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Abstract

Evaluating Large Language Models (LLMs) of-
ten requires costly human annotations. To ad-
dress this, LLM-based judges have been proposed,
which compare the outputs of two LLMs enabling
the ranking of models without human interven-
tion. While several approaches have been pro-
posed, many confounding factors are present be-
tween different papers. For instance the model,
the prompt and other hyperparameters are typ-
ically changed at the same time making apple-
to-apple comparisons challenging. In this pa-
per, we propose to systematically analyze and
tune the hyperparameters of LLM judges. To al-
leviate the high cost of evaluating a judge, we
propose to leverage multi-objective multi-fidelity
which allows to find judges that trade accuracy
for cost and also significantly reduce the cost of
the search. Our method identifies judges that
not only outperform existing benchmarks in ac-
curacy and cost-efficiency but also utilize open-
weight models, ensuring greater accessibility and
reproducibility. The code to reproduce our ex-
periments is available at this repository https:
//github.com/geocalgo/judgetuning.

1. Introduction

Instruction tuned models are difficult to evaluate as they
provide free-form text given arbitrary instructions that may
include summarization (Zhang et al., 2024), code writing
(Ni et al., 2023) or translation (Elshin et al., 2024). While
humans can annotate the quality of the outputs of an LLM
given instructions, this quickly becomes expensive and also
delays the evaluation and development of instruction-tuned
models (Li et al., 2023).

As an alternative, LLM judges have been proposed to pro-
vide an indicative ranking for instruction-tuned models (Li
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et al., 2023), but also to select instruction-tuning recipes
(Grattafiori et al., 2024; Lambert et al., 2024). While they
can reduce cost significantly compared to human evals,
LLM judges have limitations as they may rely on super-
ficial style aspects, such as the length of a response (Dubois
et al., 2024) or the order of their input (Zheng et al., 2023).

While some of these issues can be easily fixed, several
aspects limit the improvement of LLM judges. The first
is that evaluating a LLM judge configuration is expensive.
For instance, evaluating one model in Alpaca-Eval (Li et al.,
2023) costs ~24$ (Ni et al., 2024), and evaluating a judge
multiplies this by the large number of model evaluations it
has to do in order to compute the correlation with human
ratings. Given this, many confounding factors are typically
present between different judges approaches. For instance,
between Alpaca-Eval (Li et al., 2023) and Arena-Hard (Li
et al., 2024), the judge model, the prompt, the score-type
and the set of instructions were changed. This makes it hard
to learn which contributions are important.

In this work, we propose to analyze and tune systematically
the hyperparameters of an LLM judge, including the LLM
model used, the prompt, the inference parameters (such as
the temperature) as well as the parsing mechanism used to
extract the judge preference. We first analyze the impact of
scaling the LLM judge model or the number of instructions
on the judge performance. This highlights that scaling is
insufficient to reach good performance and also helps us to
identify a cheaper way to evaluate judges than evaluating
Spearman correlation with Chatbot Arena with a grid of
model annotations. We then show how to systematically
tune the hyperparameters of a judge using a multi-objective
(to account for accuracy and cost) and multi-fidelity ap-
proach which saves tuning cost by stopping early poor con-
figurations. Finally, we show that the configurations found
outperform previous state-of-the-art judges on a range of
real-world test datasets.

Our key contributions are the following:

* We study scaling laws of judges showing how much
model size and number of instructions alone impact
key metrics used to evaluate judges

* We propose a way to tune judges hyperparameters at
reasonable tuning cost


https://github.com/geoalgo/judgetuning
https://github.com/geoalgo/judgetuning

Tuning LLM Judges’ Hyperparameters

* We show the approach is able to identify configura-
tions that outperform previous approaches while rely-
ing solely on open-weight models

* We analyze which prompt strategy and hyperparame-
ters work best for judges highlighting important pat-
terns that may be used by the community to build better
judges

2. Related work

LLM judges. LLM as a judge has been emerging as a
way to alleviate large human annotation costs that are re-
quired to evaluate instruction-tuned models. For instance,
Llama3 used an earlier version of itself as a reject sampler to
select best completions (Grattafiori et al., 2024) or more re-
cently (Lambert et al., 2024) used an LLM judge to annotate
preference data to perform instruction tuning. LLM judges
have also been used for leaderboards such as Alpaca-Eval
(Li et al., 2023) or Arena-Hard (Li et al., 2024) which of-
fer cheaper alternatives than human-annotated leaderboards
such as ChatBot Arena (Chiang et al., 2024).

Zero-shot and fine-tuned judges. Two main approaches
have been proposed for LLM judges. The first one, referred
to as zero-shot judges, prompts a LLM to rate a pair of
model completions (Li et al., 2023; 2024) or a single com-
pletion possibly against a baseline (Zheng et al., 2023). The
second one fine-tunes an existing model on a set of human-
annotated preferences (Zhu et al., 2023; Wang et al., 2024).
In contrast with the first approach, it requires fine-tuning a
model which may occur at an extra cost, along with lower
robustness under distribution shift (Huang et al., 2024).

Zero-shot judges. Many strategies for zero-shot judges
have been proposed. Li et al. (2024) proposed to ask the
judge to answer the instruction to perform some form of
Chain of Thought (Wei et al., 2022). To avoid the order of
outputs to matter in pairwise comparison, previous work
proposed to randomize or average the two possible positions
(Dubois et al., 2024; Li et al., 2024). To parse the model
output, Li et al. (2023) asks the judge a letter to denote the
best model, Li et al. (2024) uses instead a Likert scale (such
as A»B, A>B, A=B to indicate respectively when model A
is much better, better or comparable wrt B), and another
alternative (Cui et al., 2024; Lambert et al., 2024) outputs
a score for various criteria such as instruction-following,
honesty, or helpfulness. The underlying LLM models often
vary between papers, along with multiple other dimensions,
making it difficult to determine which strategies inherently
perform better.

Judge limitations. In parallel with their adoption, several
limitations of LLM judges have been highlighted. Among

them is their dependence on superficial stylistic aspects of
an answer, for instance, favoring longer answers (Dubois
et al., 2024), the first answer when using judges that make
pairwise comparison (Li et al., 2024), or their own outputs
(Panickssery et al., 2024).

While some of those issues have been fixed by averaging
the order of the answers (Li et al., 2024) or using a causal
model to isolate the length effect from the judge preference
(Dubois et al., 2024), the challenge of favoring its own an-
swer is more problematic. Such biases pose some challenge
in aligning with human evaluations which requires more
intricate design for the scoring methods (Liu et al., 2024).
Indeed, many previous works used judges from close mod-
els such as GPT-4 which may bias the leaderboard or render
evaluations infeasible if the model becomes unavailable or
its cost increases.

Prompt optimization. LLM judges tend to be very reliant
on the design on optimization of the prompts used. Such
strong sensitivity makes the prompt design an important
aspect addressed in previous works. Zhou et al. (Zhou et al.,
2024) introduce a prompt optimization framework for ad-
dressing such sensitivity even for semantically equivalent
instructions. Other works (Shi et al., 2024) have explored
the importance of prompt optimization at a constrained bud-
get which is essential for scaling. Another important factor
is how prompt tuning, together with fine-tuning, can lead to
boosted performance (Soylu et al., 2024).

Judge tuning. To the best of our knowledge, hyperparam-
eter tuning for LLM judges has not been comprehensively
explored in a way that accounts for the various factors con-
tributing to a high-performing judge. One reason is the as-
sociated compute cost with naive approaches. For instance,
Alpaca-Eval and Arena-Hard evaluate each judge config-
uration across a grid of models and instructions, leading
to substantial expenses when comparing multiple judges'.
Cost is therefore a strong limitation for the tuning of judges
limiting the comparison and tuning of judges to simple as-
pects such as the choice of the underlying LLM model but
excluding other key factors such as the prompt strategy, the
output format or the temperature.

In this work, we propose a method to search for optimal
judge configurations, including the best prompt parameteri-
zation. While prompt tuning approaches such as (Fernando
et al., 2023) are related, they do not specifically address
tuning judges. A key distinction is that we focus not only
on optimizing prompts but also on other judge hyperparam-
eters, such as model selection and temperature. Similarly,

'We estimate that our approach costs approximately 2K$ to
search through 4,480 judge configurations and that evaluating
the same number of judges using Alpaca-Eval or Arena-Hard
methodology would cost around 2M$, see B.3 for details.
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Doddapaneni et al. (2024) analyzed the effectiveness of five
different prompt strategies for LLM judges. However, their
work primarily introduces a benchmark, whereas our ap-
proach is centered on systematically tuning and analyzing
judges within a search space that includes 80 prompting
strategies and a total of 4,480 judge configurations.

We begin by providing background on LLM judges and ex-
amining the extent to which improvements can be achieved
through scaling alone. This analysis underscores the im-
portance of human agreement as a more efficient metric for
differentiating between judges. We then demonstrate how
judges can be effectively tuned by optimizing their prompts
and other hyperparameters, such as model selection and
temperature.

3. Background
3.1. Judge

We denote a LLM model as a function 7 : p — o
that produces an output string o given a prompt p. A
judge compares two models 7 and 71 and outputs a score
O (p, mo(p), m1(p)) € [0, 1] which is close to zero if 7o (p)
is better than 71 (p) or close to one otherwise.

A common choice is to use a fixed baseline 7* for one
of the models, typically a frontier model which allows to
obtain a score for a model to be evaluated: ®(p, w(p)) =
O (p, 7*(p), m(p)). Given that the order can sometimes in-
fluence the judge decision (Li et al., 2023), previous works
have proposed to either randomize the baseline position (Li
et al., 2023) or compute the judgement given both orders
and average out the result (Li et al., 2024).

3.2. Judge metrics.

Spearman correlation. One approach to see how well
a judge performs is to check how close are its rankings
on a grid of models and instructions compared to rankings
obtained through human annotations.

Assume we are considering a finite set of models M and in-
structions P and that we are given a list of golden scores for
the models denoted s” € RM, for instance, the elo-ratings
from the Chatbot Arena obtained from human ratings.

To obtain scores from the judge, we average for each model
the preference against a baseline 77* (p), e.g.

s = Epep [@(p, 7 (p), mi(p))] -

One can then use the Spearman correlation between the

scores estimated with the judge and the golden score, e.g.

v[R(s" ,R s®
p(sh,s®) = w € [-1,1] where R(z) and

o(x) denotes respectively the rank operator and the standard
deviation. Using Spearman correlation is beneficial because

it accounts for differences in scale between the golden scores
and the judge annotations, focusing on the ranking consis-
tency rather than absolute values. Other metrics which can
be used to compare the order of models include Brier score
and calibration described (Li et al., 2024).

Human agreement. Another approach to evaluating
judges is to measure their agreement with human-annotated
preferences in a list of pairwise model battles. Each bat-
tle consists of a prompt, a pair of model outputs, and a
binary label indicating which output the human annotator
preferred.

Let us denote a set of annotated battles:
h N
(pi70i7027q) (piaoiaofi))iZI (1)

where o;, 0, denotes the output of two models from prompt
p; and ®(p;, 0;,0}) € {0,0.5,1} denotes a human choice
for respectively o;, a tie or 0}.

To evaluate the judge quality, one can measure the human
agreement which is the percentage of times where the human
and judge agrees, e.g.

Einn [®(pi, 05, 05) = ®"(pi, 05,0}))] (2)

Having defined two metrics to evaluate judges, we next
evaluate how those are impacted by scaling the base models
or number of instructions.

4. Scaling judges

Rather than tuning judges a natural question is: can we
just scale them up? LLM judges can be scaled in multiple
ways: by increasing the number of parameters of the LLM
judge or by using more instructions. Here we investigate
how well the Spearman correlation and human agreement
metrics scale with both dimensions.

Spearman correlation. In Fig. 1, we show the scaling
behavior when increasing the LLM judge size and the num-
ber of instructions. We use Qwen2.5 with a default prompt
and compute Spearman correlation on a common set of 26
models available on both Alpaca-Eval and Arena-Hard.

As expected, the judge performance improves when scal-
ing the LLM model and when using more instructions as
it allows to cover more areas of the models to evaluate.
Alpaca-Eval contains easier prompts and therefore gives bet-
ter performance to smaller judges compared to Arena-Hard.
In contrast, Arena-Hard contains harder and technical ques-
tions. This allows to achieve better Spearman correlation as
the instructions allow better separability among advanced
models, provided that the judge base model is strong enough
to measure the performance on this more complex set of
instructions.
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Figure 1. Effect of scaling the LLM judge and increasing the number of instructions on Spearman correlation. In contrast to human
agreement, neither Alpaca-Eval, Arena-Hard, nor their union distinguishes the quality difference between 32B and 72B models.
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Figure 2. Effect on scaling the LLM judge and the number of
instructions on human-agreement.

Human agreement. In Fig. 2, we study the effect of scal-
ing the LLM judge and the number of battles this time on
human agreement. Here, we use the same prompt and base
LLM models as in the previous paragraph but compute hu-
man agreement on the LMSys dataset (lin Chiang et al.,
2024).

We also observe that scaling the LLM judge base model
improves performance. However, compared to the previous
case, the performance is stationary which is expected since
human-agreement is the average of an instruction based
property. In contrast, Spearman correlation gets better with
more instructions as shown in Fig. 1 as the judge gets a
better sense of a model performance (more scenarios are
seen and with larger frequency).

Which metric to optimize. We have two metrics to eval-
uate the judge quality: the Spearman correlation and the
human agreement. As discussed in the previous paragraph,
they behave differently as human agreement is an average
of an atomic property (does the judge and human agrees on
instruction on average) whereas Spearman correlation is a
global metric requiring evaluating many models to compare

Hpurams | Sp. corr. (1) CV(D) | Hum.agr. (1) CV())
0.5B 0.09 £0.189 207.60 | 0.36 & 0.006 1.70
1.5B 033 £0.137 41.26 0.37 £+ 0.006 1.61
3B 0.82 £0.066 8.11 0.42 £ 0.006 1.45
7B 0.83 £0.082 9.84 0.45 £ 0.006 1.33
32B 090 £0.052 5.75 0.48 £ 0.006 1.29
72B 0.88 £0.074 843 0.50 £ 0.006 1.27

Table 1. Comparison of the variability of Spearman-correlation and
Human-agreement metrics when using 6500 random annotations
and the same default prompt for all model sizes.

rankings. Both metrics are correlated, we can see for in-
stance that the ranking w.r.t. the base model size used for the
judge is mostly consistent across both Spearman correlation
and human agreement in Figs. 1 and 2. For both metrics,
we observe that, for this prompt and model family, LLM
judges bellow 7B are not able to outperform a simple length
baseline which favors the output with the longest answer.

In Table 1, we compare the variability of both metrics when
using a random set of 6500 instructions®. We report the stan-
dard deviation and Coefficient of Variation (CV) which is
computed as o/ * 100 and indicates the percentage of vari-
ation of a metric. It can be seen that while both metrics are
correlated, human-agreement allows to differentiate larger
models much more easily as the signal to noise ratio of the
metric is better. In particular, it allows to statistically distin-
guish 32B and 72B models whereas those models are tied
for Spearman correlation given the number of instructions
considered.

In what follows, we therefore use human agreement as the
metric to optimize as it allows to rank judge configurations
much more cheaply than Spearman correlation and allows to
separate judge configurations with much fewer instructions.

*In the case of Spearman correlation, we sample 250 instruc-
tions from both Alpaca-Eval and Arena-Hard datasets (which
yields to 6500 annotations given that we have 26 models). For
LMSys, we just sample 6500 random instructions.
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5. Tuning judges

We first describe the search space used - also summarized
in Table 5 - which includes searching for the inference and
prompt hyperparameters.

5.1. Inference hyperparameters

For the LLM model, we search among 7 open-weights op-
tions: Llama3.1 (8B and 70B), Qwen2.5 (7B, 27B and 70B)
and Gemma?2 (9B, 27B). All models with more than 9B pa-
rameters are quantized with half-precision. We also search
for the LLM temperature in [0.0, 0.01, 0.1, 1.0] and whether
to average predictions when considering two possible orders
or using just a single order.

5.2. Prompt hyperparameters

We now describe how we parametrize different prompt op-
tions and we illustrate one such option in Fig. 3.

Output format. When prompting a LLM judge, we must
be able to parse its output into a preference. We consider
the following options where the judge outputs:

* best-model-identifier: aletter corresponding to the best
assistant as in Li et al. (2023)

e [ikert: alikert scale (such as A»B, A>B, A=B to indicate
respectively when model A is much better, better or
comparable wrt B) as proposed in Li et al. (2024)

* pair: a score for both assistants in [0-10] similar to
(Zhu et al., 2023)

o preference: a score in [0, 1] where O (resp. 1) indicates
a preference for model A (resp. B)

e multi: the average score for 5 criteria - conciseness,
clarity, adherence, comprehensiveness and style similar
to Cui et al. (2024); Lambert et al. (2024).

Provide answer or other information. Asking a LLM to
reflect before providing its answer is known to be beneficial
in cases requiring reasoning (Wei et al., 2022). In addition,
providing example (few-shot learning) can also be beneficial
as shown in (Zheng et al., 2023). We therefore search for
the following options and ask the judge to provide before
its preference:

* confidence: its confidence on its preference

* answer: its own answer to the instruction as proposed
in (Li et al., 2024)

* explanation: its explanation on the given preference

Providing its confidence is meant to help the judge to pro-
vide more calibrated preference scores (e.g. to not give a
strong score for one option when it is uncertain) while the
latter two are meant to elicit chain of thought reasoning.

To use one of the three options, we add in the prompt a
description of the option and asks the LLM to generate it,
see Fig. 3 for an illustration where the prompt asks the judge
to provide its answer and an explanation on its judgement.

JSON formating. Formats used to query the output of an
LLM have different trade-offs (He et al., 2024). Some are
more controllable such as JSON but may loose performance
against simpler format (such as raw text) in particular given
less capable models.

We search for two formats, using either JSON or raw text.
When using JSON, we generate the prompt so that the tem-
plate asks the LLM to provide a JSON with all the fields
needed (the preference in the right format, how to provide its
explanation/answer/confidence when needed). In addition,
we enforce the LLM to provide a valid JSON by only select-
ing completions that follow the expected JSON schema. In
the case of raw text, we ask the model to provide its output
of each field by writing the field first, then its value.

Prompt further details. In total, we get 5 x 24 = 80
different prompts. We test each of them by making sure
that a judge based on this prompt and using llama3.1-8B is
able to recognize the correct output between an obviously
bad and good completion when judging the pair with both
orders.

Overall, our search space contains 4480 possible judge con-
figurations, which corresponds to 80 different prompts and
56 choices for the 7 LLM models, 4 temperatures and the
choice whether to average or not output permutations. We
give more details in the appendix on the different prompting
mechanisms as well as output preference formats.

5.3. Multi-fidelity and multi-objective optimization

Multi-fidelity optimization. Next, we perform multi-
fidelity multi-objective optimization in order to find judge
configurations that are good for both accuracy and cost while
keeping the cost of the search feasible with multi-fidelity.

Evaluating all judges on all battles is expensive and would
cost A/ x P annotations if we have A judges and P battles.
One way to reduce the cost of the search is to apply a
multifidelity approach such as sucessful-halving (Karnin
etal., 2013).

We perform the tuning by running configurations in three
steps. In the first step, we run all N configurations with
only P /9 battles. We then run the top A//3 judges on P/3
battles in a second step and finally run \//9 on the full P
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Prompt Template

You are a highly efficient assistant, please evaluate and
select the best large language model based on the quality
of their responses to a given instruction.

User Prompt: Who is Geoffrey Hinton?
Assistant A: Geoffrey Hinton is a research scientist.
Assistant B: I do not know who Geoffrey Hinton is.

# Your Output

## Format Description

Your output should follow this format:
{

"answer": <your answer to the user
prompt>,
"explanation": <your explanation on

why you think A or B is better>,

}
## Your output, do not repeat the input above.

Figure 3. Illustration of the prompt templating approach. We
parametrize the prompt with the following hyperparameters: Pro-
vide answer, Provide explanation, Provide example, use JSON,
. Given each of the 2* x 5 = 80 prompt
hyperparameter, we generate a prompt like this one.

battles.

This reduces the cost of the full search from N x P to
N x P/3. One could also use a more aggressive cutoff
and save further in the computation but this would naturally
increase the risk of missing good configurations.

Multi-objective optimization. When sorting the top
judge configurations, we have two objectives to take into
account since we would like to find judges that both accu-
rate and cheap. For instance, prompting a judge to perform
chain-of-thought of to provide its answer may improve per-
formance, but the extra-cost may be better spent on a better
and more expensive base model.

To sort configurations while accounting for the two objec-
tives, we use non-dominated sort (Emmerich & Deutz, 2018)
as it was shown efficient in multi-fidelity settings (Salinas
et al., 2021; Schmucker et al., 2021; Izquierdo et al., 2021).
We illustrate the priority given to the judge configurations
in Fig. 4 in the first and second selection step where one can
see that the priority model the geometry of the Pareto front
well.

5.4. Hyperparameter analysis

On Fig. 5, we show the validation performance of all judge
configurations at the lowest fidelity. We see that while the
number of parameters influence the performance, the prompt
and other judge hyperparameters have a significant impor-
tance given the wide variation of performance obtained for
a fixed model.

Next, we examine which hyperparameters and prompt char-
acteristics contribute to the best judge performance. In
Fig. 6, we analyze all 4480 judge configurations at the low-
est fidelity (i.e., evaluated on 400 instructions) where we
conduct a survival analysis, measuring how often each hy-
perparameter appears in the top 100 configurations with
the highest human agreement. We perform this analysis
separately for large models (blue bars) and smaller models
(orange bars) to identify which hyperparameters are most
effective in each case.

Without surprise, the model used for the LLM judge is
the most impacting hyperparameters and larger is generally
better. Llama3 performs better than Qwen2.5 and Gemma
when used as a judge.

This analysis also reveals less obvious hindsights:

* The output format used to obtain judge preferences
plays a big role, almost as important as the choice of
the model used for the judge. Small models are more
sensitive which is expected as they struggle more with
more complex output mechanism. For both small and
large models, the pair format performs better.

* Increasing temperature negatively impacts perfor-
mance

* Averaging the judgement after evaluating a pair of
outputs in both orders gives a performance boost

* Providing an example helps the judge provided that a
large model is used as smaller models gets confused
by this extra information

* Asking the judge to provide an explanation, or its an-
swer hurts performance

» Using JSON does not impact much the performance

5.5. Prompt stability

Next, we investigate how much the performance of a prompt
varies between different model judges in Fig. 7, where we
show the correlation between different judge models on how
well they perform under different prompts. For each of the
m = 7 models, we measure the average human agreement
for all the different n = 2% x 5 = 80 prompts and compute
the covariance matrix X X* where X € R™*" is the matrix
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Figure 4. Tllustration of the selection process. All 4480 configurations are first evaluated on 400 instructions (left), the top 1200
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(right). The color denotes the ranking assigned by the non-dominated sort procedure.
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Figure 5. We plot the cost per annotation and human agreement
of all 4480 judges when using 400 instructions. The model family
and the number of parameters are represented with color and size
respectively.

of scores for all models and prompts. Interestingly, smaller
models and larger models are highly correlated which shows
that two group of prompts works well for large and small
models. This is expected as lower capacity models may
struggle to obey more complex instructions (e.g. rate models
for style and accuracy using JSON) that are beneficial to
evaluate better models.

5.6. Results on test datasets

In this section, we report the performance of three judges
found by our search on several test sets. While the multi-
objective search returns a list of judges with continuous
cost tradeoffs as seen in Fig. 4, we report results for only 3
judges: small, medium and large with numbers of parame-
ters respectively lower than 10B, lower than 32B and lower
than 72B. We do this as it may offer an easier choice for a
practitioner when picking a judge, for instance accounting
for the memory constraint of a given GPU. For each cate-
gory, we select the judge with the best validation score on
the 3548 instructions of the validation set of LMSys.

Judge | Human agr. (1) | Cost per 1K ann. (})
Random 0.33 +/- 0.01 -

Length 0.42 +/- 0.01 -

PandaLM-7B | 0.38 +/- 0.01 6.0

JudgeLM-7B | 0.42 +/- 0.01 8.6

Arena-Hard 0.50 +/- 0.01 1.2

Ours-small 0.45 +/- 0.01 0.21

Ours-medium | 0.47 +/- 0.01 0.48

Ours-large 0.49 +/- 0.01 0.48

Table 2. Comparison of judges on LMSys test instructions. For
each judge, we report the bootstrap mean and std for human-
agreement on 3K test instructions with 100 seeds.

Judge | Human agr. (1)
Random 0.33
Length 0.60
GPT-3.5 0.63
GPT-4 0.67
PandalL.M-7B 0.62
PandaLM-70B | 0.67
Ours-small 0.67
Ours-medium | 0.78
Ours-large 0.76

Table 3. Comparison with PandaLM on PandalLM test set. Note
that our method is not fine-tuned as opposed to PandaLM.
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Figure 6. Fraction of time each hyperparameter appears in the top 100 configurations for small (<10B) and large models (>10B).
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Figure 7. Prompt performance stability across different models.
We show the correlation matrix between models when looking at
their performance on all the 80 different prompts.

LMSys. In Table 2, we compare tuned judges with a sim-
ple baseline that picks the longest answer, PandaLM (Wang
et al., 2024), JudgeLM (Zhu et al., 2023) and Arena-Hard
(Li et al., 2024). For the latter, we use GPT-40 mini to ob-
tain a similar cost per annotation than other methods. We
compute scores by measuring human-agreement on 3 000
test instructions that are not used for the model selection
and report mean and standard errors over 100 bootstraps.

While all methods outperform a random baseline, Panda-
LM-7B underperforms and JudgeLM-7B only matches a
simple baseline Length that picks the longest answer. This
is because the instructions on LMSys are more complex
and significantly longer from the distribution used for fine-
tuning and confirms previous findings that fine-tuned judges
performance can be affected by change of distributions
(Huang et al., 2024).

The judges we found outperforms all baselines and
slightly underperforms or matches Arena-Hard for human-

Judge | Sp. corr. (1) | Cost per 1K ann. (})
Length 0.50 +/-0.21 | -

Arena-hard + Claude | 0.82 +/-0.12 | 75.0

Arena-hard + GPT4 0.90 +/- 0.06 | 50.0

Ours-small 0.81 +/-0.10 | 0.21

Ours-medium 0.93+/-0.05 | 048

Ours-large 0.86 +/-0.09 | 0.48

Table 4. For each judge, we compute the Spearman correlation
between win-rates using the protocol of Arena-Hard and ELO-
ratings computed from human annotations from Chatbot Arena.
We report mean and std over 100 boostraps of the set of models.

agreement but strongly outperforms it in term of cost.

PandalLM. In Table 3, we show the performance on Pan-
dalLM test set (Wang et al., 2024). The judges that we found
all outperforms strongly PandalLM, even our small judge
with less than 10B parameters outperforms its PandaLM
counter with 70B parameters. Importantly, we recall that
our approach only consider zeroshot judges, e.g. it does not
fine on the training dataset which would improve further the
performance on this dataset although it may also hurt gen-
eralization as seen for the LMSys dataset. We see that the
70B model underperforms slighly the 32B model however,
both scores are high and close to inter-agreement rates seen
in real-world data.

Arena-Hard. In Table 4, we report the Spearman corre-
lation of the judges found by our method, compared to the
judge proposed in Arena-Hard using the 20 models available
for both Claude-Opus and Gpt-4-1106-preview judges in the
authors repository (Li et al., 2024). For each judge, we anno-
tate all the 20 models on the 500 instructions of Arena-Hard
against a baseline and compute winrates against this base-
line. We then compute the Spearman correlation between
the winrates and ELO-ratings from Chatbot Arena. We esti-
mate the cost of Arena-Hard judges using the cost estimate
from Ni et al. (2024) of 25$ to annotate one model on all 500
instructions and multiply this estimation by 50% for Claude
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Opus given the difference as it corresponds roughly to the
additional token cost compared to GPT-4-1106-preview.

The judge we found match or outperforms the judge con-
sidered at much lower cost. Importantly, the judge config-
urations are open-weight models which provide additional
benefits, in particular for applications such as building a
community leaderboard or building an open model.

6. Limitations

We currently select judges solely based on accuracy and cost,
not on potential biases such as position (where LLMs favor
responses based on order (Li et al., 2024)). To investigate
whether our selection criteria worsen this bias, we measured
the flip rate, how often a judge changes its decision when the
response order is swapped, and found a strong negative cor-
relation with the human agreement scores (r = —0.789) of
the judge configurations of the top rung. While the position
bias is not worsen, other biases, such as stylistic preferences
or verbosity, may be worsen by our method. Future work
could consider those biases by including them as additional
objectives.

7. Conclusion

In this paper, we examined how judge performance is in-
fluenced by scaling and hyperparameter choices. We in-
troduced a multi-fidelity, multi-objective approach to tune
judge hyperparameters — including prompt design and base
models — at a feasible cost. Our results demonstrate that
this method can produce judges that outperform previous
approaches across different budget constraints.

While some limitations of LLM judges persist, we hope
that enabling cost-effective tuning will help the community
refine their use and address remaining deficiencies. For ex-
ample, our multi-objective procedure could be extended to
optimize for additional criteria such as stability or explain-
ability.

We release the code to reproduce our results, along with a

dataset containing all annotations at https://github.

com/geoalgo/judgetuning. We hope this resource
will support further analysis and improvement of LLM
judges.

Impact Statement

This paper demonstrated how to tune judge hyperparameters
while balancing cost considerations and ensuring that the
search remains feasible. Our approach optimizes judge
hyperparameters to maximize human agreement while also
considering open-weight alternatives.

The benefits of this approach include enabling fairer and
more cost-effective leaderboards and helping the community
adopt judges that do not rely on closed systems. However,
LLM judges may also reinforce undesirable superficial bi-
ases, such as favoring stylistic elements over substantive
quality or perpetuating human biases present in the training
data, including biases against certain groups. We conducted
a preliminary review of the selected LMSys data and did not
observe obvious issues, though our analysis was limited to
a small sample. As a result, such systems should not be de-
ployed without safeguards and additional bias evaluations.

Our approach analysed the prompting strategy and hyperpa-
rameters of the current generation of LLMs while we expect
our conclusion to hold given the relative stability of prompt
strategy across this family (see Fig. 7), the conclusion could
change over time with the introduction of distinctive new
capabilities such as reasoning.
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Your task is to evaluate how well the following input prompts can assess the capabilities of advanced Al assistants. For the
input prompt, please analyze it based on the following 7 criteria. For each criteria, make sure to explain before determine
whether the input satisfy it.

1. Specificity: Does the prompt ask for a specific, well-defined output without leaving any ambiguity? This allows the Al to
demonstrate its ability to follow instructions and generate a precise, targeted response.

2. Domain Knowledge: Does the prompt test the AI’s knowledge and understanding in a specific domain or set of domains?
The prompt must demand the Al to have a strong prior knowledge or mastery of domainspecific concepts, theories, or
principles.

3. Complexity: Does the prompt have multiple components, variables, or levels of depth and nuance? This assesses the Al’s
capability to handle complex, multi-faceted problems beyond simple queries.

4. Problem-Solving: Does the prompt require active problem-solving: analyzing and clearly defining the problem and
systematically devising and implementing a solution? Note active problem-solving is not simply reciting facts or following
a fixed set of instructions.

5. Creativity: Does the prompt require a creative approach or solution? This tests the AI’s ability to generate novel ideas
tailored to the specific needs of the request or problem at hand.

6. Technical Accuracy: Does the prompt require an answer with a high degree of technical accuracy, correctness and
precision? This assesses the reliability and truthfulness of the AI’s outputs.

7. Real-World Application: Does the prompt relate to real-world applications? This tests the Al’s ability to provide practical
and actionable information that could be implemented in real-life scenarios.

After analyzing the input prompt based on these criteria, you must list the criteria numbers that the prompt satisfies in the
format of a Python array. For example, "Criteria Satisfied: [1, 2, 4, 6, 7]".

Figure 8. Prompt to evaluate instruction quality.

A. Datasets
A.1. Alpaca-Eval and Arena-Hard datasets

We consider two datasets that contains prompts, model completions and judge annotations for a grid of prompts and model
pairs. The first one is Alpaca-Eval which contains 47 models completions on 805 prompts (Li et al., 2023). The second one
is Arena-Hard which contains the completions on 500 instructions for 57 models (Li et al., 2024). In both cases, we select
the 26 models that also appear in Chatbot Arena in order to be able to compute how well judge configurations approximate
human judgement.

A.2. LMSys

We use the LMSys dataset (lin Chiang et al., 2024) which contains 51734 battles and allows to measure the human-agreement
of a given judge configuration.

LMSys validation and test split. When using LMSys, we rate instructions with the prompt from (Li et al., 2024) given in
Fig. 8 and we use Llama3-8B-instruct which assigns a score to each instruction in [0, 7].

We select instructions which have a score greater than or equal to 5 and also have the criterion 1. Specificity detected since it
is important to avoid large ambiguity prompt to evaluate judge (e.g. we want to discard the instruction like "say hello" since
they provide no value to distinguish models).

This gives 6548 instruction which we split randomly into 3548 validation instructions and 3000 test instructions. All model
selection (e.g. non-dominated sort) is done only using validation instructions and only the best models on the validation set
are evaluated on the test set.

B. Experiment details

To generate inference with open models, we host the models locally using VLLM on L40 GPUs for models up to 32B
parameters and on H100 GPUs for models with more than 70B parameters. Given that we use two clusters with two different
job queues, we favored using synchronous successful halving rather than an asynchronous approach such as (Schmucker
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Hyperparameter \ Values

model Llama3 (8/70B), Qwen2.5 (7/27/70B),
Gemma?2 (9/27B)

temperature 0.0,0.01,0.1, 1.0

average-orders False, True

provide-example False, True

provide-answer False, True

provide-explanation | False, True

use-json False, True

output-type likert, best-model-letter, pair,
preference, multi

Table 5. Judge Hyperparameters considered. In total, the search-space contains 4480 different judge configurations.

Model Cost / 1K token ($)
qwen2.5-72b 0.58
qwen2.5-32b 0.36
llama-3.1-70b 0.35
gemma-2-27b 0.30
gemma-2-9b 0.14
qwen2.5-7b 0.12
llama-3.1-8b 0.11

Table 6. Cost per token estimated from our runtime evaluations

et al., 2021). We submitted all the 4480 configurations of the first fidelity with 400 instructions, then applied non-dominated
sort and submitted the top 1200 configurations with 1200 instructions before finally submitting the top 400 configurations
with 3548 instructions.

B.1. Cost

To compute the cost of a judge annotation, we first estimate the token price and then multiply the number of tokens by the
token price’. To obtain the average token price for a model, we measure the total runtime and number of tokens on a large
collection of judge annotations for the given model. We then derive the cost per token using the H100 hourly price of runpod
(2.79%/hour) for models requiring more than 48GB of VRAM (Llama3 70B, Qwen2.5 70B and Gemma?2 27B) and using
L.40 hourly price for other models (0.99$/hour).

We arrive at the cost per token given in Table 6. The estimate are lower than a public provider such as Together which is
expected as such a service needs to operate at a margin and over-provision machines to meet demand. The cost we estimate
is highly conservative given that no optimization was done to optimize VLLM hyperparameters.

For close models, we compute the cost identically by multiplying tokens seen in prompt and completion with the corre-
sponding token price.

B.2. Prompt templating

Prompt examples. In Fig. 9, we show a full prompt corresponding to the prompt hyperparameter:

{ "Provide answer": True, "Provide explanation": True, "Provide example":
True, "use JSON": True, "output preference format": "Pair"}

and in Fig. 10, we show the prompt corresponding to:

{ "Provide answer": True, "Provide explanation": False, "Provide example":
False, "use JSON": False, "output preference format": "Likert"}.

3An alternative approach would be to measure cost by multiplying the runtime of a judge with the hourly price of the machine used.
However, this approach yields to noisy estimation and large costs for some judges just because of hardware noise.
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You are a highly efficient assistant, who evaluates and selects the best large language
— model based on the quality of their responses to a given instruction.

You will be shown one instruction and the output of Assistant A and Assistant B and will
— have to decide which one was best.

Make sure to not over-confidently prefer one assistant or the other and also make sure to
— not bias your preference based on the ordering or on the length of the answers.

# Example
Let us first look at one example.

## Input

<|User Prompt]|>
What is the square root of 81? Just provide the answer.

<|The Start of Assistant A's Answer|>
The answer is 81, this can be seen as 99 = 81.
<|The End of Assistant A's Answer|>

<|The Start of Assistant B's Answer|>

81

<|The End of Assistant B's Answer|>

## Your expected output (must be a valid JSON)

{
"answer": "81",
"explanation": "Both model are correct however, the output from model A is verbose and
— does not provide just the answer whereas the instruction asked for conciseness.",
"score_A": 2,
"score_B": 8

}

For the explanation, do not exceed three sentences.

# Now is the judgement I would like you to make, please follow the format I just
— described.

## Input

<|User Prompt]|>
Who is Barack Obama?

<|The Start of Assistant A's Answer|>
Barack Obama is a former US president.
<|The End of Assistant A's Answer|>

<|The Start of Assistant B's Answer|>

I do not know who Barack Obama is.

<|The End of Assistant B's Answer|>

## Your output, do not repeat the input above (must be a valid JSON)

Figure 9. Example of a prompt for the user prompt "Who is Barack Obama?". In this case, the judge is asked to provide its answer, an
explanation, and is provided an example. It is asked to use the Pair format and provide its answer in JSON. .
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You are a highly efficient assistant, who evaluates and selects the best large language
— model based on the quality of their responses to a given instruction.

You will be shown one instruction and the output of Assistant A and Assistant B and will
— have to decide which one was best.

Make sure to not over-confidently prefer one assistant or the other and also make sure to
— not bias your preference based on the ordering or on the length of the answers.

<|User Prompt]|>
Who is Barack Obama?

<|The Start of Assistant A's Answer|>
Barack Obama is a former US president.
<|The End of Assistant A's Answer|>

<|The Start of Assistant B's Answer|>
I do not know who Barack Obama is.
<|The End of Assistant B's Answer|>

# Your output

## Format description

Your output should follow this format:

answer: <your answer to the user prompt>

score: <one of A>>B, A>B, A=B, A<B, A<<B, see instruction bellow>

The "score" value should indicate your preference for the assistant. You must output only
— one of the following choices as your final verdict with a label:

A>>B: Assistant A is significantly better
A>B: Assistant A is slightly better

A=B: Tie, relatively the same

B>A: Assistant B is significantly better
B>>A: Assistant B is significantly better

## Your output, do not repeat the input above

Figure 10. Example of a prompt for the user prompt "Who is Barack Obama?". In this case, the judge is asked to provide its answer. It is
asked to use the Likert format and provide its answer in raw text.
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B.3. Tuning cost estimation

Alpaca-Eval and Arena-Hard. In both cases, to evaluate Spearman correlation one must annotate a judge on a grid of
models and instructions.

Let us assume we evaluate njugges = 4480 as done in this work for nyege1s = 20 models as done in (Li et al., 2024) on the
805 instructions of Alpaca Eval. We get the cost to annotated one model as 24$ by using the estimation of Ni et al. (2024).
This gives a cost of 4480 x 24 x 20 = 2 186 240$ for Alpaca-Eval and a cost of 2240 000$ for Arena-Hard whose cost to
annotate the instructions for one model was estimated to 25$ in (Ni et al., 2024).

Cost estimation of our approach. We evaluate N' = 4480 judge configurations on 400 instructions, then the top 1200
judge configurations on 1200 instructions, then the top 400 judge configurations on the full set of P = 3548 validation
instructions. This requires a total of 4 651 200 annotations. On average, a single annotation takes about 0.6s on a H100. If
using runpod with a cost of 2.79$/hour per H100 hour, we get a total cost of 4651200/3600 * 0.6 * 2.79 ~ 2.1K$.

The savings are obtained by identifying a more efficient metrics to distinguish judges than Spearman correlation (which
requires evaluating a grid of models and instructions in (Li et al., 2023) and (Li et al., 2024)) and applying multi-fidelity
which allows us to save roughly a factor of 3 since it avoids to annotate the full set of N x P.

C. Multi-objective background

In hyperparameter-optimization, one seeks to find the best hyperparameter 6* of a blackbox function f : R? — R, e.g. to
find:
0* = argmin f(6).
R
The blackbox may be for instance a neural network that we want to train and the hyperparameter may include the number of
layers or the learning rate.

Multi-objective optimization. When considering several objectives, we now want to minimize a function f(6) € R™.
Since we have more than one objective, there is not a single best hyperparameter 8* in general but a set of non-dominated
solutions.

We say that a hyperparameter 6 dominates ¢’ if and only if:
Vi, f(0); < f(0"); and i, f(0); < f(0);

and denotes it with 6 < 6’ i.e. when all components of f () are lower or equal than the ones of f(#") and one component is
strictly better.

We aim to find the Pareto front P which consists of non-dominated solution:

P={0cR?| A0 ,0 <6}

Non-dominated sort. When applying successful-halving, we need to sort the top configurations, for instance to keep the
top 50% and let those configurations run with a larger budget.

Since we have multiple objectives, something must be done to adapt the algorithm. While averaging out the objective (or
doing more advanced scalarization) allows to go back to the scalar case, it only works on some cases (where the Pareto front
is convex in the case of averaging the objectives for instance).

Another approach is to use non-dominated sort (Emmerich & Deutz, 2018) which we illustrate in Fig. 11 and now describe.
The approach first computes the Pareto front of the current set of observations and assign top-ranks with a heuristic to break
ties. Then, the approach is applied recursively until no points are left. To break ties, multiple heuristic can be used, in
our case we use an epsilon-net as it was shown to perform well in (Schmucker et al., 2021). As can be seen in Fig. 4, the
approach models the geometry of the Pareto front compared to scalarization approaches.

16



Tuning LLM Judges’ Hyperparameters
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Figure 11. Ilustration of the non-dominated sorting approach. The process first computes the Pareto front, assigning top ranks to the
points in this layer. Next, the Pareto front is determined for the remaining points, which are then assigned the next set of rankings. This

process continues iteratively until all points are ranked. To resolve ties within each layer, a heuristic is applied to balance both sparsity
and coverage.
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Figure 12. Scatter plot of cost and human agreement on the 400 validation instructions for all judges. We color-code each hyperparameter
differently to illustrate the performance of all judges. Even using the same LLM model, there is a large spread of performance when

varying other hyperparameters without an obvious pattern to distinguish the best configuration which motivates the need to search for
optimal hyperparameters.
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Figure 13. Correlation for different fidelity sizes. For each fidelity, we randomly split the instructions into two buckets and plot the
human-agreement on the first bucket versus the same metric computed on the second bucket of instructions for all the available judges, we
also report the Spearman correlation p between the two groups. This allows to see the correlation one can obtain between the two sets.
For the final fidelity, we measure the validation performance on 3548 instructions and use 3000 test instructions so we expect a higher
correlation between validation and test scores.
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