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Abstract

Large language models (LLMs) and vision-language models (VLMs) have demon-
strated remarkable performance across a wide range of tasks and domains. Despite
this promise, spatial understanding and reasoning—a fundamental component
of human cognition—remains under-explored. We propose SpatialEval, a novel
benchmark that covers diverse aspects of spatial reasoning such as relationship
understanding, navigation, and counting. We conduct a comprehensive evaluation
of competitive language and vision-language models. Our findings reveal several
counter-intuitive insights that have been overlooked in the literature: (1) Spatial
reasoning poses significant challenges where competitive models can fall behind
random guessing; (2) Despite additional visual input, VLMs often under-perform
compared to their LLM counterparts; (3) When both textual and visual information
is available, multi-modal language models become less reliant on visual informa-
tion if sufficient textual clues are provided. Additionally, we demonstrate that
leveraging redundancy between vision and text can significantly enhance model
performance. We hope our study will inform the development of multimodal mod-
els to improve spatial intelligence and further close the gap with human intelligence.
Our code is available at https://github.com/jiayuww/SpatialEval.

1 Introduction

The recent breakthroughs in foundation models have had a transformative effect on research and
industry, and we have seen these models rapidly integrated into products and new businesses that are
shaping people’s lives for the better. This sea change was initially driven by large language models
(LLMs), which have shown at times near unbelievable, human-level performance across a wide range
of tasks. Over the past year, many of these models have been extended to handle images in addition
to text, leading to a significant increase in vision-language models (VLMs), especially multimodal
large language models (MLLMs), which demonstrate groundbreaking performance in image-related
tasks as in the text domain.

However, the reality is not quite as rosy as advertised. While these models have been instrumental
in advancing the state-of-the-art in complex reasoning tasks such as common sense reasoning,
mathematical problem solving, and scientific question answering [17, 30, 41, 72, 75], they have not
been as effective for a number of problem domains. In particular, as we will show in this paper, they
have limited performance on tasks that require detailed visual understanding and reasoning of images.

∗The work was completed in part during Yifei Ming’s internship at Microsoft Research, as well as PhD thesis
research at UW-Madison.
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Visual understanding and reasoning—an intrinsic part of human perception and cognitive abil-
ity—have been largely under-explored when it comes to LLMs and VLMs. In fact, it is often argued
that the visual sense is the dominant sense in people, yet when it comes to current models, it seems
quite secondary. Spatial reasoning, in particular, is fundamental to everyday human activities such
as navigating environments, understanding maps, and manipulating objects. It encompasses skills
that are crucial for both survival and higher-order cognition, including the ability to navigate through
space, recognize patterns, and deduce relationships from spatial configurations.

In this paper, we propose SpatialEval, a novel benchmark containing four tasks (Spatial-Map,
Maze-Nav, Spatial-Grid, and Spatial-Real, Section 2.1) to explore the performance of LLMs
and VLMs on diverse aspects of spatial reasoning, including relationship, navigation, position
understanding, and object counting. Humans excel at such tasks, making them essential capabilities
for intelligent systems to emulate for safe and effective deployment in the real world.

Our dataset, however, is constructed with a key twist – each problem in our benchmark has an image
and a text representation that is sufficient for answering each spatial understanding question. We
denote the use of these sources as VQA, which is the standard task of visual-question answering that
consists of a vision-only input and a question, TQA, text-only input and a question, and VTQA, a
combination of the previous with vision and text input.

We conduct a systematic and comprehensive evaluation of a wide range of open-source and proprietary
LLMs and VLMs. We perform in-depth analysis and unveil several novel and surprising results that
challenge the current understanding of how these models process spatial information:

• Spatial reasoning remains challenging: VLMs frequently struggle with spatial reasoning
tasks, with some competitive models performing worse than random guessing.

• Visual vs. textual inputs: Without detailed textual descriptions, multimodal models rarely
surpass the performance of their LLM backbones when relying solely on visual inputs. This
underscores the critical role of text in enhancing model performance on spatial reasoning.

• Reduced reliance on visual information: When both textual and visual inputs are provided,
multimodal language models tend to rely less on the visual component if sufficient textual
clues are available.

• Textual performance of VLMs: VLMs often outperform their LLM counterparts with
text-only inputs, indicating that the language model backbones within VLMs benefit from
multimodal training, despite a lack of similar benefits from the visual components.

We surmise the limitations in VLMs’ spatial understanding stem from the overly simplistic handling
of visual information in current architectures and training pipelines. We believe the contributions of
this paper will drive changes in model design, accelerating improvements that could unlock more
robust spatial reasoning capabilities, and help bridge the gap toward human-like intelligence.

2 Dataset and Task Construction

2.1 Dataset Setup

To evaluate the spatial reasoning abilities of LLMs and VLMs, we construct four diverse tasks
including spatial relationships, navigation, position understanding, and counting. To systematically
study the impact of modality, we design three types of input formats for each task: (1) TQA (Text-
only): the input is purely textual and contains all necessary information for a person to answer the
questions. (2) VQA (Vision-only): the input consists solely of an image, which provides sufficient
details for a person to easily answer, a format also referred to as Visual Question Answering (VQA) in
the literature. (3) VTQA (Vision-text): the input includes both an image and its textual representation
with detailed descriptions, rendering the information in both modalities redundant. We evaluate
LLMs using Text-only inputs and VLMs using Text-only, Vision-only, and Vision-text inputs on the
same set of questions (Table 1). The synthetic tasks are curated based on the following key guidelines:
(1) Avoidance of data leakage—since LLMs are pre-trained on web-scale data, it is crucial to ensure
that the test data have not been seen during training; (2) configurability—being configurable allows
for controlled experiments and extends easily to additional tasks; (3) scalability—the ability to scale
the number of test samples enhances the statistical significance of experimental results.
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Figure 1: Illustration of the Spatial-Map task, which simulates a map with multiple locations. To
investigate the impact of modality, we consider three input formats: Text-only, Vision-only, and
Vision-text. We evaluate language models (w. TQA input) and vision-language models (w. VQA and
VTQA inputs) on the same set of questions.

Spatial-Map. Understanding the spatial relationships among objects on a map is a fundamental
aspect of human cognitive abilities. To simulate this environment, we create a map-like dataset
termed Spatial-Map with K objects, where K is configurable. Each object is associated with a
unique location name, such as Unicorn Umbrellas and Gale Gifts. To study the impact of modality,
the textual representation of each input consists of pairwise relations such as Brews Brothers Pub
is to the Southeast of Whale’s Watches. An example with K = 6 is shown in Figure 1,
with Text-only, Vision-only, and Vision-text inputs. These questions include asking about the spatial
relationships between two locations and the number of objects that meet specific spatial criteria.

Maze-Nav. Navigation through complex spaces is essential for intelligent systems. To evaluate such
abilities, we have developed a maze-like dataset named Maze-Nav. Visually, each sample can be

Here is a Maze represented in ASCII code (LHS)  where the symbols have the following 
meanings: # represents walls that are impassable barriers. "  " (space) represents the navigable 
path within the maze, .... A right turn is defined as a change in movement direction that is 90 
degrees clockwise relative to the previous direction. A left turn is defined as a change in 
movement direction that is 90 degrees anticlockwise relative to the previous direction.

<Img> The figure represents a Maze, where the colored blocks have the following meanings:

Black blocks represent walls that are impassable barriers. White blocks represent navigable 
paths within the maze, but not necessarily the correct path to the exit... A right turn is defined 
as a change in movement direction that is 90 degrees clockwise relative to the previous 
direction...

<Img> The figure represents a Maze, where the colored blocks have the following meanings: 
Black blocks represent walls that are impassable barriers....The same Maze can be represented 
in ASCII code(LHS)... A right turn is defined as a change in movement direction that is 90 
degrees clockwise relative to the previous direction. A left turn is defined as a change in 
movement direction that is 90 degrees anticlockwise relative to the previous direction.

Maze-Nav

Questions
Q: How many right turns are there in the provided path from S to E?

A. 4                                           B. 3                                          C. 7                                                      D. 2

Q: How many total turns are there in the provided path from S to E?

A. 4                                           B. 1                                          C. 9                                                      D. 5

Q: Is the exit directly below the starting point, with no horizontal displacement?  

A. Yes                                       B. No

TQA

(Text-only)

VQA

(Vision-only)

VTQA

(Vision-text)

Figure 2: Illustration of the Maze-Nav task, which evaluates the model’s ability to navigate from the
starting point (S) to the exit (E).
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represented as colored blocks where different colors signify distinct elements: a green block marks
the starting point (S), a red block indicates the exit (E), black blocks represent impassable walls,
white blocks denote navigable paths, and blue blocks trace the path from S to E. The objective is to
navigate from S to E following the blue path, with movement permitted in the four cardinal directions
(up, down, left, right). Alternatively, each input can be depicted in a textual format using ASCII code.
An example is illustrated in Figure 2, featuring Text-only, Vision-only, and Vision-text inputs. We
construct this task based on an open-sourced library [26]. The questions asked include counting the
number of turns from S to E and determining the spatial relationship between S and E. While such
questions are easy for humans, we will show in Section 3 that they still pose significant challenges
for modern multimodal language models.

Consider a 5x5 grid (5 rows and 5 columns) containing 
various animals, where each 1x1 cell is considered a 
block and each block contains an animal from ['cat', 
'dog', 'elephant', 'giraffe', 'rabbit']. The distribution of 
animals in the grid is as follows (LHS)


elephant | cat            | giraffe   | elephant | cat   

dog           | rabbit       | giraffe  | cat             | dog   

rabbit      | dog            | cat         | elephant | rabbit

dog           | elephant | giraffe  | cat             | cat   

rabbit      | dog            | giraffe  | rabbit       | rabbit

elephant | cat            | giraffe   | elephant | cat   

dog           | rabbit       | giraffe  | cat             | dog   

rabbit      | dog            | cat         | elephant | rabbit

dog           | elephant | giraffe  | cat             | cat   

rabbit      | dog            | giraffe  | rabbit       | rabbit

<Img> The figure represents a 5x5 grid (5 rows and 5 columns) containing various animals, 
where each 1x1 square is considered a block and each block contains an animal from ['cat', 
'dog', 'elephant', 'giraffe', 'rabbit'].

<Img> The figure represents a 5x5 grid (5 rows and 5 
columns) containing various animals, where each 1x1 
square is considered a block and each block contains an 
animal from ['cat', 'dog', 'elephant', 'giraffe', 'rabbit'].    
The same figure can be represented in textual form as 
follows (LHS)

Spatial-Grid

Questions
Q: How many blocks contain rabbit? 

A. 8                                           B. 2                                          C. 7                                                      D. 6

Q: What is the animal of the block located at the top-left corner (first row, first column) of the grid? 

A. rabbit                                  B. giraffe                               C. cat                                                  D. elephant

Q: What is the animal of the block located at the first row, second column of the grid? 

A. rabbit                                  B. cat                                      C. giraffe                                           D. dog

TQA

(Text-only)

VQA

(Vision-only)

VTQA

(Vision-text)
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Figure 3: Illustration of the Spatial-Grid task, which evaluates the model’s spatial reasoning
ability in a rigid grid structure.

Spatial-Grid. To investigate spatial understanding within structured environments, we introduce
a grid-like dataset named Spatial-Grid, contrasting with the Spatial-Map where objects are
positioned arbitrarily. Visually, each input consists of a grid of cells, each containing an image (e.g.,
a rabbit). An example is illustrated in Figure 3. Alternatively, this grid can also be represented in
a purely textual format; for instance, the first row might be described as: elephant | cat | giraffe |
elephant | cat. The evaluations focus on tasks such as counting specific objects (e.g., rabbits) and
identifying the object located at a specific coordinate in the grid (e.g., first row, second column).

Spatial-Real. To extend the evaluation of spatial reasoning beyond synthetic environments, we
introduce Spatial-Real, a task built on the Densely Captioned Images (DCI) dataset [67], where
each image has a detailed caption with more than 1,000 words on average. As DCI does not contain
questions, we curate multiple-choice questions regarding spatial reasoning (object counting, relation,
and position understanding) and annotate the answers. An example is shown in Figure 4. We provide
detailed analysis on Spatial-Real in Appendix E.

2.2 Models

We consider a wide range of competitive open-source language models with different scales, including
Phi2-2.7B [35], the LLaMA family (LLaMA-2-7B, LLaMA-2-13B, and LLaMA-3-8B) [65], Mistral-
7B [27], the Vicuna family (Vicuna-7B-1.5 and Vicuna-13B-1.5) [11], and Nous-Hermes-2-Yi-34B.
For multimodal language models, we consider the Bunny family (Bunny-Phi-2-SigLIP, Bunny-
Phi-1.5-SigLIP, Bunny-Phi-2-EVA, and Bunny-Phi-1.5-EVA) [22], CogVLM [69], CogAgent [23],
InstructBLIP family (InstructBLIP-Vicuna-7B and InstructBLIP-Vicuna-13B) [13], and LLaVA
family (LLaVA-1.6-Mistral-7B, LLaVA-1.6-Vicuna-7B, LLaVA-1.6-Vicuna-13B, and LLaVA-1.6-
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The following can be seen in the image: tall tree 

directly right of the orange truck bed and over the

 tree over the back end of the brown truck bed.  

Open overcast sky over everything on the ground. 

Right group of tree leaves over the orange truck 
bed and between the cranes that are suspending 
it. Window area of the driver's side door of the 
white truck on the left of the brown truck bed.... 
crane holding up the orange truck bed to the 
right of another crane...

Please answer the following question based on 
the provided information.

Spatial-Real

Q: How many cranes are involved in lifting 
the orange truck bed? Available options:

A. Two            B. One                     

C. Three         D. Four                    

Textual Description

Figure 4: Illustration of the Spatial-Real task, which is built on real images with long captions,
featuring detailed descriptions averaging over 1,000 words per image.

34B) [38]. We also evaluate the proprietary models: Open AI’s GPT-4V, GPT-4o, GPT-4, Google
Gemini Pro 1.0, and Anthropic Claude 3 Opus.

Evaluation. As each question contains four options, we use accuracy as the main evaluation metric.
The same user prompt is appended at the end of each question: First, provide a concise answer
in one sentence. Then, elaborate on the reasoning behind your answer in a detailed, step-by-step
explanation. For each model, we adopt the default configurations and decoding strategies, e.g., argmax
for deterministic decoding and top-p for non-deterministic decoding. For non-deterministic decoding,
the results are averaged over three independent runs for open-source models. For proprietary models,
due to their limited availability and increased compute time and cost, we only perform one run. We
summarize the terminologies regarding input modalities for LLMs and VLMs in Table 1:

Model Input Modality Term Description

LLM Text-only TQA (LLM) Text-only input that includes all necessary infor-
mation to answer questions without visual context.

VLM Text-only TQA (VLM) Text-only input as in TQA (LLM) but applied to
VLMs (e.g., the LLaVA family).

VLM Vision-only VQA Input only includes an image without correspond-
ing textual description.

VLM Vision-text VTQA Input includes both an image and its textual de-
scription.

Table 1: Terms regarding input modalities for LLMs and VLMs.

We describe the Text-only, Vision-only, and Vision-text input modalities based on how we feed the
image information to the models. Vision-only input means the image is fed directly to the models
without textual description, while all questions are presented in text.

3 Main Results and Analysis

Spatial reasoning remains surprisingly challenging. The evaluation results on open-source models
on Spatial-Map, Maze-Nav, and Spatial-Grid are shown in Figure 5. For each task, the reported
accuracy is averaged over all questions. For vision-language models, we choose the Vision-only
input format, commonly used in Visual Question Answering (VQA). We use a dashed red line in
each figure to indicate the expected accuracy if answering by random guessing. Our findings reveal
several notable insights: (1) Vision-only inputs: Despite the simplicity of these tasks for humans,
most competitive multimodal models perform at levels similar to or barely above random guessing.
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0.0 0.1 0.2 0.3 0.4

LLaMA-2-13B
LLaMA-2-7B
LLaMA-3-8B

Mistral-7B
Nous-Hermes-2-Yi-34B

Phi-2
Vicuna-13B-1.5

Vicuna-7B-1.5
LLaVA-1.6-34B

LLaVA-1.6-Mistral-7B
LLaVA-1.6-Vicuna-13B

LLaVA-1.6-Vicuna-7B
Bunny-Phi-2-SigLIP

Qwen-VL
Bunny-Phi-1.5-EVA

Bunny-Phi-1.5-SigLIP
Bunny-Phi-2-EVA

CogAgent
CogVLM

InstructBLIP-Vicuna-13B
InstructBLIP-Vicuna-7B

Spatial-Map

0.0 0.1 0.2 0.3 0.4

Maze-Nav

0.0 0.2 0.4 0.6

Spatial-Grid

Random Guessing Language Model Vision-Language Model

Figure 5: Performance overview on spatial reasoning tasks. We report the accuracy averaged over
all questions. We consider the VQA (Vision-only) format for vision-language models. The dashed
red line denotes the expected accuracy for random guessing. For Spatial-Map and Maze-Nav tasks,
only a few models outperform random guessing by a notable margin.

(2) Text-only inputs: While the textual input includes essential spatial information, it generally does
not significantly enhance the spatial reasoning capabilities of competitive models. An exception
occurs in the Spatial-Grid task, where Llama-3 achieves an accuracy of 71.9%, followed by
Mistral-7B-Instruct at 62.1%, both notably surpassing random guessing. Despite these successes, the
performance of these models still lags significantly behind human levels. These results underscore
the need for further development of techniques tailored to spatial understanding and reasoning.

The impact of input modality. To investigate the impact of modality, we compare the performance
of a large language model (LLM) and a vision-language model (VLM) with the same language
backbone. We consider the VQA (Vision-only) format for vision-language models. The results are
shown in Figure 6. Each vertex on the spider plot represents the average accuracy of a (VLM, LLM)
pair. We observe that on Spatial-Map and Spatial-Grid, the majority of VLMs yield worse
performance compared to their LLM counterpart, despite having an additional visual encoder. For
example, on Spatial-Grid, Mixtral-7B achieves an average accuracy of 62.1%, while LLaVA-v1.6-
Mistral-7B only yields an accuracy of 47.1% (15% ↓). Detailed results can be seen in Appendix F.

(c) TQA vs. VQA on Spatial-Grid(a) TQA vs. VQA on Spatial-Map (b) TQA vs. VQA on Maze-Nav

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-7B

CogAgent

CogVLM

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-13B

CogAgent

CogVLM

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-13B

CogAgent

CogVLM

InstructBLIP-

Vicuna-13B

InstructBLIP-

Vicuna-7B

InstructBLIP-

Vicuna-7B

Figure 6: TQA (LLM) vs. VQA on spatial reasoning tasks. Each vertex on the spider plot represents
the Avg Acc of a (VLM, LLM) pair with the same language backbone, i.e., LLM v.s. VLM further
finetuned on that. VLMs are depicted in red, and LLMs in blue. We can see that VLMs rarely
enhance the performance compared to their LLM counterparts.
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4 Delving Into Spatial Reasoning for Vision-Language Models

4.1 Seeing Without Understanding: The Blindness of Multimodal Language Models

Original Image Random Image Noise Image

Figure 7: Illustration of Random Image and Noise
Image for the example in Figure 2.

To better understand how VLMs process visual
information, we conduct a series of controlled
experiments in the VTQA (Vision-text input)
setting. For each sample, we replace the original
image input (that matches the textual descrip-
tion) with either: (1) No Image: only keep the
textual input without the image input, (2) Noise
Image: a Gaussian noise image irrelevant to the
task, and (3) Random Image: a random image from the dataset that does not match the textual
description, as shown in Figure 7.

0.2 0.3 0.4 0.5 0.6 0.7

Bunny-Phi-2-EVA

LLaVA-1.6-34B

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-Vicuna-7B

Qwen-VL

0.401

0.390

0.588

0.478

0.460

0.349

0.483

0.591

0.731

0.581

0.414

0.425

Spatial-Grid

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.222

0.378

0.242

0.271

0.339

0.327

0.209

0.403

0.317

0.294

0.351

0.380

Maze-Nav

Original Image No Image

Figure 8: VTQA vs. TQA (VLM) on spatial reasoning tasks. VLMs exhibit improved performance
in spatial reasoning tasks when visual input is absent.

VLMs exhibit improved performance when visual input is absent. We conducted experiments by
entirely removing the Original Image and relying solely on the textual description. The results are
shown in Figure 8. For each task, we report the accuracy averaged across all questions. Remarkably,
the absence of visual input leads to better performance across a range of VLM architectures. For
instance, the performance of LLaVA-1.6-34B on the Spatial-Grid task improved by 20.1% when
no image was presented compared to scenarios with the original image. This observation underscores
that when textual information alone can address the questions, additional visual inputs do not
necessarily enhance, and may even hinder the performance, a sharp contrast to human capabilities
where visual cues significantly aid in understanding. The removal of visual input forces the models
to utilize the textual information to solve spatial reasoning tasks.

0.2 0.3 0.4 0.5 0.6

Bunny-Phi-2-EVA

InstructBLIP-Vicuna-13B

InstructBLIP-Vicuna-7B

LLaVA-1.6-34B

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

Qwen-VL

0.401

0.437

0.281

0.390

0.588

0.478

0.349

0.437

0.481

0.325

0.348

0.615

0.511

0.365

Spatial-Grid

0.20 0.25 0.30 0.35 0.40

0.222

0.267

0.389

0.378

0.242

0.271

0.327

0.248

0.241

0.416

0.381

0.253

0.336

0.378

Maze-Nav

Original Image Noise Image

Figure 9: Original Image vs. Noise Image in VTQA. Replacing the original image with a Gaussian
noise image improves the performance across diverse VLM architectures.

Noise image can improve the performance. We replace the Original Image with a Noise Image
while retaining the original textual description. The results are shown in Figure 9. Consistent with
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0.2 0.3 0.4 0.5 0.6

Bunny-Phi-2-EVA

InstructBLIP-Vicuna-13B

InstructBLIP-Vicuna-7B

LLaVA-1.6-34B

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

Qwen-VL

0.401

0.437

0.281

0.390

0.588

0.478

0.349

0.301

0.465

0.286

0.361

0.416

0.363

0.339

Spatial-Grid

0.20 0.25 0.30 0.35 0.40

0.222

0.267

0.389

0.378

0.242

0.271

0.327

0.227

0.265

0.396

0.383

0.243

0.281

0.364

Maze-Nav

Original Image Random Image

Figure 10: Original Image vs. Random Image in VTQA. On Maze-Nav, replacing the original image
with a random image leads to performance improvement across diverse VLM architectures.

the findings in Original Image vs. No Image, using a noise image also improves the performance
across various VLM architectures. For example, the accuracy of LLaVA-1.6-Vicuna-13B increases
by 6.5% on the Maze-Nav task when the noise image is used as opposed to the original image. In
contrast to the No Image setting, noise images provide limited visual cues. Nonetheless, the model
tends to prioritize the textual information, especially when visual cues are not pertinent to the task.

Mismatched image-text does not necessarily hurt. To build on previous findings, we further
investigate the effects of replacing the Original Image with a Random Image (illustrated in Figure 7).
Unlike a noise image, a random image is task-related but may provide conflicting information
compared to the textual description. Intuitively, one might expect that such random images would
degrade VLM performance due to contradictory cues. However, as demonstrated in Figure 10, this
expectation does not always hold true. For instance, Random Image in the Maze-Nav task leads to
improved performance across various VLM architectures. This outcome implies that VLMs are not
heavily reliant on visual information, particularly when adequate textual clues are provided.

(c) VQA vs. VTQA on Spatial-Grid(a) VQA vs. VTQA on Spatial-Map (b) VQA vs. VTQA on Maze-Nav

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-7B

CogAgent

CogVLM

InstructBLIP-

Vicuna-13B

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-7B

CogAgent

CogVLM

InstructBLIP-

Vicuna-13B

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-7B

CogAgent

CogVLM

InstructBLIP-

Vicuna-13B

Figure 11: VQA vs. VTQA on spatial reasoning tasks. Each vertex on the spider plot represents the
Avg Acc of a (Vision-only, Vision-text) pair with the same VLM model. We can see that having the
additional textual input (VTQA) enhances the performance compared to only using images (VQA).

4.2 Leveraging Redundancy in Multimodal Inputs

Multimodal language models offer considerable versatility in handling multimodal inputs. While the
visual input alone often provides sufficient details for humans to address spatial reasoning tasks with
ease, we propose that VLMs significantly benefit from the inclusion of textual descriptions alongside
visual data, even if this introduces substantial redundancy. We verify this hypothesis by comparing
VQA (Vision-only input) and VTQA (Vision-text input) across diverse VLM architectures. The
results are shown in Figure 11, where each vertex on the spider plot represents the average accuracy of
a (Vision-only, Vision-text) pair based on the same VLM. For Spatial-Map and Spatial-Grid, we
can clearly see that having the additional textual input (VTQA) enhances the performance compared
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Figure 12: Comparison of Text-only input with LLM (TQA) vs. Text-only input with VLM (No Img).
We consider VLMs that support text-only inputs. Each vertex on the spider plot represents the Avg
Acc of a (LLM, VLM) pair with the same language model backbone.

to only using images (VQA) across different VLM architectures. This suggests that textual inputs
improve the accuracy of spatial reasoning in VLMs. We further compare TQA and VTQA in
Appendix D. Detailed results are included in Appendix F.

Text-only input with LLM vs. Text-only input with VLM. Given the demonstrated efficacy of text-
only inputs, we conducted an ablation study to compare LLMs and VLMs using text-only inputs. We
consider VLMs that are capable of processing text without accompanying visual data. The results are
illustrated in Figure 12. Except for CogVLM, the majority of VLMs outperform their corresponding
LLM backbones. This suggests that the language model backbones in VLMs demonstrate enhanced
spatial reasoning abilities through multimodal learning. Conversely, the addition of visual information
does not necessarily provide further benefits.
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Figure 13: Results with proprietary models. Similar trends are observed as with open-source models.

4.3 Proprietary vs. Open-Source Models

As many recent benchmarks have shown that proprietary models generally outperform open-source
models, it is important to understand if our observed trends hold with proprietary models. The
performance of several top proprietary models (GPT-4, GPT-4V, GPT-4o, Gemini Pro 1.0, and Claude
3 Opus) are shown in Figure 13. We have the following salient observations: (1) A significant
performance gap exists between SoTA open-source models and proprietary models, as expected.
Furthermore, with both Text-only and Vision-text formats, GPT-4V and GPT-4o significantly out-
perform random guessing across all tasks. For instance, in the Vision-text format, GPT-4o achieves

Comparison Results Summary of Findings
TQA (LLM) vs. VQA Figure 6 VQA rarely enhances the performance compared to TQA (LLM).

VTQA vs. TQA (VLM) Figure 8 VLMs exhibit improved performance in spatial reasoning tasks
when the image input is absent.

VQA vs. VTQA Figure 11 Given the same image input, additional textual description en-
hances VLM’s performance.

TQA (VLM) vs. TQA (LLM) Figure 12 Multimodal fine-tuning enhances LLM’s spatial reasoning ability.
TQA (LLM) vs. VTQA Figure 16 No definitive winner.

Table 2: Summary of main findings.
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an accuracy of 0.989 on Spatial-Grid (Table 7). (2) Yet, the trends we observed with open
source models hold, VQA consistently under-performs compared to TQA and VTQA, for example,
GPT-4V’s performance improves by 25.6% on Spatial-Grid when switching from Vision-only to
Vision-text input; and again no clear winner between TQA and VTQA (see Appendix D for further
details), showing that proprietary models, even the new GPT-4o model, still do not appear to fully
leverage visual inputs. We summarize the key findings of this work in Table 2.

5 Related Work

Large language models. Large language models (LLMs) have achieved outstanding performance
across a diverse array of fields, including finance [34], bioinformatics [63], law [60], education [29],
coding [24], and creative tasks [2, 36]. LLM architectures have gone through significant changes
in recent years, with notable developments such as BERT [14], OPT [76], PaLM [12], Gemma
family [62], Mistral family [27], GPT family [2, 10], Claude family [5], and LLaMA family [3, 64, 66].
These models have demonstrated emergent abilities and revolutionized numerous domains, supporting
capabilities such as in-context learning [46, 51, 59], compositional reasoning [16, 20, 70], and task-
specific adaptation [57, 58, 71]. However, visual understanding and reasoning—an intrinsic part of
human cognitive ability—remains largely under-explored for LLMs.

Vision-language models and multi-modal language models. The success of LLMs has pro-
pelled the adoption of the Transformer architecture [68] within the computer vision community,
such as ViT [15], Beit [9], CLIP [54], MAE [21], Swin [42, 43], and DiT [53]. Building on the
capabilities of powerful LLMs, multi-modal language models (MLLMs) such as Flamingo [4],
LLaMA-Adapter [19, 74], LLava [37, 39], stable-diffusion [55], BLIP [32, 33], MiniGPT-4 [77],
Qwen [7, 8], Gemini [61], MM1 [45] have significantly expanded the range of problems that can be
addressed with improved reliability [49]. These models adeptly handle inputs from diverse modalities
and have demonstrated remarkable performance on diverse tasks such as mathematical reasoning [44],
image-text retrieval [47, 73], and visual reasoning [6, 18, 25, 28, 31, 40, 50].

Spatial understanding and reasoning. Spatial reasoning entails comprehending and manipulating
spatial relationships, a task significantly more challenging than visual grounding [1, 28, 52]. Although
progress in natural language processing, evaluations, and benchmarks on LLMs such as GPT-4 [2] and
Claude3 [5] have predominantly focused on textual or relational reasoning. This focus often overlooks
the intricate nature of spatial reasoning tasks. Notably, recent studies [17, 30, 41, 48, 56, 72, 75]
have conducted thorough evaluations across a diverse range of tasks. Yet, they demonstrate a scant
exploration of spatial reasoning capabilities, highlighting a gap in assessing this complex cognitive
skill in current benchmarks. In particular, Zhang et al. [75] suggest that MLLMs primarily leverage
textual cues rather than visual diagrams to solve math problems while focusing only on math problems.
Yamada et al. [72] design simple navigation tasks and finds LLMs appear to capture certain aspects
of spatial structure implicitly, but room for improvement remains, while our benchmarks are more
complicated than their navigation tasks based on simple geometry maps. Fu et al. [17] propose a
benchmark on science and games with limited exploration related to spatial reasoning, while we are
dedicated diverse spatial reasoning tasks with in-depth analysis.

6 Discussion and Conclusions

We explored the spatial understanding capabilities of VLMs and LLMs. Our experiments resulted in
several surprising conclusions across SoTA open-source and proprietary models. (1) VLMs struggle
with spatial reasoning tasks, (2) multimodal models rarely surpass LLMs when relying on visual
inputs, (3) when both textual and visual inputs are provided, multimodal language models rely
less on the visual inputs, and (4) VLMs often outperform their LLM counterparts with text-only
inputs. This challenges the belief that current VLMs are highly performant at a wide range of
vision-text tasks. However, with further thought, perhaps this is to be expected after all. The currently
known architectures for VLMs attempt to “translate" the vision input into the language space and all
reasoning is then performed in the language domain. It is logical that this automatic translation path
is worse than a human provided translation to text, as in our text-only scenario. Thus our work shows
the limits of the translation approach. Instead, to bridge the gap to human performance, future models
require new architectures that treat vision input as a first-class source of information and reason in a
joint vision-language space. It is our hope that our work informs development on this path.
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Appendix

A How Does SpatialEval Expand Beyond Traditional VQA?

We highlight several key rationales for SpatialEval in comparison to existing VQA benchmarks:

• Task scope and focus: Existing benchmarks such as Visual Genome [31], GQA [25], and
BLINK [18] focus only on VQA, where the image is required but the text description is
often omitted or optional. In contrast, SpatialEval further explores spatial reasoning across
different settings: TQA (LLM), TQA (VLM), and VTQA, where images or texts can be
optional, thereby broadening the scope of tasks.

• Evaluation scheme: we primarily focus on generative LLMs and VLMs which can “elab-
orate on the reasoning behind your answer in a detailed, step-by-step explanation” (Sec-
tion 2.2). The task in prior VQA benchmarks is often treated as discriminative with no
explicit reasoning. Therefore, it remains unknown if previous observations can be naturally
transferred to foundation models pre-trained on web-scale data.

• The Textual Representation of Images: The textual descriptions in prior VQA benchmarks
are often brief or directly imply the answers. While these datasets are valuable, they do not
consistently offer the level of complexity we require, such as numerous objects containing
dense visual information along with detailed natural language captions that fully convey the
image content. In SpatialEval, we provide long and dense captions for each image. As a
result, answers cannot be easily inferred. We also aim to isolate object detection capability
from spatial reasoning ability by simplifying objects to symbols (e.g., Spatial-Map).

• IQ test for VLMs and LLMs: Tasks in SpatialEval are designed to serve as cognitive tests
that evaluate basic capabilities of multi-modal foundation models. While three tasks feature
synthetic visual content, humans can solve them with near-perfect accuracy. This indicates
that the tasks are within the realm of human cognitive capabilities.

B Limitations and Societal Impact

Limitations. In this work, we introduce four novel tasks and conduct a comprehensive evaluation of
diverse large language models (LLMs) and vision-language models (VLMs), presenting a controlled
and thorough evaluation of spatial reasoning capabilities. While our analysis is detailed and extensive,
it remains primarily empirical. We believe that embarking on a formal theoretical study, despite its
challenges, would significantly enrich our understanding of pre-trained multimodal language models.
Moreover, our focus has been on in-depth analysis rather than on developing new training strategies
or adaptation algorithms to enhance spatial reasoning. Recognizing these points, we identify them as
valuable directions for future research.

Societal impact. Regarding the positive societal impact, our evaluations and observations could
catalyze the development of new algorithms that enhance the spatial reasoning abilities of LLMs
and VLMs. Improved understanding of these models has the potential to significantly benefit sectors
requiring robust spatial understanding and navigation. This could lead to more reliable and efficient
systems that enhance safety and user experience. As for potential negative societal impacts, our work
primarily involves empirical evaluations using synthetic datasets designed to probe spatial reasoning.
Therefore, we do not anticipate any direct negative societal impacts arising from our current research.

C Experimental Details

C.1 Software and Hardware

Our experiments are conducted on NVIDIA A100 GPUs. Our implementation is based on Python
3.10 and PyTorch 2.1.2.
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C.2 Hyperparameters and Error Bars

The hyperparameters discussed in this paper pertain to the decoding strategies of each model. For
deterministic decoding, we adhere to the default settings specified for each model. The models
employing deterministic decoding (argmax) include Bunny-Phi-2-SigLIP, CogAgent, CogVLM,
InstructBLIP-Vicuna-13B, and InstructBLIP-Vicuna-7B. For non-deterministic decoding, we utilize
the default hyperparameters provided by Hugging Face (for instance, Top-P is set at 0.9 and the
temperature at 0.2 for LLaVA-1.6). Error bars for the main results (Figure 5) are obtained with three
independent runs.

C.3 Model Checkpoints

For most open-source models, we use the checkpoints provided by Hugging Face as shown in Table 3.
For Bunny variants (Bunny-Phi-1.5-EVA, Bunny-Phi-1.5-SigLIP and Bunny-Phi-2-EVA), we use
merged weights following instructions in https://github.com/BAAI-DCAI/Bunny/.

Model Name Link
LLaMA-2-13B https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
LLaMA-2-7B https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
LLaMA-3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
Mistral-7B https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
Nous-Hermes-2-Yi-34B https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
Phi-2 https://huggingface.co/microsoft/phi-2
Vicuna-13B-1.5 https://huggingface.co/lmsys/vicuna-13b-v1.5
Vicuna-7B-1.5 https://huggingface.co/lmsys/vicuna-7b-v1.5
LLaVA-1.6-34B https://huggingface.co/liuhaotian/llava-v1.6-34b
LLaVA-1.6-Mistral-7B https://huggingface.co/liuhaotian/llava-v1.6-mistral-7b
LLaVA-1.6-Vicuna-13B https://huggingface.co/liuhaotian/llava-v1.6-vicuna-13b
LLaVA-1.6-Vicuna-7B https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
Bunny-Phi-2-SigLIP https://huggingface.co/BAAI/Bunny-v1_0-3B
Qwen-VL https://huggingface.co/Qwen/Qwen-VL-Chat
CogAgent https://huggingface.co/THUDM/cogagent-vqa-hf
CogVLM https://huggingface.co/THUDM/cogvlm-chat-hf
InstructBLIP-Vicuna-13B https://huggingface.co/Salesforce/instructblip-vicuna-13b
InstructBLIP-Vicuna-7B https://huggingface.co/Salesforce/instructblip-vicuna-7b

Table 3: Model checkpoints from Hugging Face.

C.4 Detailed Illustration of Datasets

In the main text, we abbreviated the textual descriptions in Figure 1, Figure 2 due to space constraints.
In this section, we provide the full descriptions for each task to facilitate a better understanding of
spatial reasoning tasks. The complete illustrations are displayed in Figure 14 for Spatial-Map and
Figure 15 for Maze-Nav, respectively. Three questions (termed Q1 to Q3) are associated with each
sample in tasks Spaitial-Map, Maze-Nav, and Spatial-Grid.
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Consider a map with multiple objects: 

Whale's Watches is in the map.  Brews Brothers Pub is to the Southeast of Whale's Watches.  
Himalayan Hot Springs is to the Southeast of Whale's Watches. Himalayan Hot Springs is to 
the Southeast of Brews Brothers Pub.  Dragonfly Drones is to the Southwest of Himalayan 
Hot Springs. Dragonfly Drones is to the Southeast of Brews Brothers Pub.  Unicorn 
Umbrellas is to the Southwest of Brews Brothers Pub. Unicorn Umbrellas is to the 
Northwest of Dragonfly Drones.  Gale Gifts is to the Northeast of Unicorn Umbrellas. Gale 
Gifts is to the Southwest of Himalayan Hot Springs.

<img> The figure represents a map with multiple objects. Each object is associated with a 
name as shown in the figure. 

TQA

(Text-only)

<img> The figure represents a map with multiple objects. Each object is associated with a 
name as shown in the figure.

The same figure can be described as follows:  Whale's Watches is in the map.  Brews Brothers 
Pub is to the Southeast of Whale's Watches.  Himalayan Hot Springs is to the Southeast of 
Whale's Watches. Himalayan Hot Springs is to the Southeast of Brews Brothers Pub.  
Dragonfly Drones is to the Southwest of Himalayan Hot Springs. Dragonfly Drones is to the 
Southeast of Brews Brothers Pub.  Unicorn Umbrellas is to the Southwest of Brews Brothers 
Pub. Unicorn Umbrellas is to the Northwest of Dragonfly Drones.  Gale Gifts is to the 
Northeast of Unicorn Umbrellas. Gale Gifts is to the Southwest of Himalayan Hot Springs. 

VTQA

(Vision-text)

Spatial-Map

Questions
Q: In which direction is Whale's Watches relative to Dragonfly Drones?  

A. Northwest                        B. Southwest                        C. Southeast                                   D. Northeast

Q: Which object is in the Southwest of Gale Gifts?

A. Dragonfly Drones           B. Unicorn Umbrellas        C. Himalayan Hot Springs          D. Brews Brothers Pub

Q: How many objects are in the Southwest of Himalayan Hot Springs?

A. 3                                           B. 4                                          C. 1                                                      D. 0

Whale’s  Watches

Unicorn Umbrellas

Brews Brothers Pub

Dragonfly Drones

Gale Gifts

Himalayan Hot Springs
VQA


(Vision-only)

Figure 14: Illustration of the Spaitial-Map task with complete textual descriptions in TQA and
VTQA.

18



Here is a Maze represented in ASCII code (LHS), where the symbols have the following 
meanings:

- # represents walls that are impassable barriers.

- "  " (space) represents the navigable path within the maze, but not necessarily the correct 
path to the exit.

- S denotes the starting point of the maze.

- E marks the endpoint or the exit of the maze.

- X marks the specific route you should follow to navigate from the starting point 'S' to the 
endpoint 'E'.

- The objective is to navigate from S to E by following the path marked by X. Movement is 
allowed in any of the four cardinal directions (up, down, left, right) along the spaces, but to 
solve the maze, follow the path designated by X.

- A right turn is defined as a change in movement direction that is 90 degrees clockwise 
relative to the previous direction.

- A left turn is defined as a change in movement direction that is 90 degrees anticlockwise 
relative to the previous direction.

<Img> The figure represents a Maze, where the colored blocks have the following meanings:

- Black blocks represent walls that are impassable barriers.

- White blocks represent navigable paths within the maze, but not necessarily the correct 
path to the exit.

- Green block denotes the starting point (S) of the maze.

- Red block marks the endpoint or the exit (E) of the maze.

- The objective is to navigate from S to E by following the path marked by Blue. Movement is 
allowed in any of the four cardinal directions (up, down, left, right) along the White blocks, 
but to solve the maze, follow the path designated by Blue blocks.

- A right turn is defined as a change in movement direction that is 90 degrees clockwise 
relative to the previous direction.

- A left turn is defined as a change in movement direction that is 90 degrees anticlockwise 
relative to the previous direction.

<Img> The figure represents a Maze, where the colored blocks have the following meanings:

- Black blocks represent walls that are impassable barriers.

- White blocks represent navigable paths within the maze, but not necessarily the correct 
path to the exit.

- Green block denotes the starting point (S) of the maze.

- Red block marks the endpoint or the exit (E) of the maze.

- The objective is to navigate from S to E by following the path marked by Blue. Movement is 
allowed in any of the four cardinal directions (up, down, left, right) along the White blocks, 
but to solve the maze, follow the path designated by Blue blocks.

The same Maze can be represented in ASCII code (LHS), where the symbols have the 
following meanings:

- # represents walls that are impassable barriers.

- "  " (space) represents the navigable path within the maze, but not necessarily the correct 
path to the exit.

- X marks the specific route you should follow to navigate from the starting point 'S' to the 
endpoint 'E'.

- S denotes the starting point of the maze.

- E marks the endpoint or the exit of the maze.

- The objective is to navigate from S to E by following the path marked by X. Movement is 
allowed in any of the four cardinal directions (up, down, left, right) along the spaces, but to 
solve the maze, follow the path designated by X.

Maze-Nav

Questions
Q: How many right turns are there in the provided path from S to E?

A. 4                                           B. 3                                          C. 7                                                      D. 2

Q: How many total turns are there in the provided path from S to E?

A. 4                                           B. 1                                          C. 9                                                      D. 5

Q: Is the exit directly below the starting point, with no horizontal displacement?  

A. Yes                                       B. No

TQA

(Text-only)

VQA

(Vision-only)

VTQA

(Vision-text)

Figure 15: Illustration of the Maze-Nav task with complete textual descriptions in TQA, VQA, and
VTQA.
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D Further Ablation Studies and Discussions

TQA vs. VTQA: No definitive winner. In Section 3, we demonstrated the advantages of text-only
input (TQA) based on LLMs over vision-only input (VQA) based on VLMs. Subsequently, given the
same VLM, the comparison between VTQA and VQA in Section 4 reveals that VLMs rely less on
visual information when sufficient textual clues are provided. Curious readers seeking a quantitative
comparison between TQA and VTQA can refer to the results illustrated in Figure 16. Unlike the other
comparisons, no definitive winner emerges between TQA and VTQA across all spatial reasoning tasks,
model sizes, and architectures. For instance, the VTQA performance of InstructBLIP-Vicuna-13B
surpasses Vicuna-13B in the Maze-Nav task, whereas Vicuna-13B outperforms InstructBLIP-Vicuna-
13B in the Spatial-Map task. This indicates that text-only inputs (with language models) still hold
an advantage in certain spatial reasoning tasks.

(c) TQA vs. VTQA on Spatial-Grid(a) TQA vs. VTQA on Spatial-Map (b) TQA vs. VTQA on Maze-Nav

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-7B

CogAgent

CogVLM

InstructBLIP-

Vicuna-13B

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-7B

CogAgent

CogVLM

InstructBLIP-

Vicuna-13B

LLaVA-1.6-Mistral-7B

LLaVA-1.6-Vicuna-13B

LLaVA-1.6-

Vicuna-7B

LLaVA-1.6-34B

InstructBLIP-

Vicuna-7B

CogAgent

CogVLM

InstructBLIP-

Vicuna-13B

Figure 16: TQA (LLM) vs. VTQA on spatial reasoning tasks. Each vertex on the spider plot
represents the Avg Acc of a (LLM, VLM) pair with the same language model backbone. For LLM,
we use the Text-only input (i.e., TQA); for VLM, we use Vision-text input (i.e., VTQA).

Impact of prompting techniques. In line with our approach to sampling strategies, our primary
goal in choosing prompting techniques is to report the best model performance given the same
question. The prompt technique we use, which asks for step-by-step explanation is the most effective
query among others in our initial studies. As a concrete example, we compare the original prompting
strategy, "First, provide a concise answer in one sentence. Then, elaborate on the reasoning behind
your answer in a detailed, step-by-step explanation" (step-by-step explanation), with a simpler prompt,
Answer: (completion). Results in Table 4 show that the simpler completion prompt consistently
underperforms compared to the step-by-step explanation prompt.

Input Modality Model Avg Acc (completion) Avg Acc (step-by-step explanation)

Text-only
Mistral-7B 0.61 0.62
Vicuna-13B-1.5 0.25 0.46
Vicuna-7B-1.5 0.31 0.41

Vision-only
LLaVA-1.6-Mistral-7B 0.47 0.47
LLaVA-1.6-Vicuna-13B 0.25 0.40
LLaVA-1.6-Vicuna-7B 0.26 0.31

Vision-text
LLaVA-1.6-Mistral-7B 0.59 0.59
LLaVA-1.6-Vicuna-13B 0.26 0.48
LLaVA-1.6-Vicuna-7B 0.30 0.46

Table 4: Results for completion and step-by-step prompts.

Impact of temperature for decoding strategies. We conducted an ablation study to examine
how different temperatures affect the model performance. A higher temperature allows for more
diversity in model responses. Most models consistently underperform when the temperature is set to
1.0 compared to 0.2 (our default) as shown in Table 5.
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Input Modality Model Avg Acc (temperature=1) Avg Acc (temperature=0.2)

Text-only
Mistral-7B 0.62 0.62
Vicuna-13B-1.5 0.37 0.46
Vicuna-7B-1.5 0.36 0.41

Vision-only
LLaVA-1.6-Mistral-7B 0.37 0.47
LLaVA-1.6-Vicuna-13B 0.32 0.40
LLaVA-1.6-Vicuna-7B 0.26 0.31

Vision-text
LLaVA-1.6-Mistral-7B 0.46 0.59
LLaVA-1.6-Vicuna-13B 0.37 0.48
LLaVA-1.6-Vicuna-7B 0.33 0.46

Table 5: Results by varying different temperatures for decoding strategies.

E Results on Spatial-Real task

Table 6 presents the performance on the Spatial-Real task. The same trends observed in synthetic
tasks persist with real images (see VQA vs. VTQA, TQA (LLM) vs. VTQA, TQA (LLM) vs. VQA
in Table 2). Notably, compared to synthetic tasks (Figure 5 and Figure 11), the overall accuracy on
Spatial-Real is increased across all three input types (TQA, VQA, and VTQA). However, the
modality gap (accuracy difference between VTQA and VQA) widens significantly, from 7.0% on
synthetic tasks to 30.0% on Spatial-Real. This indicates that the performance disparity is more
pronounced on natural images.

Input Format Model Average Accuracy

Text-only (TQA (LLM))

Vicuna-13B-1.5 0.845
Vicuna-7B-1.5 0.716
Mistral-7B 0.800
LLaMA-3-8B 0.884

Vision-only (VQA)

CogVLM 0.419
Qwen-VL 0.329
LLaVA-1.6-Mistral-7B 0.368
CogAgent 0.400
LLaVA-1.6-Vicuna-7B 0.432
LLaVA-1.6-Vicuna-13B 0.445

Vision-text (VTQA)

CogVLM 0.594
Qwen-VL 0.729
LLaVA-1.6-Mistral-7B 0.761
CogAgent 0.471
LLaVA-1.6-Vicuna-13B 0.832
LLaVA-1.6-Vicuna-7B 0.806

Table 6: Performance on the Spatial-Real task. The same trends still hold on real images: VQA
vs. VTQA, TQA (LLM) vs. VTQA, and TQA (LLM) vs. VQA.

F Detailed Experimental Results

Results for proprietary models are summarized in Table 7. In Section 3 and Section 4, to clearly
illustrate the impact of modality, we present the results averaged over all questions in Figure 6 for
VQA vs. TQA and Figure 11 for VQA vs. VTQA. This section provides a comprehensive breakdown
of results for individual questions. Detailed comparative results for Spatial-Map, Maze-Nav, and
Spatial-Grid are shown in Table 8, Table 9, and Table 10, respectively. We compare LLM and
VLM with the same language model backbone. For the VLM assessments, we consider inputs in
both vision-only (VQA) and vision-text (VTQA) formats.
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Input Format Model Name Spatial-Map Acc Maze-Nav Acc Spatial-Grid Acc

Text-only

Claude 3 Opus 0.619 0.277 0.957
Gemini Pro 1.0 0.453 0.223 0.620
GPT-4o 0.616 0.353 0.986
GPT-4V 0.555 0.321 0.923
GPT-4 0.504 0.353 0.939

Vision-only

Claude 3 Opus 0.348 0.163 0.455
Gemini Pro 1.0 0.263 0.219 0.512
GPT-4o 0.617 0.410 0.833
GPT-4V 0.237 0.263 0.668

Vision-text

Claude 3 Opus 0.606 0.332 0.888
Gemini Pro 1.0 0.456 0.203 0.687
GPT-4o 0.643 0.382 0.989
GPT-4V 0.490 0.333 0.924
Table 7: Detailed results for proprietary models.

Input Format Model Name Q1 Acc Q2 Acc Q3 Acc Avg Acc

Text-only

Mistral-7B 0.40 0.27 0.34 0.34
Nous-Hermes-2-Yi-34B 0.45 0.22 0.30 0.32
Vicuna-7B-1.5 0.39 0.40 0.07 0.29
Vicuna-13B-1.5 0.44 0.52 0.21 0.39

Vision-only

LLaVA-1.6-Mistral-7B 0.26 0.37 0.13 0.25
LLaVA-1.6-34B 0.30 0.28 0.30 0.29
LLaVA-1.6-Vicuna-7B 0.27 0.32 0.26 0.28
InstructBLIP-Vicuna-13B 0.22 0.21 0.08 0.17
LLaVA-1.6-Vicuna-13B 0.31 0.32 0.15 0.26
InstructBLIP-Vicuna-7B 0.25 0.18 0.06 0.16
CogVLM 0.24 0.39 0.13 0.25
CogAgent 0.29 0.34 0.10 0.25

Vision-text

LLaVA-1.6-Mistral-7B 0.43 0.42 0.15 0.33
LLaVA-1.6-34B 0.58 0.47 0.21 0.42
LLaVA-1.6-Vicuna-7B 0.35 0.25 0.12 0.24
InstructBLIP-Vicuna-13B 0.39 0.33 0.08 0.27
LLaVA-1.6-Vicuna-13B 0.49 0.49 0.14 0.38
InstructBLIP-Vicuna-7B 0.35 0.25 0.12 0.24
CogVLM 0.40 0.52 0.14 0.35
CogAgent 0.37 0.45 0.12 0.31

Table 8: Detailed results for the Spatial-Map task. We compare LLM and VLM with the same
language model backbone. For VLMs, we consider both vision-only and vision-text input format.
The averaged results are summarized in Figure 6 and Figure 11.
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Input Format Model Name Q1 Acc Q2 Acc Q3 Acc Avg Acc

Text-only

Mistral-7B 0.43 0.23 0.33 0.33
Nous-Hermes-2-Yi-34B 0.25 0.18 0.67 0.36
Vicuna-7B-1.5 0.11 0.13 0.63 0.29
Vicuna-13B-1.5 0.20 0.15 0.33 0.23

Vision-only

LLaVA-1.6-Mistral-7B 0.25 0.10 0.34 0.23
LLaVA-1.6-34B 0.27 0.23 0.67 0.39
LLaVA-1.6-Vicuna-7B 0.17 0.22 0.65 0.35
InstructBLIP-Vicuna-13B 0.15 0.09 0.67 0.31
LLaVA-1.6-Vicuna-13B 0.33 0.20 0.33 0.29
InstructBLIP-Vicuna-7B 0.21 0.28 0.33 0.27
CogVLM 0.13 0.16 0.66 0.32
CogAgent 0.16 0.22 0.33 0.24

Vision-text

LLaVA-1.6-Mistral-7B 0.27 0.10 0.36 0.24
LLaVA-1.6-34B 0.28 0.18 0.68 0.38
LLaVA-1.6-Vicuna-7B 0.16 0.23 0.63 0.34
InstructBLIP-Vicuna-13B 0.11 0.11 0.58 0.27
LLaVA-1.6-Vicuna-13B 0.31 0.18 0.33 0.27
InstructBLIP-Vicuna-7B 0.16 0.23 0.63 0.34
CogVLM 0.14 0.20 0.60 0.31
CogAgent 0.14 0.14 0.34 0.21

Table 9: Detailed results for the Maze-Nav task. We compare LLM and VLM with the same language
model backbone. For VLMs, we consider both vision-only and vision-text input format. The averaged
results are summarized in Figure 6 and Figure 11.

Input Format Model Name Q1 Acc Q2 Acc Q3 Acc Avg Acc

Text-only

Mistral-7B 0.47 0.73 0.66 0.62
Nous-Hermes-2-Yi-34B 0.33 0.91 0.50 0.58
Vicuna-7B-1.5 0.38 0.48 0.38 0.41
Vicuna-13B-1.5 0.34 0.65 0.39 0.46

Vision-only

LLaVA-1.6-Mistral-7B 0.28 0.69 0.45 0.47
LLaVA-1.6-34B 0.32 0.29 0.21 0.27
LLaVA-1.6-Vicuna-7B 0.30 0.38 0.26 0.31
InstructBLIP-Vicuna-13B 0.24 0.24 0.21 0.23
LLaVA-1.6-Vicuna-13B 0.30 0.58 0.30 0.40
InstructBLIP-Vicuna-7B 0.27 0.25 0.24 0.25
CogVLM 0.25 0.38 0.34 0.32
CogAgent 0.33 0.33 0.29 0.32

Vision-text

LLaVA-1.6-Mistral-7B 0.32 0.79 0.65 0.59
LLaVA-1.6-34B 0.44 0.40 0.33 0.39
LLaVA-1.6-Vicuna-7B 0.36 0.68 0.34 0.46
InstructBLIP-Vicuna-13B 0.33 0.59 0.39 0.44
LLaVA-1.6-Vicuna-13B 0.29 0.78 0.36 0.48
InstructBLIP-Vicuna-7B 0.28 0.29 0.27 0.28
CogVLM 0.30 0.82 0.35 0.49
CogAgent 0.33 0.52 0.36 0.40

Table 10: Detailed results for the Spatial-Grid task. We compare LLM and VLM with the same
language model backbone. The averaged results are summarized in Figure 6 and Figure 11.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are well-supported by the comprehensive experiments and
analysis in Section 3, Section 4, and further results in the Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provided detailed limitations in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the experimental details needed in Appendix C to support the
reproducibility of our experiments. Datasets and codebase with detailed instructions will
also be released.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Both datasets and our code with detailed instructions will be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are included in Appendix C to facilitate understanding
of the experiments in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation in main experiments (see Figure 5).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide hardware and software details in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics and made sure the paper
follows the NeurIPS Code of Ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provided detailed societal impacts in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets in this paper are generated to evaluate the spatial reasoning
abilities of models and do not pose risks for potential misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the original paper or sources whenever an asset is
used. URLs of all retained model checkpoints are included in Appendix C.3 and Table 3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Both the synthetic datasets and the code will be released with well-documented
instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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