

000 BAYESIAN NEURAL NETWORKS FOR FUNCTIONAL 001 002 ANOVA MODEL 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 With the increasing demand for interpretability in machine learning, functional
011 ANOVA decomposition has gained renewed attention as a principled tool for
012 breaking down high-dimensional function into low-dimensional components that
013 reveal the contributions of different variable groups. Recently, Tensor Product
014 Neural Network (TPNN) has been developed and applied as basis functions in
015 the functional ANOVA model, referred to as ANOVA-TPNN. A disadvantage of
016 ANOVA-TPNN, however, is that the components to be estimated must be speci-
017 fied in advance, which makes it difficult to incorporate higher-order TPNNs into
018 the functional ANOVA model due to computational and memory constraints. In
019 this work, we propose Bayesian-TPNN, a Bayesian inference procedure for the
020 functional ANOVA model with TPNN basis functions, enabling the detection of
021 higher-order components with reduced computational cost compared to ANOVA-
022 TPNN. We develop an efficient MCMC algorithm and demonstrate that Bayesian-
023 TPNN performs well by analyzing multiple benchmark datasets. Theoretically, we
024 prove that the posterior of Bayesian-TPNN is consistent.

025 026 1 INTRODUCTION

027 As artificial intelligence (AI) models become increasingly complex, the demand for interpretability
028 has grown accordingly. To address this need, various interpretable models—including both post-
029 hoc explanations (Ribeiro et al., 2016; Lundberg & Lee, 2017) and inherently transparent models
030 (Agarwal et al., 2021; Koh et al., 2020; Radenovic et al., 2022; Park et al., 2025)—have been stud-
031 ied. Among various interpretable approaches, our study focuses on the functional ANOVA model,
032 a particularly important class of interpretable models that decompose a high-dimensional function
033 into a sum of low-dimensional functions called *componenets* or *interactions*. Notable examples of
034 the functional ANOVA model are the generalized additive Model (Hastie & Tibshirani, 1986), SS-
035 ANOVA (Gu & Wahba, 1993) and MARS (Friedman, 1991). Because complex structures of a given
036 high-dimensional model can be understood by interpreting low-dimensional components, the func-
037 tional ANOVA models have been extensively used in interpretable AI applications (Lengerich et al.,
038 2020; Märtens & Yau, 2020; Choi et al., 2025; Herren & Hahn, 2022).

039 In recent years, various neural networks have been developed to estimate components in the func-
040 tional ANOVA model. Neural Additive Models (NAM, Agarwal et al. (2021)) estimates each compo-
041 nent of the functional ANOVA model using deep neural networks (DNN), and Neural Basis Models
042 (NBM, Radenovic et al. (2022)) significantly reduce the computational burden of NAM by using
043 basis deep neural networks (DNN). NODE-GAM (Chang et al., 2021) can select and estimate the
044 components in the functional ANOVA model simultaneously, and Thielmann et al. (2024) proposes
045 NAMLSS, which modifies NAM to estimate the predictive distribution. Park et al. (2025) proposes
046 ANOVA-TPNN, which estimates the components under the uniqueness constraint and thus provides
047 a stable estimate of each component.

048 Existing neural-network approaches to functional ANOVA model require prohibitive computation
049 when the input dimension p is large, because the number of components—and thus the required
050 networks—grows exponentially. As a result, only 1–2 dimensional components are typically used,
051 yielding suboptimal prediction when higher-order interactions matter.

052 In this paper, we propose a Bayesian neural network (BNN) for the functional ANOVA model which
053 can estimate higher-order interactions (i.e., components whose input dimension is greater than 2)

054 without requiring huge amounts of computing resources. *The main idea of the proposed BNN is to*
 055 *infer the architecture (the architectures of neural networks for each component) as well as the pa-*
 056 *rameters (the weights and biases in each neural network). To explore higher posterior regions of the*
 057 *architecture, a specially designed MCMC algorithm is developed which searches the architectures*
 058 *in a stepwise manner (i.e., growing or pruning the current architecture) and thus huge computing*
 059 *resources for memorizing and processing all of the predefined neural networks for the components*
 060 *can be avoided.*

061 Bayesian Neural Networks (BNN; MacKay (1992); Neal (2012); Wilson & Izmailov (2020); Iz-
 062 mailov et al. (2021)) provide a principled Bayesian framework for training DNNs and have received
 063 considerable attention in machine learning and AI. Compared to frequentist approaches, BNN of-
 064 fers stronger generalization and better-calibrated uncertainty estimates (Wilson & Izmailov, 2020;
 065 Izmailov et al., 2021), which enhance decision making. These properties have motivated applica-
 066 tions in areas such as recommender systems (Wang et al., 2015), topic modeling (Gan et al., 2015),
 067 and medical diagnosis (Filos et al., 2019). More recently, Bayesian neural networks (BNN) that
 068 learn their own architectures have been actively studied. In particular, Kong et al. (2023) introduced
 069 a node-sparse BNN, referred to as the masked BNN (mBNN), and established its theoretical proper-
 070 ties. Nguyen et al. (2024) proposes S-RJMCMC, which explores architectures and weights by jointly
 071 sampling parameters and altering the number of nodes.

072 This is the first work on BNN that efficiently estimates higher-order components in the functional
 073 ANOVA model without requiring substantial computing resources. Our main contributions can be
 074 outlined as follows.

- 075 • We propose a BNN for the functional ANOVA model called Bayesian-TPNN which treats
 076 the architecture as a learnable parameter, and develop an MCMC algorithm which effi-
 077 ciently explores high-posterior regions of the architecture.
- 078 • For theoretical justifications of the proposed BNN, we prove the posterior consistency of
 079 the prediction model as well as each component.
- 080 • Through experiments on multiple real datasets, we show that the proposed BNN provides
 081 more accurate and stable estimation and uncertainty quantification than other neural net-
 082 works for the functional ANOVA model. On various synthetic datasets, we further show
 083 that Bayesian-TPNN effectively estimates important higher-order components.

085 2 PRELIMINARIES

087 2.1 NOTATION

089 Let $\mathbf{x} = (x_1, \dots, x_p)^\top \in \mathcal{X}$ be a p -dimensional input vector, where $\mathcal{X} = \mathcal{X}_1 \times \dots \times \mathcal{X}_p \subseteq [0, 1]^p$.
 090 We write $[p] = \{1, \dots, p\}$ and its power set with cardinality d as $\text{power}([p], d)$. For any component
 091 $S \subseteq [p]$, we denote $\mathbf{x}_S = (x_j, j \in S)^\top$ and define $\mathcal{X}_S = \prod_{j \in S} \mathcal{X}_j$. A function defined on \mathcal{X}_S
 092 is denoted by f_S . For any real-valued function $f : \mathcal{X} \rightarrow \mathbb{R}$, we define the empirical ℓ_2 -norm as
 093 $\|f\|_{2,n} := (\sum_{i=1}^n f(\mathbf{x}_i)^2/n)^{1/2}$, where $\mathbf{x}_1, \dots, \mathbf{x}_n$ are observed input vectors. We denote $\sigma(\cdot)$ as
 094 the sigmoid function, i.e., $\sigma(x) := 1/(1 + \exp(-x))$. We denote by μ_n the empirical distribution of
 095 $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, and by $\mu_{n,j}$ the marginal distribution of μ_n on \mathcal{X}_j .

097 2.2 PROBABILITY MODEL FOR THE LIKELIHOOD

099 We consider a nonparametric regression model in which the conditional distribution of Y_i given \mathbf{x}_i
 100 follows an exponential family (Brown et al., 2010; Chen, 2024):

$$101 \quad Y_i | \mathbf{x}_i \sim \mathbb{Q}_{f(\mathbf{x}_i), \eta} \quad (1)$$

102 for $i = 1, \dots, n$, where $f : \mathcal{X} \rightarrow \mathbb{R}$ is a regression function and η is a nuisance parameter. Here, we
 103 assume that $\mathbb{Q}_{f(\mathbf{x}), \eta}$ admits the density function $q_{f(\mathbf{x}), \eta}$ defined as

$$104 \quad 105 \quad 106 \quad q_{f(\mathbf{x}), \eta}(y) = \exp \left(\frac{f(\mathbf{x})y - A(f(\mathbf{x}))}{\eta} + S(y, \eta) \right), \quad (2)$$

107 where $A(\cdot)$ is the log-partition function, ensuring that the density integrates to one. We assume that
 108 each input vector \mathbf{x}_i has been rescaled, yielding $\mathbf{x}_i \in [0, 1]^p$ for $i = 1, \dots, n$.

108 **Example 1. Gaussian regression model:** Consider the gaussian regression $Y = f(\mathbf{x}) + \epsilon$, where
 109 $\epsilon \sim N(0, \sigma_\epsilon^2)$. In this case, the density in (2), corresponds to $A(f(\mathbf{x})) := f(\mathbf{x})^2/2$ and $S(y, \eta) :=$
 110 $-y^2/2\eta - (\log 2\pi\eta)/2$ with $\eta = \sigma_\epsilon^2$.
 111

112 **Example 2. Logistic regression model:** For a binary outcome $Y \in \{0, 1\}$, consider the logistic
 113 regression model $Y|\mathbf{x} \sim \text{Bernoulli}(\sigma(f(\mathbf{x})))$. In this case, there is no nuisance parameter, i.e.,
 114 $\eta = 1$. This distribution can be expressed as the exponential family with $A(f(\mathbf{x})) := \log(1 + e^{f(\mathbf{x})})$
 115 and $S(y, \eta) := 0$.
 116

117 **Likelihood:** Let $\mathcal{D}^{(n)} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ be given data which consist of n pairs of ob-
 118 served input vectors and response variables. For the likelihood, we assume that y_i s are independent
 119 realizations of $Y_i|\mathbf{x}_i \sim \mathbb{Q}_{f(\mathbf{x}_i), \eta}$, where f and η are the parameters to be inferred.
 120

121 2.3 FUNCTIONAL ANOVA MODEL

122 For $S \subseteq [p]$, we say that f_S satisfies the sum-to-zero condition with respect to a probability measure
 123 μ on \mathcal{X} if
 124

$$125 \quad \text{For } S \subseteq [p], \forall j \in S \text{ and } \forall \mathbf{x}_{S \setminus \{j\}} \in \mathcal{X}_{S \setminus \{j\}}, \int_{\mathcal{X}_j} f_S(\mathbf{x}_S) \mu_j(dx_j) = 0 \quad (3)$$

127 holds, where μ_j is the marginal probability measure of μ on \mathcal{X}_j .
 128

129 **Theorem 2.1** (Functional ANOVA Decomposition (Hooker, 2007; Owen, 2013)). *Any real-valued
 130 function f defined on \mathbb{R}^p can be uniquely decomposed as*

$$131 \quad f(\mathbf{x}) = \sum_{S \subseteq [p]} f_S(\mathbf{x}_S), \quad (4)$$

134 *almost everywhere with respect to $\prod_{j=1}^p \mu_j$, where each component f_S satisfies the sum-to-zero con-
 135 dition with respect to μ .*

136 Theorem 2.1 guarantees a unique decomposition of any real-valued multivariate function f into the
 137 components satisfying the sum-to-zero condition with respect to the probability measure μ . In (4),
 138 we refer to f_S as main effects when $|S| = 1$, as second-order interactions when $|S| = 2$, and so on.
 139 For brevity, we use the empirical distribution μ_n for μ when referring to the sum-to-zero condition.
 140

141 2.4 TENSOR PRODUCT NEURAL NETWORKS

143 In this subsection, we review Tensor Product Neural Network (TPNN) proposed by Park et al. (2025)
 144 since we use it as a building block of our proposed BNN. TPNN is a specially designed neural
 145 network to satisfy the sum-to-zero condition.

146 For each $S \subseteq [p]$, TPNN is defined as $f_S(\mathbf{x}_S) = \sum_{k=1}^{K_S} \beta_{S,k} \phi(\mathbf{x}_S | S, \mathfrak{B}_{S,k}, \mathfrak{R}_{S,k})$ for component
 147 f_S , where $\beta_{S,k} \in \mathbb{R}$, $\mathfrak{B}_{S,k} = (b_{S,j,k}, j \in S) \in \mathbb{R}^{|S|}$, and $\mathfrak{R}_{S,k} = (\gamma_{S,j,k}, j \in S) \in (0, \infty)^{|S|}$. Here,
 148 $\phi(\mathbf{x}_S | S, \mathfrak{B}_{S,k}, \mathfrak{R}_{S,k})$ is defined as
 149

$$150 \quad \phi(\mathbf{x}_S | S, \mathfrak{B}_{S,k}, \mathfrak{R}_{S,k}) := \prod_{j \in S} \left(1 - \sigma \left(\frac{x_j - b_{S,j,k}}{\gamma_{S,j,k}} \right) + c_j(b_{S,j,k}, \gamma_{S,j,k}) \sigma \left(\frac{x_j - b_{S,j,k}}{\gamma_{S,j,k}} \right) \right), \quad (5)$$

152 where
 153

$$155 \quad c_j(b, \gamma) := - \left(1 - \int_{\mathcal{X}_j} \sigma \left(\frac{x_j - b}{\gamma} \right) \mu_{n,j}(dx_j) \right) / \int_{\mathcal{X}_j} \sigma \left(\frac{x_j - b}{\gamma} \right) \mu_{n,j}(dx_j). \quad (6)$$

157 The term $c_j(b, \gamma)$ is introduced to make $\phi(\mathbf{x}_S | S, \mathfrak{B}_{S,k}, \mathfrak{R}_{S,k})$ satisfy the sum-to-zero condition.
 158 Finally, Park et al. (2025) proposes ANOVA-T^dPNN, which assumes that:

$$160 \quad f(\mathbf{x}) = \sum_{S \subseteq [p], |S| \leq d} \sum_{k=1}^{K_S} \beta_{S,k} \phi(\mathbf{x}_S | S, \mathfrak{B}_{S,k}, \mathfrak{R}_{S,k}), \quad (7)$$

162 where $d \in \mathbb{N}_+$ and $\{K_S, S \subseteq [p], |S| \leq d\}$ are hyperparameters. Since $\phi(\cdot|S, \mathcal{B}_{S,k}, \mathcal{R}_{S,k})$ satisfies
163 the sum-to-zero condition for any $S \subseteq [p]$, $f_{\text{ANOVA-T}^d\text{PNN}}$ also satisfies the sum-to-zero condition.
164 Therefore, we can estimate the components uniquely by estimating the parameters in ANOVA-
165 T^dPNN .

166 Here, d is the maximum order of components. Note that as the maximum order d increases, the
167 number of TPNNs in (7) grows exponentially; therefore, in practice d is set to 1 or 2 due to the
168 limitation of computing resources. In addition, choosing K_S is not easy. To further illustrate these
169 limitations, the experiments on the runtime of Bayesian-TPNN and ANOVA- T^2PNN are presented
170 in Section G of Appendix.

171

172 3 BAYESIAN TENSOR PRODUCT NEURAL NETWORKS

173 In (7), instead of fixing S , we treat S also as learn-
174 able parameters. That is, we consider the follow-
175 ing model:

$$176 \quad f(\mathbf{x}) = \sum_{k=1}^K \beta_k \phi(\mathbf{x}|\Theta_k), \quad (8)$$

177 where $\Theta_k = (S_k, \mathbf{b}_{S_k,k}, \Gamma_{S_k,k})$, $S_k \subseteq [p]$, and
178 aim to learn K and $(S_k, k \in [K])$ as well as the
179 other parameters. Here,

$$180 \quad \mathbf{b}_{S_k,k} := (b_{j,k}, j \in S_k) \in [0, 1]^{|S_k|},$$

$$181 \quad \Gamma_{S_k,k} := (\gamma_{j,k}, j \in S_k) \in (0, \infty)^{|S_k|}.$$

182 for $k \in [K]$. Note that K and S_k are considered
183 to be the parameters defining the architecture, but
184 they cannot be updated by a gradient descent al-
185 gorithm since K and S_k s are not numeric parameters. Instead, we adopt a Bayesian approach in
186 which K and S_k s are explored via an MCMC algorithm. We refer to the resulting model as *Bayesian*
187 *Tensor Product Neural Networks (Bayesian-TPNN)*. Bayesian-TPNN can be understood as an edge-
188 sparse shallow neural network when K is the number of hidden nodes and S_K is the set of input
189 variables linked to the k -th hidden node through active edges. See Figure 1 for an illustration.

190

191 3.1 PRIOR

192 The parameters in Bayesian-TPNN consist of K , $\mathcal{B}_K := (\beta_1, \dots, \beta_K)$, $\mathbf{S}_K := (S_k, k \in [K])$,
193 $\mathbf{b}_{\mathbf{S}_K,K} := (\mathbf{b}_{S_k,k}, k \in [K])$, $\Gamma_{\mathbf{S}_K,K} := (\Gamma_{S_k,k}, k \in [K])$ and the nuisance parameter η if it exists
194 (e.g. the variance of the noise in the gaussian regression model). The parameters can be categorized
195 into the three groups: (1) K for the node-sparsity, (2) $S_k, k = 1, \dots, K$ for the edge sparsity, and
196 (3) all the other parameters including $(\mathbf{b}_{S_k,k}, \Gamma_{S_k,k}, k = 1, \dots, K)$. We use a hierarchical prior for
197 these three groups of parameters.

198

Prior for K : We consider the following prior distribution for K :

$$199 \quad \pi(K = k) \propto \exp(-C_0 k \log n), \quad \text{for } k = 0, \dots, K_{\max}, \quad (9)$$

200 where $K_{\max} \in \mathbb{N}_+$ and $C_0 > 0$ are hyperparameters. This prior is motivated by Kong et al. (2023).

201

Prior for $\mathbf{S}_K|K$: Conditional on K , we assume a prior that S_k s are independent and each S_k
202 follows the mixture distribution:

$$203 \quad \sum_{d=1}^p w_d \text{Uniform}(\text{power}([p], d)), \quad (10)$$

204 where w_d s are defined recursively as follows: $w_d \propto (1 - p_{\text{adding}}(d)) \prod_{\ell < d} p_{\text{adding}}(\ell)$ with
205 $p_{\text{adding}}(\ell) := \alpha_{\text{adding}}(1 + \ell)^{-\gamma_{\text{adding}}}$. Here, p_{adding} is the probability of adding a variable to S_k , con-
206 trolled by hyperparameters α_{adding} and γ_{adding} . This prior is inspired by Bayesian CART (Chipman
207 et al., 1998), where S_k denotes split variables.

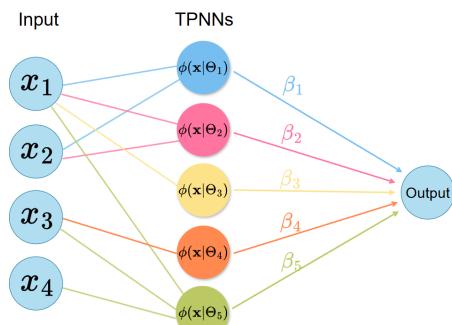


Figure 1: **Bayesian-TPNN with $p = 4$ and $K = 5$** .

208 for $k \in [K]$. Note that K and S_k are considered
209 to be the parameters defining the architecture, but
210 they cannot be updated by a gradient descent al-
211 gorithm since K and S_k s are not numeric parameters. Instead, we adopt a Bayesian approach in
212 which K and S_k s are explored via an MCMC algorithm. We refer to the resulting model as *Bayesian*
213 *Tensor Product Neural Networks (Bayesian-TPNN)*. Bayesian-TPNN can be understood as an edge-
214 sparse shallow neural network when K is the number of hidden nodes and S_K is the set of input
215 variables linked to the k -th hidden node through active edges. See Figure 1 for an illustration.

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

216 **Prior for the numeric parameters given K and \mathbf{S}_K :** All the remaining parameters are numerical
 217 ones and hence we use standard priors for them.
 218

- 219 • Conditional on K , we assume a prior that β_k s are independent and follow $\beta_k \sim N(0, \sigma_\beta^2)$,
 220 where $\sigma_\beta > 0$ is a hyperparameter.
- 221 • Conditional on S_k , we let $b_{j,k}$ s and $\gamma_{j,k}$ s be all independent and $b_{j,k} \sim \text{Uniform}(0, 1)$ and
 222 $\gamma_{j,k} \sim \text{Gamma}(a_\gamma, b_\gamma)$ for $j \in S_k$ and $k \in [K]$, where $a_\gamma > 0$ and $b_\gamma > 0$ are
 223 hyperparameters.
- 224 • For the nuisance parameter in the gaussian regression model, where the nuisance parameter
 225 η corresponds to σ^2 , we set $\sigma^2 \sim \text{IG}\left(\frac{v}{2}, \frac{v\lambda}{2}\right)$, where $v > 0$ and $\lambda > 0$ are hyperparameters
 226 and $\text{IG}(\cdot, \cdot)$ is the inverse gamma distribution.
 227

228 3.2 MCMC ALGORITHM FOR POSTERIOR SAMPLING
 229

230 We now develop an MCMC algorithm for posterior sampling of Bayesian-TPNN. Our overall sam-
 231 pling strategy is to update K , \mathbf{S}_K and the remaining numeric parameters iteratively using the cor-
 232 responding Metropolis-Hastings (MH) algorithms, which is motivated by the MCMC algorithm of
 233 Bayesian additive regression tree (Chipman et al., 2010). A novel part of our MCMC algorithm,
 234 however, is to devise a specially designed proposal distribution in the MH algorithm such that the
 235 proposal distribution encourages the MCMC algorithm to visit important higher-order interactions
 236 more frequently. For this purpose, we introduce two special tools. First, we employ a pretrained
 237 probability mass function $p_{\text{input}}(\cdot)$ on $[p]$, which represents the importance of each input variable.
 238 Further, let $p_{\text{input}}(\cdot | S)$ be the distribution $p_{\text{input}}(\cdot)$ restricted to $S \subseteq [p]$. See Remark at the end of this
 239 subsection for the choice of $p_{\text{input}}(\cdot)$.

240 The second tool is a stepwise search. The stepwise search adds a new node by first copying one
 241 of existing nodes and add an edge. By doing so, a newly added node has one more edges than the
 242 copied node and thus corresponds to an interaction whose order is larger than the copied one by 1.
 243 By keeping the copied node also in the model, we can avoid dramatic loss of accuracy.

244 To be more specific, let $\theta := (K, \mathbf{S}_K, \mathbf{b}_{\mathbf{S}_K, K}, \Gamma_{\mathbf{S}_K, K}, \mathcal{B}_K, \eta)$ be given current parameters. We up-
 245 date these parameters by sequentially updating K , $(\mathbf{S}_K, \mathbf{b}_{\mathbf{S}_K, K}, \Gamma_{\mathbf{S}_K, K}, \mathcal{B}_K)$ and the nuisance pa-
 246 rameter η . We now describe these 3 updates.
 247

248 **Updating K :** First, we devise a proposal distribution of K^{new} given K used in the MH algorithm.
 249 For a given K , we set K^{new} as $K - 1$ or $K + 1$ with probability K/K_{\max} and $1 - K/K_{\max}$
 250 respectively. If $K^{\text{new}} = K - 1$, we remove one of $(S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k)$, $k \in [K]$ from θ with
 251 probability $1/K$ to have θ^{new} .

252 For the case $K^{\text{new}} = K + 1$, the crucial mission is to design an appropriate proposal of
 253 $(S_{K+1}^{\text{new}}, \mathbf{b}_{S_{K+1}^{\text{new}}, K+1}^{\text{new}}, \Gamma_{S_{K+1}^{\text{new}}, K+1}^{\text{new}}, \beta_{K+1}^{\text{new}})$. Specifically, we first generate S_{K+1}^{new} and then generate
 254 $(\mathbf{b}_{S_{K+1}^{\text{new}}, K+1}^{\text{new}}, \Gamma_{S_{K+1}^{\text{new}}, K+1}^{\text{new}}, \beta_{K+1}^{\text{new}})$ conditional on S_{K+1}^{new} . The proposal of S_{K+1}^{new} consists of the fol-
 255 lowing two alternations:
 256

- 257 • **Random:** Generate S_{K+1}^{new} from the prior distribution.
 258
- 259 • **Stepwise:** Propose $S_{K+1}^{\text{new}} = S_{k^*} \cup \{j_{k^*}\}$, where $k^* \sim \text{Uniform}[K]$ and $j_{k^*} \sim p_{\text{input}}(\cdot | S_{k^*}^c)$.
 260

261 The MH algorithm randomly selects one of {**Random**, **Stepwise**} with probability $M/(M + K)$,
 262 and $K/(M + K)$, where $M > 0$ is a hyperparameter. This proposal combines random and step-
 263 wise search, where S_{K+1}^{new} is sampled as a completely new index set from the prior with prob-
 264 ability $M/(M + K)$, or taken as a higher-order modification of one of S_1, \dots, S_K with prob-
 265 ability $K/(M + K)$. We employ **Stepwise** move to encourage the proposal distribution to ex-
 266 plore higher-order interactions more frequently without losing much information in the current
 267 model (i.e. keeping all of the components in the current model). Once S_{K+1}^{new} is given, we gener-
 268 ate $(\mathbf{b}_{S_{K+1}^{\text{new}}, K+1}^{\text{new}}, \Gamma_{S_{K+1}^{\text{new}}, K+1}^{\text{new}}, \beta_{K+1}^{\text{new}})$ from the prior distribution. See Section A.1 of Appendix for
 269 the acceptance probability for this proposal θ^{new} and see Section C.5 of Appendix for experimental
 results demonstrating the effectiveness of the proposed MH.

270 **Updating** $(S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k)$ **for** $k \in [K]$: For a given k , we consider the following three
 271 possible alterations of S_k and $(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k})$ for the proposal of $(S_k^{\text{new}}, \mathbf{b}_{S_k^{\text{new}}, k}^{\text{new}}, \Gamma_{S_k^{\text{new}}, k}^{\text{new}})$:
 272

273 • **Adding**: Adding a new variable j^{new} , which is selected randomly from S_k^c according to
 274 the probability distribution $p_{\text{input}}(\cdot | S_k^c)$, and generating $b_{S_k, j^{\text{new}}}$ and $\gamma_{S_k, j^{\text{new}}}$ from the prior
 275 distribution.

276 • **Deleting**: Uniformly at random, select an index j in S_k and delete it from S_k .

277 • **Changing**: Select an index j uniformly at random from S_k and index j^{new} from S_k^c accord-
 278 ing to the probability distribution of $p_{\text{input}}(\cdot | S_k^c)$ and delete j from S_k and add j^{new} to S_k .
 279 Then, generate $b_{S_k, j^{\text{new}}}$ and $\gamma_{S_k, j^{\text{new}}}$ from the prior distribution.

280 The MH algorithm randomly selects one of {**Adding**, **Deleting**, **Changing**} with probability
 281 $(q_{\text{add}}, q_{\text{delete}}, q_{\text{change}})$. This proposal distribution is a modification of one used in BART (Chipman
 282 et al., 1998; Kepner & Bleich, 2016) to grow/prune or modify a current decision tree. See Section
 283 A.2 of Appendix for the acceptance probability of $(S_k^{\text{new}}, \mathbf{b}_{S_k^{\text{new}}, k}^{\text{new}}, \Gamma_{S_k^{\text{new}}, k}^{\text{new}})$.

284 Once $(S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k})$ are updated, we update all of the numeric parameters $(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k)$
 285 by the MH algorithm with the Langevin proposal (ros, 1978) to accelerate the convergence of the
 286 MCMC algorithm further. Finally, we repeat this update for $k \in [K]$ sequentially. See Appendix
 287 A.3 for details and Section I for a toy example illustrating the proposed MCMC algorithm.

288 **Updating the nuisance parameter η** : In the gaussian regression model, the nuisance parameter
 289 η corresponds to the error variance σ_g^2 . Since the conditional posterior distribution of σ_g^2 is Inverse
 290 Gamma distribution, it is straightforward to draw σ_g^2 from $\pi(\sigma_g^2 | \text{others})$. Details are provided in
 291 Section A.4 of Appendix.

292 **Algorithm 1** MCMC algorithm of Bayesian TPNN.

293 **Input** $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$: data, K : initial number of hidden nodes, M_{mcmc} : the number of MCMC
 294 iterations,

295 1: **for** $i : 1$ to M_{mcmc} **do**
 296 2: Update K
 297 3: **for** $k : 1$ to K **do**
 298 4: Update $S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}$
 299 5: Update $\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k$
 300 6: **end for**
 301 7: Update η
 302 8: **end for**

303 **Predictive Inference.** Let $\hat{\theta}_1, \dots, \hat{\theta}_N$ denote samples drawn from the posterior distribution. The
 304 predictive distribution is then estimated as $\hat{p}(y|\mathbf{x}) = \sum_{i=1}^N p(y|\mathbf{x}, \hat{\theta}_i)/N$.

305 **Remark 3.1.** When no prior information is available on the importance of input variables, we use a
 306 uniform distribution for p_{input} . However, this noninformative choice often performs poorly when the
 307 dimension p is large and higher-order interactions exist. Our numerical studies in Section C.4 reveal
 308 that the choice of a good p_{input} is important for exploring higher-posterior regions. In practice, we
 309 could specify p_{input} based on the importance measures of each input variable obtained by a standard
 310 method such as Molnar (2020). That is, we let $p_{\text{input}}(j) \propto \omega_j$, where ω_j is an importance measure
 311 of the input variable $j \in [p]$. In our numerical study, we use the global SHAP value (Molnar, 2020)
 312 based on a pretrained Deep Neural Network (DNN) for the importance measure or the feature
 313 importance using a pretrained eXtreme Gradient Boosting (XGB, Chen & Guestrin (2016)).

314 3.3 POSTERIOR CONSISTENCY

315 For theoretical justification of Bayesian-TPNN, in this section, we prove the posterior consistency of
 316 Bayesian-TPNN. To avoid unnecessary technical difficulties, we assume that $\phi(\mathbf{x}|\Theta_k)$ in (8) satisfies
 317 the sum-to-zero condition with respect to the uniform distribution. This can be done by using the
 318 uniform distribution instead of the empirical distribution in (6).

We assume that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are realizations of independent copies $(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$ of (\mathbf{X}, Y) whose distribution \mathbb{Q}_0 is given as

$$\mathbf{X} \sim \mathbb{P}_{\mathbf{X}} \quad \text{and} \quad Y|\mathbf{X} = \mathbf{x} \sim \mathbb{Q}_{f_0(\mathbf{x}), 1},$$

where f_0 is the true regression function. We let $\eta = 1$ for technical simplicity. Suppose that $f_0(\mathbf{x}) = \sum_{S \subseteq [p]} f_{0,S}(\mathbf{x}_S)$, where each $f_{0,S}$ satisfies the sum-to-zero condition with respect to the uniform distribution. We denote $\mathbf{X}^{(n)} = \{\mathbf{X}_1, \dots, \mathbf{X}_n\}$ and $Y^{(n)} = \{Y_1, \dots, Y_n\}$. Let $\pi_\xi(\cdot) \propto \pi(\cdot) \mathbb{I}(\|f\|_\infty \leq \xi)$, where $\pi(\cdot)$ is the prior distribution of f defined in Section 3.1. Under regularity conditions (S.1), (S.2), (S.3) and (S.4) in Section M.2 of Appendix, Theorem 3.2 proves the posterior consistency of each component of Bayesian-TPNN.

Theorem 3.2 (Posterior Consistency of Bayesian-TPNN). *Assume that $0 < \inf_{\mathbf{x} \in \mathcal{X}} p_{\mathbf{X}}(\mathbf{x}) \leq \sup_{\mathbf{x} \in \mathcal{X}} p_{\mathbf{X}}(\mathbf{x}) < \infty$, where $p_{\mathbf{X}}(\mathbf{x})$ is the density of $\mathbb{P}_{\mathbf{X}}$. Then, there exists $\xi > 0$ such that for any $\varepsilon > 0$, we have*

$$\pi_\xi\left(f : \|f_{0,S} - f_S\|_{2,n} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)}\right) \rightarrow 0 \quad (11)$$

for all $S \subseteq [p]$ in \mathbb{Q}_0^n as $n \rightarrow \infty$, where $\pi_\xi(\cdot \mid \mathbf{X}^{(n)}, Y^{(n)})$ is the posterior distribution of Bayesian-TPNN with the prior π_ξ .

4 EXPERIMENTS

We present the results of the numerical experiments in this section, while further results and comprehensive details regarding the datasets, implementations of baseline models, and hyperparameter selections are provided in Sections B to H of Appendix.

4.1 PREDICTION PERFORMANCE

Table 1: The averaged prediction accuracies (the standard errors) on real datasets.

Dataset	Measure	Interpretable model				Blackbox model		
		Bayesian TPNN	ANOVA TPNN	NAM	Linear	XGB	BART	mBNN
ABALONE (Warwick et al., 1995)		2.053 (0.26)	2.051 (0.21)	2.062 (0.23)	2.244 (0.22)	2.157 (0.24)	2.197 (0.26)	2.081 (0.24)
BOSTON (Harrison Jr & Rubinfeld, 1978)	RMSE \downarrow (SE)	3.654 (0.49)	3.671 (0.56)	3.832 (0.67)	5.892 (0.77)	4.130 (0.56)	4.073 (0.67)	4.277 (0.51)
MPG (Quinlan, 1993)		2.386 (0.41)	2.623 (0.38)	2.755 (0.41)	3.748 (0.41)	2.531 (0.26)	2.699 (0.43)	2.897 (0.42)
SERVO (Ulrich, 1986)		0.351 (0.02)	0.594 (0.04)	0.802 (0.04)	1.117 (0.04)	0.314 (0.04)	0.342 (0.04)	0.301 (0.04)
FICO (fic, 2018)		0.793 (0.009)	0.802 (0.008)	0.764 (0.019)	0.690 (0.010)	0.793 (0.009)	0.701 (0.015)	0.740 (0.008)
BREAST (Wolberg et al., 1993)	AUROC \uparrow (SE)	0.998 (0.001)	0.998 (0.001)	0.976 (0.003)	0.922 (0.010)	0.995 (0.002)	0.977 (0.006)	0.978 (0.002)
CHURN (chu, 2017)		0.849 (0.008)	0.848 (0.006)	0.835 (0.008)	0.720 (0.002)	0.848 (0.006)	0.835 (0.008)	0.833 (0.008)
MADELON (Guyon, 2004)		0.854 (0.013)	0.587 (0.013)	0.644 (0.005)	0.548 (0.011)	0.884 (0.006)	0.751 (0.011)	0.650 (0.018)

Table 2: Comparison of Bayesian models in view of uncertainty quantification on real datasets.

Dataset	Bayesian-TPNN		BART		mBNN	
	CRPS	NLL	CRPS	NLL	CRPS	NLL
ABALONE	1.372 (0.19)	2.260 (0.16)	1.384 (0.18)	2.261 (0.16)	1.399 (0.16)	2.226 (0.16)
BOSTON	2.202 (0.23)	3.411 (0.37)	2.623 (0.25)	3.400 (0.42)	3.144 (0.39)	3.488 (0.26)
MPG	1.510 (0.43)	2.511 (0.21)	1.553 (0.27)	2.530 (0.20)	2.142 (0.42)	2.710 (0.24)
SERVO	0.194 (0.01)	0.836 (0.10)	0.202 (0.02)	0.849 (0.08)	0.185 (0.02)	0.321 (0.08)
Dataset	ECE	NLL	ECE	NLL	ECE	NLL
FICO	0.036 (0.004)	0.554 (0.007)	0.054 (0.011)	0.632 (0.012)	0.219 (0.032)	0.773 (0.046)
BREAST	0.129 (0.009)	0.211 (0.014)	0.118 (0.010)	0.143 (0.032)	0.292 (0.018)	0.523 (0.025)
CHURN	0.031 (0.001)	0.418 (0.008)	0.035 (0.001)	0.430 (0.010)	0.168 (0.037)	0.531 (0.036)
MADELON	0.076 (0.004)	0.478 (0.009)	0.066 (0.004)	0.685 (0.032)	0.252 (0.020)	0.840 (0.031)

We compare the prediction performance of Bayesian-TPNN with baseline models including ANOVA-TPNN (Park et al., 2025), Neural Additive Models (NAM, Agarwal et al. (2021)), Linear model, XGB (Chen & Guestrin, 2016), Bayesian Additive Regression Trees (BART, Chipman

378 et al. (2010), Linero (2025)) and mBNN (Kong et al., 2023). We analyze eight real datasets and split
 379 each dataset into training and test sets with a ratio of 0.8 to 0.2. This random split is repeated five
 380 times to obtain five prediction performance measures.
 381

382 Table 1 reports the prediction accuracies (the Root Mean Square Error (RMSE) for regression tasks
 383 and the Area Under the ROC Curve (AUROC) for classification tasks) of the Bayes estimator of
 384 Bayesian-TPNN along with those of its competitors, where the best results are highlighted by **bold**.
 385 Overall, Bayesian-TPNN achieves prediction performance comparable to that of the baseline mod-
 386 els. Further details of the experiments are provided in Section B.3 of Appendix.
 387

388 Table 2 compares Bayesian-TPNN with the baseline Bayesian models in view of uncertainty quan-
 389 tification. As uncertainty quantification measures, we consider Continuous Ranked Probability Score
 390 (CRPS, Gneiting & Raftery (2007)) and Negative Log-Likelihood (NLL) for regression tasks, and
 391 Expected Calibration Error (ECE, Kumar et al. (2019)) together with NLL for classification tasks.
 392 The results indicate that Bayesian-TPNN compares favorably with the baseline models in uncer-
 393 tainty quantification, which is a bit surprising since Bayesian-TPNN is a transparent model while
 394 the other Bayesian models are black-box models. The results of uncertainty quantification for non-
 395 Bayesian models are presented in Section H.1 of Appendix, which are inferior to Bayesian models.
 396

397 4.2 PERFORMANCE IN COMPONENT SELECTION

398 Table 3: Performance of component selection on synthetic datasets.

True model	$f^{(1)}$			$f^{(2)}$			$f^{(3)}$		
	Order	Bayesian TPNN	ANOVA T^2 PNN	NA ² M	Bayesian TPNN	ANOVA T^2 PNN	NA ² M	Bayesian TPNN	ANOVA T^2 PNN
1	1.000 (0.000)	0.999 (0.001)	0.528 (0.023)	0.831 (0.008)	0.859 (0.010)	0.417 (0.015)	1.000 (0.000)	0.781 (0.021)	0.522 (0.011)
2	1.000 (0.000)	0.978 (0.007)	0.508 (0.024)	0.985 (0.003)	0.949 (0.003)	0.838 (0.009)	0.922 (0.019)	0.704 (0.007)	0.542 (0.017)
3	0.740 (0.022)	—	—	0.966 (0.018)	—	—	0.661 (0.022)	—	—

405 Table 4: Top 5 components: the important scores are normalized by their maximum.

Dataset	Component	Rank 1		Rank 2		Rank 3		Rank 4		Rank 5	
		Score	Component	Score	Component	Score	Component	Score	Component	Score	Component
MADELON	(49, 242, 319, 339)	1.000	(129, 443, 494)	0.472	(379, 443)	0.374	106	0.322	(242, 443)	0.301	
SERVO	1	1.000	(1, 3, 4, 5)	0.554	4	0.202	(4, 6)	0.193	8	0.173	

411 We investigate whether Bayesian-TPNN identifies the true signal components well similarly to
 412 the setting in Park et al. (2025); Tsang et al. (2017). Synthetic datasets are generated from
 413 $Y = f^{(k)}(\mathbf{x}) + \epsilon$, $k = 1, 2, 3$, where $f^{(k)}$ is the true regression model and $\mathbf{x} \in \mathbb{R}^{50}$. Details of
 414 the experiment are described in Section B.5.
 415

416 We define the importance score of each component as its ℓ_2 -norm, i.e., $\|f_S\|_{2,n}$. A large $\|f_S\|_{2,n}$
 417 implies f_S is a signal. Table 3 reports the averages (standard errors) of AUROCs of the importance
 418 scores obtained by Bayesian-TPNN, ANOVA-T²PNN, and NA²M for interaction order up to 3. Note
 419 that extending ANOVA-T²PNN and NA²M to include the third order interactions requires additional
 420 19,600 neural networks, and so we give up ANOVA-T³PNN and NA³M due to the limitations of our
 421 computational environment. Overall, Bayesian-TPNN achieves the best performance in component
 422 selection across orders and datasets, and detects higher-order interactions reasonably well.
 423

424 Table 4 presents the five most important components selected by Bayesian-TPNN on MADELON and
 425 SERVO datasets. We use these datasets as they highlight the performance gap between models with
 426 and without higher-order interactions. Notably, Bayesian-TPNN identifies a 4th-order interaction as
 427 the most important component in the MADELON data, suggesting that its ability to capture higher-
 428 order interactions largely explains its superior prediction performance over ANOVA-TPNN on these
 429 datasets. See Section B.2 of Appendix for descriptions of the variables in MADELON and SERVO.
 430

431 4.3 INTERPRETATION OF BAYESIAN-TPNN

432 The functional ANOVA model can provide various interpretations of the estimated prediction model
 433 through the estimated components as Park et al. (2025) illustrates. In particular, by visualizing the
 434

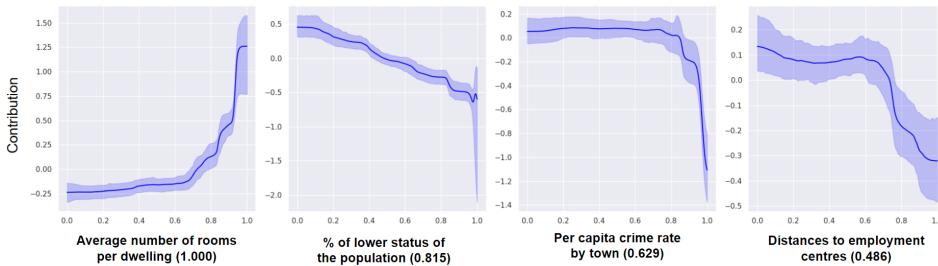


Figure 2: **Plots of the functional relations of the important main effects estimated by Bayesian-TPNN on the BOSTON dataset.** Each plot shows the Bayes estimate and 95% credible interval of each component. Labels indicate the names of the input variables along with the normalized importance scores.

estimated components, we can understand how each group of input variables affects the response variable. Figure 2 presents the plots of the functional relations for the important main effects estimated by Bayesian-TPNN on the BOSTON dataset. Each plot shows the Bayes estimate and the 95% credible interval of the selected component. The leftmost plot shows increasing trend, indicating that as the average number of rooms per dwelling increases, the price of the housing increases as well. The second plot reveals a strictly decreasing relationship between the proportion of lower status of the population and the housing price. The third plot indicates that housing prices decrease sharply once the crime rate exceeds a certain threshold. The fourth plot shows that houses located farther from major employment centers are generally less expensive than those situated closer to such hubs. More discussions about interpretation of Bayesian-TPNN are provided in Section E of Appendix.

4.4 APPLICATION TO CONCEPT BOTTLENECK MODELS

Concept Bottleneck Model (CBM, Koh et al. (2020)) is an interpretable model in which a CNN first receives an image and predicts its concepts. These predicted concepts are then used to infer the target label, enabling explainable predictions. To illustrate that Bayesian-TPNN can be amply combined with CBM, we consider Independent Concept Bottleneck Models (ICBM, Koh et al. (2020)), in which a CNN is first trained and then frozen, after which a final classifier is trained on the predicted concepts. We compare Bayesian-TPNN with other baselines for learning the final classifier. In the experiment, we use CELEBA-HQ (Lee et al., 2020) and CATDOG (Jikadara, 2023) datasets, where we generate 5 concepts using GPT-5 (OpenAI, 2025), and we obtain the concept labels for each image via CLIP (Radford et al., 2021). The target labels for CELEBA-HQ and CATDOG are gender and cat/dog classification, respectively. The details are provided in Section B.4 of Appendix.

Table 5: Prediction performance with CBM on image datasets.

Dataset	Measure	Bayesian-TPNN	ANOVA-T ² PNN	NA ² M	Linear
CELEBA-HQ	AUROC \uparrow	0.936 (0.002)	0.923 (0.002)	0.922 (0.002)	0.893 (0.003)
CATDOG	AUROC \uparrow	0.878 (0.002)	0.853 (0.002)	0.851 (0.002)	0.711 (0.001)

Table 5 presents the averages and standard errors of AUROCs when Bayesian-TPNN, ANOVA-T²PNN, NA²M, and Linear model are used in the final classifier. Among them, Bayesian-TPNN attains the highest prediction performance, which can be attributed to its capability to estimate higher-order components.

5 CONCLUSION

We proposed Bayesian-TPNN, a novel Bayesian neural network for the functional ANOVA model that can detect higher-order signal components effectively and thus achieve superior prediction performance in view of prediction accuracy and uncertainty quantification. In addition, Bayesian-TPNN is also theoretically sound since it achieves the posterior consistency.

We used a predefined distribution p_{input} for the selection probability of each input variable in the MH algorithm. It would be interesting to update p_{input} along with the other parameters. For example, it would be possible to let $p_{\text{input}}(j)$ be proportional to the number of basis functions in the current Bayesian-TPNN model which uses x_j . This would be helpful when p is large. We will pursue this algorithm in the near future.

486 **Reproducibility Statement.** We have made significant efforts to ensure the reproducibility of
 487 our results. The source code implementing our proposed model and experiments is provided in
 488 the supplementary material. Detailed descriptions of the experimental setup, hyperparameters and
 489 datasets are provided in Section B of Appendix. Additional ablation studies are reported in Section
 490 C of Appendix.

491
 492 REFERENCES
 493

494 Brownian dynamics as smart monte carlo simulation. *The Journal of Chemical Physics*, 69(10):
 495 4628–4633, 1978.

496 Telco customer churn. kaggle, 2017. <https://www.kaggle.com/datasets/blastchar/telco-customer-churn/data>.

497
 498 Fico heloc. FICO Explainable Learning Challenge, 2018. <https://community.fico.com/s/explainable-machine-learning-challenge>.

499
 500 Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
 501 and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
 502 *Advances in neural information processing systems*, 34:4699–4711, 2021.

503
 504 Lawrence D. Brown, T. Tony Cai, and Harrison H. Zhou. Nonparametric regression in exponential
 505 families. *The Annals of Statistics*, 38(4):2005 – 2046, 2010. doi: 10.1214/09-AOS762. URL
 506 <https://doi.org/10.1214/09-AOS762>.

507
 508 Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. Node-gam: Neural generalized additive
 509 model for interpretable deep learning. *arXiv preprint arXiv:2106.01613*, 2021.

510
 511 Juntong Chen. Estimating a regression function in exponential families by model selection.
 512 *Bernoulli*, 30(2):1669–1693, 2024.

513
 514 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the
 515 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
 516 2016.

517
 518 Hugh A Chipman, Edward I George, and Robert E McCulloch. Bayesian cart model search. *Journal
 519 of the American Statistical Association*, 93(443):935–948, 1998.

520
 521 Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian additive regression
 522 trees. *Annals of Applied Statistics*, 2010.

523
 524 Yongchan Choi, Seokhun Park, Chanmoo Park, Dongha Kim, and Yongdai Kim. Meta-anova:
 525 screening interactions for interpretable machine learning. *Journal of the Korean Statistical Society*,
 526 pp. 1–18, 2025.

527
 528 Angelos Filos, Sebastian Farquhar, Aidan N Gomez, Tim GJ Rudner, Zachary Kenton, Lewis Smith,
 529 Milad Alizadeh, Arnoud De Kroon, and Yarin Gal. A systematic comparison of bayesian deep
 530 learning robustness in diabetic retinopathy tasks. *arXiv preprint arXiv:1912.10481*, 2019.

531
 532 Jerome H Friedman. Multivariate adaptive regression splines. *The annals of statistics*, 19(1):1–67,
 533 1991.

534
 535 D Fumagalli, A Blanchet-Cohen, D Brown, C Desmedt, D Gacquer, S Michiels, F Rothé, S Ma-
 536 jjaj, R Salgado, D Larsimont, M Maetens, M Piccart, V Detours, C Sotiriou, and B Haibe-
 537 Kains. Gse43358: Transfer of clinically relevant gene expression signatures in breast cancer:
 538 from affymetrix microarray to illumina rna-sequencing technology, 2013. URL <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43358>. Accessed: 2025-11-17.

539
 540 Zhe Gan, Changyou Chen, Ricardo Henao, David Carlson, and Lawrence Carin. Scalable deep
 541 poisson factor analysis for topic modeling. In *International Conference on Machine Learning*,
 542 pp. 1823–1832. PMLR, 2015.

543
 544 Subhashis Ghosal and Aad Van Der Vaart. Convergence rates of posterior distributions for noniid
 545 observations. 2007.

540 Subhashis Ghosal, Jayanta K Ghosh, and RV Ramamoorthi. Posterior consistency of dirichlet mix-
 541 tures in density estimation. *The Annals of Statistics*, 27(1):143–158, 1999.

542

543 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
 544 *Journal of the American statistical Association*, 102(477):359–378, 2007.

545

546 Peter J. Green. Reversible jump markov chain monte carlo computation and bayesian model deter-
 547 mination. *Biometrika*, 82(4):711–732, 12 1995. ISSN 0006-3444. doi: 10.1093/biomet/82.4.711.
 548 URL <https://doi.org/10.1093/biomet/82.4.711>.

549

550 Chong Gu and Grace Wahba. Smoothing spline anova with component-wise bayesian “confidence
 551 intervals”. *Journal of Computational and Graphical Statistics*, 2(1):97–117, 1993. doi: 10.
 552 1080/10618600.1993.10474601. URL <https://doi.org/10.1080/10618600.1993.10474601>.

553

554 Isabelle Guyon. Madelon. UCI Machine Learning Repository, 2004. DOI:
 555 <https://doi.org/10.24432/C5602H>.

556

557 László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. *A distribution-free theory of non-*
 558 *parametric regression*. Springer Science & Business Media, 2006.

559

560 David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air.
 561 *Journal of environmental economics and management*, 5(1):81–102, 1978.

562

563 Trevor Hastie and Robert Tibshirani. Generalized additive models. *Statistical science*, 1(3):297–
 564 310, 1986.

565

566 Andrew Herren and P Richard Hahn. Statistical aspects of shap: Functional anova for model inter-
 567 pretation. *arXiv preprint arXiv:2208.09970*, 2022.

568

569 Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of depen-
 570 dent variables. *Journal of computational and graphical statistics*, 16(3):709–732, 2007.

571

572 Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What are
 573 bayesian neural network posteriors really like? In *International conference on machine learn-
 574 ing*, pp. 4629–4640. PMLR, 2021.

575

576 Bhavik Jikadara. Dog and cat classification dataset. <https://www.kaggle.com/datasets/bhavikjikadara/dog-and-cat-classification-dataset>, 2023.

577

578 Adam Kapelner and Justin Bleich. bartmachine: Machine learning with bayesian additive regression
 579 trees. *Journal of Statistical Software*, 70:1–40, 2016.

580

581 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 582 Percy Liang. Concept bottleneck models. In *International conference on machine learning*, pp.
 583 5338–5348. PMLR, 2020.

584

585 Insung Kong, Dongyoon Yang, Jongjin Lee, Ilsang Ohn, Gyuseung Baek, and Yongdai Kim. Masked
 586 bayesian neural networks: Theoretical guarantee and its posterior inference. In *International
 587 conference on machine learning*, pp. 17462–17491. PMLR, 2023.

588

589 Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. *Advances in neural
 590 information processing systems*, 32, 2019.

591

592 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 593 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 30, 2017.

594

595 Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
 596 facial image manipulation. In *IEEE Conference on Computer Vision and Pattern Recognition
 597 (CVPR)*, 2020.

594 Benjamin Lengerich, Sarah Tan, Chun-Hao Chang, Giles Hooker, and Rich Caruana. Purifying
 595 interaction effects with the functional anova: An efficient algorithm for recovering identifiable
 596 additive models. In *International Conference on Artificial Intelligence and Statistics*, pp. 2402–
 597 2412. PMLR, 2020.

598 Antonio R Linero. Generalized bayesian additive regression trees models: Beyond conditional con-
 599 jugacy. *Journal of the American Statistical Association*, 120(549):356–369, 2025.

601 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
 602 *in neural information processing systems*, 30, 2017.

604 David JC MacKay. A practical bayesian framework for backpropagation networks. *Neural computa-*
 605 *tion*, 4(3):448–472, 1992.

607 Kaspar Martens and Christopher Yau. Neural decomposition: Functional anova with variational
 608 autoencoders. In *International conference on artificial intelligence and statistics*, pp. 2917–2927.
 609 PMLR, 2020.

610 Christoph Molnar. *Interpretable machine learning*. Lulu. com, 2020.

612 Jishnu Mukhoti, Andreas Kirsch, Joost Van Amersfoort, Philip HS Torr, and Yarin Gal. Deep de-
 613 terministic uncertainty: A new simple baseline. In *Proceedings of the IEEE/CVF Conference on*
 614 *Computer Vision and Pattern Recognition*, pp. 24384–24394, 2023.

615 Radford M Neal. *Bayesian learning for neural networks*, volume 118. Springer Science & Business
 616 Media, 2012.

618 Nhat Minh Nguyen, Minh-Ngoc Tran, and Rohitash Chandra. Sequential reversible jump mcmc for
 619 dynamic bayesian neural networks. *Neurocomputing*, 564:126960, 2024.

621 Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
 622 models. *arXiv preprint arXiv:2304.06129*, 2023.

623 OpenAI. Introducing gpt-5, August 2025. URL <https://openai.com/index/introducing-gpt-5/>. Accessed: 2025-09-17.

626 Art B. Owen. *Monte Carlo theory, methods and examples*. <https://artowen.su.domains/mc/>, 2013.

629 Seokhun Park, Insung Kong, Yongchan Choi, Chanmoo Park, and Yongdai Kim. Tensor product
 630 neural networks for functional anova model. *International conference on machine learning*, 2025.

632 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 633 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 634 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 12:2825–2830, 2011.

636 R. Quinlan. Auto MPG. UCI Machine Learning Repository, 1993. DOI:
 637 <https://doi.org/10.24432/C5859H>.

639 Filip Radenovic, Abhimanyu Dubey, and Dhruv Mahajan. Neural basis models for interpretability.
 640 *Advances in Neural Information Processing Systems*, 35:8414–8426, 2022.

641 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 642 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 643 models from natural language supervision. In *International conference on machine learning*, pp.
 644 8748–8763. PmLR, 2021.

646 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
 647 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
on knowledge discovery and data mining, pp. 1135–1144, 2016.

648 Anton Frederik Thielmann, René-Marcel Kruse, Thomas Kneib, and Benjamin Säfken. Neural
649 additive models for location scale and shape: A framework for interpretable neural regression
650 beyond the mean. In *International Conference on Artificial Intelligence and Statistics*, pp. 1783–
651 1791. PMLR, 2024.

652 Michael Tsang, Dehua Cheng, and Yan Liu. Detecting statistical interactions from neural network
653 weights. *arXiv preprint arXiv:1705.04977*, 2017.

654 Karl Ulrich. Servo. UCI Machine Learning Repository, 1986. DOI:
655 <https://doi.org/10.24432/C5Q30F>.

656 Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender sys-
657 tems. In *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery
658 and data mining*, pp. 1235–1244, 2015.

659 Nash Warwick, Sellers Tracy, Talbot Simon, Cawthorn Andrew, and Ford Wes. Abalone. UCI
660 Machine Learning Repository, 1995. DOI: <https://doi.org/10.24432/C55C7W>.

661 Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
662 generalization. *Advances in neural information processing systems*, 33:4697–4708, 2020.

663 William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Diag-
664 nóstic). UCI Machine Learning Repository, 1993. DOI: <https://doi.org/10.24432/C5DW2B>.

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A DETAILS OF THE MCMC ALGORITHM

For given data $\mathcal{D}^{(n)}$, we denote $\mathbf{x}^{(n)} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$. Let $\omega_j = p_{\text{input}}(j)$.

A.1 SAMPLING K VIA MH ALGORITHM

A.1.1 CASE OF $K^{\text{new}} = K + 1$

From current state $\theta = (K, \mathbf{S}_K, \mathbf{b}_{\mathbf{S}_K, K}, \Gamma_{\mathbf{S}_K, K}, \mathcal{B}_K, \eta)$, we propose a new state θ^{new} using one of **{Random, Stepwise}**. Here, θ^{new} is defined as

$$\theta^{\text{new}} = (K + 1, \mathbf{S}_{K+1}, \mathbf{b}_{\mathbf{S}_{K+1}, K+1}, \Gamma_{\mathbf{S}_{K+1}, K+1}, \mathcal{B}_{K+1}, \eta),$$

where

$$\begin{aligned} \mathbf{S}_{K+1} &= (\mathbf{S}_K, S_{K+1}^{\text{new}}), \\ \mathbf{b}_{\mathbf{S}_{K+1}, K+1} &= (\mathbf{b}_{\mathbf{S}_K, K}, \mathbf{b}_{S_{K+1}^{\text{new}}, K+1}), \\ \Gamma_{\mathbf{S}_{K+1}, K+1} &= (\Gamma_{\mathbf{S}_K, K}, \Gamma_{S_{K+1}^{\text{new}}, K+1}), \\ \mathcal{B}_{K+1} &= (\mathcal{B}_K, \beta_{K+1}^{\text{new}}). \end{aligned}$$

We accept the new state θ^{new} with probability

$$P_{\text{accept}} = \min \left\{ 1, \prod_{i=1}^n \frac{q_{f_{\theta^{\text{new}}}(\mathbf{x}_i), \eta}(y_i)}{q_{f_{\theta}(\mathbf{x}_i), \eta}(y_i)} \frac{\pi(\theta^{\text{new}})}{\pi(\theta)} \frac{q(\theta | \theta^{\text{new}})}{q(\theta^{\text{new}} | \theta)} \right\},$$

where

$$f_{\theta}(\mathbf{x}) = \sum_{k \in [K]} \beta_k \phi(\mathbf{x} | S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k})$$

and

$$f_{\theta^{\text{new}}}(\mathbf{x}) = f_{\theta}(\mathbf{x}) + \beta_{K+1}^{\text{new}} \phi(\mathbf{x} | S_{K+1}^{\text{new}}, \mathbf{b}_{S_{K+1}^{\text{new}}, K+1}, \Gamma_{S_{K+1}^{\text{new}}, K+1}).$$

To compute the acceptance probability, we calculate the prior ratio $\pi(\theta^{\text{new}})/\pi(\theta)$, and then the proposal ratio $q(\theta | \theta^{\text{new}})/q(\theta^{\text{new}} | \theta)$.

Prior Ratio. The prior ratio is given as

$$\begin{aligned} \frac{\pi(\theta^{\text{new}})}{\pi(\theta)} &= \frac{\pi(K+1) \pi(\mathbf{S}_{K+1} | K+1) \pi(\mathbf{b}_{\mathbf{S}_{K+1}, K+1} | \mathbf{S}_{K+1}) \pi(\Gamma_{\mathbf{S}_{K+1}, K+1} | \mathbf{S}_{K+1}) \pi(\mathcal{B}_{K+1} | K+1)}{\pi(K) \pi(\mathbf{S}_K | K) \pi(\mathbf{b}_{\mathbf{S}_K, K} | \mathbf{S}_K) \pi(\Gamma_{\mathbf{S}_K, K} | \mathbf{S}_K) \pi(\mathcal{B}_K | K)} \\ &= \frac{\pi(S_{K+1}) \pi(\mathbf{b}_{S_{K+1}, K+1}) \pi(\Gamma_{S_{K+1}, K+1}) \pi(\beta_{K+1})}{\exp(C_0 \log n)}. \end{aligned}$$

Proposal Ratio. For $q(\theta | \theta^{\text{new}})$, we have

$$\begin{aligned} q(\theta | \theta^{\text{new}}) &= \Pr(K = K^{\text{new}} - 1) \Pr(\text{Choose one of } K^{\text{new}} \text{ TPNNs for deletion}) \\ &= \frac{K^{\text{new}}}{K_{\max}} \frac{1}{K^{\text{new}}}. \end{aligned}$$

For a given θ , a new state θ^{new} is proposed in two ways: (1) **Random** move or (2) **Stepwise** move.

756 For **Random** move, we have

$$757 \quad q(\theta^{\text{new}} | \theta, \mathbf{Random}) = \pi(S_{K+1}^{\text{new}}) \pi(\mathbf{b}_{S_{K+1}^{\text{new}}, K+1}) \pi(\Gamma_{S_{K+1}^{\text{new}}, K+1}) \pi(\beta_{K+1}^{\text{new}}). \quad (12)$$

759 For **Stepwise** move, we have

$$761 \quad q(\theta^{\text{new}} | \theta, \mathbf{Stepwise}) = \Pr(S_{K+1}^{\text{new}}) \pi(\mathbf{b}_{S_{K+1}^{\text{new}}, K+1}) \pi(\Gamma_{S_{K+1}^{\text{new}}, K+1}) \pi(\beta_{K+1}^{\text{new}}).$$

762 Here, $\Pr(S_{K+1}^{\text{new}})$ is defined as

$$764 \quad \Pr(S_{K+1}^{\text{new}}) = \sum_{k=1}^K \Pr(\text{Choose } S_k \text{ from } \mathbf{S}_K) \Pr(S_{K+1}^{\text{new}} = S_k \cup \{j^{\text{new}}\}, j^{\text{new}} \in S_k^c) \\ 765 \\ 766 \\ 767 \quad = \sum_{k=1}^K \frac{1}{K} \mathbb{I}(\exists j^{\text{new}} \in S_k^c \text{ s.t } S_k \cup \{j^{\text{new}}\} = S_{K+1}^{\text{new}}) \frac{\omega_{j^{\text{new}}}}{\sum_{l \in S_k^c} \omega_l}.$$

770 To sum up, we have

$$771 \quad q(\theta^{\text{new}} | \theta) = q(\theta^{\text{new}} | \theta, \mathbf{Random}) \Pr(\mathbf{Random}) + q(\theta^{\text{new}} | \theta, \mathbf{Stepwise}) \Pr(\mathbf{Stepwise}).$$

773 A.1.2 CASE OF $K^{\text{new}} = K - 1$

775 Since the acceptance probability of the case $K^{\text{new}} = K - 1$ can be easily computed by reversing the
776 steps in Section A.1.1, we omit the details here.

778 A.2 SAMPLING $S_k, \mathbf{b}_k, \Gamma_k$ VIA MH ALGORITHM

779 Here, we consider three moves - {**Adding**, **Deleting** and **Changing**}. Each move is chosen with the
780 probabilities $\Pr(\mathbf{Adding}) = q_{\text{add}}$, $\Pr(\mathbf{Deleting}) = q_{\text{delete}}$, $\Pr(\mathbf{Changing}) = q_{\text{change}}$, respectively.

782 In **Adding** move, the proposal distribution generates $S_k^{\text{new}} = S_k \cup \{j^{\text{adding}}\}$, where $j^{\text{adding}} \in [p] \setminus S_k$
783 is chosen with a given weight vector $\omega := (\omega_1, \dots, \omega_p)$. Note that the likelihood cannot be calculated
784 using S_k^{new} alone, where S_k^{new} is the index set generated by the proposal distribution. To address this,
785 we also generate $b_{j^{\text{adding}}, k}$ and $\gamma_{j^{\text{adding}}, k}$ from Uniform(0, 1) and Gamma(a_γ, b_γ), respectively.

786 Furthermore, in **Deleting** move, a variable to be deleted is uniformly selected from S_k and the new
787 component $S_k^{\text{new}} = S_k \setminus \{j^{\text{deleting}}\}$ is proposed accordingly. This move also involves removing the
788 associated numeric parameters $b_{j^{\text{deleting}}, k}$ and $\gamma_{j^{\text{deleting}}, k}$ from $\mathbf{b}_{S_k, k}$ and $\Gamma_{S_k, k}$, respectively.

789 Finally, in **Changing** move, we choose an element j^{change} in S_k and replace it with a randomly
790 selected $j^{\text{new}} \in S_k^c$. The corresponding $b_{j^{\text{change}}, k}$ and $\gamma_{j^{\text{change}}, k}$ are then replaced by new values
791 generated from Uniform(0, 1) and Gamma(a_γ, b_γ), respectively. This move results in $S_k^{\text{new}} =$
792 $(S_k \setminus \{j^{\text{change}}\}) \cup \{j^{\text{new}}\}$.

794 Here, **Adding** and **Deleting** affect the dimensions of $\mathbf{b}_{S_k, k}$ and $\Gamma_{S_k, k}$, thus the algorithm corre-
795 sponds to RJMCMC (Green (1995)) which requires Jacobian computations. However, since we ap-
796 plied the identity transformation on the auxiliary variables which are generated to match the dimen-
797 sions, the Jacobian is simply 1. This allows us to easily compute the acceptance probability.

798 A.2.1 TRANSITION PROBABILITY FOR PROPOSAL DISTRIBUTION

800 For a given weight vector ω , the proposal distributions q_ω of $\Theta_k^{\text{new}} = (S_k^{\text{new}}, \mathbf{b}_{S_k^{\text{new}}, k}, \Gamma_{S_k^{\text{new}}, k})$ are
801 defined as:

$$803 \quad q_\omega(\Theta_k^{\text{new}} | \Theta_k, \mathbf{Adding}) = \frac{\omega_{j^{\text{adding}}}}{\sum_{j \in S_k^c} \omega_j} \pi(b_{j^{\text{adding}}, k}) \pi(\gamma_{j^{\text{adding}}, k}) \\ 804 \\ 805 \\ 806 \quad q_\omega(\Theta_k^{\text{new}} | \Theta_k, \mathbf{Deleting}) = \frac{1}{|S_k|} \\ 807 \\ 808 \\ 809 \quad q_\omega(\Theta_k^{\text{new}} | \Theta_k, \mathbf{Changing}) = \frac{1}{|S_k|} \frac{\omega_{j^{\text{new}}}}{\sum_{j \in S_k^c} \omega_j} \pi(b_{j^{\text{new}}, k}) \pi(\gamma_{j^{\text{new}}, k}).$$

810 To sum up, we have
 811

$$\begin{aligned}
 812 \quad q_{\omega}(\Theta_k^{\text{new}} | \Theta_k) &= q_{\omega}(\Theta_k^{\text{new}} | \Theta_k, \text{Adding}) \Pr(\text{Adding}) \\
 813 \quad &+ q_{\omega}(\Theta_k^{\text{new}} | \Theta_k, \text{Deleting}) \Pr(\text{Deleting}) \\
 814 \quad &+ q_{\omega}(\Theta_k^{\text{new}} | \Theta_k, \text{Changing}) \Pr(\text{Changing}).
 815
 \end{aligned}$$

816 A.2.2 POSTERIOR RATIO

817 We define $\lambda_k := (\lambda_{k,1}, \dots, \lambda_{k,n})$ where $\lambda_{k,i} = \sum_{j \neq k} \beta_j \phi(\mathbf{x}_i | \Theta_j)$ for $i = 1, \dots, n$ and the likelihood $\mathcal{L}(\Theta_k, \beta_k, \lambda_k, \eta) := \prod_{i=1}^n q_{\lambda_{k,i} + \beta_k} \phi(\mathbf{x}_i | \Theta_k, \eta)(y_i)$.

820 Then, we have
 821

$$\begin{aligned}
 822 \quad \pi(\Theta_k | \beta_k, \lambda_k, \mathcal{D}^{(n)}, \eta) &\propto \pi(y_1, \dots, y_n | \Theta_k, \beta_k, \lambda_k, \mathbf{x}^{(n)}, \eta) \pi(\Theta_k) \\
 823 \quad &= \mathcal{L}(\Theta_k, \beta_k, \lambda_k, \eta) \pi(\Theta_k).
 824
 \end{aligned}$$

825 Thus the posterior ratio of $\Theta_k^{\text{new}} = (S_k^{\text{new}}, \mathbf{b}_{S_k^{\text{new}}, k}, \Gamma_{S_k^{\text{new}}, k})$ to $\Theta_k = (S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k})$ is given as
 826

$$\frac{\pi(\Theta_k^{\text{new}} | \beta_k, \lambda_k, \mathcal{D}^{(n)}, \eta)}{\pi(\Theta_k | \beta_k, \lambda_k, \mathcal{D}^{(n)}, \eta)} = \frac{\mathcal{L}(\Theta_k^{\text{new}}, \beta_k, \lambda_k, \eta)}{\mathcal{L}(\Theta_k, \beta_k, \lambda_k, \eta)} \frac{\pi(\Theta_k^{\text{new}})}{\pi(\Theta_k)}.$$

832 A.2.3 ACCEPTANCE PROBABILITY

834 In this section, for notational simplicity, we denote the hyperparameters α_{adding} and γ_{adding} as α and
 835 γ , respectively.

836 For a proposed new state Θ_k^{new} , we accept it with probability
 837

$$\begin{aligned}
 838 \quad P_{\text{accept}} &= \min \left\{ 1, \frac{\pi(\Theta_k^{\text{new}} | \beta_k, \lambda_k, \mathcal{D}^{(n)}, \eta) q_{\omega}(\Theta_k | \Theta_k^{\text{new}})}{\pi(\Theta_k | \beta_k, \lambda_k, \mathcal{D}^{(n)}, \eta) q_{\omega}(\Theta_k | \Theta_k^{\text{new}})} \right\} \\
 839 \quad &= \min \left\{ 1, \frac{\mathcal{L}(\Theta_k^{\text{new}}, \beta_k, \lambda_k, \eta)}{\mathcal{L}(\Theta_k, \beta_k, \lambda_k, \eta)} \frac{\pi(\Theta_k^{\text{new}})}{\pi(\Theta_k)} \frac{q_{\omega}(\Theta_k | \Theta_k^{\text{new}})}{q_{\omega}(\Theta_k^{\text{new}} | \Theta_k)} \right\}.
 840
 \end{aligned}$$

843 Now, we will show how the product of the prior and proposal ratios is calculated in the case of
 844 **Adding**, **Deleting**, and **Changing**.

846 For **Adding**, we have
 847

$$\begin{aligned}
 848 \quad &\frac{\pi(\Theta_k^{\text{new}})}{\pi(\Theta_k)} \frac{q_{\omega}(\Theta_k | \Theta_k^{\text{new}})}{q_{\omega}(\Theta_k^{\text{new}} | \Theta_k)} \\
 849 \quad &= \alpha |S_k^{\text{new}}|^{-\gamma} \frac{1 - \alpha(1 + |S_k^{\text{new}}|)^{-\gamma}}{1 - \alpha|S_k^{\text{new}}|^{-\gamma}} \frac{1}{p - |S_k^{\text{new}}| + 1} \frac{\Pr(\text{Deleting})}{\Pr(\text{Adding})} \frac{\sum_{l \in S_k^c} \omega_l}{\omega_{j^{\text{adding}}}}.
 850
 \end{aligned}$$

853 For **Deleting**, we have
 854

$$\begin{aligned}
 855 \quad &\frac{\pi(\Theta_k^{\text{new}})}{\pi(\Theta_k)} \frac{q_{\omega}(\Theta_k | \Theta_k^{\text{new}})}{q_{\omega}(\Theta_k^{\text{new}} | \Theta_k)} \\
 856 \quad &= \frac{1}{\alpha(1 + |S_k^{\text{new}}|)^{-\gamma}} \frac{1 - \alpha(1 + |S_k^{\text{new}}|)^{-\gamma}}{1 - \alpha(2 + |S_k^{\text{new}}|)^{-\gamma}} (p - |S_k^{\text{new}}|) \frac{\Pr(\text{Adding})}{\Pr(\text{Deleting})} \frac{\omega_{j^{\text{deleting}}}}{\sum_{l \in S_k^c} \omega_l}.
 857
 \end{aligned}$$

860 For **Changing**, we have
 861

$$\frac{\pi(\Theta_k^{\text{new}})}{\pi(\Theta_k)} \frac{q_{\omega}(\Theta_k | \Theta_k^{\text{new}})}{q_{\omega}(\Theta_k^{\text{new}} | \Theta_k)} = \frac{\omega_{j^{\text{change}}} \sum_{l \in S_k^c} \omega_l}{\omega_{j^{\text{new}}} \sum_{l \in (S_k^{\text{new}})^c} \omega_l}.$$

864 A.3 SAMPLING $\mathbf{b}_{S_k, k}$, $\Gamma_{S_k, k}$ AND β_k VIA MH ALGORITHM
865866 We use Langevin Dynamics (ros (1978)) as a proposal distribution for $\mathbf{b}_{S_k, k}$, $\Gamma_{S_k, k}$ and β_k . That is,
867 $\mathbf{b}_{S_k, k}^{\text{new}}$, $\Gamma_{S_k, k}^{\text{new}}$ and β_k^{new} are proposed as

868
869
$$(\mathbf{b}_{S_k, k}^{\text{new}}, \Gamma_{S_k, k}^{\text{new}}, \beta_k^{\text{new}}) = (\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k) + \frac{\epsilon^2}{2} U(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k) + \epsilon \mathbb{M},$$

870

871 where

872
873
$$U(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k) = \nabla_{(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k)} \log \pi(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k | \boldsymbol{\lambda}_k, S_k, \mathcal{D}^{(n)}, \eta).$$

874 Here, $\mathbb{M} \sim N(0, \mathbf{I})$, where \mathbf{I} is the $(2|S_k| + 1) \times (2|S_k| + 1)$ identity matrix and $\epsilon > 0$ is a step size.875 We accept the proposal $(\mathbf{b}_{S_k, k}^{\text{new}}, \Gamma_{S_k, k}^{\text{new}}, \beta_k^{\text{new}})$ with a probability P_{accept} given as

876
877
878
$$P_{\text{accept}} = \left\{ 1, \frac{\mathcal{L}(S_k, \mathbf{b}_{S_k, k}^{\text{new}}, \Gamma_{S_k, k}^{\text{new}}, \beta_k^{\text{new}}, \boldsymbol{\lambda}_k, \eta) \pi(\mathbf{b}_{S_k, k}^{\text{new}}) \pi(\Gamma_{S_k, k}^{\text{new}}) \pi(\beta_k^{\text{new}})}{\mathcal{L}(S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k, \boldsymbol{\lambda}_k, \eta) \pi(\mathbf{b}_{S_k, k}) \pi(\Gamma_{S_k, k}) \pi(\beta_k)} \exp \left(-\frac{1}{2} (\|\mathbb{M}^{\text{new}}\|_2^2 - \|\mathbb{M}\|_2^2) \right) \right\},$$

879

880 where $\|\cdot\|_2$ is the Euclidean norm for a vector and

881
882
883
$$\mathbb{M}^{\text{new}} = \mathbb{M} + \frac{\epsilon}{2} U(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k) + \frac{\epsilon}{2} U(\mathbf{b}_{S_k, k}^{\text{new}}, \Gamma_{S_k, k}^{\text{new}}, \beta_k^{\text{new}}).$$

884 For $\nabla_{(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k)} \log \pi(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k | \boldsymbol{\lambda}_k, S_k, \mathcal{D}^{(n)}, \eta)$, we will calculate

885
886
887
$$\nabla_{\mathbf{b}_{S_k, k}} \log \pi(\mathbf{b}_{S_k, k} | \boldsymbol{\lambda}_k, \beta_k, S_k, \Gamma_{S_k, k}, \mathcal{D}^{(n)}, \eta),$$

888
889
890
$$\nabla_{\Gamma_{S_k, k}} \log \pi(\Gamma_{S_k, k} | \boldsymbol{\lambda}_k, \beta_k, S_k, \mathbf{b}_{S_k, k}, \mathcal{D}^{(n)}, \eta),$$

891 and

892
893
894
$$\nabla_{\beta_k} \log \pi(\beta_k | \boldsymbol{\lambda}_k, S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \mathcal{D}^{(n)}, \eta).$$

895 A.3.1 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO $\mathbf{b}_{S_k, k}$ 896 Without loss of generality, let $S_k = \{1, \dots, d\}$.

897 Since

898
899
900
$$\pi(\mathbf{b}_{S_k, k} | \boldsymbol{\lambda}_k, \beta_k, S_k, \Gamma_{S_k, k}, \mathcal{D}^{(n)}, \eta) \propto \mathcal{L}(\boldsymbol{\lambda}_k, \beta_k, S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \eta),$$

901 the j -th gradient is given as

902
903
904
$$\frac{\partial}{\partial b_{j,k}} \log \pi(\mathbf{b}_{S_k, k} | \boldsymbol{\lambda}_k, \beta_k, S_k, \Gamma_{S_k, k}, \mathcal{D}^{(n)}, \eta) = \frac{\partial}{\partial b_{j,k}} \sum_{i=1}^n \log q_{f(\mathbf{x}_i), \eta}(y_i),$$

905

906 where $f(\mathbf{x}_i) = \lambda_{k,i} + \beta_k \prod_{l \in S_k} \phi(x_{i,l} | \{l\}, b_{l,k}, \gamma_{l,k})$.

907 In turn, we have

908
909
910
911
912
913
914
915
916
917
$$\begin{aligned} & \frac{\partial}{\partial b_{j,k}} \sum_{i=1}^n \log q_{f(\mathbf{x}_i), \eta}(y_i) \\ &= \sum_{i=1}^n \left(\frac{\partial \log q_{f(\mathbf{x}_i), \eta}(y_i)}{\partial f(\mathbf{x}_i)} \frac{\partial f(\mathbf{x}_i)}{\partial b_{j,k}} \right) \\ &= \beta_k \sum_{i=1}^n \left(\frac{\partial \log q_{f(\mathbf{x}_i), \eta}(y_i)}{\partial f(\mathbf{x}_i)} \frac{\partial \phi(x_{i,j} | \{j\}, b_{j,k}, \gamma_{j,k})}{\partial b_{j,k}} \prod_{l \neq j, l \in S_k} \phi(x_{i,l} | \{l\}, b_{l,k}, \gamma_{l,k}) \right). \end{aligned}$$

918 Here,

$$\begin{aligned} 920 \quad \phi(x_{i,j}|\{j\}, b_{j,k}, \gamma_{j,k}) &= 1 - \sigma\left(\frac{x_{i,j} - b_{j,k}}{\gamma_{j,k}}\right) + c_j(b_{j,k}, \gamma_{j,k})\sigma\left(\frac{x_{i,j} - b_{j,k}}{\gamma_{j,k}}\right), \\ 921 \quad c_j(b_{j,k}, \gamma_{j,k}) &= -\left(1 - \tilde{c}_j(b_{j,k}, \gamma_{j,k})\right)/\tilde{c}_j(b_{j,k}, \gamma_{j,k}), \\ 922 \end{aligned}$$

923 where $\tilde{c}_j(b, \gamma) := \int_{\mathcal{X}_j} \sigma\left(\frac{u-b}{\gamma}\right) \mu_{n,j}(du)$.

924 Then, we have

$$\begin{aligned} 925 \quad \frac{\partial \phi(x_{i,j}|\{j\}, b_{j,k}, \gamma_{j,k})}{\partial b_{j,k}} &= -\frac{1}{\gamma_{j,k}}\sigma\left(\frac{x_{i,j} - b_{j,k}}{\gamma_{j,k}}\right) \int_{\mathcal{X}_j} \tilde{\sigma}\left(\frac{u - b_{j,k}}{\gamma_{j,k}}\right) \mu_{n,j}(du) \\ 926 \quad &+ \frac{1}{\gamma_{j,k}\tilde{c}_j(b_{j,k}, \gamma_{j,k})}\tilde{\sigma}\left(\frac{x_{i,j} - b_{j,k}}{\gamma_{j,k}}\right), \\ 927 \end{aligned}$$

928 where $\tilde{\sigma}(x) := \sigma(x)(1 - \sigma(x))$.

929 A.3.2 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO $\Gamma_{S_k, k}$

930 Without loss of generality, we let $S_k = \{1, \dots, d\}$. Similarly to Section A.3.1 of Appendix, we can
931 derive the gradient of the log posterior with respect to $\gamma_{j,k}$ as
932

$$\begin{aligned} 933 \quad \frac{\partial}{\partial \gamma_{j,k}} \log \pi(\Gamma_{S_k, k} | \lambda_k, \beta_k, S_k, \Gamma_{S_k, k}, \mathcal{D}^{(n)}, \eta) \\ 934 \quad &= \left(\frac{\partial}{\partial \gamma_{j,k}} \sum_{i=1}^n \log q_{f(\mathbf{x}_i), \eta}(y_i) \right) + (a_\gamma - 1) \frac{1}{\gamma_{j,k}} - \frac{1}{b_\gamma} \\ 935 \end{aligned}$$

936 From $f(\mathbf{x}_i) = \lambda_{k,i} + \beta_k \prod_{l \in S_k} \phi(x_{i,l}|\{l\}, b_{l,k}, \gamma_{l,k})$, we have
937

$$\begin{aligned} 938 \quad \frac{\partial}{\partial \gamma_{j,k}} \sum_{i=1}^n \log q_{f(\mathbf{x}_i), \eta}(y_i) \\ 939 \quad &= \sum_{i=1}^n \left(\frac{\partial \log q_{f(\mathbf{x}_i), \eta}(y_i)}{\partial f(\mathbf{x}_i)} \frac{\partial f(\mathbf{x}_i)}{\partial \gamma_{j,k}} \right) \\ 940 \quad &= \beta_k \sum_{i=1}^n \left(\frac{\partial \log q_{f(\mathbf{x}_i), \eta}(y_i)}{\partial f(\mathbf{x}_i)} \frac{\partial \phi(x_{i,j}|\{j\}, b_{j,k}, \gamma_{j,k})}{\partial \gamma_{j,k}} \prod_{l \neq j, l \in S_k} \phi(x_{i,l}|\{l\}, b_{l,k}, \gamma_{l,k}) \right). \\ 941 \end{aligned}$$

942 Here,

$$\begin{aligned} 943 \quad \frac{\partial \phi(x_{i,j}|\{j\}, b_{j,k}, \gamma_{j,k})}{\partial \gamma_{j,k}} \\ 944 \quad &= -\frac{\int_{\mathcal{X}_j} \frac{u-b_{j,k}}{\gamma_{j,k}^2} \tilde{\sigma}\left(\frac{u-b_{j,k}}{\gamma_{j,k}}\right) \mu_{n,j}(du)}{\tilde{c}_j(b_{j,k}, \gamma_{j,k})^2} \sigma\left(\frac{x_{i,j} - b_{j,k}}{\gamma_{j,k}}\right) - (c_j(b_{j,k}, \gamma_{j,k}) - 1) \frac{x_{i,j} - b_{j,k}}{\gamma_{j,k}^2} \tilde{\sigma}\left(\frac{x_{i,j} - b_{j,k}}{\gamma_{j,k}}\right). \\ 945 \end{aligned}$$

946 A.3.3 CALCULATING THE GRADIENT OF THE LOG-POSTERIOR WITH RESPECT TO β_k

947 The gradient of the log posterior for β_k is given as
948

$$\nabla_{\beta_k} \log \pi(\beta_k | \lambda_k, S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \mathcal{D}^{(n)}, \eta) = \sum_{i=1}^n \frac{\partial \log q_{f(\mathbf{x}_i), \eta}(y_i)}{\partial f(\mathbf{x}_i)} \phi(\mathbf{x}_i | \Theta_k) - \frac{\beta_k}{\sigma_\beta^2}.$$

972 A.4 SAMPLING NUISANCE PARAMETER η
973974 We only consider the nuisance parameter in the gaussian regression model:
975

976
$$Y_i | \mathbf{x}_i \sim N(\cdot | f(\mathbf{x}_i), \sigma_g^2)$$

977 for $i = 1, \dots, n$, where σ^2 is a nuisance parameter. When the prior distribution is an inverse gamma
978 distribution

979
$$\sigma_g^2 \sim \text{IG} \left(\frac{v}{2}, \frac{v\lambda}{2} \right), \quad (13)$$

980

981 we have
982

983
$$\sigma_g^2 | K, \mathcal{B}_K, \mathbf{S}_K, \mathbf{b}_{S_K, K}, \Gamma_{S_K, K}, \mathcal{D}^{(n)} \sim \text{IG} \left(\frac{v}{2}, \frac{\frac{1}{n} \sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2 + v\lambda}{2} \right), \quad (14)$$

984

985 and thus σ_g^2 can be sampled from the conditional posterior easily.
986987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **B DETAILS OF THE EXPERIMENTS**
10271028 **B.1 DATA DESCRIPTION**
10291030 **Table 6: Descriptions of real datasets.**
1031

Dataset	<i>n</i>	<i>p</i>	Task
ABALONE	4,178	8	Regression
BOSTON	506	13	Regression
MPG	398	7	Regression
SERVO	167	4	Regression
FICO	10,459	23	Classification
BREAST	569	30	Classification
CHURN	7,043	20	Classification
MADELON	4,400	500	Classification
CELEBA-HQ	30,000	—	Classification
CATDOG	24,998	—	Classification

1040 **B.2 FEATURE DESCRIPTIONS FOR MADELON AND SERVO DATASETS**
10411042 **Table 7: Feature index and its corresponding description for SERVO dataset.**
1043

Feature index	Feature description
1	Proportional gain setting for the servo motor.
2	Velocity gain setting for the servo motor.
3	Presence of Motor type A
4	Presence of Motor type B
5	Presence of Motor type C
6	Presence of Motor type D
7	Presence of Motor type E
8	Presence of Screw type A
9	Presence of Screw type B
10	Presence of Screw type C
11	Presence of Screw type D
12	Presence of Screw type E

1044 Table 7 presents the feature descriptions for SERVO dataset (Ulrich, 1986). MADELON (Guyon,
1045 2004), introduced in the NIPS 2003 feature selection challenge, is a synthetic binary classification
1046 dataset with 500 features, only a few of which are informative while many are redundant or irrele-
1047 vant.
10481049 **B.3 EXPERIMENT DETAILS FOR TABULAR DATASET**
10501051 **Data Preprocessing.** All of the categorical input variables are encoded using the one-hot encod-
1052 ing. For continuous ones, the inverse of the empirical marginal CDF is used to transform them to
1053 their marginal ranks for Bayesian-TPNN and ANOVA-TPNN, whereas they are transformed via the
1054 mean-variance standardization for other baseline models.
10551056 **Implementation of baseline models.** For implementation of baseline models, we proceed as fol-
1057 lows.
1058

- ANOVA-TPNN : we use the official source code provided in <https://github.com/ParkSeokhun/ANOVA-TPNN>.
- NA¹M : we use the official source code provided in <https://github.com/AmrMKayid/nam> and NA²M is implemented by extending the code of NA¹M.
- Linear : We use ‘scikit-learn’ python package (Pedregosa et al., 2011).
- XGB : We use ‘xgboost’ python package (Chen & Guestrin, 2016).
- BART : We use ‘BayesTree’ R package (Chipman et al., 2010).
- mBNN : We use official code at <https://github.com/ggong369/mBNN>.

1080
 1081 **Hyperparameters.** For each model, we perform 5-fold cross validation over the following hyper-
 1082 parameter candidates to select the best configuration.

1083 • Bayesian-TPNN

1084 – We set the step size in Langevin proposal as 0.01 and $q_{\text{add}} = 0.28$, $q_{\text{delete}} = 0.28$ and
 1085 $q_{\text{change}} = 0.44$ as in Kapelner & Bleich (2016).

1086 – We fix $\alpha_{\text{adding}} = 0.95$ and $\gamma_{\text{adding}} = 2$, as in Chipman et al. (2010).

1087 – $C_0 \in \{0.001, 0.005, 0.01\}$

1088 – $a_\gamma \in \{1, 2, 4\}$

1089 – $b_\gamma \in \{10^{-3}, 5 \cdot 10^{-3}, 10^{-2}\}$

1090 – $K_{\text{max}} \in \{100, 200, 300\}$

1091 – $\sigma_\beta^2 \in \{10^{-4}, 10^{-3}, 10^{-2}\}$

1092 – $M \in \{1, 5\}$

1093 – As in Chipman et al. (2010), for λ , we reparameterize it as q_λ , where $q_\lambda = \pi(\sigma^2 \leq \hat{\sigma}_{\text{OLS}}^2)$ and $\hat{\sigma}_{\text{OLS}}^2$ denotes the residual variance from estimated Linear model. The candidate values for q_λ are $\{0.90, 0.95, 0.99\}$.

1094 – We set MCMC iterations as 1000 after 1000 burn-in iterations.

1095 • ANOVA-TPNN

1096 – We set the hyperparameter candidates to be the same as those used in Park et al.
 1097 (2025).

1098 – $K_S \in \{10, 30, 50, 100\}$

1099 – Adam optimizer with learning rate 5e-3.

1100 – Batch size = 4,096

1101 – Maximum order of component $\in \{1, 2\}$

1102 – Epoch $\in \{500, 1000, 2000\}$

1103 • NAM

1104 – We set the architecture of the deep neural networks to three hidden layers with 64, 64,
 1105 and 32 units, following Agarwal et al. (2021).

1106 – Adam optimizer with learning rate 5e-3 and weight decay 7.483e-9.

1107 – Batch size = 4,096

1108 – Maximum order of component $\in \{1, 2\}$

1109 – Epoch $\in \{500, 1000, 2000\}$

1110 • BART

1111 – We set the hyperparameter candidates similar to those in Chipman et al. (2010).

1112 – Number of trees $T \in \{50, 100, 200\}$

1113 – $\alpha = 0.95$ and $\beta = 2$

1114 – $v \in \{1, 3, 5\}$

1115 – $q_\lambda \in \{0.90, 0.95, 0.99\}$

1116 – For $\sigma_\mu = 3/(k\sqrt{T})$, $k \in \{1, 2, 3, 5\}$.

1117 – We set MCMC iterations as 1000 after 1000 burn-in iterations.

1118 • XGB

1119 – We consider the hyperparameter candidates used in Park et al. (2025).

1120 • mBNN

1121 – We consider the hyperparameter candidates similarly to Kong et al. (2023).

1122 – Architecture $\in \{2 \text{ hidden layers with 500 and 500 units, 2 hidden layers with 1000 and 1000 units}\}$

1123 – Sparsity hyperparameter $\lambda \in \{0.01, 0.1, 0.5\}$

1124 – We set MCMC iterations as 1000 after 1000 burn-in iterations.

1134 **Computational environments.** In this paper, all experiments are conducted on a machine
 1135 equipped with an NVIDIA RTX 4000 GPU (24GB memory), an Intel(R) Xeon(R) Silver 4310 CPU
 1136 @ 2.10GHz, and 128GB RAM.
 1137

1138 B.4 EXPERIMENT DETAILS FOR IMAGE DATASET

1140 **CNN model.** For CNN that predicts concepts, we attach a linear head for each concept on top of
 1141 the pretrained ResNet18, and train both the ResNet-18 and the linear heads jointly.
 1142

1143 **Concept generating.** Following Oikarinen et al. (2023), we use GPT-5 (OpenAI, 2025) to generate
 1144 concept dictionaries for CELEBA-HQ and CATDOG dataset. Specifically, we prompted GPT-5 as
 1145 follows:

- 1146 • CelebAMask-HQ is a large-scale face image dataset containing 30,000 high-resolution face
 1147 images selected from CelebA, following CelebA-HQ. In this context, we aim to classify
 1148 gender using the CelebAMask-HQ dataset. Could you list five high-level binary concepts
 1149 that you consider most important for gender classification?
- 1150 • When classifying images of cats and dogs, what are the five most important concepts to
 1151 consider?

1152 Through GPT-5, we obtained a concept dictionary

1154 {‘Facial hair’, ‘Makeup’, ‘Long hair’, ‘Angular contour’, ‘Accessories’}

1155 for dataset CELEBA-HQ and another dictionary

1156 {‘Pointed ear’, ‘Short snout’, ‘Almond eye’, ‘Slender/flexible body’, ‘Fine/uniform fur’}

1158 for dataset CATDOG. Each concept c is divided into a positive part c_+ and a negative part c_- . For
 1159 example, concept ‘Makeup’ can be divided into ‘Makeup’ and ‘No Makeup’, and ‘Slender/flexible
 1160 body’ can be divided into ‘Slender/flexible body’ and ‘Bulky/varied body’. In turn, we use the pre-
 1161 trained CLIP encoder to convert c_+ and c_- as well as each image into embedding vectors. For each
 1162 concept, each image is then assigned a binary label by measuring which of the embeddings of c_+
 1163 and c_- the image embedding is closer to.

1164 **Hyperparameters.** For ANOVA-T²PNN and NA²M are trained using the Adam optimizer with
 1165 a learning rate of 1e-3 and batch size of 512. For ANOVA-T²PNN, the numbers of basis K_S are
 1166 all equal to K and K is determined using grid search on {10, 50, 100}. For the neural network in
 1167 NA²M, we set hidden layer with sizes (64,64,32). We implement Linear model as the linear logistic
 1168 regression using the ‘scikit-learn’ package (Pedregosa et al., 2011).

1170 B.5 EXPERIMENT DETAILS FOR COMPONENT SELECTION

1172 Table 8: Definitions of $f^{(1)}$, $f^{(2)}$ and $f^{(3)}$.

1173 Function	1174 Equation
$f^{(1)}(\mathbf{x})$	$\pi^{x_1 x_2} \sqrt{2 x_3 } - \sin^{-1}(0.5x_4) + \log(x_3 + x_5 + 1) + \frac{x_9}{1 + x_{10} } \sqrt{\frac{x_7}{1 + x_8 }} - x_2 x_7$
$f^{(2)}(\mathbf{x})$	$x_1 x_2 + 2^{x_3+x_5+x_6} + 2^{x_3+x_4+x_5+x_7} + \sin(x_7 \sin(x_8 + x_9)) + \arccos(0.9x_{10})$
$f^{(3)}(\mathbf{x})$	$\tanh(x_1 x_2 + x_3 x_4) \sqrt{ x_5 } + \exp(x_5 + x_6) + \log((x_6 x_7 x_8)^2 + 1) + x_9 x_{10} + \frac{1}{1 + x_{10} }$

1179 Table 9: Distributions of input features for each synthetic function.

1181 Function	1182 Distribution
$f^{(1)}(\mathbf{x})$	$X_1, X_2, X_3, X_6, X_7, X_9 \sim^{iid} U(0,1)$, $X_4, X_5, X_8, X_{10} \sim^{iid} U(0.6,1)$ and $X_{11}, \dots, X_{50} \sim^{iid} U(-1,1)$
$f^{(2)}(\mathbf{x})$	$X_1, \dots, X_{50} \sim^{iid} U(-1,1)$
$f^{(3)}(\mathbf{x})$	$X_1, \dots, X_{50} \sim^{iid} U(-1,1)$

1185 We generate synthetic datasets from the regression model defined as

$$1186 Y = f^{(k)}(\mathbf{x}) + \epsilon,$$

1188 where $\epsilon \sim N(0, \sigma_\epsilon^2)$ and $\mathbf{x} \in \mathbb{R}^{50}$. Here, $f^{(k)}$, $k = 1, 2, 3$ are true prediction model used in Tsang
 1189 et al. (2017) and defined in Table 8 and the input variables are generated from the distributions
 1190 in Table 9. Input variables indexed 1–10 are informative, as they affect the output, whereas input
 1191 variables 11–50 are non-informative. We choose σ_ϵ^2 such that the signal-to-noise ratio is 5.
 1192

1193 To evaluate the ability to detect signal components, we conduct experiments in the same manner as
 1194 in Park et al. (2025). That is, we use AUROC based on the pairs of $\|\hat{f}_S^{(k)}\|_{2,n}$ and $r_S^{(k)}$, computed
 1195 for all subsets $S \subseteq [p]$ with $|S| = 1, 2, 3$, where $\hat{f}_S^{(k)}$ denotes the estimate of $f_S^{(k)}$ in $f^{(k)}$ and
 1196 $r_S^{(k)} = \mathbb{I}(\|\hat{f}_S^{(k)}\|_{2,n} > 0)$ for $k \in \{1, 2, 3\}$.
 1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

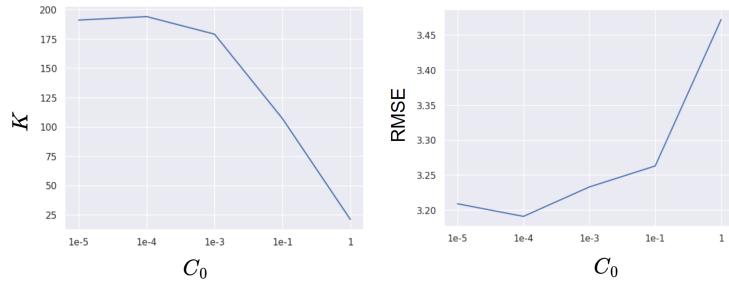
1240

1241

1242 **C ABLATION STUDIES**
 1243

1244 **C.1 THE NUMBER OF BASIS K FOR VARIOUS VALUES C_0**
 1245

1246 To evaluate the effect of C_0 in (9) on the number of bases K , we conduct experiments with the
 1247 maximum number of bases K_{\max} set to 200, and 1000 iterations for both burn-in and MCMC up-
 1248 dates. Also, a_γ and b_γ are set to be 0.5 and we use ABALONE dataset. Figure 3 shows that K
 1249 decreases and RMSE increases as C_0 increases. This result demonstrates that the hyperparameter
 1250 C_0 effectively controls model complexity by regulating the number of bases K . A small value of C_0
 1251 is recommended since an excessively large C_0 can be detrimental to predictive performance.
 1252



1253 **Figure 3: Plots of the number of basis K and RMSEs on various C_0 values.**
 1254
 1255
 1256
 1257
 1258
 1259
 1260

1261 **C.2 IMPACT OF THE HYPERPARAMETERS a_γ AND b_γ ON PREDICTION PERFORMANCE**
 1262

1263 We conduct an experiment to evaluate the effect of shape parameter a_γ and scale parameter b_γ on
 1264 prediction performance. Except for a_γ and b_γ , the other hyperparameters of Bayesian-TPNN are set
 1265 identical to those in Section C.1 of Appendix, and we analyze ABALONE dataset. We observe that
 1266 prediction performance is relatively insensitive to the choice of the shape parameter a_γ , whereas it
 1267 is somehow sensitive to the choice of the scale parameter b_γ . Note that the scale of γ controls the
 1268 smoothness of each TPNN basis $\phi(\mathbf{x}|\Theta)$ and thus the smoothness of Bayesian-TPNN model.
 1269

1270 **Table 10: Prediction performance depends on various values of a_γ and b_γ .**
 1271

$b_\gamma \setminus a_\gamma$	0.5	1	2	3
1e-5	3.247	3.202	3.278	3.228
1e-4	3.224	3.215	3.184	3.175
0.01	3.211	3.182	3.184	3.175
0.1	3.213	3.258	3.282	3.343

1280 **C.3 IMPACT OF THE STEP SIZE IN THE LANGEVIN PROPOSAL**
 1281

1282 We conduct an experiment to investigate the effect of the step size in the Langevin proposal for
 1283 $(\mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \beta_k)$. Except for the step size, the other hyperparameters of Bayesian-TPNN are set
 1284 identical to those in Section C.1 of Appendix, and we analyze ABALONE dataset. Table 11 presents
 1285 the prediction performances of Bayesian-TPNN for various step sizes. Our results show that overly
 1286 large step sizes in the Langevin proposal can degrade the prediction performance due to poor accep-
 1287 tance and unstable exploration, whereas a moderate range yields the best performance. Therefore, a
 1288 not too large step size is recommended in practice.
 1289

1290 **Table 11: Prediction performances of Bayesian-TPNN for various step sizes in the Langevin proposal .**
 1291

Step size	0.01	0.02	0.04	0.08	0.1	0.2	0.3	0.4	0.5
RMSE	3.199	3.216	3.209	3.269	3.160	3.243	4.308	4.549	4.578

1296 C.4 IMPACT OF p_{input} ON ESTIMATING HIGHER-ORDER COMPONENTS
1297

1298 We conduct an experiment to evaluate the effects of using p_{input} other than the uniform distribution
1299 in the MH algorithm. We refer to the model with the uniform distribution for p_{input} as Uniform
1300 Bayesian-TPNN, and the model where p_{input} is determined using the feature importance from a pre-
1301 trained XGB as Bayesian-TPNN. Table 12 compares prediction performances of Uniform Bayesian-
1302 TPNN (UBayesian-TPNN) and Bayesian-TPNN on MADELON dataset. To investigate why the pre-
1303 diction performance improvement occurs when using the nonuniform p_{input} , we identify the 5 most
1304 important components for each model whose results are presented in Table 13. UBayesian-TPNN
1305 only detects two third-order interactions as signals and ignores even all of the main effects. In con-
1306 trast, Bayesian-TPNN captures the fourth-order component as the most important but is also able to
1307 capture other meaningful lower-order components including two main effects effectively.
1308

1309 We also analyze the synthetic datasets in Section 4.2 with UBayesian-TPNN, and the correspond-
1310 ing results are reported in Table 14. These results amply imply that p_{input} plays an important role
1311 in detecting higher-order components and leading to substantial improvements in both prediction
1312 performance and component selection.

1313 Table 12: **Prediction performance on MADELON dataset.**

Model	UBayesian-TPNN	Bayesian-TPNN
AUROC \uparrow (SE)	0.739 (0.002)	0.854 (0.007)

1317 Table 13: **Top 5 components with the important scores normalized by the maximum.**

Model	Rank 1		Rank 2		Rank 3		Rank 4		Rank 5	
	Comp.	Score	Comp.	Score	Comp.	Score	Comp.	Score	Comp.	Score
UBayesian-TPNN	(203,289,421)	1.000	(30,149,212)	0.950	(148,176,298)	0.006	(75,232,442)	0.005	(64,373,379)	0.004
Bayesian-TPNN	(49,242,319,339)	1.000	(129,443,494)	0.472	(379,443)	0.374	106	0.322	(242,443)	0.301

1323 Table 14: **Performance of component selection on the synthetic datasets.**

True model	$f^{(1)}$		$f^{(2)}$		$f^{(3)}$		
	Order	UBayesian TPNN	Bayesian TPNN	UBayesian TPNN	Bayesian TPNN	UBayesian TPNN	Bayesian TPNN
1	1.000 (0.000)	1.000 (0.000)	0.826 (0.024)	0.831 (0.008)	0.824 (0.009)	1.000 (0.000)	
2	0.988 (0.010)	1.000 (0.000)	0.953 (0.006)	0.985 (0.003)	0.750 (0.006)	0.922 (0.019)	
3	0.736 (0.050)	0.740 (0.022)	0.878 (0.020)	0.966 (0.018)	0.658 (0.011)	0.661 (0.022)	

1334 C.5 IMPACT OF STEPWISE SEARCH IN THE PROPOSAL OF K

1335 We conduct an experiment to evaluate the effectiveness of **Stepwise** move in the proposal distri-
1336 bution of K suggested in Section 3.2. We compare the performances of Bayesian-TPNN with and
1337 without **Stepwise** move on MADELON dataset. Table 15 reports the averages and standard errors of
1338 AUROCs, ECEs, and NLLs over 5 trials and Table 16 shows the top 5 important components. The
1339 results suggest that the **Stepwise** move is helpful to detect higher-order interactions which in turn
1340 leads to improvements in both prediction performance and uncertainty quantification.

1350
1351 **Table 15: Results of performance with and without Stepwise move.**
1352

	With Stepwise move	Without Stepwise move
AUROC \uparrow (SE)	0.854 (0.007)	0.820 (0.002)
ECE \downarrow (SE)	0.076 (0.004)	0.106 (0.007)
NLL \downarrow (SE)	0.479 (0.009)	0.650 (0.005)

1353
1354 **Table 16: Top 5 components with the important scores normalized by the maximum.**
1355

Model	Rank 1		Rank 2		Rank 3		Rank 4		Rank 5	
	Comp.	Score	Comp.	Score	Comp.	Score	Comp.	Score	Comp.	Score
With Stepwise move	(49,242,319,339)	1.000	(129,443,494)	0.472	(379,443)	0.374	106	0.322	(242,443)	0.301
Without Stepwise move	(129,242)	1.000	(29,339,379)	0.986	339	0.622	337	0.544	(242,443)	0.526

1361
1362

D EXPERIMENT FOR THE POISSON REGRESSION

13631364
1365 In this section, we compare the prediction performance and uncertainty quantification of Bayesian-
1366 TPNN with GBART (Linero, 2025) on the Poisson regression model. We consider the poisson re-
1367 gression model defined as

1368
1369
$$Y_i | \mathbf{x}_i \sim \text{Poisson}(\exp(f(\mathbf{x}_i))),$$

1370

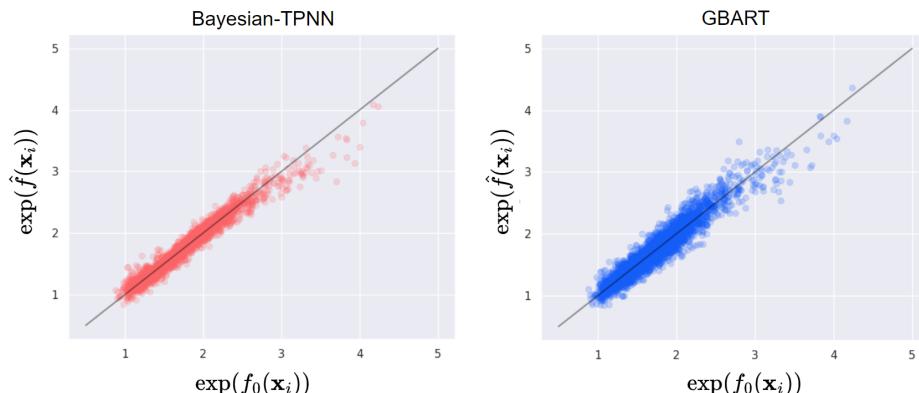
1371 where f is the regression function. We generate a synthetic dataset of size 15,000 using the true
1372 regression function f_0 defined as

1373
1374
$$f_0(\mathbf{x}) = \pi^{x_1 x_2} \sqrt{2|x_3|} - \sin^{-1}(0.5x_4) + \log(|x_3 + x_5| + 1) + \frac{x_9}{1 + |x_{10}|} \sqrt{\frac{x_7}{1 + |x_8|}} - x_2 x_7,$$

1375

1376 where input variable $\mathbf{x}_i \in \mathbb{R}^{10}$ are generated from $\text{Uniform}(0, 1)^{10}$ for $i = 1, \dots, 15,000$. Table
1377 17 presents the RMSE and NLL for Bayesian-TPNN and GBART, demonstrating that Bayesian-
1378 TPNN achieves superior performance to GBART even in the Poisson regression. Here, the RMSE
1379 is calculated between $\exp(f_0(\mathbf{x}_i))$ and $\exp(\hat{f}(\mathbf{x}_i))$ for $i = 1, \dots, 15,000$, where \hat{f} is the Bayes
1380 estimate. Figure 4 shows the scatter plot of predicted values $\exp(\hat{f}(\mathbf{x}_i))$ versus $\exp(f_0(\mathbf{x}_i))$ for
1381 $i = 1, \dots, 15,000$. It implies that Bayesian-TPNN yields predictions much closer to the true values
1382 compared to GBART.1383 **Table 17: Prediction performance and uncertainty quantification on Poisson synthetic dataset.**
1384

	Bayesian-TPNN	GBART
RMSE \downarrow	0.094	0.141
NLL \downarrow	1.615	1.629

1401 **Figure 4: Scatter Plots between the true expectations and estimated ones.**
1402
1403

E EXPERIMENTS FOR INTERPRETABILITY

E.1 INTERPRETABILITY ON THE IMAGE DATASETS

In this section, we describe the local and global interpretations of CBM (Koh et al., 2020) with Bayesian-TPNN on CELEBA-HQ and CATDOG datasets. Table 18 presents the description of concepts used in CELEBA-HQ and CATDOG datasets.

Table 18: Description of image datasets.

Index	CELEBA-HQ	CATDOG
1	Facial hair	Pointed ear
2	Makeup	Short snout
3	Long hair	Almond eye
4	Angular contour	Slender/flexible body
5	Accessories	Fine/uniform fur

Table 19: Normalized importance scores and ranks for the top 5 important components on the image datasets.

CELEBA-HQ						
	Rank	1	2	3	4	5
Bayesian-TPNN	Component index Score	2 1.000	4 0.665	(2,3) 0.592	(2,4) 0.304	(1,5) 0.262
ANOVA-T ² PNN	Component index Score	(2,3) 1.000	1 0.482	(1,5) 0.284	4 0.262	5 0.211
Linear	Component index Score	2 1.000	1 0.783	4 0.549	5 0.328	3 0.304

CATDOG						
	Rank	1	2	3	4	5
Bayesian-TPNN	Component index Score	3 1.000	(3,4) 0.395	2 0.252	4 0.162	(2,3,4,5) 0.086
ANOVA-T ² PNN	Component index Score	(4,5) 1.000	3 0.883	(3,5) 0.882	4 0.716	(1,4) 0.453
Linear	Component index Score	5 1.000	1 0.698	3 0.352	2 0.023	4 0.021

Global interpretation. Table 19 shows the top 5 most important components along with their importance scores (normalized by the maximum score) for Bayesian-TPNN, ANOVA-T²PNN and Linear model. In CATDOG dataset, Bayesian-TPNN identifies the 4th-order component (2,3,4,5) as an important component. It seems that complex interactions exists between the 5 concepts.

Example of CelebA-HQ

Example of CatDog

Figure 5: Examples of images misclassified by Linear model.

1458
 1459 **Local interpretation.** Figure 5 presents two images where Bayesian-TPNN correctly classifies but
 1460 Linea model does not. For the CELEBA-HQ example image, Linear model incorrectly predicts it as
 1461 male, whereas the Bayesian-TPNN correctly predicts as female. The contributions of the important
 1462 components for this image are presented in Table 20. In Linear model, ‘Makeup’ gives a positive
 1463 contribution, which leads to a misclassification of the image as male. In contrast, in Bayesian-TPNN,
 1464 while the main effect of ‘Makeup’ still provides a positive contribution, the interactions between
 1465 (‘Makeup’, ‘Long hair’) and (‘Makeup’, ‘Angular contour’) yield negative contributions, resulting
 1466 in a correct prediction as female.

1466 For the CATDOG example image, Linear model incorrectly predicts it as ‘dog’, whereas Bayesian-
 1467 TPNN correctly predicts as ‘cat’. Table 21 indicates that Linear model misclassifis the image as
 1468 ‘dog’ due to the positive contribution of ‘Almond eye’. In contrast, although Bayesian-TPNN also
 1469 assigns a positive contribution to ‘Almond eye’, the higher-order interactions—(‘Almond eye’,
 1470 ‘Slender/flexible body’) and (‘Short snout’, ‘Almond eye’, ‘Slender/flexible body’, ‘Fine/uniform
 1471 fur’)—provided much stronger negative contributions, leading to the correct classification as a cat.

1472 These two examples strongly suggest that considering higher-order interactions between concepts is
 1473 necessary for the success of CBM.

1474
 1475 **Table 20: Prediction values of the 5 most important components for CELEBA-HQ image.**

	Component index	2	4	(2,3)	(2,4)	(1,5)
Bayesian-TPNN	Contribution	0.297	0.184	-0.444	-0.323	-0.207
Linear	Component index	1	2	3	4	5
	Contribution	-0.222	3.746	-1.510	-2.665	1.627

1481
 1482 **Table 21: Prediction values of the 5 most important components for CATDOG image.**

	Component	3	(3,4)	2	4	(2,3,4,5)
Bayesian-TPNN	Contribution	0.618	-0.767	0.181	-0.778	-0.355
Linear	Component	1	2	3	4	5
	Contribution	-4.304	-0.630	9.503	-2.463	-4.113

1483
 1484 **Table 22: Prediction performance on the image datasets.**

	Bayesian-TPNN with 5 concepts	Linear with 10 concepts
CELEBA-HQ	0.936 (0.002)	0.899 (0.001)
CATDOG	0.878 (0.002)	0.869 (0.002)

1485 **Fewer concepts, better prediction performance.** One may argue that 5 concepts are too small
 1486 for Linear model and Linear model would perform well with more concepts. To see the validity of
 1487 this argument, we compare predictive performance of Bayesian-TPNN with 5 concept and Linear
 1488 model with 10 concepts, where additional 5 concepts are generated through GPT-5: for CELEBA-
 1489 HQ dataset,

1490
 1491 {‘Emphasized eyes’, ‘Prominent lips’, ‘Smooth skin’,
 1492
 1493 ‘Pronounced cheekbones’, ‘High contrast’}

1494 and for CATDOG dataset,

1495
 1496 {‘Long tail’, ‘Retractable claws (hidden)’, ‘Upright sitting or crouching posture’,
 1497
 1498 ‘Small mouth / Meowing shape’, ‘Ambush-like pose (crouched)’}.

1499 Table 22 presents the averages and standrad errors of AUROCs for Bayesian-TPNN with 5 concepts
 1500 and Linear model with 10 concepts. While using more concepts with Linear model improves pre-
 1501 diction accuracy, Bayesian-TPNN is still superior to Linear model even though fewer concepts are
 1502 used in Bayesian-TPNN. This implies that capturing higher-order interactions plays a more critical
 1503 role in improving prediction performance than merely increasing the number of concepts. Quality
 1504 of concepts generated by GPT would be problematic.

1512
1513

E.2 ADDITIONAL RESULTS OF LOCAL INTERPRETATION ON THE TABULAR DATASET

1514
1515
1516

In this section, we describe the results of local interpretation on BOSTON dataset. Specifically, we examine the contributions of the 5 most important components identified by Bayesian-TPNN in Section 4.3 at a specific input vector \mathbf{x} . For a given data point

1517
1518

$$\mathbf{x} = (0.006, 18, 2.31, 0, 0.538, 6.58, 65.2, 4.09, 1, 296, 15.3, 396.9, 4.98),$$

1519
1520

the contributions of the 5 estimated components $\hat{f}_{\{13\}}$, $\hat{f}_{\{6\}}$, $\hat{f}_{\{1\}}$, $\hat{f}_{\{8\}}$, and $\hat{f}_{\{1,6\}}$ by Bayesian-TPNN are given as

1521
1522

$$(\hat{f}_{\{13\}}(\mathbf{x}), \hat{f}_{\{6\}}(\mathbf{x}), \hat{f}_{\{1\}}(\mathbf{x}), \hat{f}_{\{8\}}(\mathbf{x}), \hat{f}_{\{1,6\}}(\mathbf{x})) = (0.575, -0.108, 0.080, -0.002, -0.001).$$

1523
1524
1525

In particular, the component $\hat{f}_{\{13\}}$ makes a substantial positive contribution to the housing price. That is, the price of the house for a given input vector \mathbf{x} is high because of the main effect x_{13} .

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566 **F EXPERIMENT FOR STABILITY OF COMPONENT ESTIMATION**
 1567

1568 Park et al. (2025) demonstrated, both theoretically and empirically, that TPNN reliably estimates
 1569 the components of the functional ANOVA model. In this section, we investigate whether Bayesian-
 1570 TPNN exhibits the same stability in component estimation. For this analysis, we randomly split
 1571 the dataset into training and test datasets. From this, we obtain estimators for the components. We
 1572 repeat this procedure five times to obtain five estimators for each component. We then calculate the
 1573 stability score using these estimators. Specifically, following Park et al. (2025), for predefined data
 1574 $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, we use the stability score defined as

$$1575 \quad \mathcal{SC}(f_S) := \frac{1}{n} \sum_{i=1}^n \frac{\sum_{j=1}^5 (f_S^j(\mathbf{x}_i) - \bar{f}_S(\mathbf{x}_i))^2}{\sum_{j=1}^5 (f_S^j(\mathbf{x}_i))^2},$$

1578 where f_S^j is the estimated component for S obtained from the j -th fold and $\bar{f}_S(\mathbf{x}) = \sum_{j=1}^5 f_S^j(\mathbf{x})/5$.
 1579 Finally, we use $\mathcal{SC}^d(f) := \frac{1}{\sum_{k=1}^d \binom{p}{k}} \sum_{S \subseteq [p], |S| \leq d} \mathcal{SC}(f_S)$ to compare the stability in component
 1580 estimation between Bayesian-TPNN, ANOVA-TPNN and NAM.
 1581

1582 Table 23 presents the results of stability scores $\mathcal{SC}^1(f)$ for Bayesian-TPNN, ANOVA-T¹PNN and
 1583 NA¹M, where ANOVA-T¹PNN and NA¹M estimate only the main effects. Table 24 shows of stabil-
 1584 ity scores $\mathcal{SC}^2(f)$ for Bayesian-TPNN, ANOVA-T²PNN and NA²M, where ANOVA-T²PNN and
 1585 NA²M estimate up to second-order components. These results imply that Bayesian-TPNN estimates
 1586 the components more stably than ANOVA-TPNN and NAM. Note that for MADELON dataset, which
 1587 has an input dimension of 500, we could not train ANOVA-T²PNN and NA²M due to the computa-
 1588 tional environment, and thus their stability scores could not be calculated.
 1589

1590 **Table 23: Stability scores of Bayesian-TPNN, ANOVA-T¹PNN and NA¹M.**

Dataset	Bayesian TPNN	ANOVA T ¹ PNN	NA ¹ M
ABALONE	0.087	0.405	0.555
BOSTON	0.368	0.425	0.583
MPG	0.222	0.411	0.472
SERVO	0.339	0.651	0.481
FICO	0.130	0.287	0.607
BREAST	0.100	0.286	0.569
CHURN	0.111	0.558	0.569
MADELON	0.520	0.685	0.785

1600 **Table 24: Stability scores of Bayesian-TPNN, ANOVA-T²PNN and NA²M.**

Dataset	Bayesian TPNN	ANOVA T ² PNN	NA ² M
ABALONE	0.400	0.340	0.770
BOSTON	0.615	0.380	0.705
MPG	0.340	0.370	0.560
SERVO	0.445	0.575	0.665
FICO	0.525	0.540	0.790
BREAST	0.630	0.675	0.730
CHURN	0.520	0.755	0.730
MADELON	0.475	—	—

1620 **G COMPARISON OF CONVERGENCE SPEED AND RUNTIME IN MCMC**
 1621 **ALGORITHM**
 1622

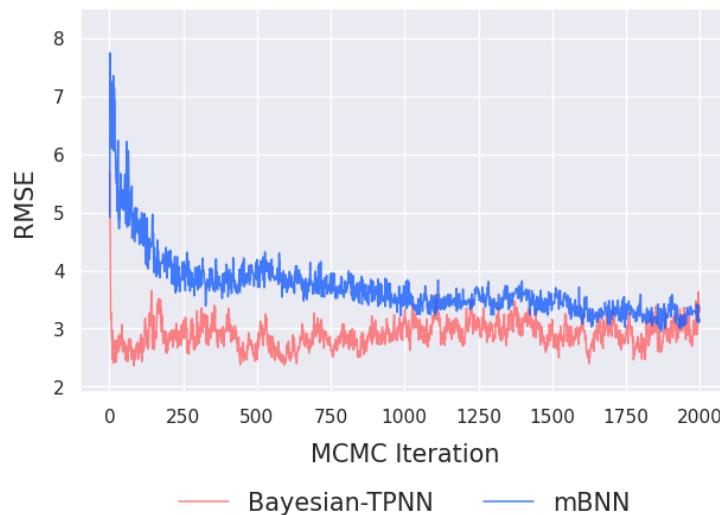
1623 In this section, we evaluate the convergence speed and runtime of MCMC algorithms for Bayesian-
 1624 TPNN. Specifically, we compare its convergence speed with that of mBNN, and its runtime with
 1625 those of ANOVA-T²PNN and mBNN. In Bayesian-TPNN, we set $K_{\max} = 100$. For mBNN, we use
 1626 two hidden layers with 500 units each and set the number of HMC steps to 30. For ANOVA-T²PNN,
 1627 we set $K_S = 10$.

1628 Figure 6 shows the RMSE trajectories across MCMC iterations on BOSTON dataset for Bayesian-
 1629 TPNN and mBNN. Table 25 presents the runtime comparison of Bayesian-TPNN, mBNN with
 1630 2,000 iterations and ANOVA-T²PNN with 2,000 epochs on real datasets. The best results are high-
 1631 lighted by **bold**. In the experiments on FICO, CHURN, and BREAST datasets, the runtime difference
 1632 between Bayesian-TPNN and ANOVA-T²PNN become more pronounced. This is because, after
 1633 data preprocessing, the input dimensions are 23, 46, and 30, respectively. As the number of neural
 1634 networks required in ANOVA-T²PNN increases rapidly with the input dimension, the runtime in-
 1635 creases considerably. Note that for the MADELON dataset, where the input dimension is 500, training
 1636 ANOVA-T²PNN is infeasible because the number of neural networks to be trained is 125, 250.

1637 These results imply that Bayesian-TPNN converges faster in terms of MCMC iterations compared
 1638 to mBNN. Moreover, its overall runtime is shorter than both mBNN and ANOVA-T²PNN. In par-
 1639 ticular, Bayesian-TPNN runs significantly faster than ANOVA-T²PNN, and this advantage becomes
 1640 more pronounced as the input dimension p increases.

1641 **Table 25: Runtime of Bayesian-TPNN, ANOVA-T²PNN and mBNN (sec).**

Dataset	Bayesian-TPNN	ANOVA-T ² PNN	mBNN
ABALONE	475	326	1,273
BOSTON	181	577	266
MPG	156	227	275
SERVO	159	400	242
FICO	943	3,530	4,198
BREAST	181	2,363	310
CHURN	686	7,772	2,756
MADELON	345	—	894



1671 **Figure 6: The RMSE trajectories across MCMC iterations for Bayesian-TPNN and mBNN.**
 1672

1674 H ADDITIONAL EXPERIMENTS FOR UNCERTAINTY QUANTIFICATION

1675 H.1 UNCERTAINTY QUANTIFICATION ON NON-BAYESIAN MODELS.

1676 We report the performance of uncertainty quantification for non-Bayesian models including
 1677 ANOVA-TPNN, NAM, XGB and Linear model, in Table 26. These results indicate that Bayesian-
 1680 TPNN outperforms the non-bayesian models in view of uncertainty quantification.

1681 **Table 26: Uncertainty quantifications for non-bayesian models on real datasets.**

Dataset	ANOVA-TPNN		NAM		XGB		Linear	
	CRPS	NLL	CRPS	NLL	CRPS	NLL	CRPS	NLL
ABALONE	1.578 (0.16)	—	1.901 (0.27)	—	1.668 (0.16)	—	1.638 (0.15)	—
BOSTON	4.464 (0.71)	—	3.147 (0.35)	—	3.241 (0.27)	—	4.291 (0.44)	—
MPG	2.478 (0.45)	—	3.314 (1.07)	—	2.343 (0.35)	—	2.990 (0.32)	—
SERVO	0.595 (0.02)	—	0.868 (0.39)	—	0.215 (0.03)	—	0.910 (0.04)	—
	ECE	NLL	ECE	NLL	ECE	NLL	ECE	NLL
FICO	0.063 (0.017)	0.583 (0.018)	0.198 (0.007)	0.681 (0.012)	0.096 (0.026)	0.620 (0.015)	0.055 (0.014)	0.593 (0.017)
BREAST	0.100 (0.030)	0.423 (0.071)	0.284 (0.022)	0.511 (0.033)	0.063 (0.012)	0.878 (0.172)	0.102 (0.015)	0.216 (0.039)
CHURN	0.053 (0.004)	0.444 (0.011)	0.318 (0.007)	0.718 (0.008)	0.131 (0.006)	0.594 (0.021)	0.078 (0.004)	0.573 (0.002)
MADELON	0.354 (0.014)	0.752 (0.003)	0.156 (0.009)	0.735 (0.016)	0.147 (0.008)	0.703 (0.035)	0.232 (0.011)	0.736 (0.016)

1692 H.2 EXPERIMENT FOR OUT-OF-DISTRIBUTION DETECTION

1693 Here, we conduct experiments to evaluate whether each model appropriately captures uncertainty on
 1694 out-of-distribution data in binary classification. As a measure of uncertainty for out-of-distribution
 1695 data, we use the maximum predicted probability (Mukhoti et al., 2023). Specifically, we denote the
 1696 in-distribution dataset by $\{\mathbf{x}_1^{\text{in}}, \dots, \mathbf{x}_{N_1}^{\text{in}}\}$ and the out-of-distribution dataset by $\{\mathbf{x}_1^{\text{out}}, \dots, \mathbf{x}_{N_2}^{\text{out}}\}$ with
 1697 corresponding predictive probabilities $\hat{p}(\mathbf{x}_i^{\text{in}})$ for $i = 1, \dots, N_1$ and $\hat{p}(\mathbf{x}_i^{\text{out}})$ for $i = 1, \dots, N_2$.

1698 Let $\hat{p}_{\max}(\mathbf{x}) = \max\{\hat{p}(\mathbf{x}), 1 - \hat{p}(\mathbf{x})\}$. For evaluation, we assign label 1 to the in-distribution data
 1699 and label 0 to the out-of-distribution data. Then, we compute the AUROC between the labels and
 1700 the transformed scores $1 + \log_2 \hat{p}_{\max}(\mathbf{x}_i^{\text{in}})$ or $1 + \log_2 \hat{p}_{\max}(\mathbf{x}_i^{\text{out}})$. Intuitively, predictive probabilities
 1701 close to 0.5 reflect model uncertainty, and such cases can be identified as out-of-distribution.

1702 We randomly sample a subset which size of 500 from the MADELON dataset, standardized it, and
 1703 use it as an out-of-distribution dataset. For each dataset FICO, BREAST, and CHURN, we randomly
 1704 split the data into training and test datasets. In turn, we train Bayesian-TPNN and baseline models
 1705 using the training dataset. We then compute the AUROC treating the test dataset as the in-distribution
 1706 dataset. We repeat this procedure 5 times, and Table 27 presents the averages and standard errors of
 1707 AUROCs for Bayesian-TPNN and baseline models on FICO, BREAST and CHURN datasets. These
 1708 results demonstrate that Bayesian-TPNN outperforms the baseline models, achieving substantially
 1709 superior performance in out-of-distribution detection.

1712 **Table 27: AUROC Results on in-distribution and out-of-distribution detection.**

Dataset	Bayesian-TPNN	ANOVA-TPNN	NAM	Linear	XGB	BART	mBNN
FICO	0.606 (0.013)	0.446 (0.020)	0.455 (0.032)	0.191 (0.002)	0.605 (0.018)	0.667 (0.004)	0.519 (0.014)
BREAST	0.903 (0.015)	0.542 (0.021)	0.534 (0.041)	0.112 (0.010)	0.827 (0.022)	0.664 (0.023)	0.503 (0.051)
CHURN	0.724 (0.006)	0.570 (0.040)	0.533 (0.040)	0.442 (0.006)	0.420 (0.014)	0.598 (0.009)	0.599 (0.039)

1728

1729

1730

I VISUAL ILLUSTRATION FOR PROPOSAL

1733

1734

In this section, we describe the visual explanation of the proposal in Section 3.2. Given Bayesian-TPNN as in Figure 7, we explain the updating of K and the updating of S_K .

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

I.1 UPDATING K

1751

1752

1753

1754

1755

1756

For a given K , we propose $K^{\text{new}} = K - 1$ or $K^{\text{new}} = K + 1$. Here, we describe only **Random** and **Stepwise** moves, corresponding to the case where $K^{\text{new}} = K + 1$. In the case of **Random** move, a node is randomly generated and its edges are randomly assigned. For **Stepwise** move, a node is first selected from the existing nodes, and then a new edge is added to create a new node. Figure 8 presents an overall illustration for these moves.

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

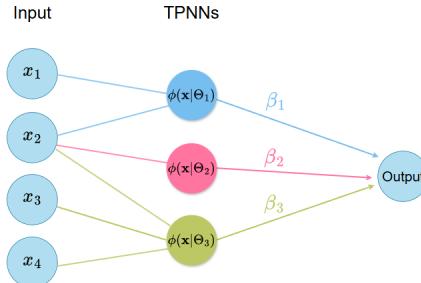


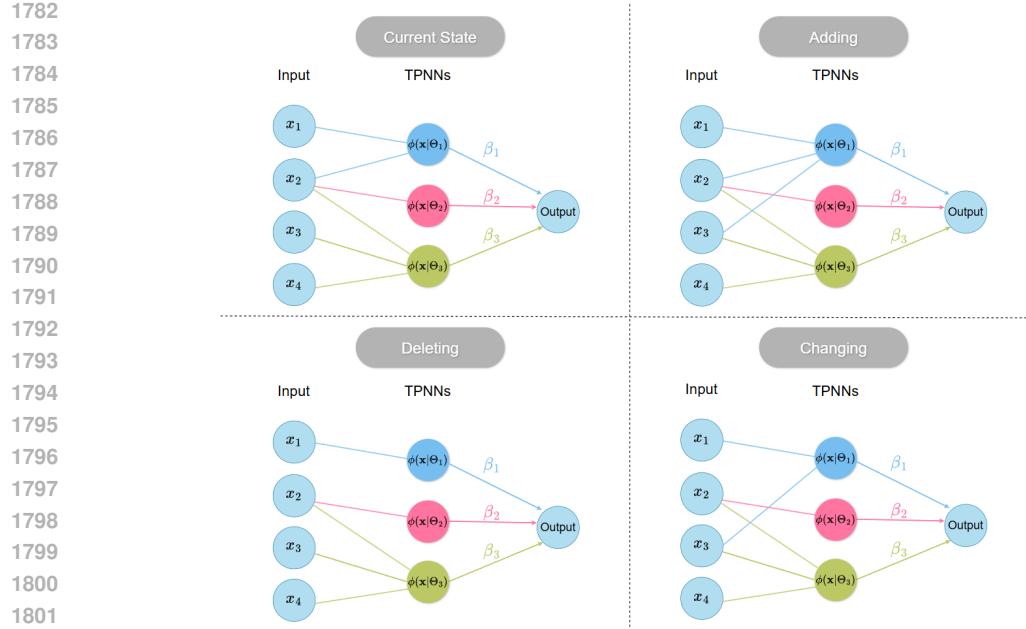
Figure 7: **Bayesian-TPNN with $p = 4, K = 3$.**

I.2 UPDATING S_K

Figure 8: **Visual explanation for alternations in the proposal distribution of K .**

Figure 9

Figure 9 illustrates how the edges change when applying **Adding**, **Deleting**, or **Changing** moves to a given current state.

Figure 9: Visual explanation for alternations in the proposal distribution of S_k .

J EMPIRICAL EVALUATION UNDER MINIBATCH SETTINGS

We conduct an additional experiment to empirically verify that our MCMC algorithm performs well when mini-batches are used. When estimating Bayesian-TPNN with mini-batched data, we refer to it as MBayesian-TPNN. Here, for ABALONE and FICO datasets, we set the size of mini-batch as 1,000 and 2,000, respectively. Table 28 presents the averages and standard errors of prediction performance and the uncertainty quantifications of Bayesian-TPNN and MBayesian-TPNN for 5 trials on ABALONE and FICO datasets. These results suggest that training with mini-batches does not significantly reduce prediction performance and uncertainty quantification. In practice, these findings indicate that using mini-batches is practically acceptable, as it does not lead to meaningful degradation in performance or uncertainty estimation.

Table 28: Results of MBayesian-TPNN.

	RMSE/AUROC		CRPS/ECE		NLL	
	Bayesian-TPNN	MBayesian-TPNN	Bayesian-TPNN	MBayesian-TPNN	Bayesian-TPNN	MBayesian-TPNN
ABALONE	2.053 (0.26)	2.081 (0.24)	1.372 (0.19)	1.391 (0.17)	2.260 (0.16)	2.280 (0.18)
FICO	0.793 (0.009)	0.788 (0.005)	0.036 (0.004)	0.038 (0.003)	0.554 (0.007)	0.564 (0.003)

1836

1837

1838

1839

K COMPARISON WITH DEEP ENSEMBLE

1840
1841 In this section, we conduct additional experiment to compare Bayesian-TPNN with Deep Ensemble
1842 (Lakshminarayanan et al., 2017). Here, we consider candidates for each hyperparameter of Deep
1843 Ensemble as below.

- 1844 • The number of MLPs : {5, 50, 100}
- 1845 • MLP architectures : {(50), (100), (256, 128, 64), (512, 256, 128)}
- 1846 • Learning rates : { $1e-4, 1e-3, 1e-2$ }
- 1847 • Epochs : {100, 200, 500, 1000}
- 1848 • Weight for L_2 regularization : { $1e-3, 1e-2, 1e-1$ }

1849
1850
1851 Table 29 presents the averages of RMSE, AUROC, CRPS, ECE and NLLs for 5 trials on real
1852 datasets. These results show that the performance of Bayesian-TPNN is comparable to that of Deep
1853 Ensemble in terms of both prediction accuracy and uncertainty quantification.1854
1855 Table 29: Results of Bayesian-TPNN and Deep Ensemble.

	RMSE/AUROC		CRPS/ECE		NLL	
	Bayesian-TPNN	Deep Ensemble	Bayesian-TPNN	Deep Ensemble	Bayesian-TPNN	Deep Ensemble
ABALONE	2.053 (0.26)	2.121 (0.23)	1.372 (0.19)	1.498 (0.17)	2.260 (0.16)	2.036 (0.15)
BOSTON	3.654 (0.49)	3.922 (0.57)	2.202 (0.23)	2.458 (0.22)	3.411 (0.37)	3.747 (0.40)
MPG	2.386 (0.41)	2.257 (0.14)	1.510 (0.43)	1.481 (0.11)	2.511 (0.21)	2.769 (0.47)
SERVO	0.351 (0.02)	0.398 (0.03)	0.194 (0.01)	0.179 (0.01)	0.836 (0.10)	0.701 (0.04)
FICO	0.793 (0.009)	0.773 (0.024)	0.036 (0.004)	0.057 (0.033)	0.554 (0.007)	0.577 (0.034)
BREAST	0.998 (0.001)	0.993 (0.003)	0.129 (0.009)	0.075 (0.017)	0.211 (0.014)	0.133 (0.041)
CHURN	0.849 (0.008)	0.841 (0.013)	0.031 (0.001)	0.039 (0.002)	0.418 (0.008)	0.424 (0.018)
MADELON	0.854 (0.013)	0.616 (0.029)	0.076 (0.004)	0.137 (0.061)	0.478 (0.009)	0.719 (0.049)

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

L APPLICATIONS TO GENOMIC DATASET

1894

1895 We conduct additional experiment to explore the applicability of Bayesian-TPNN to genomics
 1896 dataset GSE43358 (Fumagalli et al., 2013). GSE43358 is a gene expression dataset with $n = 57$
 1897 samples and $p = 54,675$ features and we perform a classification task distinguishing between
 1898 HER2-positive and non-HER2-positive cases. Table 30 shows that the averages and standard errors
 1899 of prediction performance for Bayesian-TPNN, Linear model and XGB for 5 trials. For Bayesian-
 1900 TPNN and XGB, the hyperparameters are optimized as in the experiment for other real datasets.
 1901 Note that because the input dimension p is too large, both ANOVA-TPNN and NAM could not be
 1902 trained within our computational environment. The results in Table 30 indicate that the interpretable
 1903 Bayesian-TPNN achieves prediction performance comparable to that of the black-box model XGB
 1904 on GSE43358 dataset.

1905

1906 Table 31 reports the top 10 most important components in Bayesian-TPNN with the normalized
 1907 importance score. Here, we use the importance score defined in Section 4.2, and the normalized
 1908 score represents each importance value divided by the maximum importance score. Note that one
 1909 of the third order interactions is detected by Bayesian-TPNN. The results in Table 31 indicate that
 1910 higher-order interactions (beyond the second order) play a crucial role, which provides a plausible
 1911 explanation for the inferior prediction performance of the linear model. Moreover, this highlights the
 1912 necessity of an interpretable model such as Bayesian-TPNN, which is capable of estimating such
 1913 higher-order interactions.

1914

1915 Table 30: Results of baseline models on GSE43358 dataset.

Model	Bayesian-TPNN	ANOVA-TPNN	NAM	Linear	XGB
AUROC	0.949 (0.017)	–	–	0.545 (0.001)	0.953 (0.041)

1916

1917 Table 31: Top 10 important components.

Rank	Component of GenBank accession numbers	Normalized Score
1	S69189	1.000
2	BF357738	0.924
3	(BC000129, R80390)	0.701
4	AF307338	0.569
5	NM_018297	0.410
6	BF061275	0.375
7	AF319440	0.365
8	(BE741754, AB037854, AK024890)	0.334
9	AI368358	0.292
10	BE672684	0.218

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

M NOTATIONS AND REGULARITY CONDITIONS FOR THE PROOFS

1945

1946

M.1 ADDITIONAL NOTATIONS

1947

1948

For two positive sequences $\{a_n\}$ and $\{b_n\}$, we write $a_n \lesssim b_n$ if there exists a constant $C > 0$ such that $a_n \leq Cb_n$ for all $n \in \mathbb{N}$. The notation $a_n = o(b_n)$ indicates that the ratio a_n/b_n converges to zero as $n \rightarrow \infty$. We denote $\mathcal{N}(\epsilon, \mathcal{F}, d)$ the ϵ -covering number of the function class \mathcal{F} with respect to the semimetric d . For a given vector $\mathbf{v} = (v_1, \dots, v_N)$, we define its ℓ_2 norm as $\|\mathbf{v}\|_2^2 := \sum_{i=1}^N v_i^2$. Given a real-valued function $f : \mathcal{X} \rightarrow \mathbb{R}$, we define its sup-norm as $\|f\|_\infty := \sup_{\mathbf{x} \in \mathcal{X}} |f(\mathbf{x})|$. We define population ℓ_p -norm with respect to a probability measure μ on \mathcal{X} as $\|f\|_{p, \mu} := (\int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^p \mu(d\mathbf{x}))^{1/p}$. Let $\mathbb{P}_{\mathbf{X}}^n = \prod_{i=1}^n \mathbb{P}_{\mathbf{X}_i}$, where $\mathbb{P}_{\mathbf{X}_i}$ is the probability distribution of \mathbf{X}_i for $i = 1, \dots, n$. For two given densities p_1 and p_2 , we define the Kullback-Leibler (KL) divergence as

1949

$$K(p_1, p_2) := \int \log(p_1(\mathbf{v})/p_2(\mathbf{v})) p_1(\mathbf{v}) d\mathbf{v},$$

1950

and let $V(p_1, p_2) := \int |\log(p_1(\mathbf{v})/p_2(\mathbf{v})) - K(p_1, p_2)|^2 p_1(\mathbf{v}) d\mathbf{v}$.

1951

1952

M.2 REGULARITY CONDITIONS

1953

1954

1955

1956

(S.1) For a distribution $\mathbb{P}_{\mathbf{X}}$, there exist a density $p_{\mathbf{X}}$ with respect to the Lebesgue measure on \mathbb{R}^p , that is bounded away from zero and infinity, i.e.,

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

(S.2) The true function $f_{0,S}$ is L-Lipschitz continuous, i.e.,

1969

1970

1971

1972

1973

1974

$$|f_{0,S}(\mathbf{x}) - f_{0,S}(\mathbf{x}')| \leq L \|\mathbf{x} - \mathbf{x}'\|_2$$

for some positive constant L and all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$. Additionally, $f_{0,S}$ is assumed to be bounded in the supremum norm by a positive constant F , i.e., $\|f_{0,S}\|_\infty \leq F$. We denote the above conditions compactly as $f_{0,S} \in \text{Lip}_{L,F}$. Moreover, we say that $f_0 \in \text{Lip}_{0,L,F}$ if $f_{0,S} \in \text{Lip}_{L,F}$ for all $S \subseteq [p]$.

1975

1976

1977

(S.3) The log-partition function $A(\cdot)$ is differentiable with a bounded second derivative over $[-F, F]$, i.e., there exists a positive constant C_A such that

1978

$$1/C_A \leq \ddot{A}(x) \leq C_A$$

1979

for all $x \in [-F, F]$.

1980

1981

(S.4) K_{\max} is assumed to grow at a rate $K_{\max} = O(n)$.

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998 N POSTERIOR CONSISTENCY OF BAYESIAN-TPNN

1999
2000 We first prove the posterior consistency of f since it plays an important role in the proof of the
2001 posterior consistency of each component f_S .
2002

2003 N.1 POSTERIOR CONSISTENCY OF f_0

2004
2005 **Theorem N.1** (Posterior Consistency of Bayesian-TPNN). *We assumes that (S.1), (S.2), (S.3) and*
2006 *(S.4). Then, for any $\varepsilon > 0$ and $\xi \geq 2^p F + \varepsilon \sqrt{\frac{2}{C_A}}$, it holds that*
2007

$$2008 \quad \pi_\xi \left(f : \|f_0 - f\|_{2,n} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \rightarrow 0 \quad (15)$$

2009
2010 *in \mathbb{Q}_0^n as $n \rightarrow \infty$, where \mathbb{Q}_0^n is the probability distribution of $(\mathbf{X}^{(n)}, Y^{(n)})$.*
2011

2012 N.2 PROOF OUTLINE

2013
2014 Consider a function class $\mathcal{F} = \bigcup_{K=1}^{K_{\max}} \mathcal{F}(K)$ that satisfies the sum-to-zero condition with respect to
2015 uniform distribution on $(0,1)$. Here, $\mathcal{F}(K)$ is defined as
2016

$$2017 \quad \mathcal{F}(K) = \left\{ f : f(\mathbf{x}) = \sum_{k=1}^K \beta_k \phi(\mathbf{x} \mid S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}), \right.$$

$$2018 \quad \beta_k \in \mathbb{R},$$

$$2019 \quad \mathbf{b}_{S_k, k} \in [0, 1]^{|S_k|},$$

$$2020 \quad \Gamma_{S_k, k} \in (0, \infty)^{|S_k|} \text{ for } k = 1, \dots, K \left. \right\},$$

2021 where
2022

$$2023 \quad \phi(\mathbf{x} \mid S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, k) = \prod_{j \in S_k} \left(1 - \sigma \left(\frac{x_j - b_{j,k}}{\gamma_{j,k}} \right) + c_j(b_{j,k}, \gamma_{j,k}) \sigma \left(\frac{x_j - b_{j,k}}{\gamma_{j,k}} \right) \right)$$

2024 and
2025

$$2026 \quad c_j(b_{j,k}, \gamma_{j,k}) = -\frac{1 - \int_0^1 \sigma \left(\frac{x_j - b_{j,k}}{\gamma_{j,k}} \right) dx_j}{\int_0^1 \sigma \left(\frac{x_j - b_{j,k}}{\gamma_{j,k}} \right) dx_j}.$$

2027 For any $f \in \mathcal{F}(K)$, we denote it as $f_{K, \mathcal{B}, \mathbf{b}, \Gamma}$, where
2028

$$2029 \quad \mathcal{B} = (\beta_k, k \in [K]), \quad \mathbf{b} = (\mathbf{b}_{S_k, k}, k \in [K]) \quad \text{and} \quad \Gamma = (\Gamma_{S_k, k}, k \in [K]).$$

2030 Our goal is to show that
2031

$$2032 \quad \lim_{n \rightarrow \infty} \mathbb{E}_0^n [\pi_\xi (\|f - f_0\|_{2,n} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)})] = 0 \quad (16)$$

2033 for any $\varepsilon > 0$.
2034

2035 We prove (16) using following two steps.
2036

2037 (P.1) For given data $\mathbf{x}^{(n)}$, we prove that
2038

$$2039 \quad \lim_{n \rightarrow \infty} \mathbb{E}_0^n [\pi_\xi (\|f - f_0\|_{2,n} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)}) \mid \mathbf{X}^{(n)} = \mathbf{x}^{(n)}] = 0$$

2040 for any $\varepsilon > 0$.
2041

2042 (P.2) Finally, we show that
2043

$$2044 \quad \lim_{n \rightarrow \infty} \mathbb{E}_0^n [\pi_\xi (\|f - f_0\|_{2,n} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)})] = 0$$

2045 for any $\varepsilon > 0$.
2046

2052 We first verify the following three conditions: there exists $\mathcal{F}^n \subseteq \mathcal{F}$ and positive constants δ, C_1, C_2
 2053 such that

$$2055 \log \mathcal{N}(\delta, \mathcal{F}^n, \|\cdot\|_\infty) < nC_1, \quad (17)$$

$$2056 \pi\left(f \in \mathcal{F} : \|f - f_0\|_\infty \leq \varepsilon \sqrt{\frac{2}{C_A}}\right) > \exp(-nC_2), \quad (18)$$

$$2058 \pi(\mathcal{F} \setminus \mathcal{F}^n) < \exp(-(2C_2 + 2)n). \quad (19)$$

2060 After that, we will show that these three conditions imply the posterior consistency in Step (P.1) by
 2061 checking the conditions in Ghosal et al. (1999).

2063 N.3 VERIFYING CONDITION (17)

2065 We consider a sieve $\mathcal{F}^n = \bigcup_{K=1}^{M_n} \mathcal{F}^n(K)$, where

$$2066 \mathcal{F}^n(K) = \left\{ f : f(\mathbf{x}) = \sum_{k=1}^K \beta_k \phi(\mathbf{x}|S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}), \right. \\ 2067 \beta_k \in [-n, n], \\ 2068 \mathbf{b}_{S_k, k} \in [0, 1]^{|S_k|} \\ 2069 \Gamma_{S_k, k} \in (0, n]^{|S_k|} \quad \text{for } k = 1, \dots, K \left. \right\},$$

2072 where $M_n = \lfloor \frac{C_3 n \varepsilon^2}{\log n} \rfloor$ and C_3 will be determined later.

2076 Also, we consider a more general function class as :

$$2078 \mathcal{G}^n(K) = \left\{ f : f(\mathbf{x}) = \sum_{k=1}^K \beta_k \phi(\mathbf{x}|S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \mathbf{c}_{S_k, k}), \right. \\ 2079 \beta_k \in [-n, n], \\ 2080 \mathbf{b}_{S_k, k} \in [0, 1]^{|S_k|}, \\ 2081 \Gamma_{S_k, k} \in (0, n]^{|S_k|}, \\ 2082 \mathbf{c}_{S_k, k} \in [-2n, 2n]^{|S_k|} \quad \text{for } k = 1, \dots, K \left. \right\},$$

2087 where the function ϕ is defined as

$$2089 \phi(\mathbf{x}|S_k, \mathbf{b}_{S_k, k}, \Gamma_{S_k, k}, \mathbf{c}_{S_k, k}) = \prod_{j \in S_k} \left(1 - \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) + c_{j,k} \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) \right).$$

2092 and the vector $\mathbf{c}_{S_k, k}$ is defined as $\mathbf{c}_{S_k, k} = (c_{j,k}, j \in S_k)$.

2093 For all j, k , we have

$$2095 \int_0^1 \sigma\left(\frac{x - b_{j,k}}{\gamma_{j,k}}\right) dx \geq \int_{b_{j,k}}^1 \sigma\left(\frac{x - b_{j,k}}{\gamma_{j,k}}\right) dx \\ 2096 \geq C_{\sigma, j, k},$$

2099 where $C_{\sigma, j, k}$ is a positive constant and thus, we have $|c_j(b_{j,k}, \gamma_{j,k})| \leq C_\sigma, \forall j, k$ for some positive
 2100 constant C_σ . Hence, for all $K \in [K_{\max}]$,

$$2101 \mathcal{F}^n(K) \subseteq \mathcal{G}^n(K), \quad (21)$$

2103 whenever n is sufficiently large. Therefore, it suffices to verify Condition (17) over

$$2104 \mathcal{G}^n = \bigcup_{K=1}^{M_n} \mathcal{G}^n(K). \quad (22)$$

2106 **Lemma N.2.** *For any integer K , we have*

$$2108 \quad 2109 \quad 2110 \quad \mathcal{N}(\epsilon, \mathcal{G}^n(K), \|\cdot\|_\infty) \leq \left(1 + \frac{K2^{p+4}n^{3p+1}}{\epsilon}\right)^{K(1+3p)}.$$

2111 Proof.)

2112 First, since the maximum dimension of parameters in $\mathcal{G}^n(K)$ is $K(1+3p)$, we consider $K(1+3p)$ -
2113 dimensional hypercube $[-2n, 2n]^{K(1+3p)}$. Then, we have

$$2115 \quad 2116 \quad 2117 \quad 2118 \quad 2119 \quad \mathcal{N}(\epsilon_1, [-2n, 2n]^{K(1+3p)}, \|\cdot\|_1) \leq \left(\mathcal{N}(\epsilon_1, [-2n, 2n], \|\cdot\|_1)\right)^{K(1+3p)} \\ \leq \left(1 + \frac{4n}{\epsilon_1}\right)^{K(1+3p)}.$$

2120 For $\mathbf{S}_K = (S_k, k \in [K])$, we define $\mathfrak{S} := (\mathcal{B}_K, \mathbf{b}_{\mathbf{S}_K, K}, \Gamma_{\mathbf{S}_K, K}, \mathbf{c}_{\mathbf{S}_K, K})$, where

$$2122 \quad \mathcal{B}_K = (\beta_1, \dots, \beta_K), \\ 2123 \quad \mathbf{b}_{\mathbf{S}_K, K} = (\mathbf{b}_{S_k, k}, k \in [K]), \\ 2124 \quad \Gamma_{\mathbf{S}_K, K} = (\Gamma_{S_k, k}, k \in [K]), \\ 2125 \quad \mathbf{c}_{\mathbf{S}_K, K} = (\mathbf{c}_{S_k, k}, k \in [K]).$$

2127 Let $\{\mathfrak{S}^1, \dots, \mathfrak{S}^{\mathcal{N}(\epsilon_1, [-n, n]^{K(1+3p)}, \|\cdot\|_1)}\}$ be an ϵ_1 -cover of $[-2n, 2n]^{K(1+3p)}$, and for given $\mathfrak{S} \in$
2128 $[-2n, 2n]^{K(1+3p)}$, let $\tilde{\mathfrak{S}}$ be an element in the ϵ_1 -cover such that $\|\mathfrak{S} - \tilde{\mathfrak{S}}\|_1 \leq \epsilon_1$.

2130 Note that for any $f_\Theta \in \mathcal{G}^n(K)$, we have

$$2131 \quad 2132 \quad 2133 \quad 2134 \quad f_\Theta(\mathbf{x}) = \sum_{k=1}^K \beta_k \prod_{j \in S_k} \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}),$$

2135 where

$$2136 \quad \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) = 1 - \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) + c_{j,k}\sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right)$$

2137 with $|c_{j,k}| \leq 2n$. Then, for any $f_\Theta \in \mathcal{G}^n(K)$, we have

$$2139 \quad 2140 \quad 2141 \quad 2142 \quad 2143 \quad 2144 \quad 2145 \quad 2146 \quad 2147 \quad 2148 \quad 2149 \quad \begin{aligned} & \sup_{\mathbf{x}} \left| f_\Theta(\mathbf{x}) - f_{\tilde{\mathfrak{S}}}(\mathbf{x}) \right| \\ & \leq \sup_{\mathbf{x}} \sum_{k=1}^K \left| \beta_k \prod_{j \in S_k} \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) - \tilde{\beta}_k \prod_{j \in S_k} \phi(x_j | \{j\}, \tilde{b}_{j,k}, \tilde{\gamma}_{j,k}, \tilde{c}_{j,k}) \right| \\ & \leq \sup_{\mathbf{x}} \sum_{k=1}^K \left(\left| \beta_k \prod_{j \in S_k} \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) - \tilde{\beta}_k \prod_{j \in S_k} \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) \right| \right. \\ & \quad \left. + \left| \tilde{\beta}_k \prod_{j \in S_k} \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) - \tilde{\beta}_k \prod_{j \in S_k} \phi(x_j | \{j\}, \tilde{b}_{j,k}, \tilde{\gamma}_{j,k}, \tilde{c}_{j,k}) \right| \right). \end{aligned} \quad (23)$$

2150 **Upper bound of first term in (23).** Since

$$2152 \quad 2153 \quad 2154 \quad 2155 \quad 2156 \quad 2157 \quad 2158 \quad 2159 \quad \begin{aligned} \left| \prod_{j \in S_k} \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) \right| &= \left| \prod_{j \in S_k} \left(1 - \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) + c_{j,k}\sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right)\right) \right| \\ &\leq \prod_{j \in S_k} \left(\left|1 - \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right)\right| + \left|c_{j,k}\sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right)\right| \right) \\ &\leq \prod_{j \in S_k} (1 + 2n) \\ &\leq (1 + 2n)^p, \end{aligned}$$

2160 we have

$$\begin{aligned}
 & \sup_{\mathbf{x}} \sum_{k=1}^K \left| \beta_k \prod_{j \in S_k} \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) - \tilde{\beta}_k \prod_{j \in S_k} \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) \right| \\
 & \leq \sup_{\mathbf{x}} \sum_{k=1}^K (1+2n)^{|S_k|} |\beta_k - \tilde{\beta}_k| \\
 & \leq (1+2n)^p \epsilon_1.
 \end{aligned}$$

2169 **Upper bound of second term in (23).** Using direct calculation and triangle inequality, we have

$$\begin{aligned}
 & \left| \tilde{\beta}_k \prod_{j \in S_k} \left(\phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}, c_{j,k}) - \phi(x_j | \{j\}, \tilde{b}_{j,k}, \tilde{\gamma}_{j,k}, \tilde{c}_{j,k}) \right) \right| \\
 & = \left| \tilde{\beta}_k \prod_{j \in S_k} \left(\sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) - \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) + c_{j,k} \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) - \tilde{c}_{j,k} \sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) \right) \right| \\
 & = |\tilde{\beta}_k| \prod_{j \in S_k} \left| \sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) - \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) + c_{j,k} \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) - \tilde{c}_{j,k} \sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) \right| \\
 & \leq n \prod_{j \in S_k} \left(\left| \sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) - \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) \right| + \left| c_{j,k} \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) - \tilde{c}_{j,k} \sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) \right| \right).
 \end{aligned}$$

2183 Since $\sigma(\cdot)$ is Lipschitz function, we have

$$\begin{aligned}
 & \left| \sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) - \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) \right| \\
 & \leq \left| \frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}} - \frac{x_j - b_{j,k}}{\gamma_{j,k}} \right| \\
 & \leq \left(\left| \frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}} - \frac{x_j - b_{j,k}}{\tilde{\gamma}_{j,k}} \right| + \left| \frac{x_j - b_{j,k}}{\tilde{\gamma}_{j,k}} - \frac{x_j - b_{j,k}}{\gamma_{j,k}} \right| \right) \\
 & \leq 2n^2 \left(|\tilde{b}_{j,k} - b_{j,k}| + |\tilde{\gamma}_{j,k} - \gamma_{j,k}| \right).
 \end{aligned}$$

2195 Similarly, we have

$$\begin{aligned}
 & \left| c_{j,k} \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) - \tilde{c}_{j,k} \sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) \right| \\
 & \leq \left| c_{j,k} \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) - \tilde{c}_{j,k} \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) \right| + \left| \tilde{c}_{j,k} \sigma\left(\frac{x_j - b_{j,k}}{\gamma_{j,k}}\right) - \tilde{c}_{j,k} \sigma\left(\frac{x_j - \tilde{b}_{j,k}}{\tilde{\gamma}_{j,k}}\right) \right| \\
 & \leq 4n^3 \left(|c_{j,k} - \tilde{c}_{j,k}| + |\tilde{b}_{j,k} - b_{j,k}| + |\tilde{\gamma}_{j,k} - \gamma_{j,k}| \right).
 \end{aligned}$$

2204 To sum up, the upper bound of (23) is

$$\begin{aligned}
 & \sup_{\mathbf{x}} |f_{\mathfrak{S}}(\mathbf{x}) - f_{\tilde{\mathfrak{S}}}(\mathbf{x})| \leq K \left((1+2n)^p \epsilon_1 + 2^{p+3} n^{3p+1} \epsilon_1^p \right) \\
 & \leq K(2n)^{3p+1} \epsilon_1.
 \end{aligned}$$

2210 Let $\epsilon = K(2n)^{3p+1} \epsilon_1$. Then, we conclude that

$$\mathcal{N}(\epsilon, \mathcal{G}^n(K), \|\cdot\|_{\infty}) \leq \left(1 + \frac{2K(2n)^{3p+2}}{\epsilon} \right)^{K(1+3p)}.$$

2214
2215
2216

Using Lemma N.2, we have

2217
2218
2219
2220
2221
2222
$$\begin{aligned} \mathcal{N}(\delta, \mathcal{F}^n, \|\cdot\|_\infty) &\leq \sum_{K=1}^{M_n} \left(1 + \frac{2K(2n)^{3p+2}}{\delta}\right)^{K(1+3p)} \\ &\leq M_n \left(1 + \frac{2M_n(2n)^{3p+2}}{\delta}\right)^{M_n(1+3p)}. \end{aligned}$$

2223 Let $\delta = \varepsilon/8$. Finally, we choose C_3 such that

2224
2225
2226
2227
$$\begin{aligned} \log \mathcal{N}(\delta, \mathcal{F}^n, \|\cdot\|_\infty) &\leq \log M_n + M_n(1+3p) \log \left(1 + \frac{2M_n(2n)^{3p+2}}{\delta}\right) \\ &< n\varepsilon^2/10. \end{aligned}$$

2228 Condition (17) is satisfied by letting $C_1 = \varepsilon^2/10$. □

2230 N.4 VERIFYING CONDITION (18)

2232 For $S \subseteq [p]$, using Theorem 3.3 in Park et al. (2025), there exist TPNNs such that

2233
2234
2235
$$\left\|f_{0,S} - f_{k_S, \hat{\mathcal{B}}_{S,k_S}, \hat{\mathbf{b}}_{S,k_S}, \hat{\Gamma}_{S,k_S}}\right\|_\infty \leq \frac{C_S}{k_S^{1/|S|} + 1} \quad (24)$$

2236 for some positive constant C_S . Here, $\hat{\beta}_{S,k}$ s are uniformly bounded, i.e., $|\hat{\beta}_{S,k}| \leq c_S$ for some
2237 positive constant c_S and $\hat{\gamma}_{j,k} = 1/k_S^3$ for all j, k as specified in Theorem 3.3 of Park et al. (2025).2238 Let $k_{n,S}$ such that

2239
2240
2241
2242
$$\frac{C_S}{k_{n,S}^{1/|S|} + 1} \leq \varepsilon\sqrt{2}/(\sqrt{C_A} \cdot 3 \cdot 2^p). \quad (25)$$

2243 Let $k_n = \sum_{S \subseteq [p]} k_{n,S}$ and $f_{k_n, \hat{\mathcal{B}}_{k_n}, \hat{\mathbf{b}}_{k_n}, \hat{\Gamma}_{k_n}} = \sum_{S \subseteq [p]} f_{k_n, S, \hat{\mathcal{B}}_{S,k_n}, \hat{\mathbf{b}}_{S,k_n}, \hat{\Gamma}_{S,k_n}}$. For notational
2244 simplicity, we write $\hat{\mathcal{B}}_{k_n}$, $\hat{\mathbf{b}}_{k_n}$ and $\hat{\Gamma}_{k_n}$ simply as $\hat{\mathcal{B}}$, $\hat{\mathbf{b}}$ and $\hat{\Gamma}$, respectively. Since

2245
2246
2247
2248
$$\begin{aligned} &\|f_0 - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty \\ &\leq \|f_0 - f_{k_n, \hat{\mathcal{B}}, \hat{\mathbf{b}}, \hat{\Gamma}}\|_\infty + \|f_{k_n, \hat{\mathcal{B}}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty + \|f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma} - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty, \end{aligned} \quad (26)$$

2249 we have

2250
2251
2252
2253
2254
2255
$$\begin{aligned} &\pi\left(f \in \mathcal{F} : \|f - f_0\|_\infty \leq \frac{\varepsilon}{3}\sqrt{\frac{2}{C_A}}\right) \\ &\geq \pi(K = k_n) \left(\prod_{S' \subseteq [p]} \pi(S = S') \right) \end{aligned} \quad (27)$$

2256
2257
2258
2259
$$\times \pi\left(\left\{\|f_{k_n, \hat{\mathcal{B}}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty \leq \frac{\varepsilon}{3}\sqrt{\frac{2}{C_A}}\right\} \cap \left\{\|f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma} - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty \leq \frac{\varepsilon}{3}\sqrt{\frac{2}{C_A}}\right\}\right). \quad (28)$$

2260 Therefore, it remains to derive the lower bounds for (27) and (28).

2261

2262 **Lower bound of (27).** We have

2263
2264
2265
2266
2267
$$\begin{aligned} \pi(K = k_n) \left(\prod_{S' \subseteq [p]} \pi(S = S') \right) &= \left(\prod_{S' \subseteq [p]} \pi(S = S') \right) \frac{\exp(-C_0 k_n \log n)}{\sum_{k=0}^{K_{\max}} \exp(-C_0 k \log n)} \\ &> \exp(-\mathfrak{d}_1 n) \end{aligned}$$

2268 for some positive constant \mathfrak{d}_1 .

2268 **Lower bound of (28).** For any $\mathcal{B} = (\beta_k, k \in [k_n]) \in \mathbb{R}^k$, we have
 2269

$$\begin{aligned}
 2270 \quad \|f_{k_n, \mathcal{B}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \hat{\mathcal{B}}, \hat{\mathbf{b}}, \hat{\Gamma}}\|_\infty &\leq \sup_{\mathbf{x}} \sum_{k=1}^{k_n} \left| \beta_k \prod_{j \in S_k} \phi(x_j | \{j\}, \hat{b}_{j,k}, \hat{\gamma}_{j,k}) - \hat{\beta}_k \prod_{j \in S_k} \phi(x_j | \{j\}, \hat{b}_{j,k}, \hat{\gamma}_{j,k}) \right| \\
 2271 \quad &\leq \sup_{\mathbf{x}} \sum_{k=1}^{k_n} \left| (\beta_k - \hat{\beta}_k) \prod_{j \in S_k} \phi(x_j | \{j\}, \hat{b}_{j,k}, \hat{\gamma}_{j,k}) \right| \\
 2272 \quad &\leq \sum_{k=1}^{k_n} \left| (\beta_k - \hat{\beta}_k)(1 + C_\sigma)^p \right| \\
 2273 \quad &\leq (1 + C_\sigma)^p \|\mathcal{B} - \hat{\mathcal{B}}\|_1 \\
 2274 \quad &\leq (1 + C_\sigma)^p \sqrt{k_n} \|\mathcal{B} - \hat{\mathcal{B}}\|_2.
 \end{aligned} \tag{29}$$

2283 That is, we have
 2284

$$\left\{ \|f_{k_n, \hat{\mathcal{B}}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \hat{\mathbf{b}}, \hat{\Gamma}}\|_\infty \leq \frac{\varepsilon}{3} \sqrt{\frac{2}{C_A}} \right\} \supseteq \left\{ \|\mathcal{B} - \hat{\mathcal{B}}\|_2 \leq ((1 + C_\sigma)^p \sqrt{k_n})^{-1} \frac{\varepsilon}{3} \sqrt{\frac{2}{C_A}} \right\}.$$

2288 Furthermore, direct calculation yields
 2289

$$\begin{aligned}
 2290 \quad \|f_{k_n, \mathcal{B}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty &= \sup_{\mathbf{x}} \sum_{k=1}^{k_n} |\beta_k| \left| \prod_{j \in S_k} \left(\phi(x_j | \{j\}, \hat{b}_{j,k}, \hat{\gamma}_{j,k}) - \phi(x_j | \{j\}, b_{j,k}, \gamma_{j,k}) \right) \right| \\
 2291 \quad &\leq (1 + C_\sigma) \sup_{\mathbf{x}} \sum_{k=1}^{k_n} |\beta_k| \left| \prod_{j \in S_k} \left(\frac{x_j - \hat{b}_{j,k}}{\hat{\gamma}_{j,k}} - \frac{x_j - b_{j,k}}{\gamma_{j,k}} \right) \right| \\
 2292 \quad &= (1 + C_\sigma) \sup_{\mathbf{x}} \sum_{k=1}^{k_n} |\beta_k| \left| \prod_{j \in S_k} \left(\frac{b_{j,k} - \hat{b}_{j,k}}{\hat{\gamma}_{j,k}} + (x_j - b_{j,k}) \frac{\gamma_{j,k} - \hat{\gamma}_{j,k}}{\gamma_{j,k} \hat{\gamma}_{j,k}} \right) \right| \\
 2293 \quad &\leq (1 + C_\sigma) \sup_{\mathbf{x}} \sum_{k=1}^{k_n} |\beta_k| \prod_{j \in S_k} \left(\left| \frac{b_{j,k} - \hat{b}_{j,k}}{\hat{\gamma}_{j,k}} \right| + 2 \left| \frac{\gamma_{j,k} - \hat{\gamma}_{j,k}}{\gamma_{j,k} \hat{\gamma}_{j,k}} \right| \right).
 \end{aligned}$$

2303 Let $C_{n,j,k} = \frac{|\hat{\gamma}_{j,k}|}{2} \left(\frac{\varepsilon}{3\xi(1+C_\sigma)k_n} \sqrt{\frac{2}{C_A}} \right)^{1/|S_k|}$. If $|\gamma_{j,k} - \hat{\gamma}_{j,k}| \leq \epsilon_1$, we have
 2304

$$\left| \frac{\gamma_{j,k} - \hat{\gamma}_{j,k}}{\hat{\gamma}_{j,k} \gamma_{j,k}} \right| \leq \frac{\epsilon_1}{\hat{\gamma}_{j,k} (\hat{\gamma}_{j,k} - \epsilon_1)} \leq \frac{1}{4} \left(\frac{\varepsilon}{3\xi k_n} \sqrt{\frac{2}{C_A}} \right)^{1/|S_k|},$$

2310 where $\epsilon_1 = \frac{C_{n,j,k} |\hat{\gamma}_{j,k}|}{2 + C_{n,j,k}}$. Therefore, if
 2311

$$\begin{aligned}
 2312 \quad |\beta_k| &\leq \xi, \\
 2313 \quad |b_{j,k} - \hat{b}_{j,k}| &\leq 2C_{n,j,k}, \\
 2314 \quad |\gamma_{j,k} - \hat{\gamma}_{j,k}| &\leq \frac{C_{n,j,k} |\hat{\gamma}_{j,k}|}{2 + C_{n,j,k}}
 \end{aligned}$$

2318 hold, we have
 2319

$$\|f_{k_n, \mathcal{B}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty \leq \frac{\varepsilon}{3} \sqrt{\frac{2}{C_A}}. \tag{30}$$

That is, we have

$$\begin{aligned} & \left\{ \|f_{k_n, \hat{\mathcal{B}}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \hat{\mathbf{b}}, \hat{\Gamma}}\|_\infty \leq \frac{\varepsilon}{3} \sqrt{\frac{2}{C_A}} \right\} \cap \left\{ \|f_{k_n, \mathcal{B}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty \leq \frac{\varepsilon}{3} \sqrt{\frac{2}{C_A}} \right\} \\ & \supseteq \left\{ \|\mathcal{B} - \hat{\mathcal{B}}\|_2 \leq ((1 + C_\sigma)^p \sqrt{k_n})^{-1} \frac{\varepsilon}{3} \sqrt{\frac{2}{C_A}}, \right. \\ & \quad |\beta_j| \leq \xi, \\ & \quad |b_{j,k} - \hat{b}_{j,k}| \leq 2C_{n,j,k}, \\ & \quad \left. |\gamma_{j,k} - \hat{\gamma}_{j,k}| \leq \frac{C_{n,j,k} |\hat{\gamma}_{j,k}|}{2 + C_{n,j,k}}, \quad \forall j \in S_k, \forall k \in [k_n] \right\}. \end{aligned}$$

It implies that

$$\begin{aligned} & \pi \left(\left\{ \|f_{k_n, \hat{\mathcal{B}}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \hat{\mathbf{b}}, \hat{\Gamma}}\|_\infty \leq \frac{\varepsilon}{3} \sqrt{\frac{2}{C_A}} \right\} \cap \left\{ \|f_{k_n, \mathcal{B}, \hat{\mathbf{b}}, \hat{\Gamma}} - f_{k_n, \mathcal{B}, \mathbf{b}, \Gamma}\|_\infty \leq \frac{\varepsilon}{3} \sqrt{\frac{2}{C_A}} \right\} \right) \\ & \geq \pi(\|\mathcal{B} - \hat{\mathcal{B}}\|_2 \leq ((1 + C_\sigma)^p \sqrt{k_n})^{-1} \varepsilon \sqrt{2}/(3\sqrt{C_A}), |\beta_k| \leq \xi, \forall k \in [k_n]) \end{aligned} \quad (31)$$

$$\times \pi(|b_{j,k} - \hat{b}_{j,k}| \leq 2C_{n,j,k}, \forall j \in S_k, \forall k \in [k_n]) \quad (32)$$

$$\times \pi \left(|\gamma_{j,k} - \hat{\gamma}_{j,k}| \leq \frac{C_{n,j,k}}{1 + C_{n,j,k}} |\hat{\gamma}_{j,k}|, \forall j \in S_k, \forall k \in [k_n] \right). \quad (33)$$

Now, we will show that these three probabilities sufficiently large.

Lower bound of (31). Since

$$\begin{aligned} & \left\{ \|\mathcal{B} - \hat{\mathcal{B}}\|_2 \leq ((1 + C_\sigma)^p \sqrt{k_n})^{-1} \varepsilon \sqrt{2}/(3\sqrt{C_A}), |\beta_k| \leq \xi, \forall k \in [k_n] \right\} \\ & \supseteq \left\{ |\beta_k - \hat{\beta}_k| \leq ((1 + C_\sigma)^p k_n)^{-1} \varepsilon \sqrt{2}/(3\sqrt{C_A}), |\beta_k| \leq \xi, \forall k \in [k_n] \right\} \\ & \supseteq \left\{ |\beta_k - \hat{\beta}_k| \leq ((1 + C_\sigma)^p k_n)^{-1} \varepsilon \sqrt{2}/(3\sqrt{C_A}), \forall k \in [k_n] \right\} \end{aligned} \quad (34)$$

for sufficiently large n , it suffices to get the lower bound of $\pi(|\beta_k - \hat{\beta}_k| \leq ((1 + C_\sigma)^p k_n)^{-1} \varepsilon \sqrt{2}/(3\sqrt{C_A}))$ for $k \in [k_n]$.

For $k \in [k_n]$, we let

$$I_k = [\hat{\beta}_k \pm ((1 + C_\sigma)^p k_n)^{-1} \varepsilon \sqrt{2}/(3\sqrt{C_A})]$$

and we have

$$\begin{aligned} & \pi(|\beta_k - \hat{\beta}_k| \leq ((1 + C_\sigma)^p k_n)^{-1} \varepsilon \sqrt{2}/(3\sqrt{C_A})) \\ & = \int_{I_k} \frac{1}{\sqrt{2\pi}\sigma_\beta} \exp \left(-\frac{\beta_k^2}{2\sigma_\beta^2} \right) d\beta_k \\ & \geq |I_k| \frac{1}{\sqrt{2\pi}\sigma_\beta} \exp \left(-\frac{(\max_S c_S + ((1 + C_\sigma)^p k_n)^{-1} \varepsilon \sqrt{2}/(3\sqrt{C_A}))^2}{2\sigma_\beta^2} \right) \\ & > \exp(-\mathfrak{d}_1 n) \end{aligned} \quad (35)$$

for some positive constant \mathfrak{d}_1 , where (35) is derived from $|\hat{\beta}_k| \leq \max_S c_S$.

Lower bound of (32). Since

$$\pi(|b_{j,k} - \hat{b}_{j,k}| \leq 2C_{n,j,k}) = 4C_{n,j,k}$$

for all $j \in S_k$, $k \in [k_n]$, we have

$$\begin{aligned} \pi(|b_{j,k} - \hat{b}_{j,k}| \leq 2C_{n,j,k}, \forall j \in S_k, \forall k \in [k_n]) & = \prod_{k \in [k_n], j \in S_k} 4C_{n,j,k} \\ & > \exp(-\mathfrak{d}_2 n) \end{aligned}$$

for some positive constant \mathfrak{d}_2 .

2376 **Lower bound of (33).** Using direct calculation, we have
 2377

$$\begin{aligned} 2378 \quad \pi\left(|\gamma_{j,k} - \hat{\gamma}_{j,k}| \leq \frac{C_{n,j,k}}{2 + C_{n,j,k}} \hat{\gamma}_{j,k}\right) &\geq \left(\frac{2C_{n,j,k}\hat{\gamma}_{j,k}}{2 + C_{n,j,k}}\right) \min_{x \in [L_n, U_n]} pdf_\gamma(x) \\ 2379 \quad &= \left(\frac{2C_{n,j,k}\hat{\gamma}_{j,k}}{2 + C_{n,j,k}}\right) \frac{b_\gamma^{a_\gamma}}{\Gamma(a_\gamma)} \min_{x \in [L_n, U_n]} x^{a_\gamma-1} \exp(-b_\gamma x), \end{aligned}$$

2380 where $L_n = \hat{\gamma}_{j,k} - \frac{C_{n,j,k}\hat{\gamma}_{j,k}}{2 + C_{n,j,k}}$ and $U_n = \hat{\gamma}_{j,k} + \frac{C_{n,j,k}\hat{\gamma}_{j,k}}{2 + C_{n,j,k}}$.
 2381

2382 Note that $1/k_n^3 \leq \hat{\gamma}_{i,j} \leq 1$. For $a_\gamma > 1$, we have
 2383

$$\begin{aligned} 2384 \quad \min_{x \in [L_n, U_n]} x^{a_\gamma-1} &\geq L_n^{a_\gamma-1} \\ 2385 \quad &= \left(\frac{2\hat{\gamma}_{j,k}}{2 + C_{n,j,k}}\right)^{a_\gamma-1} \\ 2386 \quad &> \exp(-\mathfrak{d}_3 n) \end{aligned}$$

2387 for some positive constant \mathfrak{d}_3 and for $a_\gamma < 1$, we have
 2388

$$\begin{aligned} 2389 \quad \min_{x \in [L_n, U_n]} x^{a_\gamma-1} &\geq U_n^{a_\gamma-1} \\ 2390 \quad &= \left(\hat{\gamma}_{j,k}\right)^{1-a_\gamma} \\ 2391 \quad &> \exp(-\mathfrak{d}_4 n) \end{aligned}$$

2392 for some positive constant \mathfrak{d}_4 . Furthermore, we have
 2393

$$\begin{aligned} 2394 \quad \min_{x \in [L_n, U_n]} \exp(-b_\gamma x) &\geq \exp(-b_\gamma U_n) \\ 2395 \quad &\geq \exp(-2b_\gamma \hat{\gamma}_{i,j}) \\ 2396 \quad &> \exp(-2\mathfrak{d}_5 n) \end{aligned}$$

2397 and
 2398

$$\frac{2C_{n,j,k}\hat{\gamma}_{j,k}}{2 + C_{n,j,k}} > \exp(-2\mathfrak{d}_7 n)$$

2399 for some positive constants \mathfrak{d}_6 and \mathfrak{d}_7 . Finally, the proof is completed by letting $C_2 = \sum_{i=1}^7 \mathfrak{d}_i$.
 2400

□

2412 N.5 VERIFYING CONDITION (19)

2413 We will verify Condition (19) with the constant C_3 .
 2414

2415 We let
 2416

$$\begin{aligned} 2417 \quad Z_1 &= \{K > M_n\}, \\ 2418 \quad Z_2 &= \{\{K \leq M_n\} \cap \{\exists k \in [K] \text{ such that } |\beta_k| > n\}\}, \\ 2419 \quad Z_3 &= \{\{K \leq M_n\} \cap \{\exists k \in [K] \text{ such that } \Gamma_{S_k, k} \in (n, \infty)^{|S_k|}\}\}. \end{aligned}$$

2420 Since
 2421

$$\pi(\mathcal{F} \setminus \mathcal{F}^n) = \pi(Z_1 \cup Z_2 \cup Z_3),$$

2422 the upper bound of $\pi(\mathcal{F} \setminus \mathcal{F}^n)$ is
 2423

$$\pi(\mathcal{F} \setminus \mathcal{F}^n) \quad (36)$$

$$\leq \pi(K > M_n) \quad (36)$$

$$+ \pi(K \leq M_n) \pi(\exists k \in [K] \text{ such that } |\beta_k| > n | K \leq M_n) \quad (37)$$

$$+ \pi(K \leq M_n) \pi(\exists k \in [K] \text{ such that } \Gamma_{S_k, k} \in (n, \infty)^{|S_k|} | K \leq M_n). \quad (38)$$

2430 **Upper bound of (36).** For $M_n = \lfloor \frac{C_3 n \varepsilon^2}{\log n} \rfloor$, we have
 2431

$$\begin{aligned} 2432 \quad \pi(K > M_n) &= \frac{\sum_{k=M_n+1}^{K_{\max}} \exp(-kC_0 \log n)}{\sum_{k=0}^{K_{\max}} \exp(-kC_0 \log n)} \\ 2433 \quad &\leq \exp(-M_n C_0 \log n). \\ 2434 \end{aligned}$$

2435 Since $C_3 > \frac{C_2+2}{C_0 \log n}$ for sufficiently large n , we have
 2436

$$2437 \quad \pi(K > M_n) \exp((C_2 + 2)n) \rightarrow 0 \text{ as } n \rightarrow \infty. \\ 2438$$

2439 **Upper bound of (37).** We have
 2440

$$\begin{aligned} 2441 \quad \pi(\exists k \in [K] \text{ such that } |\beta_k| > n | K \leq M_n) &\leq M_n \pi(|\beta_1| > n) \\ 2442 \quad &\leq 2M_n \exp\left(-\frac{n^2}{2\sigma_\beta^2}\right), \\ 2443 \end{aligned}$$

2444 where σ_β^2 is a constant. That is, we conclude that
 2445

$$2446 \quad \pi(\exists k \in [K] \text{ such that } |\beta_k| > n | K \leq M_n) \exp((C_2 + 2)n) \rightarrow 0 \text{ as } n \rightarrow \infty. \\ 2447$$

2448 **Upper bound of (36).** For any j, k , using Markov inequality, we have
 2449

$$\begin{aligned} 2450 \quad \pi(\gamma_{j,k} > n) &\leq \mathbb{E}\left[\exp\left(\frac{b_\gamma \gamma_{j,k}}{2}\right)\right] \exp\left(-\frac{b_\gamma n}{2}\right) \\ 2451 \quad &= \left(\frac{1}{2}\right)^{-a_\gamma} \exp\left(-\frac{b_\gamma n}{2}\right). \\ 2452 \end{aligned}$$

2453 Since
 2454

$$2455 \quad \pi(\exists k \in [K] \text{ such that } \Gamma_{S_k, k} \in (n, \infty)^{|S_k|} | K \leq M_n) \leq M_n \pi(\gamma_{1,1} > n),$$

2456 we have
 2457

$$2458 \quad \pi(\exists k \in [K] \text{ such that } \Gamma_{S_k, k} \in (n, \infty)^{|S_k|} | K \leq M_n) \exp((C_2 + 2)n) \rightarrow 0 \text{ as } n \rightarrow \infty, \\ 2459$$

2460 where a_γ and b_γ are positive constants.
 2461

2462 \square

2463 N.6 VERIFICATION OF THE CONDITIONS IN GHOSAL ET AL. (1999)

2464 For given data $\mathbf{x}^{(n)}$, let $q_{f,i}$ be the probability density of $\mathbb{Q}_{f(\mathbf{x}_i)}$ for $i = 1, \dots, n$. From Theorem 2
 2465 of Ghosal et al. (1999), it suffices to verify that for every $f_0 \in \text{Lip}_{0,L,F}$, there exists a sieve \mathcal{F}_ξ^n ,
 2466 constants $\delta < \varepsilon/4, C_5, C_6 > 0$ and $C_1 < \varepsilon^2/8$ such that the following three conditions hold with
 2467 respect to the $\|\cdot\|_{2,n}$.

$$2468 \quad \log \mathcal{N}(\delta, \mathcal{F}_\xi^n, \|\cdot\|_{2,n}) < nC_1, \tag{39}$$

$$2469 \quad \pi_\xi\left(f \in \mathcal{F}_\xi : \frac{1}{n} \sum_{i=1}^n K(q_{f_0,i}, q_{f,i}) \leq \varepsilon^2\right) > \exp(-nC_5), \tag{40}$$

$$2470 \quad \pi_\xi(\mathcal{F}_\xi \setminus \mathcal{F}_\xi^n) < \exp(-nC_6). \tag{41}$$

2471 To complete the proof of Theorem N.1, we will verify that the three conditions (39), (40), and (41)
 2472 for given data $\mathbf{x}^{(n)}$.
 2473

2474 **Verifying Condition (39).**

2475 Condition (39) holds under Condition (17).
 2476

2484 **Verifying Condition (40).**

2485 By using a direct calculation, for $i = 1, \dots, n$, we have

$$2488 \quad K(q_{f_0,i}, q_{f,i}) = \int \left((f_0(\mathbf{x}_i) - f(\mathbf{x}_i))y - A(f_0(\mathbf{x}_i)) + A(f(\mathbf{x}_i)) \right) q_{f_0,i}(y) dy \quad (42)$$

$$2491 \quad = \left((f_0(\mathbf{x}_i) - f(\mathbf{x}_i))\mathbb{E}[Y_i] - A(f_0(\mathbf{x}_i)) + A(f(\mathbf{x}_i)) \right) \quad (43)$$

$$2493 \quad = \left((f_0(\mathbf{x}_i) - f(\mathbf{x}_i))\dot{A}(f_0(\mathbf{x}_i)) - A(f_0(\mathbf{x}_i)) + A(f(\mathbf{x}_i)) \right). \quad (44)$$

2495 Using Talyor expansion, we have

$$2497 \quad K(q_{f_0,i}, q_{f,i}) = \frac{1}{2} \ddot{A}(\tilde{x})(f_0(\mathbf{x}_i) - f(\mathbf{x}_i))^2,$$

2499 where $\tilde{x} \in [-F, F]$. That is, we have

$$2501 \quad n \sum_{i=1}^n K(q_{f_0,i}, q_{f,i}) \leq \frac{C_A}{2} \|f_0 - f\|_{2,n}^2.$$

2504 When $\xi \geq 2^P F + \varepsilon \sqrt{\frac{2}{C_A}}$, we have

$$2507 \quad \pi_\xi \left(f \in \mathcal{F}_\xi : \|f - f_0\|_{2,n} \leq \varepsilon \sqrt{\frac{2}{C_A}} \right) \geq \pi \left(f \in \mathcal{F}_\xi : \|f - f_0\|_{2,n} \leq \varepsilon \sqrt{\frac{2}{C_A}} \right).$$

2510 Therefore, the proof is done by Condition (18). □

2513 **Verifying Condition (41).**

2515 Since

$$2517 \quad \pi_\xi(\mathcal{F} \setminus \mathcal{F}^n) \leq \frac{\pi(\mathcal{F} \setminus \mathcal{F}^n)}{\pi(\|f\|_\infty \leq \xi)} \\ 2518 \quad \leq \frac{\pi(\mathcal{F} \setminus \mathcal{F}^n)}{\pi\left(\|f - f_0\|_\infty \leq \varepsilon \sqrt{\frac{2}{C_A}}\right)} \\ 2519 \quad \leq \exp(-(C_5 + 2)n)$$

2524 for $2^P F + \varepsilon \sqrt{\frac{2}{C_A}} \leq \xi$, the condition (41) holds for $C_6 = C_5 + 2$ by condition (18) and (19). □

2528 N.7 STEP (P.2)

2530 Since (P.1) holds for arbitrary $\mathbf{x}^{(n)}$, we conclude that

$$2532 \quad \lim_{n \rightarrow \infty} \mathbb{E}_0^n [\pi_\xi(\|f - f_0\|_{2,n} > \varepsilon | \mathbf{X}^{(n)}, Y^{(n)})] = 0$$

2534 for any $\varepsilon > 0$. □

2538 **O PROOF OF THEOREM 3.2**
 2539

2540 The proof consists of the following 4 steps.
 2541

2542 **(STEP E.1)**

2543 We first establish the rate at which the posterior concentrates under the population ℓ_2 norm; specifically,
 2544 we demonstrate that

$$2546 \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f - f_0\|_{2,\mathbb{P}_\mathbf{X}} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \right] \rightarrow 0, \quad (45)$$

2547 for any $\varepsilon > 0$.

2549 **(STEP E.2)**

2550 Based on (45), we establish that the following holds for any subset $S \subseteq [p]$.
 2551

$$2552 \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f_S - f_{0,S}\|_{2,\mathbb{P}_\mathbf{X}} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \right] \rightarrow 0, \quad (46)$$

2554 for any $\varepsilon > 0$.

2556 **(STEP E.3)**

2557 We reformulate (46) in terms of the empirical ℓ_2 norm. Specifically, we demonstrate that

$$2559 \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f_S - f_{0,S}\|_{2,n} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \right] \rightarrow 0, \quad (47)$$

2560 for any $\varepsilon > 0$.

2562 **(STEP E.4)**

2563 The last step is to verify
 2564

$$2565 \mathbb{E}_0^n \left[\pi_\xi (\mathcal{F}_\xi \setminus \mathcal{F}_\xi^n \mid \mathbf{X}^{(n)}, Y^{(n)}) \right] \rightarrow 0 \quad (48)$$

2566 as $n \rightarrow \infty$.

2568 **O.1 VERIFYING (STEP D.1)**

2569 To verify (STEP D.1), we rely on the following lemma, whose proof is provided in Theorem 19.3
 2570 of Györfi et al. (2006).

2571 **Lemma O.1** (Theorem 19.3 of Györfi et al. (2006)). *Let $\mathbf{X}, \mathbf{X}_1, \dots, \mathbf{X}_n$ be independent and identically distributed random vectors with values in \mathbb{R}^d . Let $K_1, K_2 \geq 1$ be constants and let \mathcal{G} be a class of functions $g : \mathbb{R}^d \rightarrow \mathbb{R}$ with the properties*

$$2576 |g(\mathbf{x})| \leq K_1, \quad \mathbb{E}[g(\mathbf{X})^2] \leq K_2 \mathbb{E}[g(\mathbf{X})]. \quad (49)$$

2577 Let $0 < \kappa < 1$ and $\zeta > 0$. Assume that

$$2579 \sqrt{n\kappa\sqrt{1-\kappa}}\sqrt{\zeta} \geq 288 \max \left\{ 2K_1, \sqrt{2K_2} \right\} \quad (50)$$

2581 and that, for all $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and for all $t \geq \frac{\zeta}{8}$,

$$2583 \frac{\sqrt{n\kappa(1-\kappa)t}}{96\sqrt{2}\max\{K_1, 2K_2\}} \geq \int_{\frac{\kappa(1-\kappa)t}{16\max\{K_1, 2K_2\}}}^{\sqrt{t}} \sqrt{\log \mathcal{N} \left(u, \left\{ g \in \mathcal{G} : \frac{1}{n} \sum_{i=1}^n g(\mathbf{x}_i)^2 \leq 16t \right\}, \|\cdot\|_{1,n} \right)} du. \quad (51)$$

2587 Then,

$$2589 \mathbb{P}_\mathbf{X}^n \left(\sup_{g \in \mathcal{G}} \frac{|\mathbb{E}[g(\mathbf{X})] - \frac{1}{n} \sum_{i=1}^n g(\mathbf{X}_i)|}{\zeta + \mathbb{E}[g(\mathbf{X})]} > \kappa \right) \leq 60 \exp \left(-\frac{n\zeta\kappa^2(1-\kappa)}{C_g \max\{K_1^2, K_2\}} \right)$$

2591 for some positive constant C_g .

2592 Since \mathcal{F}_ξ^n depends on the dataset $\mathbf{X}^{(n)}$, we will apply Lemma O.1 to the function class \mathcal{G}_ξ^n defined
2593 as

$$2594 \quad 2595 \quad 2596 \quad \mathcal{G}_\xi^n = \bigcup_{K=1}^{M_n} \mathcal{G}_\xi^n(K),$$

2597 where $\mathcal{G}_\xi^n(K) = \{f \in \mathcal{G}^n(K) : \|f\|_\infty \leq \xi\}$. Here, $\mathcal{G}^n(K)$ is defined in (20).

2598 Since

$$2600 \quad \mathcal{N}(\epsilon, \mathcal{G}_\xi^n, \|\cdot\|_\infty) \leq \mathcal{N}(\epsilon, \mathcal{G}^n, \|\cdot\|_\infty) \\ 2601 \quad 2602 \quad 2603 \quad \leq M_n \left(1 + \frac{M_n 2^{p+3} n^{3p+1}}{\epsilon} \right)^{M_n(1+3p)},$$

2604 we can easily verify that conditions (49), (50), and (51) hold for $K_1 = K_2 = 4\xi^2$, $\kappa = \frac{1}{4}$, $\zeta = \varepsilon^2$,
2605 and $\mathcal{G} = \{g : g = (f_0 - f)^2, f \in \mathcal{G}_\xi^n\}$. That is, we have
2606

$$2607 \quad \mathbb{P}_{\mathbf{X}} \left(\sup_{f \in \mathcal{F}_\xi^n} \frac{|||f - f_0|||_{2,\mathbb{P}_{\mathbf{X}}}^2 - ||f - f_0|||_{2,n}^2}{\varepsilon^2 + ||f - f_0|||_{2,\mathbb{P}_{\mathbf{X}}}^2} > \frac{1}{4} \right) \leq 60 \exp \left(- \frac{n\varepsilon^2/8}{C_g \cdot 16\xi^4} \right).$$

2610 We define $\mathcal{A}_n := \left\{ \mathbf{X}^{(n)} : \sup_{f \in \mathcal{F}_\xi^n} \frac{|||f - f_0|||_{2,\mathbb{P}_{\mathbf{X}}}^2 - ||f - f_0|||_{2,n}^2}{\varepsilon^2 + ||f - f_0|||_{2,\mathbb{P}_{\mathbf{X}}}^2} \leq \frac{1}{4} \right\}$. Then, we have
2611
2612

$$2613 \quad \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f - f_0\|_{2,\mathbb{P}_{\mathbf{X}}} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \right] \\ 2614 \quad \leq \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f - f_0\|_{2,\mathbb{P}_{\mathbf{X}}} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \mathbb{I}(\mathbf{X}^{(n)} \in \mathcal{A}_n) \right] + \mathbb{P}_{\mathbf{X}}^n(\mathcal{A}_n^c) \\ 2615 \quad \leq \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f - f_0\|_{2,n} > \varepsilon/\sqrt{2} \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \right] + \mathbb{P}_{\mathbf{X}}^n(\mathcal{A}_n^c) \\ 2616 \quad \rightarrow 0 \\ 2617 \\ 2618 \\ 2619$$

2620 as $n \rightarrow \infty$.

2621 \square

2623 O.2 VERIFYING (STEP D.2)

2625 For $f \in \mathcal{F}_\xi^n$, we have

$$2626 \quad 2627 \quad 2628 \quad f(\mathbf{x}) = \sum_{S \subseteq [p]} f_S(\mathbf{x}_S),$$

2629 where f_S satisfies the sum-to-zero condition with respect to the uniform distribution on $(0, 1)$.

2630 Consider positive constants C_7 and C_8 such that

$$2631 \quad 2632 \quad 2633 \quad C_7 \leq \inf_{\mathbf{x} \in \mathcal{X}} p_{\mathbf{X}}(\mathbf{x}) \leq \sup_{\mathbf{x} \in \mathcal{X}} p_{\mathbf{X}}(\mathbf{x}) \leq C_8. \quad (52)$$

2635 Therefore, using the inequality (52), for all $S \subseteq [p]$, we have

$$2636 \quad 2637 \quad 2638 \quad \begin{aligned} \|f_0 - f\|_{2,\mathbb{P}_{\mathbf{X}}} &\geq \sqrt{C_7 \int_{\mathcal{X}} (f_0(\mathbf{x}) - f(\mathbf{x}))^2 d\mathbf{x}} \\ 2639 \quad 2640 \quad 2641 \quad &= \sqrt{C_7 \sum_{S \subseteq [p]} \int_{\mathcal{X}_S} (f_{0,S}(\mathbf{x}_S) - f_S(\mathbf{x}_S))^2 d\mathbf{x}_S} \\ 2642 \quad 2643 \quad &\geq C_9 \|f_{P,S} - f_{0,S}\|_{2,\mathbb{P}_{\mathbf{X}}}, \end{aligned} \quad (53)$$

2644 where (53) is derived from the sum-to-zero condition with respect to the uniform distribution on
2645 $(0, 1)$ and $C_9 = \sqrt{C_7/C_8}$.

2646 Hence, we conclude that
 2647

$$\begin{aligned} & \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f_S - f_{0,S}\|_{2,\mathbb{P}_\mathbf{X}} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \right] \\ & \leq \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f - f_0\|_{2,\mathbb{P}_\mathbf{X}} > \varepsilon C_9 \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \right] \\ & \rightarrow 0, \end{aligned}$$

2652 as $n \rightarrow \infty$.
 2653

□

2656 O.3 VERIFYING (STEP D.3) 2657

2658 Following the same approach as in the proof of (STEP D.1), and applying Lemma O.1 to the
 2659 function class $\mathcal{G} = \{g : g = (f_{0,S} - f_S)^2, f \in \mathcal{G}_\xi^n\}$, we have
 2660

$$\lim_{n \rightarrow \infty} \mathbb{E}_0^n \left[\pi_\xi \left(f \in \mathcal{F}_\xi^n : \|f_S - f_{0,S}\|_{2,n} > \varepsilon \mid \mathbf{X}^{(n)}, Y^{(n)} \right) \right] = 0.$$

□

2665 O.4 VERIFYING THE (STEP D.4) 2666

2667 Since
 2668

$$\frac{\pi_\xi(\mathcal{F}_\xi \setminus \mathcal{F}_\xi^n)}{\pi_\xi(\mathbb{B}_n)} \leq \exp(-2n)$$

2671 for given data $\mathbf{x}^{(n)}$, using Lemma 1 in Ghosal & Van Der Vaart (2007), we conclude that
 2672

$$\lim_{n \rightarrow \infty} \mathbb{E}_0^n \left[\pi_\xi(\mathcal{F}_\xi \setminus \mathcal{F}_\xi^n \mid \mathbf{X}^{(n)}, Y^{(n)}) \mid \mathbf{X}^{(n)} = \mathbf{x}^{(n)} \right] = 0.$$

2675 Since it holds for arbitrary $\mathbf{x}^{(n)}$, the proof is completed.
 2676

□

2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699