dehange)- This proposal distribution is a modification of one used in BART (Chipman
et al.,|1998; Kapelner & Bleich, 2016)) to grow/prune or modify a current decision tree. See Section
of Appendix for the acceptance probability of (Sp™, b, , It ;).

Once (Sk, bs, i, 's,) are updated, we update all of the numeric parameters (bs, x,I's, &, 5k)
by the MH algorithm with the Langevin proposal (rosl |1978)) to accelerate the convergence of the
MCMC algorithm further. Finally, we repeat this update for k£ € [K] sequentially. See Appendix
[A3]for details and Section I for a toy example illustrating the proposed MCMC algorithm.

Updating the nuisance parameter 7 : In the gaussian regression model, the nuisance parameter
7 corresponds to the error variance 0'3. Since the conditional posterior distribution of 03 is Inverse

Gamma distribution, it is straightforward to draw 03 from 77(03|0thers). Details are provided in
Section[A.4]of Appendix.

Algorithm 1 MCMC algorithm of Bayesian TPNN.

Input {(x;,y;)}7, : data, K : initial number of hidden nodes, Mpycmc : the number of MCMC
iterations,
1: fori:1to Myeme do
Update K
fork:1to K do
Update S}€7 bSch; FSk7k
Update bg, x,I's, &, B
end for
Update
end for

Predictive Inference. Let él, e Oy denote samples drawn from the posterior distribution. The
predictive distribution is then estimated as p(y|x) = vazl p(y|x,0;)/N.

Remark 3.1. When no prior information is available on the importance of input variables, we use a
uniform distribution for pj,p,. However, this noninformative choice often performs poorly when the
dimension p is large and higher-order interactions exist. Our numerical studies in Section|C.4|reveal
that the choice of a good pjupy: is important for exploring higher-posterior regions. In practice, we
could specify piyu: based on the importance measures of each input variable obtained by a standard
method such as\Molnar (2020). That is, we let piypu(j) X wj, where wj is an importance measure
of the input variable j € |p|. In our numerical study, we use the global SHAP value (Molnar, |2020)
based on a pretrained Deep Neural Network (DNN) for the importance measure or the feature
importance using a pretrained eXtreme Gradient Boosting (XGB, |Chen & Guestrin|(2016)).

3.3 POSTERIOR CONSISTENCY

For theoretical justification of Bayesian-TPNN, in this section, we prove the posterior consistency of
Bayesian-TPNN. To avoid unnecessary technical difficulties, we assume that ¢(x|©},) in (8) satisfies
the sum-to-zero condition with respect to the uniform distribution. This can be done by using the
uniform distribution instead of the empirical distribution in (6)).

Under review as a conference paper at ICLR 2026

We assume that (X1,y1), ..., (Xn, yn) are realizations of independent copies (X1,Y7), ..., (X, Ys)
of (X,Y") whose distribution Qg is given as

X~Px and Y[X=x~Qfx)1,

where fj is the true regression function. We let = 1 for technical simplicity. Suppose that fo(x) =
> SC[p] fo,s(xg), where each fy g satisfies the sum-to-zero condition with respect to the uniform
distribution. We denote X = {X;, ..., X, } and Y™ = {V},..., V;, }. Let e () o< 7()I(|| fll oo <
&), where m(+) is the prior distribution of f defined in Section[3.1] Under regularity conditions|(.S.1)}

[(S:2)L[(S.3)|and [(S.4)|in Section of Appendix, Theorem [3.2] proves the posterior consistency
of each component of Bayesian-TPNN.

Theorem 3.2 (Posterior Consistency of Bayesian-TPNN). Assume that 0 < infycxy px(x) <
SUPycx Px(X) < 00, where px(x) is the density of Px. Then, there exists & > 0 such that for
any € > 0, we have

me(f: Wos = fsllzn > X, ¥ ™) = 0 an

forall S C [p]in QF as n — oo, where ¢ (-| X, Y (")) is the posterior distribution of Bayesian-
TPNN with the prior 7¢.

4 EXPERIMENTS

We present the results of the numerical experiments in this section, while further results and com-
prehensive details regarding the datasets, implementations of baseline models, and hyperparameter
selections are provided in Sections [B]to[H] of Appendix.

4.1 PREDICTION PERFORMANCE

Table 1: The averaged prediction accuracies (the standard errors) on real datasets.

Interpretable model Blackbox model
Bayesian ~ ANOVA

Dataset Measure TPNN TPNN NAM Linear XGB BART mBNN

: | 2.053 2.051 2.062 2244 2.157 2.197 2.081

ABALONE (Warwick et al.{|1995) 0.26) ©20) (023 (022 (024 (026) (0.24)
. . | 3.654 3.671 3.832 5.892 4.130 4.073 4277

BOSTON (Harrison Jr & Rubinfeld}|1978) RMSE | (0.49) 0.56) 0.67) 0.77) (0.56) 0.67) 051)
MPG (Quintan||1993) (SE) 2.386 2.623 2.755 3.748 2,531 2.699 2.897

1 1 0.41) (0.38) (0.41) 041) (0.26) (043) (0.42)

$ERVO [Ulrich|l1oge] 0.351 0.594 0.802 1117 0314 0.342 0.301

1 1 0.02) (0.04) (0.04) 0.04) (0.04) (0.04) (0.04)

Fico ficlpors] 0.793 0.802 0.764 0.690 0.793 0.701 0.740

1 1 (0.009) 0.008) (0.019) (0.010) (0.009) (0.015) (0.008)

BREAST {Wolberg et al JJ1993] 0.998 0.998 0.976 0.922 0.995 0.977 0.978
setaly 1 AUROC 1 (0.001) (0.001) (0.003) (0.010) (0.002) (0.006) (0.002)

CHURN lehul2017] (SE) 0.849 0.848 0.835 0.720 0.848 0.835 0.833

1 1 (0.008) 0.006) (0.008) (0.002) (0.006) (0.008) (0.008)

0.854 0.587 0.644 0.548 0.884 0.751 0.650

MADELON (Guyon [2004) ©013) (0.013) (0005 (0.011) (0.006) (0.011) (0.018)

Table 2: Comparison of Bayesian models in view of uncertainty quantification on real datasets.

Bayesian-TPNN BART mBNN
Dataset CRPS NLL CRPS NLL CRPS NLL

ABALONE 1372(0.19) 2260(0.16) 1384(0.18) 2261(0.16) 1.399(0.16) 2.226(0.16)
BOSTON 2.202(023) 3411(037) 2.623(025) 3.400(042) 3.144(0.39) 3.488 (0.26)

MPG 1.510 (0.43) 2.511(0.21) 1.553(0.27) 2.530(0.20) 2.142(0.42) 2.710 (0.24)
SERVO 0.194 (0.01) 0.836 (0.10) 0.202 (0.02) 0.849 (0.08) 0.185 (0.02) 0.321 (0.08)
Dataset ECE NLL ECE NLL ECE NLL

Fico 0.036 (0.004) 0.554 (0.007) 0.054 (0.011) 0.632(0.012) 0.219(0.032) 0.773 (0.046)

BREAST 0.129(0.009) 0211(0.014) 0.118(0.010) 0.143(0.032) 0.292 (0.018) 0.523 (0.025)
CHURN 0.031(0.001) 0.418(0.008) 0.035(0.001) 0.430(0.010) 0.168 (0.037) 0.531 (0.036)
MADELON ~ 0.076 (0.004) 0.478 (0.009) 0.066 (0.004) 0.685(0.032) 0.252(0.020) 0.840 (0.031)

We compare the prediction performance of Bayesian-TPNN with baseline models including
ANOVA-TPNN (Park et al., [2025), Neural Additive Models (NAM, |Agarwal et al.|(2021)), Lin-
ear model, XGB (Chen & Guestrin, [2016), Bayesian Additive Regression Trees (BART, |Chipman

Under review as a conference paper at ICLR 2026

et al.| (2010), Linero|(2025)) and mBNN (Kong et al., [2023). We analyze eight real datasets and split
each dataset into training and test sets with a ratio of 0.8 to 0.2. This random split is repeated five
times to obtain five prediction performance measures.

Table[T]reports the prediction accuracies (the Root Mean Square Error (RMSE) for regression tasks
and the Area Under the ROC Curve (AUROC) for classification tasks) of the Bayes estimator of
Bayesian-TPNN along with those of its competitors, where the best results are highlighted by bold.
Overall, Bayesian-TPNN achieves prediction performance comparable to that of the baseline mod-
els. Further details of the experiments are provided in Section B.3]of Appendix.

Table 2] compares Bayesian-TPNN with the baseline Bayesian models in view of uncertainty quan-
tification. As uncertainty quantification measures, we consider Continuous Ranked Probability Score
(CRPS, Gneiting & Raftery| (2007)) and Negative Log-Likelihood (NLL) for regression tasks, and
Expected Calibration Error (ECE, [Kumar et al.|(2019)) together with NLL for classification tasks.
The results indicate that Bayesian-TPNN compares favorably with the baseline models in uncer-
tainty quantification, which is a bit surprising since Bayesian-TPNN is a transparent model while
the other Bayesian models are black-box models. The results of uncertainty quantification for non-
Bayesian models are presented in Section of Appendix, which are inferior to Bayesian models.

4.2 PERFORMANCE IN COMPONENT SELECTION
Table 3: Performance of component selection on synthetic datasets.

True model f(l) f(2) f(s)

Bayesian ~ ANOVA 2 Bayesian ~ ANOVA 2 Bayesian =~ ANOVA 2
Order TPNN - 12pNN AM pnn p2pnny MAMO qpnn ey NAM
| 1.000 0.999 0.528 0.831 0.859 0417 1.000 0.781 0.522
(0.000) (0.001) (0.023) (0.008) (0.010) (0.015) (0.000) (0.021) (0.011)
2 1.000 0.978 0.508 0.985 0.949 0.838 0.922 0.704 0.542
(0.000) (0.007) (0.024) (0.003) (0.003) (0.009) (0.019) (0.007) (0.017)

3 0.740 0.966 0.661
(0.022) - - (0.018) - - (0.022) - -

Table 4: Top 5 components: the important scores are normalized by their maximum.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
Dataset Component Score Component Score Component ~ Score ~ Component Score Component Score
MADELON (49, 242, 319, 339) 1.000 (129,443,494) 0472 (379, 443) 0.374 106 0.322 (242, 443) 0.301
SERVO 1 1.000 (1,3,4,5) 0.554 4 0.202 4, 6) 0.193 8 0.173

We investigate whether Bayesian-TPNN identifies the true signal components well similarly to
the setting in |Park et al.| (2025); [Tsang et al.| (2017). Synthetic datasets are generated from
y = f(®) (x) +€ k =1,2,3, where f) is the true regression model and x € R®C. Details of
the experiment are described in Section[B.5]

We define the importance score of each component as its ¢, -norm, i.e., || fsl||2,n. A large || fs||2.n
implies fs is a signal. Table [3|reports the averages (standard errors) of AUROCs of the importance
scores obtained by Bayesian-TPNN, ANOVA-T?PNN, and NA2M for interaction order up to 3. Note
that extending ANOVA-T2PNN and NA?M to include the third order interactions requires additional
19, 600 neural networks, and so we give up ANOVA-T®PNN and NA®M due to the limitations of our
computational environment. Overall, Bayesian-TPNN achieves the best performance in component
selection across orders and datasets, and detects higher-order interactions reasonably well.

Table[]presents the five most important components selected by Bayesian-TPNN on MADELON and
SERVO datasets. We use these datasets as they highlight the performance gap between models with
and without higher-order interactions. Notably, Bayesian-TPNN identifies a 4th-order interaction as
the most important component in the MADELON data, suggesting that its ability to capture higher-
order interactions largely explains its superior prediction performance over ANOVA-TPNN on these
datasets. See Section[B.2]of Appendix for descriptions of the variables in MADELON and SERVO.

4.3 INTERPRETATION OF BAYESIAN-TPNN

The functional ANOVA model can provide various interpretations of the estimated prediction model
through the estimated components as |[Park et al.| (2025) illustrates. In particular, by visualizing the

Under review as a conference paper at ICLR 2026

: 02
00
125
0.0 02 01
100
00
- 04
075 05

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Contribution

Average number of rooms % of lower status of Per capita crime rate Distances to employment
per dwelling (1.000) the population (0.815) by town (0.629) centres (0.486)

Figure 2: Plots of the functional relations of the important main effects estimated by Bayesian-TPNN
on the BOSTON dataset. Each plot shows the Bayes estimate and 95% credible interval of each component.
Labels indicate the names of the input variables along with the normalized importance scores.

estimated components, we can understand how each group of input variables affects the response
variable. Figure [2] presents the plots of the functional relations for the important main effects esti-
mated by Bayesian-TPNN on the BOSTON dataset. Each plot shows the Bayes estimate and the 95%
credible interval of the selected component. The leftmost plot shows increasing trend, indicating that
as the average number of rooms per dwelling increases, the price of the housing increases as well.
The second plot reveals a strictly decreasing relationship between the proportion of lower status of
the population and the housing price. The third plot indicates that housing prices decrease sharply
once the crime rate exceeds a certain threshold. The fourth plot shows that houses located farther
from major employment centers are generally less expensive than those situated closer to such hubs.
More discussions about interpretation of Bayesian-TPNN are provided in Section [E|of Appendix.

4.4 APPLICATION TO CONCEPT BOTTLENECK MODELS

Concept Bottleneck Model (CBM, |Koh et al.[(2020)) is an interpretable model in which a CNN first
receives an image and predicts its concepts. These predicted concepts are then used to infer the target
label, enabling explainable predictions. To illustrate that Bayesian-TPNN can be amply combined
with CBM, we consider Independent Concept Bottleneck Models (ICBM, [Koh et al.| (2020)), in
which a CNN is first trained and then frozen, after which a final classifier is trained on the predicted
concepts. We compare Bayesian-TPNN with other baselines for learning the final classifier. In the
experiment, we use CELEBA-HQ (Lee et al., [2020) and CATDOG (Jikadara, [2023) datasets, where
we generate 5 concepts using GPT-5 (OpenAlL [2025), and we obtain the concept labels for each
image via CLIP (Radford et al., [2021)). The target labels for CELEBA-HQ and CATDOG are gender
and cat/dog classification, respectively. The details are provided in Section [B.4]of Appendix.

Table 5: Prediction performance with CBM on image datasets.

Dataset Measure Bayesian-TPNN ANOVA-T2PNN NAZM Linear
CELEBA-HQ AUROC 1 0.936 (0.002) 0.923 (0.002) 0.922(0.002) 0.893 (0.003)
CATDOG AUROC 1 0.878 (0.002) 0.853 (0.002) 0.851 (0.002) 0.711 (0.001)

Table [5] presents the averages and standard errors of AUROCs when Bayesian-TPNN, ANOVA-
T2PNN, NA2M, and Linear model are used in the final classifier. Among them, Bayesian-TPNN
attains the highest prediction performance, which can be attributed to its capability to estimate
higher-order components.

5 CONCLUSION

We proposed Bayesian-TPNN, a novel Bayesian neural network for the functional ANOVA model
that can detect higher-order signal components effectively and thus achieve superior prediction per-
formance in view of prediction accuracy and uncertainty quantification. In addition, Bayesian-TPNN
is also theoretically sound since it achieves the posterior consistency.

We used a predefined distribution pjnpy for the selection probability of each input variable in the
MH algorithm. It would be interesting to update pjnpu along with the other parameters. For example,
it would be possible to let pinpue(j) be proportional to the number of basis functions in the current
Bayesian-TPNN model which uses x;. This would be helpful when p is large. We will pursue this
algorithm in the near future.

Under review as a conference paper at ICLR 2026

Reproducibility Statement. We have made significant efforts to ensure the reproducibility of
our results. The source code implementing our proposed model and experiments is provided in
the supplementary material. Detailed descriptions of the experimental setup, hyperparameters and
datasets are provided in Section [B]of Appendix. Additional ablation studies are reported in Section
of Appendix.

REFERENCES

Brownian dynamics as smart monte carlo simulation. The Journal of Chemical Physics, 69(10):
4628-4633, 1978.

Telco customer churn. kaggle, 2017. https://www.kaggle.com/datasets/blastchar/telco-customer-
churn/data.

Fico heloc. FICO Explainable Learning Challenge, 2018. https://community.fico.com/s/
explainable-machine-learning-challenge.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
Advances in neural information processing systems, 34:4699-4711, 2021.

Lawrence D. Brown, T. Tony Cai, and Harrison H. Zhou. Nonparametric regression in exponential
families. The Annals of Statistics, 38(4):2005 — 2046, 2010. doi: 10.1214/09-A0S762. URL
https://doi.org/10.1214/09-A0S762.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. Node-gam: Neural generalized additive
model for interpretable deep learning. arXiv preprint arXiv:2106.01613, 2021.

Juntong Chen. Estimating a regression function in exponential families by model selection.
Bernoulli, 30(2):1669-1693, 2024.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bayesian cart model search. Journal
of the American Statistical Association, 93(443):935-948, 1998.

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian additive regression
trees. Annals of Appied Statistics, 2010.

Yongchan Choi, Seokhun Park, Chanmoo Park, Dongha Kim, and Yongdai Kim. Meta-anova:
screening interactions for interpretable machine learning. Journal of the Korean Statistical Soci-
ety, pp- 1-18, 2025.

Angelos Filos, Sebastian Farquhar, Aidan N Gomez, Tim GJ Rudner, Zachary Kenton, Lewis Smith,
Milad Alizadeh, Arnoud De Kroon, and Yarin Gal. A systematic comparison of bayesian deep
learning robustness in diabetic retinopathy tasks. arXiv preprint arXiv:1912.10481, 2019.

Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics, 19(1):1-67,
1991.

D Fumagalli, A Blanchet-Cohen, D Brown, C Desmedt, D Gacquer, S Michiels, F Rothé, S Ma-
jjaj, R Salgado, D Larsimont, M Maetens, M Piccart, V Detours, C Sotiriou, and B Haibe-
Kains. Gse43358: Transfer of clinically relevant gene expression signatures in breast cancer:
from affymetrix microarray to illumina rna-sequencing technology, 2013. URL https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43358 Accessed: 2025-11-17.

Zhe Gan, Changyou Chen, Ricardo Henao, David Carlson, and Lawrence Carin. Scalable deep
poisson factor analysis for topic modeling. In International Conference on Machine Learning,
pp- 1823-1832. PMLR, 2015.

Subhashis Ghosal and Aad Van Der Vaart. Convergence rates of posterior distributions for noniid
observations. 2007.

10

https://doi.org/10.1214/09-AOS762
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43358
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43358

Under review as a conference paper at ICLR 2026

Subhashis Ghosal, Jayanta K Ghosh, and RV Ramamoorthi. Posterior consistency of dirichlet mix-
tures in density estimation. The Annals of Statistics, 27(1):143—158, 1999.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359-378, 2007.

Peter J. Green. Reversible jump markov chain monte carlo computation and bayesian model deter-
mination. Biometrika, 82(4):711-732, 12 1995. ISSN 0006-3444. doi: 10.1093/biomet/82.4.711.
URLhttps://doi.org/10.1093/biomet/82.4.711l

Chong Gu and Grace Wahba. Smoothing spline anova with component-wise bayesian “confidence
intervals”. Journal of Computational and Graphical Statistics, 2(1):97-117, 1993. doi: 10.
1080/10618600.1993.10474601. URL https://doi.org/10.1080/10618600.1993.
10474601.

Isabelle Guyon. Madelon. UCI Machine Learning Repository, 2004. DOI:
https://doi.org/10.24432/C5602H.

Laszl6 Gyorfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of non-
parametric regression. Springer Science & Business Media, 2006.

David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air.
Journal of environmental economics and management, 5(1):81-102, 1978.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical science, 1(3):297—
310, 1986.

Andrew Herren and P Richard Hahn. Statistical aspects of shap: Functional anova for model inter-
pretation. arXiv preprint arXiv:2208.09970, 2022.

Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of depen-
dent variables. Journal of computational and graphical statistics, 16(3):709-732, 2007.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What are
bayesian neural network posteriors really like? In International conference on machine learn-
ing, pp. 4629-4640. PMLR, 2021.

Bhavik Jikadara. Dog and cat classification dataset. https://www.kaggle.com/datasets/
bhavikjikadara/dog—and-cat—-classification—-dataset) 2023.

Adam Kapelner and Justin Bleich. bartmachine: Machine learning with bayesian additive regression
trees. Journal of Statistical Software, 70:1-40, 2016.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338-5348. PMLR, 2020.

Insung Kong, Dongyoon Yang, Jongjin Lee, Ilsang Ohn, Gyuseung Baek, and Yongdai Kim. Masked
bayesian neural networks: Theoretical guarantee and its posterior inference. In Infernational
conference on machine learning, pp. 17462-17491. PMLR, 2023.

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. Advances in neural
information processing systems, 32, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive

facial image manipulation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

11

https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1080/10618600.1993.10474601
https://doi.org/10.1080/10618600.1993.10474601
https://www.kaggle.com/datasets/bhavikjikadara/dog-and-cat-classification-dataset
https://www.kaggle.com/datasets/bhavikjikadara/dog-and-cat-classification-dataset

Under review as a conference paper at ICLR 2026

Benjamin Lengerich, Sarah Tan, Chun-Hao Chang, Giles Hooker, and Rich Caruana. Purifying
interaction effects with the functional anova: An efficient algorithm for recovering identifiable

additive models. In International Conference on Artificial Intelligence and Statistics, pp. 2402—
2412. PMLR, 2020.

Antonio R Linero. Generalized bayesian additive regression trees models: Beyond conditional con-
jugacy. Journal of the American Statistical Association, 120(549):356-369, 2025.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural compu-
tation, 4(3):448-472, 1992.

Kaspar Mirtens and Christopher Yau. Neural decomposition: Functional anova with variational
autoencoders. In International conference on artificial intelligence and statistics, pp. 2917-2927.
PMLR, 2020.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Jishnu Mukhoti, Andreas Kirsch, Joost Van Amersfoort, Philip HS Torr, and Yarin Gal. Deep de-
terministic uncertainty: A new simple baseline. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 24384-24394, 2023.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Nhat Minh Nguyen, Minh-Ngoc Tran, and Rohitash Chandra. Sequential reversible jump mcmc for
dynamic bayesian neural networks. Neurocomputing, 564:126960, 2024.

Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
models. arXiv preprint arXiv:2304.06129, 2023.

OpenAl Introducing gpt-5, August 2025. URL |https://openai.com/index/
introducing—gpt—-5/. Accessed: 2025-09-17.

Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/
mc/, 2013.

Seokhun Park, Insung Kong, Yongchan Choi, Chanmoo Park, and Yongdai Kim. Tensor product
neural networks for functional anova model. International conference on machine learning, 2025.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

R. Quinlan. Auto MPG. UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C5859H.

Filip Radenovic, Abhimanyu Dubey, and Dhruv Mahajan. Neural basis models for interpretability.
Advances in Neural Information Processing Systems, 35:8414-8426, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?”” explaining the

predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135-1144, 2016.

12

https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://artowen.su.domains/mc/
https://artowen.su.domains/mc/

Under review as a conference paper at ICLR 2026

Anton Frederik Thielmann, René-Marcel Kruse, Thomas Kneib, and Benjamin Séfken. Neural
additive models for location scale and shape: A framework for interpretable neural regression
beyond the mean. In International Conference on Artificial Intelligence and Statistics, pp. 1783—
1791. PMLR, 2024.

Michael Tsang, Dehua Cheng, and Yan Liu. Detecting statistical interactions from neural network
weights. arXiv preprint arXiv:1705.04977, 2017.

Karl Ulrich. Servo. UCI Machine Learning Repository, 1986. DOI
https://doi.org/10.24432/C5Q30F.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender sys-
tems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1235-1244, 2015.

Nash Warwick, Sellers Tracy, Talbot Simon, Cawthorn Andrew, and Ford Wes. Abalone. UCI
Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C55CTW.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in neural information processing systems, 33:4697-4708, 2020.

William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Diag-
nostic). UCI Machine Learning Repository, 1993. DOI: https://doi.org/10.24432/C5SDW2B.

13

Under review as a conference paper at ICLR 2026

APPENDIX

A DETAILS OF THE MCMC ALGORITHM
For given data D we denote x(™ = {x1,...,%,}. Let wj = Pinpuc(J)-

A.1 SAMPLING K VIA MH ALGORITHM

A.1.1 CASEOF K™ =K +1

From current state = (K, Sk, bs, k, s, .k, Bk,n), we propose a new state 6"" using one of
{Random, Stepwise}. Here, 6™ is defined as

0" = (K +1,8k41,bs ey k415 Us ey k41, By, 1),

where
Sk+1 = (SK, lelgﬁiv-l)»
bs,c, 1, k41 = (bsy, ik, b | k1),
Uscink41 = (U w0 Tsnen | w41),
Br 1 = (Bk, BKy1)-

We accept the new state 6" with probability

YT D Gx00n (80) T(O™) @(007%)
P, = 1
m‘“{ 1] Qo) 7(0) a@=0) [

where

fo(x) = > Bed(x[Sk, bsy k, Ty k)

ke[K]

and

Jorew (x) = fo(x) + BEL10(x|SK 1 bsger | k1, Disnen | k41)-

To compute the acceptance probability, we calculate the prior ratio 7 (8*") /7 (6), and then the pro-
posal ratio ¢(0|6™") /q(0™"|6).

Prior Ratio. The prior ratio is given as

7(0™) (K +)a(Sk+1lK + D)m(bsy,y,k+1/Sx+1)7™ (P yy,k41/Sx41) T (Brs1|K + 1)
m(0) mT(K)m(Sk|K)7m(bsy, k[Sk)m (I'sk,x[Sk) m (Bx|K)
m(Sk+1)T(bsye,y k+1)T(Lsp g k+1)T(Br41)
exp(Co logn) '

Proposal Ratio. For ¢(6]0™"), we have

q(610™") = Pr(K = K™ — 1)Pr(Choose one of K™ TPNNs for deletion)
K]’leW 1
= Koax J(new ’

For a given 6, a new state 8" is proposed in two ways: (1) Random move or (2) Stepwise move.

14

Under review as a conference paper at ICLR 2026

For Random move, we have

q(6™"[6, Random) = 7 (Sgnen)T (Dsne | 1) (Dsnen | k1) (BK Y1)- (12)

For Stepwise move, we have
Q(enewwa Stepwise) = Pr(sﬁgm)W(bsggﬁrl,K+1)W(Fsgggl,KH)W(ﬁ??ﬁl)-
Here, Pr(S5Y) is defined as

K
Pr(S%Y,) = Z Pr(Choose Sy, from S)Pr(S%Y , = S U {j™"}, 5" € Si)
k=1

K
1 W

= E ?H(Elj“ew € SpstSu{j""} = }ﬁl)iz Joew

k=1 lesg Wi

To sum up, we have
q(6"%10) = ¢q(0™"|9, Random)Pr(Random) + ¢(6"" |0, Stepwise) Pr(Stepwise).

A.1.2 CASEOF K™ =K —1

Since the acceptance probability of the case K™V = K — 1 can be easily computed by reversing the
steps in Section[A.1.1] we omit the details here.

A.2 SAMPLING Si, by, 'y, VIA MH ALGORITHM

Here, we consider three moves - {Adding, Deleting and Changing}. Each move is chosen with the
probabilities Pr(Adding) = ¢.qq, Pr(Deleting) = gycicte, Pr(Changing) = gchange, respectively.

In Adding move, the proposal distribution generates STV = S, U {292}, where j2d4ine € [p]\ S},
is chosen with a given weight vector w := (w1, ..., wp). Note that the likelihood cannot be calculated
using S} alone, where S7¥ is the index set generated by the proposal distribution. To address this,
we also generate bjine g, and ;uane ;, from Uniform(0, 1) and Gamma(a., b~), respectively.

Furthermore, in Deleting move, a variable to be deleted is uniformly selected from S} and the new
component S1V = S\ {j%* "¢} is proposed accordingly. This move also involves removing the
associated numeric parameters b jacine j; and yjaeine ; from b, x and I's, , respectively.

Finally, in Changing move, we choose an element j"*'¢¢ in S;, and replace it with a randomly
selected j™% € Si. The corresponding bjchnee j; and jemnee j, are then replaced by new values
generated from Uniform(0, 1) and Gamma(a., b,), respectively. This move results in S}V =

(Sk\{ghee}) U {5}

Here, Adding and Deleting affect the dimensions of bg, and I's, 1, thus the algorithm corre-
sponds to RIMCMC (Green| (1995)) which requires Jacobian computations. However, since we ap-
plied the identity transformation on the auxiliary variables which are generated to match the dimen-
sions, the Jacobian is simply 1. This allows us to easily compute the acceptance probability.

A.2.1 TRANSITION PROBABILITY FOR PROPOSAL DISTRIBUTION

For a given weight vector w, the proposal distributions g, of O} = (Si™, bgmev i, T'gnev) are
defined as:

W ;adding

qw((__)r];ew'@k’ Addlng) =]77T(bjudding,k)ﬂ.(’yj‘adding’k)
Zjesg wj
1
4o (O}, Oy Deleting) —
|Sk|
new . 1 Wjnew
4w (O} ™|O, Changing) = T (Djrew i) (Yjren o)

1Sk Z]‘esg Wi

15

Under review as a conference paper at ICLR 2026

To sum up, we have

4w (O3 |Ok) = 4w (0} |O, Adding)Pr(Adding)
+ ¢ (03|64, Deleting) Pr(Deleting)
+ 4w (0}7|6%, Changing)Pr(Changing).

A.2.2 POSTERIOR RATIO

We define Ay, := (A,1,...,Agn) Where Ay ; = Zj;ék Bjé(x;]0;) for i = 1,...,n and the likeli-
hood ‘C(@k’ B> Aks 7]) = H?:l q)\k,i+ﬁk¢(xi|®k)»n(yi)'
Then, we have

ﬂ-(@k)l/BkHAkH D(n)7 77) X W(yla ceey yn|®ka ﬁku)‘k7x(n)> n)ﬂ-(@k)
= L(Ok, B, Ak, n)(Of).

Thus the posterior ratio of O} = (S, bgmev FsZewyk) to O = (Sk, bs, &, I's, k) is given as

(61| Br, Ay, D™,) _ L0, Brs Ak, m) T(OF™)
7(Ok| Bk, Ak, D™, 1) L(Ok, B, Aesn) m(Ok)

A.2.3 ACCEPTANCE PROBABILITY

In this section, for notational simplicity, we denote the hyperparameters tadding and Yadding s & and
v, respectively.

For a proposed new state ©7°", we accept it with probability

. (051 Br, Ak, D™, 1) qu (Ok |OFY) }
Piceept = min § 1,
" { T(Ok|Br, Ak, D™, 1) u(Ok|OFY)
— i {1, 0" B b) O n(OfOF) |
" L(Ok, By Ak m) T(Ok) qu(OF|Ok)

Now, we will show how the product of the prior and proposal ratios is calculated in the case of
Adding, Deleting, and Changing.

For Adding, we have
7(OF™) g (O1OF)
T(Ok) qu(OF"[Ok)
1—a(l+|Sp)— 1 Pr(Deleting) Zzesg wi
1 — O[‘Szew‘77 p— |SII:;CW| =+ 1 PI‘(Adding) Wjadding '

= alSp|

For Deleting, we have
T(OFY) qu(Or|OFY)
T(Ok) Guw(OF"|Ok)
B 1 1—a(l+ SV~
a1+ S)T L - a2+ [SEY) Y

Pr(Adding) Wjdclcling
Pr(Deleting) 5, S5 @i '

(= 15E™))

For Changing, we have

7T(@r];ew) Qw(@k|@26W) ()chhangc ZleSﬁ wy

T(Ok) Gu(OF[O8) — wimw e gpmye I

16

Under review as a conference paper at ICLR 2026

A.3 SAMPLING bg, %, I's, 1 AND 3 VIA MH ALGORITHM

We use Langevin Dynamics (ros|(1978))) as a proposal distribution for bg, x, I's, » and 8j. That is,
bg™. I'sY), and 5 are proposed as

2
€
(b5 Uk Be™) = (b s s Br) + 5 U(bs, i, sk, Bi) + €M,

where
U(bsy ks Usiks Br) = Vibs, 1ils, 60 108 T (05, b Ty ks Bl Ak, Sk, DU,).
Here, Ml ~ N(0,I), where Iis the (2|S;| +1) x (2]|Sk|+ 1) identity matrix and € > 0 is a step size.

We accept the proposal (b%", , '™, , Bi°") with a probability Paccept given as

Pdcce = { , L(Sk,bgybrnewkaﬂzew /\k,) (brg;:ik) W(Fg'e;:\:k) 7T(ZCW) exp (o 1<HMnew”g _ ”M”§)>}
Y L(Sk, bsy ks Usy s By Ak) m(bsy k) T(Tsy6) m(Br) 2 ’

where || - ||2 is the Euclidean norm for a vector and

€ €
M =M+ SU (bsy s Ui s 1) + 5U DS sl B)-

For Vibg ,.rs, .60 108 T(Bsy ks Usy ks Be Ak, Sk, D™ 1), we will calculate

vbsk,k 1Og ﬂ-(bsk,ka |)\ka 6k7 Sk7 Fsk,ka D(n)a 77)7

VFSk,k log ﬂ-(FSk,k‘Ak’a ﬂka Sk7 bSk,]m D(n)v 77)»
and
ng log W(5k|/\k7 Sk, bsk’k, Fsk’k, ’D(n), 77).
A.3.1 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO bg, i

Without loss of generality, let S, = {1, ..., d}.
Since
T(bsg k[Aks Brs Sk Ty D™, 1) 0 LAk Bres Sty by e T'syoks M)

the j-th gradient is given as

b, log 7(bs, k| Ak, Be, Sk, Ty ks D™ 1 7ZIOng(xl Yi),
5.k j.k

where f(x;) = Ari + Bk [[cs, #(2:,

In turn, we have

Vik)-

a n
v 1 ;
b1 ; 08 5 (41)

n (8log Q(x:)m (Yi) 5f(Xi)>
pat Of(x;) Obj 1

[0108 450000 (95) 06 (i|{3} bk vik)
z:: af(x;) : bk S H (i a[{l}, brks Yik)

1#£5,1€S)

17

Under review as a conference paper at ICLR 2026

Here,
) Ti; — bjk Tij —bjk
O(@ij|[{5}, i vin) =1 — 0 | ——=] +¢;j(bjr,vip)o | ——"],
Y.k Y.k

¢j(bje, Vik) = —<1 - Ej(bj,lwVj,k))/éj(bj,kﬁj,k),

where ¢; (b fx (“T_b) fon,; (du).
Then, we have

LA b, . 1 o p. _b.
9 (wi ;{5 } by, Vik) _ _ 1 (xm ij@) P b 7k> i ()
k X;

Obj o Vi k Yik

. 5($i7j—bj,k)7
Y5k €5 (g ks Vi k) Vik
where () := o(z)(1 — o(x)).
A.3.2 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO I'g, 1

Without loss of generality, we let S, = {1, ...,d}. Similarly to Section of Appendix, we can
derive the gradient of the log posterior with respect to ; ;, as

5 log m(Ts, k| Ak Br> Sis Tsyo ke, D™, 1)
Vi, k

1 1
(6’}/]’ E Ong xl)n(y)) +(Gy) b’y

=1

From f(x;) = Ae,i + Br [115, @(@itl{l}, bk, 1,k), we have
log g (x;)
7] k Z 7)

Z:: (0logqf xi) .) (Wi) 855:))

2”: 0108 45 (x,).m(Yi) Op(xi;1{5}, bjk, i) | | BCCA U NS

af Xz) BVJ,k 1#£5,1€S
Here,
(i {7}, bjk, Vik)
ik
f)(7k~<u;)“m](du) b, b),
_ ’YJ k Vi k o <l’1,g],k) B (Cj(bj,k,"}/j,k) . 1)$z,] 5],k& (xz,j ik
Cj(bj,k Vjok)? Vi k Viok Vi

A.3.3 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO [}

The gradient of the log posterior for 5y is given as

n 9108 qr(x,) .0 (Vi
Vs, og 7(Bk| Aks Sk, b, ks Dy, D) = Y a”—'?””qﬁ(xi@k) — ﬂ’;
i=1 fxi) 75

18

)

Under review as a conference paper at ICLR 2026

A.4 SAMPLING NUISANCE PARAMETER 7)

We only consider the nuisance parameter in the gaussian regression model:
2
Yilxi ~ N(-[f(x:),05)

2 is a nuisance parameter. When the prior distribution is an inverse gamma

A
P | vovA 1
Ug G<2’2) (3)

fori =1, ...,n, where o
distribution

we have

1 n 2
n v i (Wi — (%) +vA
O—S|K7BKvsKvbSK’Kv]-—‘SK»KaD()NIG <27 E 1(9 ()))7 (14)

2

and thus og

can be sampled from the conditional posterior easily.

19

Under review as a conference paper at ICLR 2026

B DETAILS OF THE EXPERIMENTS
B.1 DATA DESCRIPTION

Table 6: Descriptions of real datasets.

Dataset n P Task
ABALONE 4,178 8 Regression
BOSTON 506 13 Regression
MPG 398 7 Regression
SERVO 167 4 Regression
Fico 10,459 23 Classification
BREAST 569 30 Classification
CHURN 7,043 20 Classification
MADELON 4,400 500 Classification
CELEBA-HQ 30,000 — Classification
CATDOG 24,998 — Classification

B.2 FEATURE DESCRIPTIONS FOR MADELON AND SERVO DATASETS

Table 7: Feature index and its corresponding description for SERVO dataset.

Feature index Feature description

Proportional gain setting for the servo motor.

1

2 Velocity gain setting for the servo motor.
3 Presence of Motor type A
4 Presence of Motor type B
5 Presence of Motor type C
6 Presence of Motor type D
7 Presence of Motor type E
8 Presence of Screw type A
9 Presence of Screw type B
10 Presence of Screw type C
11 Presence of Screw type D
12 Presence of Screw type E

Table |/| presents the feature descriptions for SERVO dataset (Ulrich, [1986). MADELON (Guyon,
2004), introduced in the NIPS 2003 feature selection challenge, is a synthetic binary classification
dataset with 500 features, only a few of which are informative while many are redundant or irrele-
vant.

B.3 EXPERIMENT DETAILS FOR TABULAR DATASET

Data Preprocessing. All of the categorical input variables are encoded using the one-hot encod-
ing. For continuous ones, the inverse of the empirical marginal CDF is used to transform them to
their marginal ranks for Bayesian-TPNN and ANOVA-TPNN, whereas they are transformed via the
mean-variance standardization for other baseline models.

Implementation of baseline models. For implementation of baseline models, we proceed as fol-

lows.
* ANOVA-TPNN : we use the official source code provided in
https://github.com/ParkSeokhun/ANOVA-TPNN.
* NA'M : we use the official source code provided in
https://github.com/AmrMKayid/nam and NA?M is implemented by extending
the code of NA'M.

* Linear : We use ‘scikit-learn’ python package (Pedregosa et al., 2011).

* XGB : We use ‘xgboost’ python package (Chen & Guestrin, 2016).

* BART : We use ‘BayesTree’ R package (Chipman et al., 2010).

* mBNN : We use official code at https://github.com/ggong369/mBNN.

20

Under review as a conference paper at ICLR 2026

Hyperparameters. For each model, we perform 5-fold cross validation over the following hyper-
parameter candidates to select the best configuration.

* Bayesian-TPNN

We set the step size in Langevin proposal as 0.01 and gaqq = 0.28, Ggelere = 0.28 and
Qchange = 0.44 as inKapelner & Bleich|(2016).

We fiX ttadding = 0.95 and ~yaqding = 2, as in|{Chipman et al.| (2010).

Cyp € {0.001,0.005,0.01}

ay €{1,2,4}

b, € {1073,5-1073,1072}

Kmax € {100, 200, 300}

0% € {1074,1073,1072}

M e {1,5}

As in (Chipman et al.| (2010), for A, we reparameterize it as gy, where g\ = 77(02 <

63,s) and 63, 5 denotes the residual variance from estimated Linear model. The can-
didate values for gy are {0.90,0.95,0.99}.

We set MCMC iterations as 1000 after 1000 burn-in iterations.

* ANOVA-TPNN

We set the hyperparameter candidates to be the same as those used in [Park et al.
(2025).

Kg € {10, 30,50, 100}

Adam optimizer with learning rate Se-3.
Batch size = 4,096

Maximum order of component € {1, 2}
Epoch € {500, 1000, 2000}

* NAM

We set the architecture of the deep neural networks to three hidden layers with 64, 64,
and 32 units, following |Agarwal et al.| (2021)).

Adam optimizer with learning rate Se-3 and weight decay 7.483e-9.
Batch size = 4,096

Maximum order of component € {1, 2}

Epoch € {500, 1000, 2000}

* BART

We set the hyperparmeter candidates similar to those in (Chipman et al.|(2010).
Number of trees 7' € {50, 100, 200}

a=0.95and § =2

ve{l,3,5}

qx € {0.90,0.95,0.99}

Foro, =3/(kvT), k € {1,2,3,5}.

We set MCMC iterations as 1000 after 1000 burn-in iterations.

* XGB

We consider the hyperparameter candidates used in |Park et al.| (2025)).

* mBNN

We consider the hyperparameter candidates similarly to |Kong et al.|(2023)).

Architecture € { 2 hidden layers with 500 and 500 units, 2 hidden layers with 1000
and 1000 units }

Sparsity hyperparameter A € {0.01,0.1,0.5}
We set MCMC iterations as 1000 after 1000 burn-in iterations.

21

Under review as a conference paper at ICLR 2026

Computational environments. In this paper, all experiments are conducted on a machine
equipped with an NVIDIA RTX 4000 GPU (24GB memory), an Intel(R) Xeon(R) Silver 4310 CPU
@ 2.10GHz, and 128GB RAM.

B.4 EXPERIMENT DETAILS FOR IMAGE DATASET

CNN model. For CNN that predicts concepts, we attach a linear head for each concept on top of
the pretrained ResNet18, and train both the ResNet-18 and the linear heads jointly.

Concept generating. Following|Oikarinen et al.|(2023)), we use GPT-5 (OpenAl, 2025)) to generate
concept dictionaries for CELEBA-HQ and CATDOG dataset. Specifically, we prompted GPT-5 as
follows:

* CelebAMask-HQ is a large-scale face image dataset containing 30,000 high-resolution face
images selected from CelebA, following CelebA-HQ. In this context, we aim to classify
gender using the CelebAMask-HQ dataset. Could you list five high-level binary concepts
that you consider most important for gender classification?

* When classifying images of cats and dogs, what are the five most important concepts to
consider?

Through GPT-5, we obtained a concept dictionary
{‘Facial hair’, ‘Makeup’, ‘Long hair’, ‘Angular contour’, ‘Accessories’ }
for dataset CELEBA-HQ and another dictionary
{“Pointed ear’, ‘Short snout’, ‘Almond eye’, ‘Slender/flexible body’, ‘Fine/uniform fur’ }

for dataset CATDOG. Each concept c is divided into a positive part ¢, and a negative part c_. For
example, concept ‘Makeup’ can be divided into ‘Makeup’ and ‘No Makeup’, and ‘Slender/flexible
body’ can be divided into ‘Slender/flexible body’ and ‘Bulky/varied body’. In turn, we use the pre-
trained CLIP encoder to convert c; and c_ as well as each image into embedding vectors. For each
concept, each image is then assigned a binary label by measuring which of the embeddings of c
and c_ the image embedding is closer to.

Hyperparameters. For ANOVA-T2PNN and NA2M are trained using the Adam optimizer with
a learning rate of le-3 and batch size of 512. For ANOVA-T2PNN, the numbers of basis Kg are
all equal to K and K is determined using grid search on {10, 50, 100}. For the neural network in
NA2M, we set hidden layer with sizes (64,64,32). We implement Linear model as the linear logistic
regression using the ‘scikit-learn’ package (Pedregosa et al.,[2011).

B.5 EXPERIMENT DETAILS FOR COMPONENT SELECTION

Table 8: Definitions of f(1), () and (3,

Function Equation
(1) D So—1 Z9 X7
(%) w1T2\/2|x3| — sin” " (0.5z4) + log(|zs + 5| + 1) + ————, [——— — z227
1+ |z10| V 1+ |zs]
P x) T1xe 4 273 TT5HT6 | 93T T4t T5HCT 4 gin (1, sin(xg + 20)) + arccos(0.9z10)

1

FP () tanh(z1s + 3334)y/[75] + exp(ws + z6) + log((wezras)® + 1) + Bom10 + 1+ [210]
T10

Table 9: Distributions of input features for each synthetic function.

Function Distribution

M x) X1, X2, X3, Xe, X7, Xo ~4 UO,1), X4, X5, Xs, X10 ~*¢ U0.6,1) and X11, ..., X50 ~"*¢ U(L1)

F®(x) X1, e X0~ UCLD
P (x) X1, .0y X50 ~H UCLD

We generate synthetic datasets from the regression model defined as
Y = f(k) (X) + €,

22

Under review as a conference paper at ICLR 2026

where € ~ N(0,02) and x € R, Here, f(*), k = 1,2, 3 are true prediction model used in Tsang
et al.| (2017) and defined in Table [8| and the input variables are generated from the distributions
in Table [9] Input variables indexed 1-10 are informative, as they affect the output, whereas input
variables 11-50 are non-informative. We choose o2 such that the signal-to-noise ratio is 5.

To evaluate the ability to detect signal components, we conduct experiments in the same manner as
in [Park et al.| (2025). That is, we use AUROC based on the pairs of || fék) |l2,» and r(Sk), computed
for all subsets S C [p] with |S| = 1,2,3, where fék) denotes the estimate of fék) in f*) and
rs? =17 o.n > 0) for k € {1,2,3).

23

Under review as a conference paper at ICLR 2026

C ABLATION STUDIES

C.1 THE NUMBER OF BASIS K FOR VARIOUS VALUES Cj

To evaluate the effect of Cy in @I) on the number of bases K, we conduct experiments with the
maximum number of bases K ax set to 200, and 1000 iterations for both burn-in and MCMC up-
dates. Also, a., and b, are set to be 0.5 and we use ABALONE dataset. Figure E] shows that K
decreases and RMSE increases as C increases. This result demonstrates that the hyperparameter
Cy effectively controls model complexity by regulating the number of bases K. A small value of Cj
is recommended since an excessively large Cj can be detrimental to predictive performance.

200
175 3.45
150 3.40

125

K
RMSE

le-5 le-d le-3 le-l 1 le5 le-4 le3 lel 1
CO CO
Figure 3: Plots of the number of basis X and RMSEs on various Cj values.

C.2 IMPACT OF THE HYPERPARAMETERS a- AND bV ON PREDICTION PERFORMANCE

We conduct an experiment to evaluate the effect of shape parameter a., and scale parameter b, on
prediction performance. Except for a., and b, the other hyperparameters of Bayesian-TPNN are set
identical to those in Section [C.I] of Appendix, and we analyze ABALONE dataset. We observe that
prediction performance is relatively insensitive to the choice of the shape parameter a.,, whereas it
is somehow sensitive to the choice of the scale parameter b.,. Note that the scale of -y controls the
smoothness of each TPNN basis ¢(x|O) and thus the smoothness of Bayesian-TPNN model.

Table 10: Prediction performance depends on various values of a-, and b.,.

by\a, 05 1 2 3
le5 3247 3202 3278 3228
le-4 3224 3215 3184 3.175
001 3211 3182 3.8 3.175
0.1 3213 3258 3282 3343

C.3 IMPACT OF THE STEP SIZE IN THE LANGEVIN PROPOSAL

We conduct an experiment to investigate the effect of the step size in the Langevin proposal for
(bs, k. I's, k, Br). Except for the step size, the other hyperparameters of Bayesian-TPNN are set
identical to those in Section|C.I]of Appendix, and we analyze ABALONE dataset. Table [[T|presents
the prediction performances of Bayesian-TPNN for various step sizes. Our results show that overly
large step sizes in the Langevin proposal can degrade the prediction performance due to poor accep-
tance and unstable exploration, whereas a moderate range yields the best performance. Therefore, a
not too large step size is recommended in practice.

Table 11: Prediction performances of Bayesian-TPNN for various step sizes in the Langevin proposal .

Step size 0.01 0.02 0.04 0.08 0.1 0.2 0.3 0.4 0.5
RMSE 3199 3216 3209 3269 3.160 3243 4308 4549 4.578

24

Under review as a conference paper at ICLR 2026

C.4 IMPACT OF pixpur ON ESTIMATING HIGHER-ORDER COMPONENTS

We conduct an experiment to evaluate the effects of using pipy Other than the uniform distribu-
tion in the MH algorithm. We refer to the model with the uniform distribution for pippu as Uniform
Bayesian-TPNN, and the model where pjnpy is determined using the feature importance from a pre-
trained XGB as Bayesian-TPNN. Table|12|compares prediction performances of Uniform Bayesian-
TPNN (UBayesian-TPNN) and Bayesian-TPNN on MADELON dataset. To investigate why the pre-
diction performance improvement occurs when using the nonuniform pj,py, we identify the 5 most
important components for each model whose results are presented in Table UBayesian-TPNN
only detects two thrid-order interactions as signals and ignores even all of the main effects. In con-
trast, Bayesian-TPNN captures the fourth-order component as the most important but is also able to
capture other meaningful lower-order components including two main effects effectively.

We also analyze the synthetic datasets in Section 4.2 with UBayesian-TPNN, and the correspond-
ing results are reported in Table These results amply imply that pj,py plays an important role
in detecting higher-order components and leading to substantial improvements in both prediction
performance and component selection.

Table 12: Prediction performance on MADELON dataset.
Model UBayesian-TPNN Bayesian-TPNN
AUROC 1 (SE) 0.739 (0.002) 0.854 (0.007)

Table 13: Top 5 components with the important scores normalized by the maximum.

Model Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
Comp. Score Comp. Score Comp. Score Comp. Score Comp. Score
UBayesian-TPNN (203,289,421) 1.000 (30,149,212) 0.950 (148,176,298) 0.006 (75,232,442) 0.005 (64,373,379) 0.004
Bayesian-TPNN (49,242,319,339) 1.000 (129,443,494) 0472 (379,443) 0.374 106 0.322 (242,443) 0.301

Table 14: Performance of component selection on the synthetic datasets.

True model f(l) f(2) f(3)

Ord UBayesian ~ Bayesian =~ UBayesian =~ Bayesian =~ UBayesian ~ Bayesian
réer TPNN TPNN TPNN TPNN TPNN TPNN

| 1.000 1.000 0.826 0.831 0.824 1.000
(0.000) (0.000) (0.024) (0.008) (0.009) (0.000)

2 0.988 1.000 0.953 0.985 0.750 0.922
(0.010) (0.000) (0.006) (0.003) (0.006) (0.019)

3 0.736 0.740 0.878 0.966 0.658 0.661
(0.050) (0.022) (0.020) (0.018) (0.011) 0.022

C.5 IMPACT OF STEPWISE SEARCH IN THE PROPOSAL OF K

We conduct an experiment to evaluate the effectiveness of Stepwise move in the proposal distri-
bution of K suggested in Section [3.2] We compare the performances of Bayesian-TPNN with and
without Stepwise move on MADELON dataset. Table [I5]reports the averages and standard errors of
AUROCS, ECEs, and NLLs over 5 trials and Table |16 shows the top 5 important components. The
results suggest that the Stepwise move is helpful to detect higher-order interactions which in turn
leads to improvements in both prediction performance and uncertainty quantification.

25

Under review as a conference paper at ICLR 2026

Table 15: Results of performance with and without Stepwise move.

With Stepwise move Without Stepwise move

AUROC 1 (SE) 0.854 (0.007) 0.820 (0.002)
ECE | (SE) 0.076 (0.004) 0.106 (0.007)
NLL | (SE) 0.479 (0.009) 0.650 (0.005)

Table 16: Top 5 components with the important scores normalized by the maximum.

Model Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
Comp. Score Comp. Score Comp. Score Comp. Score Comp. Score
With Stepwise move (49,242,319,339) 1.000 (129,443,494) 0472 (379.443) 0.374 106 0322 (242,443) 0301
Without Stepwise move (129,242) 1.000 (29,339,379) 0.986 339 0.622 337 0.544 (242,443) 0.526

D EXPERIMENT FOR THE POISSON REGRESSION

In this section, we compare the prediction performance and uncertainty quantification of Bayesian-
TPNN with GBART (Linero, [2025)) on the Poisson regression model. We consider the poisson re-
gression model defined as

Y;|x; ~ Poisson(exp(f(x;))),
where f is the regression function. We generate a synthetic dataset of size 15,000 using the true
regression function fj defined as

T9g xT7
1+ |z10] V 1+ |xg]

fo(x) = 7172 /2|x3] — sin = (0.524) + log(|2s + 25| + 1) + — To7,
where input variable x; € R!" are generated from Uniform(0,1)!° for i = 1,...,15,000. Table
presents the RMSE and NLL for Bayesian-TPNN and GBART, demonstrating that Bayesian-
TPNN achieves superior performance to GBART even in the Poisson regression. Here, the RMSE
is calculated between exp(fo(x;)) and exp(f(x;)) for ¢« = 1,..,15,000, where f is the Bayes

estimate. Figure 4| shows the scatter plot of predicted values exp(f(x;)) versus exp(fo(x;)) for
i =1,...,15,000. It implies that Bayesian-TPNN yields predictions much closer to the true values

compared to GBART.

Table 17: Prediction performance and uncertainty quantification on Poisson synthetic dataset.

Bayesian-TPNN GBART

RMSE | 0.094 0.141
NLL | 1.615 1.629
Bayesian-TPNN GBART
5 5
4 4
E 3 4 E 3 2,
<b <b
=% =Y
]]
o o,
1 1
1 2 3 4 5 1 2 3 4 5
exp(fo(xi)) exp(fo(xi))

Figure 4: Scatter Plots between the true expectations and estimated ones.

26

Under review as a conference paper at ICLR 2026

E EXPERIMENTS FOR INTERPRETABILITY

E.1 INTERPRETABILITY ON THE IMAGE DATASETS

In this section, we describe the local and global interpretations of CBM 2020) with
Bayesian-TPNN on CELEBA-HQ and CATDOG datasets. Table[I8] presents the description of con-
cepts used in CELEBA-HQ and CATDOG datasets.

Table 18: Description of image datasets.

Index CELEBA-HQ CATDOG
1 Facial hair Pointed ear
2 Makeup Short snout
3 Long hair Almond eye
4 Angular contour Slender/flexible body
5 Accessories Fine/uniform fur

Table 19: Normalized importance scores and ranks for the top 5 important components on the image
datasets.

CELEBA-HQ

Rank 1 2 3 4 5
. Component index 2 4 23) 24 (L1,5)
Bayesian-TPNN Score 1000 0665 0592 0304 0262

2 Component index 2,3) 1 (1,5) 4 5
ANOVA-T"PNN Score 1000 0482 0284 0262 021l

Linear Component index 2 1 4 5 3
Score 1000 0783 0549 0328 0304

CATDOG
Rank 1 2 3 4 5
. Component index 3 (3.4) 2 4 (2,3,45)

Bayesian-TPNN Score 1000 0395 0252 0162 0.086
2 Component index 4,5) 3 3.5 4 (1,4)
ANOVA-T"PNN Score 1000 0883 0882 0716 0453

Linear Component index 5 1 3 2 4
Score 1000 0698 0352 0023 0021

Global interpretation. Table [I9] shows the top 5 most important components along with their
importance scores (normalized by the maximum score) for Bayesian-TPNN, ANOVA-T2PNN and
Linear model. In CATDOG dataset, Bayesian-TPNN identifies the 4th-order component (2,3,4,5) as
an important component. It seems that complex interactions exists between the 5 concepts.

Example of CelebA-HQ Example of CatDog

Figure 5: Examples of images misclassified by Linear model.

27

Under review as a conference paper at ICLR 2026

Local interpretation. Figure[5|presents two images where Bayesian-TPNN correctly classifies but
Linea model does not. For the CELEBA-HQ example image, Linear model incorrectly predicts it as
male, whereas the Bayesian-TPNN correctly predicts as female. The contributions of the important
components for this image are presented in Table 20] In Linear model, ‘Makeup’ gives a positive
contribution, which leads to a misclassification of the image as male. In contrast, in Bayesian-TPNN,
while the main effect of ‘Makeup’ still provides a positive contribution, the interactions between
(‘Makeup’, ‘Long hair’) and (‘Makeup’, ‘Angular contour’) yield negative contributions, resulting
in a correct prediction as female.

For the CATDOG example image, Linear model incorrectly predicts it as ‘dog’, whereas Bayesian-
TPNN correctly predicts as ‘cat’. Table [21] indicates that Linear model misclassifis the image as
‘dog’ due to the positive contribution of ‘Almond eye’. In contrast, although Bayesian-TPNN also
assigns a positive contribution to ‘Almond eye’, the higher-order interactions—(‘Almond eye’,
‘Slender/flexible body’) and (‘Short snout’, ‘Almond eye’, ‘Slender/flexible body’, ‘Fine/uniform
fur’)—provided much stronger negative contributions, leading to the correct classification as a cat.

These two examples strongly suggest that considering higher-order interactions between concepts is
necessary for the success of CBM.

Table 20: Prediction values of the 5 most important components for CELEBA -HQ image.

. Component index 2 4 2,3) 24) (1,5)
Bayesian-TPNN ™ ibution 0297 0.184 0444 0323 -0.207
Component index 1 2 3 4 5

Linear Contribution 0222 3.746 -1.510 -2.665 1.627

Table 21: Prediction values of the 5 most important components for CATDOG image.

. Component 3 (3.4 2 4 (2,3,4,5)
Bayesian-TPNN - ibution 0.618 -0.767 0.181 -0.778 -0.355
Component 1 2 3 4 5

Linear Contribution -4.304 -0.630 9.503 -2.463 -4.113

Table 22: Prediction performance on the image datasets.

Bayesian-TPNN with 5 concepts ~ Linear with 10 concepts

CELEBA-HQ 0.936 (0.002) 0.899 (0.001)
CATDOG 0.878 (0.002) 0.869 (0.002)

Fewer concepts, better prediction performance. One may argue that 5 concepts are too small
for Linear model and Linear model would perform well with more concepts. To see the validity of
this argument, we compare predictive performance of Bayesian-TPNN with 5 concept and Linear
model with 10 concepts, where additional 5 concepts are generated through GPT-5: for CELEBA-
HQ dataset,

{‘Emphasized eyes’, ‘Prominent lips’, ‘Smooth skin’,
‘Pronounced cheekbones’, ‘High contrast’ }

and for CATDOG dataset,

{‘Long tail’, ‘Retractable claws (hidden)’, ‘Upright sitting or crouching posture’,
‘Small mouth / Meowing shape’, ‘Ambush-like pose (crouched)’}.

Table[22] presents the averages and standrad errors of AUROCs for Bayesian-TPNN with 5 concepts
and Linear model with 10 concepts. While using more concepts with Linear model improves pre-
diction accuracy, Bayesian-TPNN is still superior to Linear model even though fewer concepts are
used in Bayesian-TPNN. This implies that capturing higher-order interactions plays a more critical
role in improving prediction performance than merely increasing the number of concepts. Quality
of concepts generated by GPT would be problematic.

28

Under review as a conference paper at ICLR 2026

E.2 ADDITIONAL RESULTS OF LOCAL INTERPRETATION ON THE TABULAR DATASET

In this section, we describe the results of local interpretation on BOSTON dataset. Specifically, we
examine the contributions of the 5 most important components identified by Bayesian-TPNN in
Section[4.3]at a specific input vector x. For a given data point

x = (0.006, 18, 2.31,0,0.538, 6.58, 65.2, 4.09, 1, 206, 15.3, 396.9, 4.98),

the contributions of the 5 estimated components f{lg}, f{g}, f{l}, f{g}, and f{lyﬁ} by Bayesian-
TPNN are given as

(Fruzy (%), frey (%), Friy (%), frsy (%), fr1.6)(x)) = (0.575, —0.108, 0.080, —0.002, —0.001).

In particular, the component f{lg} makes a substantial positive contribution to the housing price.
That is, the price of the house for a given input vector x is high because of the main effect z;3.

29

Under review as a conference paper at ICLR 2026

F EXPERIMENT FOR STABILITY OF COMPONENT ESTIMATION

Park et al.| (2025) demonstrated, both theoretically and empirically, that TPNN reliably estimates
the components of the functional ANOVA model. In this section, we investigate whether Bayesian-
TPNN exhibits the same stability in component estimation. For this analysis, we randomly split
the dataset into training and test datasets. From this, we obtain estimators for the components. We
repeat this procedure five times to obtain five estimators for each component. We then calculate the
stability score using these estimators. Specifically, following [Park et al.[(2025)), for predefined data
{X1,...,Xn}, we use the stability score defined as

1o X0 (fh(xi) = fs(x0))?
D ST

where fg is the estimated component for S obtained from the j-th fold and fs(x) = Z;’:l fg (x)/5.

Finally, we use SC%(f) := E?ff(i) ng[p],\squ SC(fs) to compare the stability in component

estimation between Bayesian-TPNN, ANOVA-TPNN and NAM.

Table presents the results of stability scores SC'(f) for Bayesian-TPNN, ANOVA-T'PNN and
NAM, where ANOVA-T!PNN and NAM estimate only the main effects. Table shows of stabil-
ity scores SC2(f) for Bayesian-TPNN, ANOVA-T?PNN and NA2M, where ANOVA-T2PNN and
NAZ2M estimate up to second-order components. These results imply that Bayesian-TPNN estimates
the components more stably than ANOVA-TPNN and NAM. Note that for MADELON dataset, which
has an input dimension of 500, we could not train ANOVA-T?PNN and NA2M due to the computa-
tional environment, and thus their stability scores could not be calculated.

SC(fs)

= — ,
n

Table 23: Stability scores of Bayesian-TPNN, ANOVA-T'PNN and NA'M.

Bayesian ~ ANOVA 1

Dataset TPNN T!PNN A M
ABALONE 0.087 0.405 0.555
BOSTON 0.368 0.425 0.583
MpG 0.222 0.411 0.472
SERVO 0.339 0.651 0.481
Fico 0.130 0.287 0.607
BREAST 0.100 0.286 0.569
CHURN 0.111 0.558 0.569
MADELON 0.520 0.685 0.785

Table 24: Stability scores of Bayeisan-TPNN, ANOVA-T?PNN and NA®M.
Bayesian ~ ANOVA

2

Dataset TPNN 12NN AM
ABALONE 0400 0340 0770
BOSTON 0615 038 0.705
MpG 0.340 0370 0560
SERVO 0.445 0.575 0.665
Fico 0.525 0540 0790
BREAST 0.630 0675 0730
CHURN 0.520 0755 0730

MADELON 0475 — —

30

Under review as a conference paper at ICLR 2026

G COMPARISON OF CONVERGENCE SPEED AND RUNTIME IN MCMC
ALGORITHM

In this section, we evaluate the convergence speed and runtime of MCMC algorithms for Bayesian-
TPNN. Specifically, we compare its convergence speed with that of mBNN, and its runtime with
those of ANOVA-T2PNN and mBNN. In Bayesian-TPNN, we set K ,,,x = 100. For mBNN, we use
two hidden layers with 500 units each and set the number of HMC steps to 30. For ANOVA-T2PNN,
we set Kg = 10.

Figure [6] shows the RMSE trajectories across MCMC iterations on BOSTON dataset for Bayesian-
TPNN and mBNN. Table 23] presents the runtime comparison of Bayesian-TPNN , mBNN with
2,000 iterations and ANOVA-T2PNN with 2,000 epochs on real datasets. The best results are high-
lighted by bold. In the experiments on FICO, CHURN, and BREAST datasets, the runtime difference
between Bayesian-TPNN and ANOVA-T2PNN become more pronounced. This is because, after
data preprocessing, the input dimensions are 23, 46, and 30, respectively. As the number of neural
networks required in ANOVA-T?PNN increases rapidly with the input dimension, the runtime in-
creases considerably. Note that for the MADELON dataset, where the input dimension is 500, training
ANOVA-T?PNN is infeasible because the number of neural networks to be trained is 125, 250.

These results imply that Bayesian-TPNN converges faster in terms of MCMC iterations compared
to mBNN. Moreover, its overall runtime is shorter than both mBNN and ANOVA-T2PNN. In par-
ticular, Bayesian-TPNN runs significantly faster than ANOVA-T?PNN, and this advantage becomes
more pronounced as the input dimension p increases.

Table 25: Runtime of Bayesian-TPNN, ANOVA-T?PNN and mBNN (sec).

Dataset Bayesian-TPNN ANOVA-T2PNN mBNN

ABALONE 475 326 1,273
BOSTON 181 577 266
MPG 156 227 275
SERVO 159 400 242
Fico 943 3,530 4,198
BREAST 181 2,363 310

CHURN 686 7,772 2,756
MADELON 345 — 894

RMSE

0 250 500 750 1000 1250 1500 1750 2000
MCMC lteration

Bayesian-TPNN mBNN

Figure 6: The RMSE trajectories across MCMC iterations for Bayesian-TPNN and mBNN.

31

Under review as a conference paper at ICLR 2026

H ADDITIONAL EXPERIMENTS FOR UNCERTAINTY QUANTIFICATION

H.1 UNCERTAINTY QUANTIFICATION ON NON-BAYESIAN MODELS.

We report the performance of uncertainty quantification for non-Bayesian models including
ANOVA-TPNN, NAM, XGB and Linear model, in Table These results indicate that Bayesian-
TPNN outperforms the non-bayesian models in view of uncertainty quantification.

Table 26: Uncertainty quantifications for non-bayesian models on real datasets.

Dataset ANOVA-TPNN NAM XGB Linear
CRPS NLL CRPS NLL CRPS NLL CRPS NLL
ABALONE 1.578 (0.16) — 1.901 (0.27) — 1.668 (0.16) — 1.638 (0.15) —
BOSTON 4.464 (0.71) — 3.147 (0.35) — 3.241(0.27) — 4.291 (0.44) —
MpG 2.478 (0.45) — 3.314 (1.07) — 2.343(0.35) — 2.990 (0.32) —
SERVO 0.595 (0.02) — 0.868 (0.39) — 0.215 (0.03) — 0.910 (0.04) —
ECE NLL ECE NLL ECE NLL ECE NLL
Fico 0.063 (0.017) 0.583(0.018) 0.198 (0.007) 0.681 (0.012) 0.096 (0.026) 0.620 (0.015) 0.055 (0.014) 0.593 (0.017)

BREAST 0.100(0.030) 0423 (0.071) 0284 (0.022) 0.511(0.033) 0.063(0.012) 0.878(0.172) 0.102(0.015) 0.216 (0.039)
CHURN 0.053(0.004) 0444 (0.011) 0318(0.007) 0718 (0.008) 0.131(0.006) 0.594 (0.021) 0.078 (0.004) 0.573 (0.002)
MADELON 0354 (0.014) 0.752(0.003) 0.156(0.009) 0.735 (0.016) 0.147 (0.008) 0.703 (0.035) 0.232(0.011) 0.736 (0.016)

H.2 EXPERIMENT FOR OUT-OF-DISTRIBUTION DETECTION

Here, we conduct experiments to evaluate whether each model appropriately captures uncertainty on
out-of-distribution data in binary classification. As a measure of uncertainty for out-of-distribution
data, we use the maximum predicted probability (Mukhoti et al., 2023). Specifically, we denote the
in-distribution dataset by {xI",...,x}y } and the out-of-distribution dataset by {x$", ..., x} } with

corresponding predictive probabilities p(x") for i = 1, ..., Ny and p(x") fori = 1, ..., Na.

Let pmax(x) = max{p(x),1 — p(x)}. For evaluation, we assign label 1 to the in-distribution data
and label O to the out-of-distribution data. Then, we compute the AUROC between the labels and
the transformed scores 1 +10gy Prax (XI") or 141085 Pmax (x$). Intuitively, predictive probabilities

close to 0.5 reflect model uncertainty, and such cases can be identified as out-of-distribution.

We randomly sample a subset which size of 500 from the MADELON dataset, standardized it, and
use it as an out-of-distribution dataset. For each dataset FICO, BREAST, and CHURN, we randomly
split the data into training and test datasets. In turn, we train Bayesian-TPNN and baseline models
using the training dataset. We then compute the AUROC treating the test dataset as the in-distribution
dataset. We repeat this procedure 5 times, and Table 27| presents the averages and standard errors of
AUROC:s for Bayesian-TPNN and baseline models on F1ICO, BREAST and CHURN datasets. These
results demonstrate that Bayesian-TPNN outperforms the baseline models, achieving substantially
superior performance in out-of-distribution detection.

Table 27: AUROC Results on in-distribution and out-of-distribution detection.

Dataset Bayesian-TPNN ~ ANOVA-TPNN NAM Linear XGB BART mBNN
Fico 0.606 (0.013) 0.446 (0.020) 0.455(0.032) 0.191(0.002) 0.605(0.018) 0.667 (0.004) 0.519 (0.014)
BREAST 0.903 (0.015) 0.542 (0.021) 0.534(0.041) 0.112(0.010) 0.827 (0.022) 0.664 (0.023) 0.503 (0.051)

CHURN 0.724 (0.006) 0.570 (0.040) 0.533 (0.040) 0.442(0.006) 0.420 (0.014) 0.598 (0.009) 0.599 (0.039)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

I VISUAL ILLUSTRATION FOR PROPOSAL

In this section, we describe the visual explanation of the proposal in Section [3:2} Given Bayesian-
TPNN as in Figure[7] we explain the updating of K and the updating of Sk

Input TPNNs

Figure 7: Bayesian-TPNN with p = 4, K = 3.

1.1 UPDATING K

For a given K, we propose K™ = K — 1 or K™ = K + 1. Here, we describe only Random and
Stepwise moves, corresponding to the case where K™V = K + 1. In the case of Random move,
a node is randomly generated and its edges are randomly assigned. For Stepwise move, a node is
first selected from the existing nodes, and then a new edge is added to create a new node. Figure [§]
presents an overall illustration for these moves.

Input TPNNs Input TPNNs

N Y

= \ s
4 4 ~ 8

- - -

- N

® o & @
) .
@D & D

Random

Input TPNNs Input TPNNs Input TPNNs

. A "

z‘\‘ /\21\1 - \/zl\kf/””;.\)

>/ . <7 A4 /,/‘ L

— N 3 ; o

zz\\ (’2\1 x|6 (z,\{l,/, B N
A

Stepwise

— ‘/ . D & ~= e
= - o - —
@ o ot /@ A @ e ,/,»}‘3"3“)
A4 \/\ g}/ . 3~
PN : G O g (a0)
() @ @

Figure 8: Visual explanation for alternations in the proposal distribution of K.

1.2 UPDATING Sy

Figure[J]illustrates how the edges change when applying Adding, Deleting, or Changing moves to
a given current state.

33

Under review as a conference paper at ICLR 2026

Current State Adding
Input TPNNs Input TPNNs
A A
[z | [
g #(x/01) ~ 4(x/01)
A A
[22 | %2
o —output) - ~|output|
A \ AT \
(z3) 7 [z) —
A\ 4 A 4
A #(x/63) A #(x/05)
(%) (%)
A &

Deleting Changing

Input TPNNs Input TPNNs
A AT
[z1 | [z
A 4 #(x|01) ~ #(x|01)
A AT
[@2) [@2)
A4 ‘ Bs T g Ba @
o 7‘£Oulpul/} PN l\Output\
(@) & (a3 | O
\ 4 A4
AT $(x|03) A 9(x|©3)
(x4) [oq)
A\ 4 \\,,,/

Figure 9: Visual explanation for alternations in the proposal distribution of Sj.

J EMPIRICAL EVALUATION UNDER MINIBATCH SETTINGS

We conduct an additional experiment to empirically verify that our MCMC algorithm performs well
when mini-batches are used. When estimating Bayesian-TPNN with mini-batched data, we refer
to it as MBayesian-TPNN. Here, for ABALONE and FICO datasets, we set the size of mini-batch
as 1,000 and 2,000, respectively. Table 28] presents the averages and standard errors of prediction
performance and the uncertainty quantifications of Bayesian-TPNN and MBayesian-TPNN for 5
trials on ABALONE and FICO datasets. These results suggest that training with mini-batches does
not significantly reduce prediction performance and uncertainty quantification. In practice, these
findings indicate that using mini-batches is practically acceptable, as it does not lead to meaningful
degradation in performance or uncertainty estimation.

Table 28: Results of MBayesian-TPNN.

RMSE/AUROC CRPS/ECE NLL
Bayesian-TPNN ~ MBayesian-TPNN Bayesian-TPNN ~ MBayesian-TPNN Bayesian-TPNN MBayesian-TPNN
ABALONE 2.053 (0.26) 2.081 (0.24) 1.372 (0.19) 1.391 (0.17) 2.260 (0.16) 2.280 (0.18)
FICO 0.793 (0.009) 0.788 (0.005) 0.036 (0.004) 0.038 (0.003) 0.554 (0.007) 0.564 (0.003)

34

Under review as a conference paper at ICLR 2026

K COMPARISON WITH DEEP ENSEMBLE

In this section, we conduct additional experiment to compare Bayesian-TPNN with Deep Ensemble
(Lakshminarayanan et al] 2017). Here, we consider candidates for each hyperparmeter of Deep

Ensemble as below.

* The number of MLPs : {5, 50, 100}
MLP architectures : {(50), (100), (256, 128, 64), (512, 256, 128)}

* Learning rates : {le — 4, le — 3, le — 2}
* Epochs : {100, 200, 500, 1000}
» Weight for L regularization : {le — 3,1e — 2,1e — 1}
Table |22| presents the averages of RMSE, AUROC, CRPS, ECE and NLLs for 5 trials on real

datasets. These results show that the performance of Bayesian-TPNN is comparable to that of Deep
Ensemble in terms of both prediction accuracy and uncertainty quantification.

Table 29: Results of Bayesian-TPNN and Deep Ensemble.

RMSE/AUROC CRPS/ECE NLL
Bayesian-TPNN Deep Ensemble Bayesian-TPNN Deep Ensemble Bayesian-TPNN Deep Ensemble
ABALONE 2.053 (0.26) 2.121 (0.23) 1.372 (0.19) 1.498 (0.17) 2.260 (0.16) 2.036 (0.15)
BOSTON 3.654 (0.49) 3.922 (0.57) 2.202 (0.23) 2.458 (0.22) 3.411 (0.37) 3.747 (0.40)
MPG 2.386 (0.41) 2.257 (0.14) 1.510 (0.43) 1.481 (0.11) 2.511 (0.21) 2.769 (0.47)
SERVO 0.351 (0.02) 0.398 (0.03) 0.194 (0.01) 0.179 (0.01) 0.836 (0.10) 0.701 (0.04)
FICO 0.793 (0.009) 0.773 (0.024) 0.036 (0.004) 0.057 (0.033) 0.554 (0.007) 0.577 (0.034)
0.211 (0.014) 0.133 (0.041)

BREAST 0.998 (0.001) 0.993 (0.003) 0.129 (0.009) 0.075 (0.017)
CHURN 0.849 (0.008) 0.841 (0.013) 0.031 (0.001) 0.039 (0.002) 0.418 (0.008) 0.424 (0.018)
MADELON 0.854 (0.013) 0.616 (0.029) 0.076 (0.004) 0.137 (0.061) 0.478 (0.009) 0.719 (0.049)

35

Under review as a conference paper at ICLR 2026

L APPLICATIONS TO GENOMIC DATASET

We conduct additional experiment to explore the applicability of Bayesian-TPNN to genomics
dataset GSE43358 (Fumagalli et al| 2013)). GSE43358 is a gene expression dataset with n = 57
samples and p = 54,675 features and we perform a classification task distinguishing between
HER2-positive and non-HER2-positive cases. Table[30]shows that the averages and standard errors
of prediction performance for Bayesian-TPNN, Linear model and XGB for 5 trials. For Bayesian-
TPNN and XGB, the hyperparameters are optimized as in the experiment for other real datasets.
Note that because the input dimension p is too large, both ANOVA-TPNN and NAM could not be
trained within our computational environment. The results in Table[30]indicate that the interpretable
Bayesian-TPNN achieves prediction performance comparable to that of the black-box model XGB
on GSE43358 dataset.

Table BT] reports the top 10 most important components in Bayesian-TPNN with the normalized
importance score. Here, we use the importance score defined in Section 4.2, and the normalized
score represents each importance value divided by the maximum importance score. Note that one
of the third order interactions is detected by Bayesian-TPNN. The results in Table [31]indicate that
higher-order interactions (beyond the second order) play a crucial role, which provides a plausible
explanation for the inferior prediction performance of the linear model. Moreover, this highlights the
necessity of an interpretable model such as Bayesian-TPNN, which is capable of estimating such
higher-order interactions.

Table 30: Results of baseline models on GSE43358 dataset.

Model Bayesian-TPNN ~ ANOVA-TPNN NAM Linear XGB
AUROC 0.949 (0.017) - - 0.545(0.001) 0.953 (0.041)

Table 31: Top 10 important components.

Rank Component of GenBank accession numbers ~ Normalized Score

1 S69189 1.000
2 BF357738 0.924
3 (BC000129, R80390) 0.701
4 AF307338 0.569
5 NM_018297 0.410
6 BF061275 0.375
7 AF319440 0.365
8 (BE741754, AB037854, AK024890) 0.334
9 AI368358 0.292
10 BE672684 0.218

36

Under review as a conference paper at ICLR 2026

M NOTATIONS AND REGULARITY CONDITIONS FOR THE PROOFS

M.1 ADDITIONAL NOTATIONS

For two positive sequences {a,} and {b,}, we write a,, < by, if there exists a constant C' > 0

such that a,, < Cb, for all n € N. The notation a, = o(b,) indicates that the ratio a /by,
converges to zero as n — oo. We denote N (e, F, d) the e-covering number of the function class
F with respect to the semimetric d. For a given vector v. = (v1,...,ux), we define its £ norm

N . . .
as ||v||3 := Y_;_, v7. Given a real-valued function f : X — R, we define its sup-norm as

[l flloo = supyxexr |f(x)|. We define population £,-norm with respect to a probability measure
on X as || fllp = (foen F(x)Pu(dx))/?. Let Pk =], where Px, is the probability distribu-
tion of X; for ¢ = 1, ..., n. For two given densities p; and p,, we define the Kullback-Leibler (KL)
divergence as

K(pup) = [gl (v)/plv)pa(v)av.
and let V(p1,p2) := [|log(p1(v)/p2(v)) — K(p1,p2)|?p1(v)dv.

M.2 REGULARITY CONDITIONS

(S.1) For a distribution Px, there exist a density px with respect to the Lebesgue measure on R?,
that is bounded away from zero and infinity, i.e.,

0 < inf px(x) < sup px(x) < oo.
xeX xeX

(S.2) The true function fy s is L-Lipschitz continuous, i.e.,

| fo,s(x) = fo,s(x)] < L|lx — x|

for some positive constant L and all x, x’ € X. Additionally, fo s is assumed to be bounded
in the supremum norm by a positive constant F, i.e., || fo,s]|cc < F. We denote the above
conditions compactly as fo,s € Lip;, . Moreover, we say that fo € Lip, j, p if fo,5 €
Lip;, p forall S C [p].

S.3) The log-partition function A(-) is differentiable with a bounded second derivative over
g-p
[~ F, F], i.e., there exists a positive constant C'4 such that

1/Cq < A(z) < Cy

forall x € [F, F.
(5.4) Kmax is assumed to grow at a rate Ky = O(n).

37

Under review as a conference paper at ICLR 2026

N POSTERIOR CONSISTENCY OF BAYESIAN-TPNN

We first prove the posterior consistency of f since it plays an important role in the proof of the
posterior consistency of each component fg.

N.1 POSTERIOR CONSISTENCY OF fj

Theorem N.1 (Posterior Consistency of Bayesian-TPNN). We assumes that|(S.1)}/(S.2)}|(S.3)|and
(S.4)| Then, foranye > 0and £ > 2PF + ¢,/ CLA, it holds that

7 (£ 1o = Fllzm > £[X0, ¥ 00) =50 (15)

in QP as n — oo, where Qf is the probability distribution of (X(™) Y (")),

N.2 PROOF OUTLINE

Consider a function class F = U?:l" F(K) that satisfies the sum-to-zero condition with respect to
uniform distribution on (0,1). Here, F(K) is defined as

K
F(K) = {f) =3 Bed(x[Sk, b, . T, k),

=1
Br €R,

bs, i € [0, 1]1%]
Ts, % € (0,00)!%! for k=1, K}

where

¢(x|Sk, bs,k: Ts k) = [] (1 —a(ﬂ) +cj(ijk,7j_,k)g<ﬂﬂvk>)
Js

JESK Vik

and

1 b,
1-— fo 0(96]%]:”“)(1%

cj(bjks Vi) = —

For any f € F(K), we denote it as fx g b, where
B= B,k €[K]), b=(bs,kke[K]) and T = (Tg, i ke [K]).
Our goal is to show that
lim Eg[me([|f = follzn > elX™, Y™)] =0 (16)
n—roo
for any € > 0.
We prove (T6) using following two steps.

(P.1) For given data x(™), we prove that

lim Eg[me(|lf — follzn > XM, Y X = xM] =0
n—o0

for any € > 0.
(P.2) Finally, we show that

Jim E[me(|f = follom > elX™, Y ™) =0

for any € > 0.

38

Under review as a conference paper at ICLR 2026

We first verify the following three conditions: there exists 7" C F and positive constants 6, C, Co
such that

log NV (0, F™, || - ||oo) < nCh, (17)
2

7r(f€]-': ”f_fOHOOSE”C) > exp(—nCy), (18)
A

7 (F\F") < exp(—(2C2 + 2)n). (19)

After that, we will show that these three conditions imply the posterior consistency in Step|(P.1)|by
checking the conditions in|Ghosal et al.[(1999).

N.3 VERIFYING CONDITION (I7)
We consider a sieve F" = Up'r, F(K), where

K
FUK) = {f F(x) = Bed(x[Sk, by, .k, Tsy),
k=1

/Bk S [—’I’L,’I’L],
bs, & € [0, 1]1%]

Ts, % € (0,n]1% for k= 1,..,K},

where M,, = L(fggffj and C3 will be determined later.

Also, we consider a more general function class as :

K
Gg"(K) = {f Cf(x) = Zﬁk¢(x|5k7bsk7k7fsk,k7csk,k),

k=1
Bk € [7”” n]a
b€ (0.1 @0

FSk,k S (0, n]‘s’“l,

Csok € [—2n,2n]1% 1 for k= IK}

where the function ¢ is defined as

zj —bj xj—b;
&(x|Sk, bs, ks sy ks €5y k) = H <1_0(J,M> +cj,ka<j7_kj’k)>.
s Jy

JESk

and the vector cg, i is defined as cg, x = (¢ k,J € Sk).

1 1
—b; —b.
fools s [A5
0 Yk bk Vi, k

> Cojiks

For all j, k, we have

where C, ; ; is a positive constant and thus, we have |¢;(b; x,v;.x)| < Co, Vj, k for some positive
constant C,,. Hence, for all K € [Kpax],

F'(K) CG"(K), 21

whenever n is sufficiently large. Therefore, it suffices to verify Condition (I7) over

My
g = g"(K). (22)
K=1

39

Under review as a conference paper at ICLR 2026

Lemma N.2. For any integer K, we have
K2p+4n3p+1) K(1+3p)

N(&,G"(F), || - [lo0) < (1 +

€

Proof.)

First, since the maximum dimension of parameters in G (K) is K (1 + 3p), we consider K (1 + 3p)-
dimensional hypercube [—2n, 2n] X (1+3P) Then, we have

Ner, [-2n, 20049 || |,) < (Meh —2n.20], |- 1)

< 4n)K(1+3p)
<14+ — :

€1

)K(1+3p)

For Sk = (Sk, k € [K]), we define & := (Bk, bs, x, sk, x,Csyx, k), Where

Bx = (B1, s BK),
bs, .k = (bs,k k € [K]),
FSK,K = (Fsk’k,k S [K]),
CSy K = (CSk,kak S [K])

Let {61, m’GN(El,[—nvn]K(HSp)’”‘Hl)} be an ¢;-cover of [—2n, 2n]K(1+3P) " and for given & €
[—2n, 2] (1+37) Jet & be an element in the ¢;-cover such that ||& — &1 < €.
Note that for any fo € G"(K), we have
K
Fo(x) =Bk T @@ Hitbjmvim cin)s

k=1 jeSk
where

. x;—b; k r; —b; k
O(x;1{5}: bjks ik Cik) =1 — U(”) + %W(U)
ik ik
with |¢; k| < 2n. Then, for any fe € G"(K), we have

fe(x) — f&(x)

K
< sgpz

sup
X

B [oil{a}s bikviks ciw) = Be [T (sl {3} b Vi Eik)

k=1 JESK JESK
K ~
<sup) (B T ¢@ila}sbjksvisks i) = B [T o1} bjks ik i)
X k=1 JESK JESkK 23)
+ 1B [T o(eilad i vikcin) = B TT @145} bjks oo E500))
JESk JESK

Upper bound of first term in 23). Since

) xz; —bj z; — by
1T oGilab bk vim i) = | T1 (1 _U(J,M> +Cj7k0<w>>’
Vi, k Yi.k

JESk JESK
~

IA
/
—
\
Q
N
8
<.
2|
ol
N———
+
QO
ol
S
N
o
B
<
ol

A
=
+ 3
[\~
S
Q*G

Under review as a conference paper at ICLR 2026

we have

sup Z

Br H ¢ x]HJ} ik, Jkacjk

=B T o143} bjps v csn)
k=1 JESK JESK
K ~
<sup > (1+2n)15(8; — By |
X k=1

< (14 2n)Pe

Upper bound of second term in (23). Using direct calculation and triangle inequality, we have

B I (¢($j|{j},bj,k,%‘,kacj,k) —qb(le{j},Ej,k,%,k,éj,k)>’

JESK

> x x x; —b; _ zj — b,
I () e (52) e (529))
jesk Vik Vi.k ik

= || H

R b
(5852 (252 0 (552)
JESk ik ik ik
b R D
< I (o (55) o () e (502 ~oue(2522)])
jESk Vjok ik Vik ik

Since o () is Lipschitz function, we have

xfgk fob-k
CT(J~ J»>O,<J J,
Vi k Y.k
zj —bjk _xj —bjk
B Vi k Vi, k
i —bjk xj—bjk

N (EET—
ik ik

S 2n2 <|I~)j’k —b

<

x; — bk x;—bjk

ik ik

- %‘,kl)'

+

)

Similarly, we have
x; —bj zj—b;
W(J k) - ej,ka< i k)‘
Vi.k
T, —b; . T;—b; ~ r; —b; . x;—b;
Cj,k0< J JJC) —CMU(J J7k>‘+ Cj,ko'(J J-k) —Cj,k0< g Jak>‘
Y.k Vi, k Vi, k Vi, k
< 4n® (|Cj,k — &kl + [bjn = bikl + s — %',k|>-

To sum up, the upper bound of 23) is

<

sup | fe(x) — fa(x)] < K((l +2n)Pe; + 2p+3n3p+1611)>
< K(2n)% T

Let € = K (2n)?"*1e;. Then, we conclude that

€

3p+2\ K(1+3p)
N(e.G (K, |- loo) < (1 + W) .

41

Under review as a conference paper at ICLR 2026

O]
Using Lemma[N.2] we have
M, K(1+3p)
" 2n)3p+2
K=1
2Mn) 3p+2 My, (1+3p)
1)
Let 6 = ¢/8. Finally, we choose Cj5 such that
2M,,(2n)3P+2
g A6 77 | o) < Tog My + M 1+ 3p) o (1.+ 2200
< ne?/10.
Condition (17) is satisfied by letting C; = £2/10. O
N.4 VERIFYING CONDITION (T8)
For S C [p], using Theorem 3.3 in|Park et al.[{(2025), there exist TPNNs such that
Cs
Hfoﬂg_fk'S7BS,kS»BS,ksva.ks o = k}g/lsl 1 (24)

for some positive constant C's. Here, BS,kS are uniformly bounded, i.e., | BSk| < c¢g for some
positive constant cg and 4, = 1/k3 for all j, k as specified in Theorem 3.3 of |Park et al.|(2025).

Let k,, s such that

c
kl/lsf <eV2/(\/Ca-3-2P). (25)

Let by, = 3 gcy) kn,s and Fon B B o, = > sCll fkn,SaBAS,kn‘SsBS,kn s o For notational

simplicity, we write Bkn , Bkn and fkn simply as B,bandT, respectively. Since

Il fo = frn.B,b,T 0o
<Wfo= 1ty ol + 1 e, so0 —

+ Iy, 5of — fenBbrlec, — (26)

ns

n 2,0,

we have
w(rerili-nle<3y/E)
> (K = kn)< I] (s = S’)> @7)
S'Clp]
x 7T<{fkn,z§,15,f — frn bl < % CQA} N {'fkmB,B,F TrnBprllee < 3\/07/1})

(28)
Therefore, it remains to derive the lower bounds for (27) and (28).

Lower bound of 27). We have
—Cokyp logn)
(K = ky 7(S=9)) = 7rSS’> ep(~Co
()(H ()> < H () m* exp(—Cok logn)

5Clp] sClpl Dohg exp

> exp(—01n)

for some positive constant 0.

42

Under review as a conference paper at ICLR 2026

Lower bound of . For any B = (B, k € [kn]) € RF, we have

Bi 11 6143} bikAin) = B TT o453 bk 35)

kn
1F s 5.6, = Findpilloo S sUPY
X

k=1 JESk JESk
kn
<sup Y |(Br = Br) T[] (145} biksAin)
* k=1 JESK
En A
<D |(Be = Br)(1+Co)P (29)
k=1
< (1+C,)"|IB— Bl
< (14 Cy)P k| B = Bl
That is, we have
e /2 5 p 1€ | 2
ISy, 6.0 = Jr, b7 llec < 3\Va 24B=Bll2 < ((1+ Cs)"Vkn) s\ oa [
Furthermore, direct calculation yields
kn
£, 557 — fraBbrllee =sup > 18| [] (fb(xjHj}, bj ks Vik) — ¢(xj|{j}>b‘,kz’7j,k)>‘
X k=1 JES
o z; —b; x;—b;
< Gyl TT (52 - otk
x jES, i,k Yj.k
& bk — b Yik =4
ik — bjk ik — Vik
= (1+Co)sup)16l T] (H + (25— ijk)j,A,J)‘
X k=1 JES Visk Vi.kVd.k
kn bir — b A
<1+ Cosup Y18l] (ik = Oak | 1 g| Yok = Yk)
X k=1 jESK Yi.k Vi kVq,k

. 1/1Sk]
Let Gy = 154 (35(1+sco>kn V 6‘2/4> 073k =kl < €1, we have

. 1/]8
Yok = Yk | o €1 <1< 3 2) /15k|
YirkYik |~ Yik(Fje —€1) ~ 4\3Ekn V Ca ’
where €; = %IA”:‘ Therefore, if
n,J, Rk
|ﬁk| S 57
bk — bjk| <20k,
Ch jkn | Vi,k]
LA < 5JsRn 1 17,
1Vik = Akl < 2+ Chik

hold, we have

e |2
||fkm3’f,’f - fk-n,B,b,FHoc < g a- (30)

43

Under review as a conference paper at ICLR 2026

That is, we have

€ 2 € 2
{|fkmgyf,_f — fu, Bppllee < 3 CA} m {fkmg,f,,f ~ frnBbrlloo < 3 CA}

R 2
D IB = Blls < (14 Co)PVEn) 2y | =,
3V Cya
|6]| < 57
1bjx —bjxl <2Cn ik,
~ Cn 'k|’A7'k| .
A< NE J’,VES,Vk‘Ek‘n-
|Pyjak7 ’YJ,k: — 2+Cn,j,k J k []

It implies that

€ 2
w({”fkmg,];’f — [, Bppllec < 3 CA} N {Ilfkmm;f — fkn.BbT

‘ <§ i
* =3 Ca

> a(||B=Blla < (14 Co)’Vkn)'ev2/(33/Ca), |Br] < &, VEk € [kn]) 31)
X 7(|bjx — bj| < 2Cn ik, Vi € Sk, Yk € [kn]) (32)
~ On N ~ .
P I G LY LI P .
(e =kl < Trgisal, i € S Ve €) &

Now, we will show that these three probabilities sufficiently large.
Lower bound of (31). Since
{18 - Bl < (0 + PV evB/3VER) 1] <€ i€ [}

5 {m Bl < (14 o)) eVE/(3v/Ta), |Bi] < €LV € [kn]}

5 {Bk Bl < (14 Co)Pha) V3 (3v/Ta) Wk € [kn]} (34)

for sufficiently large n, it suffices to get the lower bound of n(|8x — G| < ((1 +
Co)Pky) " 1eV/2/(3y/Ca)) for k € [ky).
For k € [k,], we let

I = [Br £ (1 + Co)Pky) " 'ev2/(3y/Ca)]

and we have

(|8, — Brl < (14 Co)Pkn)"'ev2/(3V/Ca))
Tl
Iy, \/%05 20/23 /

1 (maxs cs + ((1+ Co)Pkn) 'ev2/(3v/Ca))?
> |1 Nor exp (27) (35)
> exp(—01n)

for some positive constant 01, where ll is derived from | Bk| < maxg cg.

Lower bound of (32). Since
(1bjk = bjkl < 2Cn) = 4Ch ik
forall j € Sy, k € [ky], we have
T(bjk =ikl < 2Cn sk, Vi€ Sps VE € knl) =[] 4Cu
k€[kn],i€Sk
> exp(—02n)
for some positive constant 0.

44

Under review as a conference paper at ICLR 2026

Lower bound of (33). Using direct calculation, we have

. Cnijk . 2Cy . xYj.k)
s e ik o\ o [2Yn5 k5K d
w<lw,k Yik] < 2_’_Cn’j7k'}’],k> > <2+Cn,j,k pofpin, P If ()

_ (20n,j,k%,k) by

min 2% exp(—b, 1),

2+ Cn,j,k F(av) 2€[Ly,Up|
_A Crn.jkYik _ 2 Cnjk¥jk
where Ly, = 9j0 — 556, and Un = Y5k + 256, 5

Note that 1/k3 < 4i,; < 1. For ay, > 1, we have

min z% !> LZ“'*l

we[LruUn]
- (235k)ar_l
2+ Cnjk

> exp(—03n)
for some positive constant 03 and for a., < 1, we have

min z% ! >y !

ie[Ln7Un]
1—a,
()

> exp(—04n)
for some positive constant 9. Furthermore, we have

min exp(—b,x) > exp(—b,Uy,)

x€[Ln,Un]
> exp(—2b,%i,5)
> exp(—205n)
and
2Ch .k, k
—= 0 > exp(—207n
2+ Crjin p()

for some positive constants 0¢ and 97. Finally, the proof is completed by letting Cy = 23:1 0;.

O
N.5 VERIFYING CONDITION (T9)
We will verify Condition (T9) with the constant Cs.
We let
Zy={K > M,},
Zy = {{K < M} N {3k € [K] such that |3;| > n}},
Zs = {{K < M,} N {3k € [K]such that T's, ;. € (n,00)**/}}.
Since
m(F\F") =7(Z1 U Zy U Zs),
the upper bound of 7 (F\F™) is
T(F\F")
<w(K > M,) (36)
+7(K < M,)m(3k € [K] such that |G| > n|K < M,) 37)
+ (K < M,)7(3k € [K] such that s, 1 € (n,00)l**!|K < M,,). (38)

45

Under review as a conference paper at ICLR 2026

Upper bound of . For M,, = | 522" | we have

logn

K
e exp(—kCylogn
T(K > M,) = Zk_IéV[nJrl xp(ologn)
Yoo exp(—kCologn)
< exp(—M,,Cologn).

Since C5 > C%jgzn for sufficiently large n, we have

(K > My)exp((Cy +2)n) = 0 as n — oo.

Upper bound of (37). We have
m(3k € [K] such that || > n|K < M,,) < M,7(|51] > n)

n2
< 2MneXp(— W)’
B

where 0'?3 is a constant. That is, we conclude that

7w (3k € [K] such that || > n|K < M,,)exp((Cs +2)n) — 0 as n — oo.

Upper bound of (36). For any j, k, using Markov inequality, we have

(v >n) < E[exp (W)} exp (— b72n>
1\~ “ byn
() (%)

7(3k € [K] such that T's, € (n,00)l | K < M,,) < M,7(711 > n),

Since

we have
7(3k € [K] such that s, ;. € (n, 00)!"*|K < M) exp((Ca +2)n) = 0 as n — oo,

where a., and b, are positive constants.

N.6 VERIFICATION OF THE CONDITIONS IN|GHOSAL ET AL.[(1999)

For given data x(™), let ¢ 7,i be the probability density of Q(x,) for i = 1,...,n. From Theorem 2
of |Ghosal et al.| (1999), it suffices to verify that for every fy € Lip07 LFs there exists a sieve]-'g,
constants § < £/4,C5,Cs > 0 and C; < £2/8 such that the following three conditions hold with
respect to the || - ||2,r,.

log N (8, F2. || - ll2,n) < nCh, (39)
1 n

e (f € Fe: - ZK(qu,qf,i) < 62) > exp(—nCs), (40)
i=1

Te (.7-"5\]:5") < exp(—nCs). 41)

To complete the proof of Theorem we will verify that the three conditions (39), (40), and
for given data x(").

Verifying Condition (39).
Condition holds under Condition (7).

46

Under review as a conference paper at ICLR 2026

Verifying Condition (@0).
By using a direct calculation, for i = 1, .., n, we have
Klainara) = [(o0e) = £y = ACalxa) + A0 s o)y
= ((Unlx) =PGBI = A(folx)) + A((x0)
= ((Unlx) = FAU0) ~ Al + AT)).

Using Talyor expansion, we have

K (a0:5,0) = 3 A o) — fox0))?

where & € [—F, F]. That is, we have

2
2,n-

1< Ca
- E K (50,6, qr:) < —|lfo —
n 4= (qu, qf,) D) ”.fO f|

When & > 2F°F + ¢ C—QA,wehave

/2 2
”s(fej:s Nf = follom <€ C’A) Zw(fe}'g : f—fo||2,n§€\/;>.

Therefore, the proof is done by Condition (T8).

Verifying Condition ({T).
Since
P Teata
) S i e <9
m(F\F")

<

) 7r<||f = folle < 51/02,4>

< exp(—(Cs + 2)n)

for 2P F 4 ¢,/ CLA < &, the condition holds for Cs = Cs + 2 by condition and .

N.7 STEP|(P.2)

Since holds for arbitary x(") we conclude that
lim B [me (|| f — follz.m > e[X™,Y)] =0
n—oo

for any € > 0.

47

(42)

(43)

(44)

Under review as a conference paper at ICLR 2026

O PROOF OF THEOREM [3.2]
The proof consists of the following 4 steps.
(STEP E.1)

We first establish the rate at which the posterior concentrates under the population /5 norm; specifi-
cally, we demonstrate that

By [me(f € F2 5 1f = follax > e X™,¥™)] 0, (45)

for any € > 0.
(STEP E.2)
Based on (43)), we establish that the following holds for any subset S C [p].

Ef [ne(f € 72+ llfs = fosllzex > elX™,Y™)] 0, (46)
for any € > 0.
(STEP E.3)
We reformulate in terms of the empirical /5 norm. Specifically, we demonstrate that

Eg {Wﬁ (f € F¢ i lfs — fosllzn > 5|X(")7Y("))} — 0, (47)
for any € > 0.
(STEP E4)

The last step is to verify
Ef [re(Fe\FEIX™, Y ™)] - 0 (48)

asn — oQ.

0.1 VERIFYING (STEP D.1)

To verify (STEP D.1), we rely on the following lemma, whose proof is provided in Theorem 19.3
of |Gyorfi et al.| (2000).

Lemma O.1 (Theorem 19.3 of |Gyorti et al.[(2006)). Let X, Xy, ..., X,, be independent and iden-
tically distributed random vectors with values in RY Let K 1, Ko > 1 be constants and let G be a
class of functions g : R? — R with the properties

lg(x)| < K1, E[g(X)?] < K:E[g(X)]. (49)

Let 0 < k < 1and ¢ > 0. Assume that
VikyT = Ry/C > 288 max {2K17 \/2K2} (50)

and that, for all x,, . .. ,x,, € R? and for all t > %,

k(1 — k)t /W 1<)
> logN (u,<geqG:—)7 <16t 5, ||in | du.
96v2max (K1,2Ks) =) name A[1BN (1) 9€9 n;g(x) = -l | du

16 max{K,2Kq}
(G

Then,

9€g ¢+ Elg(X)] - Cymax {K2, Ky}

for some positive constant C.

Px (sup |E[Q(X)] — %Z?:lg (Xi)’ > H) < 60 exp (nor’(1—))

48

Under review as a conference paper at ICLR 2026

Since F¢' depends on the dataset X (™), we will apply Lemmato the function class G¢' defined
as
M
g¢ = | ge(x
K=1

where G (K) = {f € G"(K) : || flloc < &}. Here, G"(K) is defined in (20).
Since

N(&GE - lloo) <N (66", 11 lloo)

Mn 2p+3n3p+1) M, (14-3p)

)

<, 1+

€

we can easily verify that conditions , , and hold for K; = Ky = 462, k = %, ¢ = &2,
and G = {g: 9= (fo— f)? f € G} Thatis, we have

1S = foll3 e = I1f = fOHzn’ < ne?/8)
P% | sup % — | <60exp| ——=——"—+= |-
X<fefg 2+ 1f — foll3 py 4 Cy - 1664

|11 =Foll3 p5 = |1/ =oll3.
S H = ollB oy

We define A,, := {X(") : supfefén < 411} Then, we have

{ (f € F¢ | f = follapx > e|X(")’y(n))}

Eg [(f € F¢ :|If = folla,px > E|X(n)7Y(”))H(X(n) c An):| PR
<Ey

—0

IN

[me(f € FE o 1f = follan > e/ VXY) | 4 P (A7)

asn — oQ.

0.2 VERIFYING (STEP D.2)

For f € F[, we have

fx) =" fs(xs),

where fg satisfies the sum-to-zero condition with respect to the uniform distribution on (0, 1).
Consider positive constants C7 and Cy such that

C7 < inf px(x) < sup px(x) < Cs. (52)
xeX XEX

Therefore, using the inequality (52), for all S C [p], we have

\/07/ (fo(x x))%dx

Cq Z/ (fo,s(xs) — fs(xs))?dxs (53)

SClp]
> Collfrs —

where (33) is derived from the sum-to-zero condition with respect to the uniform distribution on

(0, 1) and Cg = \/07/08‘

[1fo = fll2px

v

49

Under review as a conference paper at ICLR 2026

Hence, we conclude that
Ey [Wf (f e F2 i \Ifs — fosllzpx > g\X(”),Y(”)H

<Ey {775 (f € FE|f = folla,px > 509|X(n)’y(n))]
— 0,

as n — o0.

0.3 VERIFYING (STEP D.3)

Following the same approach as in the proof of (STEP D.1), and applying Lemma[O.1]to the func-
tionclassG = {g: 9= (fo.s — fs)%, f € G¢'}, we have

Tim B [me(f € 7 :|1fs = fos

o > e’XW,Y(")ﬂ —0.

O
0.4 VERIFYING THE (STEP D.4)
Since
for given data x(”), using Lemma 1 in|Ghosal & Van Der Vaart| (2007), we conclude that
Tim B} [W5(f§\fg\x<">,Y<”>)‘X<”> - x“ﬂ —0.
Since it holds for arbitrary x("), the proof is completed.
O

50

	Introduction
	Preliminaries
	Notation
	Probability model for the likelihood
	Functional ANOVA model
	Tensor Product Neural Networks

	Bayesian Tensor Product Neural Networks
	Prior
	MCMC Algorithm for Posterior Sampling
	Posterior consistency

	Experiments
	Prediction performance
	Performance in component selection
	Interpretation of Bayesian-TPNN
	Application to Concept Bottleneck Models

	Conclusion
	Details of the MCMC algorithm
	Sampling K via MH algorithm
	Case of Knew = K+1
	Case of Knew = K-1

	Sampling Sk,bk,k via MH algorithm
	Transition probability for proposal distribution
	Posterior Ratio
	Acceptance probability

	Sampling bSk,k, Sk,k and k via MH algorithm
	Calculating the Gradient of the Log-Posterior with respect to bSk,k
	Calculating the Gradient of the Log-Posterior with respect to Sk,k
	Calculating the Gradient of the Log-Posterior with respect to k

	Sampling Nuisance parameter

	Details of the experiments
	Data description
	Feature descriptions for Madelon and Servo datasets
	Experiment details for tabular dataset
	Experiment details for image dataset
	Experiment details for component selection

	Ablation studies
	The number of basis K for various values C0
	Impact of the hyperparameters a and b on prediction performance
	Impact of the step size in the Langevin proposal
	Impact of pinput on estimating higher-order components
	Impact of stepwise search in the proposal of K

	Experiment for the Poisson regression
	Experiments for interpretability
	Interpretability on the Image datasets
	Additional results of local interpretation on the Tabular dataset

	Experiment for stability of component estimation
	Comparison of convergence speed and runtime in MCMC algorithm
	Additional experiments for uncertainty quantification
	Uncertainty quantification on non-Bayesian models.
	Experiment for out-of-distribution detection

	Visual illustration for Proposal
	Updating K
	Updating Sk

	Empirical Evaluation under Minibatch Settings
	Comparison with Deep Ensemble
	Applications to Genomic Dataset
	Notations and regularity conditions for the proofs
	Additional Notations
	Regularity Conditions

	Posterior consistency of Bayesian-TPNN
	Posterior consistency of f0
	Proof outline
	Verifying Condition (17)
	Verifying Condition (18)
	Verifying Condition (19)
	Verification of the Conditions in ghosal1999posterior
	STEP (P.2)

	Proof of Theorem 3.2
	Verifying (STEP D.1)
	Verifying (STEP D.2)
	Verifying (STEP D.3)
	Verifying the (STEP D.4)

