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Abstract

To avoid failures on out-of-distribution data, re-
cent works have sought to use only features with
an invariant or stable relationship with the label
across domains, discarding “spurious” or unstable
features whose relationship with the label changes
across domains. However, unstable features often
carry complementary information about the label
that could boost performance if used correctly
in the test domain. Our main contribution is to
show that it is possible to learn how to use these
unstable features in the test domain without la-
bels. We prove that pseudo-labels based on stable
features provide sufficient guidance for doing so,
provided that stable and unstable features are con-
ditionally independent given the label. Based on
this insight, we propose Stable Feature Boosting
(SFB), an algorithm for: (i) learning stable and
conditionally-independent unstable features; and
(ii) using the stable-feature predictions to adapt
the unstable-feature predictions to the test do-
main. Theoretically, we prove that SFB can learn
an asymptotically-optimal predictor without test-
domain labels. Empirically, we demonstrate the
effectiveness of SFB on real and synthetic data.

1. Introduction and Related Work
Machine learning systems often rely on “spurious” features
whose relationship with the label changes across domains,
leading to poor performance in test domains of inter-
est (Geirhos et al., 2020). Recent works have thus sought
predictors which do not rely on these spurious or unstable
relationships, but instead leverage relationships which are
invariant or stable across multiple domains (Peters et al.,
2016; Arjovsky et al., 2020; Krueger et al., 2021; Eastwood
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Figure 1. (a) CMNIST accuracies over domains of varying color-
label correlation (green dots show training domains). ‘Oracle’ uses
both invariant (shape) and spurious (color) features optimally in
the test domains, boosting performance over an invariant model
(orange region). We show how this can be done without labels.
(b) Invariant models use only the stable component XS of X,
discarding the spurious/unstable component XU . We prove that
predictions based on XS can be used to harness a sub-component
of XU (dark-orange region), improving test-domain performance.

et al., 2022). However, despite their instability, spurious
features can often provide additional or complementary
information about the target label. Thus, if a predictor could
be adjusted to use spurious features optimally in the test
domain, it would boost performance substantially. That is,
perhaps we don’t need to discard spurious features at all,
but rather, use them in the right way.

As a simple but illustrative example, consider the CMNIST
or ColorMNIST dataset (Arjovsky et al., 2020). This
transforms the original MNIST dataset into a binary
classification task (digit in 0–4 or 5–9) and then: (i) flips
the label with probability 0.25, meaning that, across all 3
domains, digit shape correctly determines the label with
probability 0.75; and (ii) colorizes the digit such that digit
color (red or green) is a more informative but spurious
feature (see Fig. 5 of Appendix E). Prior work focused
on learning invariant predictors that use only shape and
avoid using color—a spurious feature whose relationship
with the label changes across domains. However, as shown
in Fig. 1a, the invariant predictor is not Bayes-optimal in
many test domains since spurious features can be used in
a domain-specific manner to improve performance. Hence,
we ask: when and how can such informative but spurious
features be reliably harnessed without labels?

Related work. Table 1 summarises related work. For space
reasons, all other related work is deferred to Appendix H.



Table 1. Related work. ∗QRM includes a hyperparameter α ∈
[0, 1] trading off between robustness and using more of X.

Components of X Used
Method Stable Complem. All Robust No Test Labels
ERM (Vapnik, 1991) ✓ ✓ ✓ ✗ ✓
IRM (Arjovsky et al., 2020) ✓ ✗ ✗ ✓ ✓
QRM (Eastwood et al., 2022) ✓ ✓∗ ✓∗ ✓∗ ✓
DARE (Rosenfeld et al., 2022) ✓ ✓ ✓ ✓ ✗
ACTIR (Jiang and Veitch, 2022) ✓ ✓ ✗ ✓ ✗

SFB (Ours) ✓ ✓ ✗ ✓ ✓

2. Harnessing Unstable Features
Problem setup. We consider the problem of domain gen-
eralization (DG) where predictors are trained on data from
multiple training domains and with the goal of perform-
ing well on data from unseen test domains. More for-
mally, we consider datasets De = {(Xe

i , Ye
i )}

ne
i=1 collected

from m different training domains or environments Etr :=
{E1, . . . , Em}, with each dataset De containing data pairs
(Xe

i , Ye
i ) sampled i.i.d. from P(Xe, Ye).1 The goal is then to

learn a predictor f that performs well on data from a new test
domain from a larger set of all possible domains Eall ⊃ Etr.

Stable and unstable features. To avoid failures on OOD
data, recent works in DG have sought robust predictors that
only use stable or invariant features, i.e., those which have
a stable or invariant relationship with the label across do-
mains (Peters et al., 2016). In particular, Arjovsky et al.
(2020) learn features which have an invariant functional
relationship with the label by enforcing that the classifier
on top of these features is optimal for all domains simulta-
neously. We henceforth use stable features and XS to refer
to these features, and stable predictors to refer to predictors
which use only these features. Analogously, we use unsta-
ble features and XU to refer to features with an unstable
or “spurious” relationship with the label across domains.
Formal definitions for both stable and unstable features are
provided in § 3. Note that XS and XU form a partition of
the components of X which are informative about Y, as
depicted in Fig. 1b.

Harnessing unstable features with labels. A stable pre-
dictor fS is unlikely to be the best predictor in any given
domain. As illustrated in Fig. 1, this is because it excludes
unstable features XU which are informative about Y and
can boost performance if used in an appropriate, domain-
specific manner. Assuming that we can indeed learn a stable
predictor using prior methods, e.g., IRM (Arjovsky et al.,
2020), we now show how XU can be harnessed with labels
to boost performance. To begin, note that we need only
update the XU-Y relation since, by definition, the XS-Y
relation is stable across domains. We thus seek a feature
space which separates XS and XU , allowing only the unsta-
ble XU-Y relation to be updated. To do so, we decompose
a predictor f = h ◦ Φ into feature representation Φ and

1We drop the superscript e when referring to any environment.

classifier h and then describe the boosted joint predictor f e

in domain e as:

f e(X) = fS(X) + f e(X) (2.1)
= hS(ΦS(X)) + he(ΦU(X)) (2.2)
= hS(XS) + he(XU). (2.3)

Here, both fS and f e produce logits, with f e adding a
domain-specific adjustment to fS in logit space. As illus-
trated by Eqs. (2.2) and (2.3), the role of ΦS and ΦU is to ex-
tract XS and XU , respectively, from the observed features X.
Note that the stable predictor fS and classifier hS, as well as
the feature extractors ΦS and ΦU , are shared across domains
e, whereas the unstable classifier he

U is not. In principle, he
U

could take any form and we could learn completely separate
Φs, ΦU . In practice, however, we generally take he

U to be
a linear classifier and simply split the output features of a
shared Φ(X)=(ΦS(X), ΦU(X)) into two parts.

Given a new domain e and with labels Ye, we can then boost
performance by adapting he

U . More specifically, letting
ℓ : Y ×Y → R be a loss function (e.g., cross-entropy) and
Re( f ) = E(X,Y) [ℓ(Y, f (X))|E = e] the risk of a predictor
f : X → Y in domain e, we can adapt he

U to solve:

min
hU

∑
e∈Etr

Re(σ ◦ ((hS ◦ΦS) + (hU ◦ΦU))) (2.4)

Harnessing unstable features without labels. We now
consider the main question of this work—can we reliably
harness XU without test-domain labels? To begin, note
that, while we don’t have labels in the test domain, we do
have stable predictions. By definition, these are imperfect
(i.e., noisy) but robust, and can be used to form pseudo-
labels Ŷi = arg maxj fS(Xi)j, with fS(Xi)j denoting the

jth logit of the stable prediction for Xi. Can we somehow use
these noisy but robust pseudo-labels to guide our updating
of he

U , and, ultimately, our use of XU in the test domain?
Unfortunately, if we try to use our robust pseudo-labels as
if they were true labels—updating he

U to minimize the joint
risk as in Eq. (2.4)—we get a trivial solution of he

U(·)=0. If
our loss ℓ is accuracy, this is clear since he

U(·)=0 achieves
100% accuracy. For cross-entropy, the same applies (see
Prop. D.1 of App. D). Thus, we cannot minimize a joint
loss involving fS’s predictions when using fS’s pseudo-
labels. Instead, we consider minimizing the unstable-only
risk Re(σ ◦ hS ◦ΦS). While this could work, it raises many
questions about when it will work. We now summarise these
questions before addressing them in § 3:

1. When can we minimize the unstable-predictor risk
alone/separately? When does this lead to the optimal
joint predictor? This won’t always work; e.g., for inde-
pendent XS, XU ∼ Bernoulli(1/2) and Y = XS XOR
XU , Y is independent of each of XS and XU and hence
cannot be predicted from either alone.



2. Can we just add the logits as before, in Eq. (2.3)?
Intuitively, doing so would require them both to be “of
the same scale”, or, more precisely, properly calibrated.
Do we have any reason to believe that, after training on
the pseudo-labels, he

U will be properly calibrated?

3. Can the student outperform the teacher? Stable pre-
dictors likely make mistakes—indeed, this is the mo-
tivation for trying to improve them. Is it possible to
correct these mistakes with XU? Is it possible to learn
an unstable “student” predictor that outperforms its own
supervision signal or “teacher”?

3. Theory: When is it possible without labels?
Suppose we have already identified a stable feature XS and
a potentially unstable feature XU . We now analyze how to
use XS to leverage XU without labels in the test domain. To
do so, we first state a population-level model of our domain
generalization setup. Let E be a random variable denoting
the environment. Given environment E, the stable feature
XS, the unstable feature XU , and the label Y are distributed
according to PXS ,XU ,Y|E. We can now formalize the three
key assumptions underlying our approach:

Definition 3.1 (Stable and Unstable Predictors). XS is a
stable predictor of Y if PY|XS

does not depend on E; equiva-
lently, if Y ⊥⊥ E|XS. Conversely, XU is an unstable predic-
tor of Y if PY|XU

depends on E; equivalently, if Y ⊥̸⊥ E|XU .

Definition 3.2 (Complementary Features). XS and XU are
complementary predictors of Y if XS ⊥⊥ XU |(Y, E); i.e., re-
dundant information in XS and XU comes only from (Y, E).

Definition 3.3 (Informative Stable Predictor). XS is said to
be informative of Y in environment E if X ⊥̸⊥ Y|E (i.e., XS
is predictive of Y within the environment E).

We discuss the roles of these assumptions after stating our
main result (Thm. 3.4) that uses them. To keep our results
general, we avoided assumptions on the underlying causal
generative model. However, our conditional (in)dependence
assumptions can be interpreted as constraints on such a
causal model. Appendix D.1 characterizes the models that
are consistent with our assumptions, and shows how they
generalize those of prior works (Rojas-Carulla et al., 2018;
von Kügelgen et al., 2019; Jiang and Veitch, 2022).

Simplified notation. By Defn. 3.1, we have the same stable
relationship PY|XS ,E = PY|XS

in training and test domains.
Now, suppose we have used the training data to learn this
stable relationship and thus know PY|XS

. Also suppose
that we have enough unlabeled data from test domain E to
learn PXS ,XU |E, and recall that our goal is to predict Y from
(XS, XU) in test domain E. Since the rest of our discussion
is conditioned on E being the test domain, we omit E from
the notation. We further simplify notation by assuming a

binary label Y, deferring the multi-class case to Appendix C.

Main Result. We now present our main result which shows
how to reconstruct PY|XS ,XU

from PY|XS
and PXS ,XU when

XS and XU are complementary and XS is informative.

Theorem 3.4 (Solution to the marginal problem with bi-
nary labels and complementary features). Consider three
random variables XS, XU , and Y, where (i) Y is binary
({0, 1}-valued), (ii) XS and XU are complementary fea-
tures (i.e., XS ⊥⊥ XU |Y), and (iii) XS is informative of Y
(XS ⊥̸⊥ Y). Suppose Ŷ|XS ∼ Bernoulli(Pr[Y = 1|XS])
is a pseudo-label, and ϵ0 := Pr[Ŷ = 0|Y = 0] and are the
conditional probabilities that Ŷ and Y agree, given Y = 0
and Y = 1, respectively. Then, we have ϵ0 + ϵ1 > 1,

Pr[Y = 1|XU ] =
Pr[Ŷ = 1|XU ] + ϵ0 − 1

ϵ0 + ϵ1 − 1
, and (3.1)

Pr[Y = 1|XS, XU ]=σ(logit(Pr[Y=1|XS])

+ logit(Pr[Y=1|XU ])− logit(Pr[Y=1])). (3.2)

Intuitively, suppose we train a model to predict a pseudo-
label Ŷ (based on feature XS) from feature XU . Assuming
XS and XU are complementary, Eq (3.1) shows how to
transform this into a prediction of the true label Y, correcting
for biases caused by possible disagreement between Ŷ and
Y. Meanwhile, Eq. (3.2) integrates predictions based on XS
and XU , accounting for redundancy in the two predictions.

Complementarity. The assumption XS ⊥⊥ XU |Y plays
two separate but equally crucial roles in Thm. 3.4. First, it
ensures that XS and XU only share information about Y, or,
graphically, that the only unblocked path between XS and
XU goes through Y. Thus, when we train a model to predict
Ŷ (a function of XS only) from XU , the model must use
information about Y—since there are no other relationships
between XS and XU . This insight is key to justifying the
bias-correction formula of Eq. (3.1). Second, by ensuring
that the only interaction between XS and XU is due to Y
itself, complementarity implies that PY|XS ,XU

decomposes
into separately estimatable PY|XS

and PY|XU
. Specifically,

as shown in Eq. (3.2), one can simply add estimates of PY|XS
and PY|XU

(in logit-space) while subtracting a correction-
term based on the marginal distribution of Y.

Informativeness. It is intuitive that XS ⊥̸⊥Y is necessary for
pseudo-labels to be useful. More surprising is that XS ⊥̸⊥Y
is sufficient for Thm. 3.4: any dependence between XS
and Y allows us to fully learn the relationship between XU
and Y, affirmatively answering our question from § 2: Can
the student outperform the teacher? A strong relationship
between XS and Y is still helpful in terms of the (unlabeled)
sample complexity of learning PY|XU

, but it is not required
for consistency (Thm. 3.5, below).

Provably consistent adaptation. Thm. 3.4 implies that,
given PY|XS

from the training domains, we can learn



Algorithm 1: Bias-corrected domain adaptation.
Input: Regression function

ηS(xS) = Pr[Y = 1|XS = xS], subroutine
regressor, n unlabeled samples
{(XS,i, XU,i)}n

i=1 from the test domain
Output: Estimate η̂n : XS ×XU → [0, 1] of

Pr[Y = 1|XS = xS, XU = xU ]
1 for i ∈ [n] do // generate pseudolabels

2 Sample Ŷi ∼ Bernoulli(ηS(XS,i))

3 η̂U,n ← regressor
(
{(XU,i, Ŷi)}n

i=1
)

4 n1 ← ∑n
i=1 Ŷi; β̂1,n ← logit

( n1
n
)

5 ϵ̂0,n ← 1
n−n1

∑n
i=1(1− Ŷi)(1− ηS(XS,i))

6 ϵ̂1,n ← 1
n1

∑n
i=1 ŶiηS(XS,i)

7 return (η̂n(xS, xU) 7→
σ
(

logit(ηS(xS)) + logit
(

η̂U,n(xU)+ϵ̂0,n−1
ϵ̂0,n+ϵ̂1,n−1

)
− β̂1,n

)
PY|XS ,XU

in the test domain by learning PXS ,XU —the lat-
ter only requiring unlabeled test-domain data. This moti-
vates Alg. 1, our bias-corrected algorithm for unsupervised
test-domain adaptation, which is a finite-sample version of
Eqs. (3.1) and (3.2) in Thm. 3.4. Alg. 1 also comes with the
following guarantee, formalized and proved in Appendix B:

Theorem 3.5 (Consistency Guarantee, Informal). Assume
(i) XS is stable, (ii) XS and XU are complementary, and
(iii) XS is informative of Y in the test domain. If η̂U,n →
Pr[Ŷ = 1|XU ] as n → ∞, then η̂n → Pr[Y = 1|XS, XU ].

In words, as the amount of unlabeled test-domain data in-
creases, if the regressor on line 3 of Alg. 1 learns to predict
the pseudo-label Ŷ, then the test-domain classifier output by
Alg. 1 learns to predict the true label Y in the test domain.

4. Algorithm: Stable Feature Boosting
We now use our theoretical insights from § 3 to propose
Stable Feature Boosting (SFB): an algorithm for reliably
harnessing unstable features without labels.

Learning goals. § 3 showed that, if we can indeed learn
informative stable features XS and complementary features
XC, then we can employ the bias-corrected adaptation algo-
rithm of Alg. 1 (or Alg. 2 for multi-class) to update he

U in
the test domain. Thus, our training-domain goal is to extract
XS and XC from the observed X such that we can reliably
harness XC in the test domain. More precisely, using the
notation of Eq. (2.3), we have the following learning goals:

1. fS: stable, well-calibrated, good performance.
2. f e

U: boosts the performance of fS in domain e using
complementary features.

Objective function. To achieve the above learning goals on
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Figure 2. CMNIST results. Oracle: ERM with labelled test-domain
data. Stable: unadapted SFB. Further details in the main text.

the training domains, we propose the following objective:

min
Φ,hS ,he

U
∑

e∈Etr


Re(σ ◦ hS ◦ΦS)

+ Re(σ ◦ ((hS◦ΦS)+(he
U ◦ΦU)))

+ λS · PStability(hS, ΦS, Re)

+ λc · PComplem.(ΦS(Xe), ΦU(Xe))

 (4.1)

Here, PStability is a penalty encouraging stability while
PComplem. is a penalty encouraging complementarity, i.e.,
ΦS(X) ⊥⊥ ΦS(X)|Y. Several approaches have been
proposed for enforcing stability, e.g., IRM (Arjovsky
et al., 2020), while complementarity can be enforced by
any conditional-dependence penalty (e.g., the conditional
Hilbert-Schmidt Independence Criterion (Gretton et al.,
2005, HSIC) or cheaper approximations like (Jiang and
Veitch, 2022, §3.1)). Both λS ∈ [0, ∞) and λC ∈ [0, ∞)
are regularization hyperparameters. While another
hyperparameter γ ∈ [0, 1] could control the relative
weighting of stable and joint risks, i.e., γRe(hS ◦ΦS) and
(1−γ)Re((hS ◦ ΦS)+(hU ◦ ΦU)), we found this to be
unnecessary in practice.

Post-hoc calibration. As discussed in § 3, correctly com-
bining the stable and unstable predictions requires them to
be properly calibrated. Thus, after optimizing Eq. (4.1),
we apply a standard post-processing step to improve the
stable predictor’s calibration, e.g., simple temperature scal-
ing (Guo et al., 2017).

Adapting without labels. Armed with a stable, well-
calibrated fS and complementary ΦU(X), we apply Alg. 1
(or Alg. 2 for the multi-class case) to arrive at an adapted
joint classifier f̂ eT (the logit of η̂n in Line 7 of Alg. 1).

5. Experiments
Implementation and dataset details are in Apps. G and E, re-
spectively. Further results are in App. F, including synthetic
(F.1) and real-world (F.3) datasets, as well as ablations (F.2).

CMNIST. Fig. 2 shows that: (i) both bias-correction (BC)
and post-hoc calibration (CA) improve SFB’s adaptation per-
formance; and (ii) without labels, SFB harnesses color near-
optimally in test domains of varying color-label correlation—



Table 2. PACS test-domain accuracies over 5 seeds.
Algorithm P A C S

ERM 93.0± 0.7 79.3± 0.5 74.3± 0.7 65.4± 1.5
IRM 93.3± 0.3 78.7± 0.7 75.4± 1.5 65.6± 2.5
ACTIR 94.8± 0.1 82.5± 0.4 76.6± 0.6 62.1± 1.3
SFB w/o adapt 93.7± 0.6 78.1± 1.1 73.7± 0.6 69.7± 2.3
SFB w. adapt 95.8± 0.6 80.4± 1.3 76.6± 0.6 71.8± 2.0

the original goal we set out to achieve (see Fig. 1a). In
addition, Table 4 of App. F.2 shows that: (i) SFB learns
a stable predictor with performance comparable to other
invariant-prediction methods; and (ii) only SFB is capable of
harnessing the spurious color feature in the test domain with-
out labels, leading to a near-optimal boost in performance.
Further results and ablations are provided in App. F.2.

PACS. Table 2 shows that SFB’s stable (i.e., no adaptation)
performance is comparable to IRM and ACTIR. One excep-
tion is the severe shift of domain S (sketch), where our stable
predictor performs best. Another lies with domains A and
C, where ACTIR performs better. Most notable, however, is:
(i) the consistent boost that SFB gets from adaptation; and
(ii) SFB performing best or joint-best on 3 of 4 domains.
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A. Proof and further discussion of Theorem 3.4
A.1. Proof of Theorem 3.4

In this section, we prove our main results regarding the marginal generalization problem presented in Section 3, namely
Theorem 3.4. For the reader’s convenience, we restate Theorem 3.4 here:
Theorem 3.4 (Marginal generalization with for binary labels and complementary features). Consider three random variables
XS, XU , and Y, where

1. Y is binary ({0, 1}-valued),
2. XS and XU are complementary features for Y (i.e., XS ⊥⊥ XU |Y), and
3. XS is informative of Y (XS ⊥̸⊥ Y).

Then, the joint distribution of (XS, XU , Y) can be written in terms of the joint distributions of (XS, Y) and (XS, XU).
Specifically, if Ŷ|XS ∼ Bernoulli(Pr[Y = 1|XS]) is pseudo-label and

ϵ0 := Pr[Ŷ = 0|Y = 0] and ϵ1 := Pr[Ŷ = 1|Y = 1] (A.1)

are the conditional probabilities that Ŷ and Y agree, given Y = 0 and Y = 1, respectively, then,

1. ϵ0 + ϵ1 > 1,

2. Pr[Y = 1|XU ] =
Pr[Ŷ = 1|XU ] + ϵ0 − 1

ϵ0 + ϵ1 − 1
, and

3. Pr[Y = 1|XS, XU ] = σ (logit(Pr[Y = 1|XS]) + logit(Pr[Y = 1|XU ])− logit(Pr[Y = 1])).

Before proving Theorem 3.4, we provide some examples demonstrating that the complementarity and informativeness
assumptions in Theorem 3.4 cannot be dropped.
Example A.1. Suppose XS and XU have independent Bernoulli(1/2) distributions. Then, XS is informative of both of the
binary variables Y1 = XSXU and Y2 = XS(1− XU) and both have identical conditional distributions given XS, but Y1 and
Y2 have different conditional distributions given XU:

Pr[Y1 = 1|XU = 0] = 0 ̸= 1/2 = Pr[Y2 = 1|XU = 0].

Thus, the complementarity condition cannot be omitted.

On the other hand, XS and XU are complementary for both Y3 = XU and an independent Y4 ∼ Bernoulli(1/2) and both
Y3 and Y4 both have identical conditional distributions given XS, but Y1 and Y2 have different conditional distributions
given XU:

Pr[Y3 = 1|XU = 1] = 1/2 ̸= 1 = Pr[Y4 = 1|XU = 1].
Thus, the informativeness condition cannot be omitted.

Before proving Theorem 3.4, we prove Lemma A.2, which allows us to safely divide by the quantity ϵ0 + ϵ1 − 1 in the
formula for Pr[Y = 1|XU ], under the condition that XS is informative of Y.

Lemma A.2. In the setting of Theorem 3.4, let ϵ0 and ϵ1 be the class-wise pseudo-label accuracies defined in as in Eq. (A.1).
Then, ϵ0 + ϵ1 = 1 if and only if XS and Y are independent.

Note that the entire result also holds, with almost identical proof, in the multi-environment setting of Sections 2 and 4,
conditioned on a particular environment E.

Proof. We first prove the forwards implication. Suppose ϵ0 + ϵ1 = 1. If Pr[Y = 1] ∈ {0, 1}, then XS and Y are trivially
independent, so we may assume Pr[Y = 1] ∈ (0, 1). Then,

E[Ŷ] = ϵ1 Pr[Y = 1] + (1− ϵ0)(1− Pr[Y = 1]) (Law of Total Expectation)
= (ϵ0 + ϵ1 − 1)Pr[Y = 1] + 1− ϵ0

= 1− ϵ0 (ϵ0 + ϵ1 = 1)

= E[Ŷ|Y = 0]. (Definition of ϵ0)



Since Y is binary and Pr[Y = 1] ∈ (0, 1), it follows that E[Ŷ] = E[Ŷ|Y = 0] = E[Ŷ|Y = 1]; i.e., E[Ŷ|Y] ⊥⊥ Y. Since Ŷ
is binary, its distribution is specified entirely by its mean, and so Ŷ ⊥⊥ Y. It follows that the covariance between Ŷ and Y is
0:

0 = E[(Y−E[Y])(Ŷ−E[Ŷ])]

= E[E[(Y−E[Y])(Ŷ−E[Ŷ])|XS]] (Law of Total Expectation)

= E[E[Y−E[Y]|XS]E[Ŷ−E[Ŷ]|XS]] (Y ⊥⊥ Ŷ|XS)

= E[(E[Y−E[Y]|XS])
2],

where the final equality holds because Ŷ and Y have identical conditional distributions given XS. Since the L2 norm of a
random variable is 0 if and only if the variable is 0 almost surely, it follows that, PXS -almost surely,

0 = E[Y−E[Y]|XS] = E[Y|XS]−E[Y],

so that E[Y|XS] ⊥⊥ XS. Since Y is binary, its distribution is specified entirely by its mean, and so Y ⊥⊥ XS, proving the
forwards implication.

To prove the reverse implication, suppose XS and Y are independent. Then Ŷ and Y are also independent. Hence,

ϵ1 = E[Ŷ|Y = 1] = E[Ŷ|Y = 0] = 1− ϵ0,

so that ϵ0 + ϵ1 = 1.

We now use Lemma A.2 to prove Theorem 3.4:

Proof. To begin, note that Ŷ has the same conditional distribution given XS as Y (i.e., PŶ|XS
= PY|XS

and that Ŷ is

conditionally independent of Y given XS (Ŷ ⊥⊥ Y|XS). Then, since

Pr[Ŷ = 1] = E[Pr[Y = 1|XS]] = Pr[Y = 1], (A.2)

we have

ϵ1 = Pr[Ŷ = 1|Y = 1] =
Pr
[
Y = 1, Ŷ = 1

]
Pr[Y = 1]

(Definition of ϵ1)

=
Pr
[
Y = 1, Ŷ = 1

]
Pr[Ŷ = 1]

(Eq. (A.2))

=
EXS [Pr

[
Y = 1, Ŷ = 1|XS

]
]

EXS [Pr[Ŷ = 1|XS]]
(Law of Total Expectation)

=
EXS [Pr[Y = 1|XS]Pr[Ŷ = 1|XS]]

EXS [Pr[Ŷ = 1|XS]]
(Ŷ ⊥⊥ Y|XS)

=
EXS

[
(Pr[Y = 1|XS])

2
]

EXS [Pr[Y = 1|XS]]
(PŶ|XS

= PY|XS
)

entirely in terms of the conditional distribution PY|XS
and the marginal distribution PXS . Similarly, ϵ0 can be written

as ϵ0 =
EXS

[
(Pr[Y=0|XS ])

2
]

EXS [Pr[Y=0|XS ]]
. Meanwhile, by the law of total expectation, and the assumption that XS (and hence Ŷ) is

conditionally independent of XU given Y, the conditional distribution PŶ|XU
of Ŷ given XU can be written as

Pr[Ŷ = 1|XU ]

= Pr[Ŷ = 1|Y = 0, XU ]Pr[Y = 0|XU ] + Pr[Ŷ = 1|Y = 1, XU ]Pr[Y = 1|XU ]

= Pr[Ŷ = 1|Y = 0]Pr[Y = 0|XU ] + Pr[Ŷ = 1|Y = 1]Pr[Y = 1|XU ]

= (1− ϵ0)(1− Pr[Y = 1|XU ]) + ϵ1]Pr[Y = 1|XU = XU ]

= (ϵ0 + ϵ1 − 1)Pr[Y = 1|XU ] + 1− ϵ0.



By Lemma A.2, the assumption XS ⊥̸⊥ Y implies ϵ0 + ϵ1 ̸= 1. Hence, re-arranging the above equality gives us the
conditional distribution PY|XU

of Y given XU purely in terms of the conditional PY|XS
and PXS ,XU :

Pr[Y = 1|XU = XU ] =
Pr[Ŷ = 1|XU = XU ] + ϵ0 − 1

ϵ0 + ϵ1 − 1
.

It remains now to write the conditional distribution PY|XS ,XU
in terms of the conditional distributions PY|XS

and PY|XU
and

the marginal PY. Note that

Pr[Y = 1|XS, XU ]

Pr[Y = 0|XS, XU ]
=

Pr[XS, XU |Y = 1]Pr[Y = 1]
Pr[XS, XU |Y = 0]Pr[Y = 0]

(Bayes’ Rule)

=
Pr[XS|Y = 1]Pr[XU |Y = 1]Pr[Y = 1]
Pr[XS|Y = 0]Pr[XU |Y = 0]Pr[Y = 0]

(Complementarity)

=
Pr[Y = 1|XS]Pr[Y = 1|XU ]Pr[Y = 0]
Pr[Y = 0|XS]Pr[Y = 0|XU ]Pr[Y = 1]

. (Bayes’ Rule)

It follows that the logit of Pr[Y = 1|XS, XU ] can be written as the sum of a term depending only on XS, a term depending
only on XU , and a constant term:

logit (Pr[Y = 1|XS, XU ]) = log
Pr[Y = 1|XS, XU ]

1− Pr[Y = 1|XS, XU ]

= log
Pr[Y = 1|XS, XU ]

Pr[Y = 0|XS, XU ]

= log
Pr[Y = 1|XS]

Pr[Y = 0|XS]
+ log

Pr[Y = 1|XU ]

Pr[Y = 0|XU ]
− log

Pr[Y = 1]
Pr[Y = 0]

= logit (Pr[Y = 1|XS]) + logit (Pr[Y = 1|XU ])− logit (Pr[Y = 1]) .

Since the sigmoid σ is the inverse of logit,

Pr[Y = 1|XS, XU ] = σ (logit (Pr[Y = 1|XS]) + logit (Pr[Y = 1|XU ])− logit (Pr[Y = 1])) ,

which, by Eq. (3.1), can be written in terms of the conditional distribution PY|XS
and the joint distribution PXS ,XU .

A.2. Further discussion of Theorem 3.4

Connections to learning from noisy labels. Theorem 3.4 leverages two theoretical insights about the special structure of
pseudo-labels that complement results in the literature on learning from noisy labels. First, Blanchard et al. (2016) showed
that learning from noisy labels is possible if and only if the total noise level is below the critical threshold ϵ0 + ϵ1 > 1; in
the case of learning from pseudo-labels, we show (see Lemma A.2 in Appendix A.1) that this is satisfied if and only if XS is
informative of Y (i.e., Y ⊥̸⊥ XS). Second, methods for learning under label noise commonly assume knowledge of ϵ0 and
ϵ1 (Natarajan et al., 2013), which is unrealistic in many applications; however, for pseudo-labels sampled from a known
conditional probability distribution PY|XS

, one can express these noise levels we show (as part of Theorem 3.4) that the
class-conditional noise levels can be easily estimated.

Possible applications of Theorem 3.4 beyond domain adaptation The reason we wrote Theorem 3.4 in the more general
setting of the marginal problem rather than in the specific context of domain adaptation is that we envision possible
applications to a number of problems besides domain adaptation. For example, suppose that, after learning a calibrated
machine learning model M1 using a feature XS, we observe an additional feature XU . In the case that XS and XU are
complementary, Theorem 3.4 justifies using the student-teacher paradigm (Buciluǎ et al., 2006; Ba and Caruana, 2014;
Hinton et al., 2015) to train a model for predicting Y from XU (or from (XS, XU) jointly) based on predictions from M1.
This could be useful if we don’t have access to labeled pairs (XU , Y), or if retraining a model using XS would require
substantial computational resources or access to sensitive or private data. Exploring such approaches could be a fruitful
direction for future work.



B. Proof of Theorem 3.5
This appendix provides a proof of Theorem 3.5, which provides conditions under which our proposed domain adaptation
procedure (Alg. 1) is consistent.

We first provide a formal version of Theorem 3.5:
Theorem 3.5 (Consistency of the bias-corrected classifier). Assume

1. XS is stable,

2. XS and XU are complementary, and

3. XS is informative of Y (i.e., XS ⊥̸⊥ Y).

Let η̂n : XS × XU → [0, 1] given by

η̂n(xS, xU) = σ

(
fS(xS) + logit

(
η̂U,n(xU) + ϵ̂0,n − 1

ϵ̂0,n + ϵ̂1,n − 1

)
− β1

)
, for all (xS, xU) ∈ XS ×XU ,

denote the bias-corrected regression function estimate proposed in Alg. 1, and let ĥn : XS ×XU → {0, 1} given by

ĥn(xS, xU) = 1{η̂(xS, xU) > 1/2}, for all (xS, xU) ∈ XS ×XU ,

denote the corresponding hard classifier. Let ηU : XU → [0, 1], given by ηU(xU) = Pr[Y = 1|XU = xU , E = 1] for all
xU ∈ XU , denote the true regression function over XU , and let η̂U,n denote its estimate as assumed in Line 3 of Alg. 1.
Then, as n→ ∞,

(a) if, for PXU -almost all xU ∈ XU , η̂U,n(xU)) → ηU(xU) in probability, then η̂n and ĥn are weakly consistent (i.e.,
η̂n(xS, xU)→ η(xS, xU) PXS ,XU -almost surely and R(ĥn)→ R(h∗) in probability).

(b) if, for PXU -almost all xU ∈ XU , η̂U,n(xU)) → ηU(xU) almost surely, then η̂n and ĥn are strongly consistent (i.e.,
η̂n(xS, xU)→ η(xS, xU) PXS ,XU -almost surely and R(ĥn)→ R(h∗) a.s.).

Before proving Theorem 3.5, we provide a few technical lemmas. The first shows that almost-everywhere convergence of
regression functions implies convergence of the corresponding classifiers in classification risk:

Lemma B.1. Consider a sequence of regression functions η, η1, η2, ... : X → [0, 1]. Let h, h1, h2, ... : X → {0, 1} denote
the corresponding classifiers

h(x) = 1{η(x) > 1/2} and hi(x) = 1{ηi(x) > 1/2}, for all i ∈N, x ∈ X .

(a) If ηn(x)→ η(x) for PX-almost all x ∈ X in probability, then R(hn)→ R(h∗) in probability.

(b) If ηn(x)→ η(x) for PX-almost all x ∈ X almost surely as n→ ∞, then R(hn)→ R(h) almost surely.

Proof. Note that, since hn(x) ̸= h(x) implies |ηn(x)− η(x)| ≥ |η(x)− 1/2|,

1{hn(x) ̸= h(x)} ≤ 1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|}. (B.1)

We utilize this observation to prove both (a) and (b).

Proof of (a) Let δ > 0. By Inequality (B.1) and partitioning X based on whether |2η(X)− 1| ≤ δ/2,

EX [|2η(X)− 1|1{hn(X) ̸= h(X)}]
≤ EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}]
= EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}1{|2η(X)− 1| > δ/2}]

+ EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}1{|2η(X)− 1| ≤ δ/2}]
≤ EX [1{|ηn(X)− η(X)| > δ/2}] + δ/2.



Hence,

lim
n→∞

Pr
ηn

[EX [|2η(X)− 1|1{hn(X) ̸= h(X)}] > δ]

≤ lim
n→∞

Pr
ηn

[EX [1{|ηn(X)− η(X)| > δ/2}] > δ/2]

≤ lim
n→∞

2
δ

Eηn [EX [1{|ηn(X)− η(X)| > δ/2}]] (Markov’s Inequality)

= lim
n→∞

2
δ

EX
[
Eηn [1{|ηn(X)− η(X)| > δ/2}]

]
(Fubini’s Theorem)

=
2
δ

EX

[
lim

n→∞
Pr
ηn

[|ηn(X)− η(X)| > δ/2]
]

(Dominated Convergence Theorem)

= 0. (ηn(X)→ η(X), PX-a.s., in probability)

Proof of (b) For any x ∈ X with η(x) ̸= 1/2, if ηn(x)→ η(x) then 1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|} → 0. Hence,
by Inequality (B.1), the dominated convergence theorem (with |2η(x)− 1|1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|} ≤ 1), and
the assumption that ηn(x)→ η(x) for PX-almost all x ∈ X almost surely,

lim
n→∞

EX [|2η(X)− 1|1{hn(X) ̸= h(X)}]

≤ lim
n→∞

EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}]

= EX

[
lim

n→∞
|2η(X)− 1|1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|}

]
= 0, almost surely.

Our next lemma concerns an edge case in which the features XS and XU provide perfect but contradictory information about
Y, leading to Equation (3.2) being ill defined. We show that this can happen only with probability 0 over (XS, XU) ∼ PXS ,XU
can thus be safely ignored:

Lemma B.2. Consider two predictors XS and XY of a binary label Y. Then,

Pr
XS ,XU

[E[Y|XS] = 1 and E[Y|XU ] = 0] = Pr
XS ,XU

[E[Y|XS] = 0 and E[Y|XU ] = 1] = 0.

Proof. Suppose, for sake of contradiction, that the event

A := {(xS, xU) : E[Y|XS = xS] = 1 and E[Y|XU = xU ] = 0}

has positive probability. Then, the conditional expectation E[Y|A] is well-defined, giving the contradiction

1 = EXS [E[Y|E, XS]] = E[Y|A] = EXU [E[Y|E, XU ]] = 0.

The case E[Y|XS] = 0 and E[Y|XU ] = 1 is similar.

We now utilize Lemmas B.1 and B.2 to prove Theorem 3.5.

Proof. By Lemma B.1, it suffices to prove that η̂(xS, xU) → η(xS, xU), for PXS ,XU -almost all (xS, xU) ∈ XS ×XU , in
probability (to prove (a)) and almost surely (to prove (b)).



Finite case We first consider the case when both Pr[Y|XS = xS], Pr[Y|XU = xU ] ∈ (0, 1), so that fS(xS) and

logit
(

η̃(xU)+ϵ0−1
ϵ0+ϵ1−1

)
are both finite. Since

η̂S,U(xS, xU)− ηS,U(xS, xU)

= σ

(
fS(xS) + logit

(
η̂U,1(xU) + ϵ̂0 − 1

ϵ̂0 + ϵ̂1 − 1

)
− β̂1,n

)
− σ

(
fS(xS) + logit

(
η̃(xU) + ϵ0 − 1

ϵ0 + ϵ1 − 1

)
− β1

)
,

where the sigmoid σ : R→ [0, 1] is continuous, by the continuous mapping theorem and the assumption that η̂U,1(xU)→
η̃(xU), to prove both of these, it suffices to show:

(i) ϵ̂0 → ϵ0 and ϵ̂1 → ϵ1 almost surely as n→ ∞.

(ii) β̂1,n → β1 ∈ (−∞, ∞) almost surely as n→ ∞.

(iii) The mapping (a, b, c) 7→ logit
(

a+b−1
b+c−1

)
is continuous at (η̃(xU), ϵ0, ϵ1).

We now prove each of these in turn.

Proof of (i) Since Ŷi ⊥⊥ Yi|XS and 0 < Pr[Ŷ = 1], by the strong law of large numbers and the continuous mapping
theorem,

ϵ̂1 =
1
n1

n

∑
i=1

Ŷiσ( fS(Xi)) =
1
n ∑n

i=1 Ŷiσ( fS(Xi))
1
n ∑n

i=1 Ŷi
→ E[σ( fS(X))1{Ŷ = 1}]

Pr[Ŷ = 1]
= E[σ( fS(X))|Ŷ = 1] = ϵ1,

almost surely as n→ ∞. Similarly, since Pr[Ŷ = 0] = 1− Pr[Ŷ = 1] > 0, ϵ̂0 → ϵ0 almost surely.

Proof of (ii) Recall that

β̂1,n = logit

(
1
n

n

∑
i=1

Ŷi

)
.

By the strong law of large numbers, 1
n ∑n

i=1 Ŷi → Pr[Ŷ = 1|E = 1] = Pr[Y = 1|E = 1]. Since we assumed
Pr[Y = 1|E = 1] ∈ (0, 1), it follows that the mapping a 7→ logit(a) is continuous at a = Pr[Y = 1|E = 1]. Hence, by
the continuous mapping theorem, β̂1,n → logit (Pr[Y = 1|E = 1]) = β1 almost surely.

Proof of (iii) Since the logit function is continuous on the open interval (0, 1) and we assumed ϵ0 + ϵ1 > 1, it suffices to
show that 0 < η̃(xU) + ϵ0 − 1 < ϵ0 + ϵ1 − 1. Since, according to Theorem 3.4,

η̃(xU) = (ϵ0 + ϵ1 − 1)η∗(xU)) + 1− ϵ0,

this holds as long as 0 < η∗(xU) < 1, as we assumed for PXU -almost all xU ∈ XU .

Infinite case We now address the case where either Pr[Y|XS = xS] ∈ {0, 1} or Pr[Y|XU = xU ] ∈ {0, 1}. By
Lemma B.2, only one of these can happen at once, PXS ,XU -almost surely. Hence, since limn→∞ β̂1,n is also finite
almost surely, if Pr[Y|XS = xS] ∈ {0, 1}, then η̂(xS, xU) = σ(logit(Pr[Y|XS = xS])) = η(xS, xU), while, if
Pr[Y|XU = xU ] ∈ {0, 1}, then η̂(xS, xU)→ σ (logit(Pr[Y|XU = xU ])) = η(xS, xU), in probability or almost surely, as
appropriate.

C. Multiclass Case
In the main paper, to simplify notation, we presented our unsupervised test-domain adaptation method in the case of binary
labels Y. However, in many cases, including several of our experiments in Section 5, the label Y can take more than 2
distinct values. Hence, in this section, we show how to generalize our method to the multiclass setting and then present the
exact procedure (Alg. 2) used in our multiclass experiments in Section 5.



Suppose we have K ≥ 2 classes. We “one-hot encode” these classes, so that Y takes values in the set

Y = {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)} ⊆ {0, 1}K.

Let ϵ ∈ [0, 1]Y×Y with
ϵy,y′ = Pr[Ŷ = y|Y = y′]

denote the class-conditional confusion matrix of the pseudo-labels. Then, we have

E[Ŷ|XU ] = ∑
y∈Y

E[Ŷ|Y = y, XU ]Pr[Y = y|XU ] (Law of Total Expectation)

= ∑
y∈Y

E[Ŷ|Y = y]Pr[Y = y|XU ] (Complementary)

= ϵ E[Y|XU ]; (Definition of ϵ)

in particular, when ϵ is invertible,
E[Y|XU ] = ϵ−1 E[Ŷ|XU ],

giving a multiclass equivalent of Eq. (3.1) in Theorem 3.4. We also have

ϵy,y′ = Pr[Ŷ = y|Y = y′] =
Pr[Ŷ = y, Y = y′]

Pr[Y = y′]
=

E
[
Pr[Ŷ = y, Y = y′|XS]

]
E [Pr[Y = y′|XS]]

=
E
[
Pr[Ŷ = y|XS]Pr[Y = y′|XS]

]
E [Pr[Y = y′|XS]]

=
E
[
η1,y(XS)η1,y′(XS)

]
E
[
η1,y′(XS)

] ,

suggesting the estimate

ϵ̂y,y′ =
∑n

i=1 η̂S,y(XS,i)η̂S,y′(XS,i)

∑n
i=1 η̂S,y′(XS,i)

=
n

∑
i=1

η̂S,y(XS,i)
η̂S,y′(XS,i)

∑n
i=1 η̂S,y′(XS,i)

of each ϵy,y′ , or, in matrix notation,
ϵ̂ = η⊺

S(XS)Normalize(ηS(XS)),

where Normalize(X) scales each column of X to sum to 1. This gives us an multiclass equivalent of Line 4 in Alg. 1.

The multiclass versions of Eq. (3.2) and Line 7 of Alg. 1 are slightly less straightforward. Specifically, whereas, in the binary
case, we used the fact that Pr[XS, XU |Y ̸= 1] = Pr[XS, XU |Y = 0] = Pr[XS|Y = 0]Pr[XU |Y = 0] = Pr[XS|Y ̸=
1]Pr[XU |Y ̸= 1] (by complementarity), in the multiclass case, we do not have Pr[XS, XU |Y ̸= 1] = Pr[XS|Y ̸=
1]Pr[XU |Y ̸= 1]. However, following similar reasoning as in the proof of Theorem 3.4, we have

Pr[Y = y|XS, XU , E]
Pr[Y ̸= y|XS, XU , E]

=
Pr[Y = y|XS, XU , E]

∑y′ ̸=y Pr[Y = y′|XS, XU , E]

=
Pr[XS, XU |Y = y, E]Pr[Y = y|E]

∑y′ ̸=y Pr[Y ̸= y|XS, XU , E]Pr[Y = y′|E] (Bayes’ Rule)

=
Pr[XS|Y = y, E]Pr[XU |Y = y, E]Pr[Y = y|E]

∑y′ ̸=y Pr[XS|Y = y′, E]Pr[XU |Y = y′, E]Pr[Y = y′|E] (XS ⊥⊥ XU |Y)

=
Pr[Y = y|XS, E]Pr[Y = y|XU , E]

∑y′ ̸=y Pr[Y = y′|XS, E]Pr[Y = y′|XU , E] · Pr[Y=y|E]
Pr[Y=y′ |E]

. (Bayes’ Rule)



Hence,

logit(Pr[Y = y|XS, XU , E]) = log

 Pr[Y = y|XS, E]Pr[Y = y|XU , E]

∑y′ ̸=y Pr[Y = y′|XS, E]Pr[Y = y′|XU , E] · Pr[Y=y|E]
Pr[Y=y′ |E]


= log

(
Cy

∑y′ ̸=y Cy′

)
= log

 Cy
∥C∥1

∑y′ ̸=y
Cy′
∥C∥1

 = logit
(

Cy

∥C∥1

)
,

for C ∈ RY defined by

Cy =
ηS,y(XS)ηU,y(XU)

Pr[Y = y]
for each y ∈ Y .

In particular, applying the sigmoid function to each side, we have

Pr[Y|XS, XU ] =
C
∥C∥1

.

We can estimate Cy by

Ĉy =
ηS,y(XS)ηU,y(XU)

1
n ∑n

i=1 ηS,y(XS,i)
.

In matrix notation, this is

Ĉ =
ηS(XS) ◦ ηU(XU)

1
n ∑n

i=1 ηS(XS,i)
,

where ◦ denotes element-wise multiplication. Putting these derivations together gives us our multiclass version of Alg. 1,
presented in Alg. 2, where ∆Y = {z ∈ [0, 1]K : ∑y∈Y zy = 1} denotes the standard probability simplex over Y .

Algorithm 2: Multiclass bias-corrected unsupervised domain adaptation procedure.

Input: Regression function ηS : X → ∆Y , subroutine regressor, n unlabeled samples {(XS,i, XU,i)}n
i=1 from

the test domain
Output: Estimate η̂n : XS ×XU → ∆Y of regression function ηy(xS, xU) = Pr[Y = y|XS = xS, XU = xU ]

1 for i ∈ [n] do // generate pseudolabels

2 Sample Ŷi ∼ Categorical(ηS(XS,i)) // Ŷ ∈ {0, 1}n×K is one-hot encoded

3 η̃U,n ← regressor
(
{(XU,i, Ŷi)}n

i=1
)

// regress pseudolabels over XU
4 ϵ̂← η⊺

S(XS)Normalize(η⊺
S(XS)) // Estimate ϵy,y′ = Pr[Ŷ = y|Y = y]

5 η̂U,n ←
(

xU 7→ max{0, min{1, ϵ−1η̃U,n(xU)}, }
)

// Unstable predictor

6 for y ∈ [K] do

7 Cy ←
(
(xS, xU) 7→

ηS,y(xS)◦η̂U,n,y(xU)
1
n ∑n

i=1 ηS,y(XS,i)

)
8 η̂S,U,n ←

(
(xS, xU) 7→ C(xS ,xU)

∥C(xS ,xU)∥1

)
) // Joint predictor

9 return (η̂U,n, η̂S,U,n)

D. Supplementary Results
Proposition D.1. Suppose Ŷ| fS(X) ∼ Bernoulli(σ( fS(X))), such that Ŷ ⊥⊥ fU(X)| fS(X). Then,

0 ∈ arg min
fU :X→R

E[ℓ(Ŷ, σ( fS(X) + fU(X)))],

where ℓ(x, y) = −x log y− (1− x) log(1− y) denotes the cross-entropy loss.



Suppose Ŷ| fS(X) ∼ Bernoulli(σ( fS(X))), such that Ŷ ⊥⊥ fU(X)| fS(X). Then,

−E[ℓ(Ŷ, σ( fS(X) + fU(X)))]

= E[E[ℓ(Ŷ, σ( fS(X) + fU(X))]] (Law of Total Expectation)

= E[E[Ŷ log σ( fS(X) + fU(X))

+ (1−Y) log(1− σ( fS(X) + fU(X)))| fS(X)]]

= E[E[Ŷ| fS(XS)]E[log σ( fS(X) + fU(X))| fS(XS)]

+ E[(1− Ŷ)| fS(XS)]E[log(1− σ( fS(X) + fU(X)))| fS(X)]] (Ŷ ⊥⊥ fU(X)| fS(X))
= E[σ( fS(X)) log σ( fS(X) + fU(X))

+ (1− σ( fS(X))) log(1− σ( fS(X) + fU(X)))]. (Ŷ| fS(X) ∼ Bernoulli(σ( fS(X)))).

Since the cross-entropy loss is differentiable and convex, any fU(X) satisfying 0 = d
d fU(X)

E[ℓ(Ŷ, fS(X) + fU(X))] is a
minimizer. Indeed, under the mild assumption that the expectation and derivative commute, for fU(X) = 0,

d
d fU(X)

E[ℓ(Ŷ, σ( fS(X) + fU(X)))] = −E

[
σ( fS(X))

σ( fS(X) + fU(X))
+

1− σ( fS(X))

1− σ( fS(X) + fU(X))

]
= −E

[
σ( fS(X))

σ( fS(X))
+

1− σ( fS(X))

1− σ( fS(X))

]
= 0.

D.1. Causal Perspectives

The stability, complementarity, and informativeness assumptions in Theorem 3.4 can be interpreted as constraints
on the causal relationships between the variables XS, XU , Y, and E. We conclude this section with a result
with a characterization of causal directed acyclic graphs (DAGs) that are consistent with these assumptions. In
particular, this result shows that our assumptions are satisfied in the “anti-causal” and “cause-effect” settings as-
sumed in prior work (Rojas-Carulla et al., 2018; von Kügelgen et al., 2019; Jiang and Veitch, 2022), as well as
work assuming only covariate shift (i.e., changes in the distribution of X without changes in the conditional PY|X).

E

XS,C XS,E

XU

Y

XS,S

Figure 3. Causal DAGs over the environ-
ment E, three types of stable features
(causes XS,C, effects XS,E, and spouses
XS,S), unstable features XU , and label
Y, under conditions 1)-6). At least one,
and possibly both, of the dashed edges
E → XS,C and E → XU must be in-
cluded. The dotted edge E→ XS,S may
or may not be included.

Proposition D.2 (Possible Causal DAGs). Consider an environment variable E,
two covariates XU and XS, and a label Y. Assume there are no other hidden
confounders (i.e., causal sufficiency). First, assume:

1) E is a root (i.e., none of XU , XS, and Y is an ancestor of E).
2) XS is informative of Y (i.e., XS ⊥̸⊥ Y|E).
3) XS and XU are complementary predictors of Y; i.e., XS ⊥⊥ XU |(Y, E).
4) XS is stable (i.e., E ⊥⊥ Y|XS).

These are the four structural assumptions under which Theorems 3.4 and 3.5 show
that the SFB algorithm learns the conditional distribution PY|XS ,XU

in the test
domain. Additionally, suppose

5) XU is unstable (i.e., E ⊥̸⊥ Y|XU), This is the case in which empirical risk
minimization (ERM Vapnik, 1991) may suffer bias due to distribution shift, and
hence when SFB may outperform ERM.

6) XU contains some information about Y that is not included in XS (i.e., XU ⊥̸⊥
Y|XS), and This is information we expect invariant risk minimization (IRM
Arjovsky et al., 2020) to be unable to learn, and hence when we expect SFB
to outperform IRM.

Then, as illustrated in Figure 3, three types of stable features are possible:

1. Causal ancestors XS,C of Y,



2. Causal descendants XS,E of Y that are not also descendants of E,

3. Causal spouses XS,S of Y (i.e., causal ancestors of XS,E), and

while the only unstable features possible are descendants of Y.

Notable special cases of the DAG in Figure 3 include:

1. the “cause-effect” settings, studied by Rojas-Carulla et al. (2018); von Kügelgen et al. (2019), where XS is a cause
of Y, XU is an effect of Y, and E affects both XS and XU but affects Y only through XS. Note that this generalizes
the commonly used “covariate shift” assumption, as not only the covariate distribution PXS ,XU but also the conditional
distribution PY|XU

can change between environments.

2. the “anti-causal” setting, studied by Jiang and Veitch (2022), where XS and XU are both effects of Y, but XS is unaffected
by E.

3. the widely studied “covariate shift” setting (Sugiyama et al., 2007; Gretton et al., 2009; Bickel et al., 2009; Sugiyama and
Kawanabe, 2012), which corresponds (see Sections 3 and 5 of Schölkopf (2022)) to a causal factorization P(X, Y) =
P(X)P(Y|X) (i.e., in which the only stable components XS are causes XS,C) of Y or unconditionally independent (e.g.,
causal spouses XS,S)) of Y.

However, this model is more general than these special cases. Also, for sake of simplicity, we assumed causal sufficiency
here; however, in the presence of unobserved confounders, other types of stable features are also possible; for example,
if we consider the possibility of unobserved confounders U influencing Y that are independent of E (i.e., invariant across
domains), then our method can also utilize stable features that are descendants of U (i.e., “siblings” of Y).

E. Datasets
Synthetic: Anti-causal. We consider an anti-causal synthetic dataset based on that of Jiang and Veitch (2022, §6.1) where
data is generated according to the following structural equations (illustrated graphically in Fig. 4a):

Y ← Rad(0.5);
XS ← Y · Rad(0.75);
XU ← Y · Rad(βe),

where the input X = (XS, XU) and Rad(β) means that a random variable is −1 with probability 1− β and +1 with
probability β. Following Jiang and Veitch (2022, §6.1), we create two training domains with βe ∈ {0.95, 0.7}, one validation
domain with βe = 0.6 and one test domain with βe = 0.1 The idea here is that, during training, prediction based on the
stable XS results in lower accuracy (75%) than prediction based on the unstable XU (82.5%). Thus, models optimizing
for prediction accuracy only—and not stability—will use XU and ultimately end up with only 10% in the test domain.
Importantly, while the stable predictor achieves 75% accuracy in the test domain, performance can be improved to 90% if
XU can be used correctly.

Synthetic: Cause-effect with direct dependence. We also consider a synthetic cause-effect dataset in which there is a
direct dependence between XS and XU . In particular, similar to Jiang and Veitch (2022, App. B), we generate synthetic data
according to the following structural equations (illustrated graphically in Fig. 4b):

XS ← NS, with NS ← Bern(0.5);
Y ← XOR(XS, NY), with NY ← Bern(0.75);

XU ← XOR(XOR(Y, NU), XS), with NU ← Bern(βe).

Here, the input X = (XS, XU) and Bern(β) means that a random variable is 1 with probability β and 0 with probability
1− β. Following Jiang and Veitch (2022, Appendix B), we create two training domains with βe ∈ {0.95, 0.8}, one
validation domain with βe = 0.2, and one test domain with βe = 0.1. Like the anti-causal synthetic dataset, the idea is that



prediction based on the stable XS results in lower accuracy (75%) than prediction based on the unstable XU . Thus, models
optimizing for prediction accuracy only—and not stability—will use XU and ultimately end up with only 10% accuracy
in the test domain. In addition, while the stable predictor achieves 75% accuracy in the test domain, performance can be
improved to 90% if XU can be used correctly. However, unlike the anti-causal synthetic dataset, the stable XS and unstable
XU features are not conditionally independent, i.e., XU ⊥̸⊥ XS|Y, since XS directly influences XU .

βe

XS

Y

XU

(a) Anti-causal

NS

NY

NU

βe

XS

Y

XU

(b) Cause-effect with direct XS-XU dependence

Figure 4. Causal DAGs behind the synthetic datasets. Dashed circles indicate latent/unobserved variables, solid indicate observed.

ColorMNIST. We consider the ColorMNIST or CMNIST dataset (Arjovsky et al., 2020). This takes the original MNIST
dataset and first turns it into a binary classification task (digit in 0–4 or 5–9) and then colorizes it such that digit color (red or
green) is a highly-informative but spurious feature. In particular, one first adds label noise such that, across all 3 domains,
digit shape correctly determines the label with probability 0.75. Then, as depicted in Fig. 5, one colorizes the digits such
that green digits generally belong to class 0 in the two training domains and generally belong to class 1 in the test domain.

PACS. We consider the PACS dataset (Li et al., 2017a)—a 7-class image-classification dataset consisting of 4 domains:
photos (P), art (A), cartoons (C) and sketches (S), with examples shown in Fig. 5. Model performances are reported for each
domain after training on the other three domains.

Camelyon17. We consider the Camelyon17 (Bandi et al., 2018) dataset from the WILDS benchmark (Koh et al., 2021),
a medical dataset with histopathology images from 5 hospitals which use different staining and imaging techniques (see
Fig. 5). The goal is to determine whether or not a given image contains tumour tissue, making it a binary classification task.

F. Further Experiments
This appendix provides further experiments which supplement those in the main text. In particular, it provides: (i)
experiments on synthetic datasets (F.1); (ii) ablations on the ColorMNIST dataset showing the effects of bias correction
and post-hoc calibration (F.2); and (iii) experiments on a real-world medical dataset, namely, Cameylon17 (F.3).

F.1. Synthetic datasets

F.1.1. ANTI-CAUSAL

We first consider a simple anti-causal synthetic dataset based on that of Jiang and Veitch (2022, §6.1), where our conditional
independence assumption holds, i.e., XU ⊥⊥ XS|Y. The main idea is that: (i) models optimizing for accuracy only (e.g.,
ERM) use the unstable XU in a fixed manner and end up with only 10% in the test domain; (ii) models also optimizing for
stability (e.g., IRM) use the stable XS and end up with 75% accuracy; and (iii) accuracy can be improved to 90% if XU is
used correctly in the test domain. See Appendix E for details on the data-generation procedure and Appendix G for details
on the experimental setup.

Table 3 shows that ERM performs poorly as it uses the unstable feature XU , while IRM (Arjovsky et al., 2020), ACTIR (Jiang
and Veitch, 2022) and our SFB algorithm all do well by using only the stable feature XS. Critically, only SFB is capable of
harnessing XU in the test domain without labels, leading to a near-optimal boost in performance.



Camelyon17

PACS

ColorMNIST

Dataset Domains

Figure 5. Examples from ColorMNIST (Arjovsky et al., 2020), PACS (Li et al., 2017a) and Camelyon17 (Bandi et al., 2018). Figure
and examples based on Gulrajani and Lopez-Paz (2020, Table 3) and Koh et al. (2021, Figure 4). For ColorMNIST, we follow the
standard approach (Arjovsky et al., 2020) and use the first two domains for training and the final one for testing. For PACS (Li et al.,
2017a), we follow the standard approach (Gulrajani and Lopez-Paz, 2020) and use each domain in turn for testing, using the remaining
three domains for training. For Camelyon17 (Bandi et al., 2018), we follow WILDS (Koh et al., 2021) and use the first three domains
for training, the fourth for validation, and the fifth for testing.

F.1.2. CAUSE-EFFECT WITH DIRECT XS-XU DEPENDENCE

Our SFB approach assumes that the harnessed unstable features XC ⊆ XU are conditionally independent of the stable
features XS. If this assumption is violated, then adaptation can fail as SFB is not guaranteed to learn an asymptotically-
optimal predictor in the test domain. To investigate the adaptation performance of SFB when this assumption is violated, we
also consider a synthetic cause-effect dataset in which there is a direct dependence between XS and XU . See Appendix E
for details on the data-generation procedure and Appendix G.4 for details of the experimental setup (the same as for the
anti-causal synthetic dataset).

Looking at Table 3 we see that: (i) ACTIR has poor stable/invariant performance as its notion of stability relies on the
now-violated conditional-independence assumption; (ii) IRM has good stable/invariant performance as its notion of stability
does not rely on conditional independence; (iii) SFB has good stable/invariant performance as its notion of stability
does not rely on conditional independence (IRM’s stability penalty is used); and (iv) surprisingly, SFB has near-optimal
adapted performance despite the conditional-independence assumption being violated. One explanation for (iv) is that the
conditional-independence assumption is only weakly violated in the test domain. Another is that conditional independence
isn’t necessary for SFB and some weaker, yet-to-be-determined condition suffices.

Table 3. Test-domain accuracies on synthetic datasets. Means and standard errors are over 100 seeds.

Algorithm Anti-Causal (with XU⊥⊥XS|Y) Cause-Effect (with XU ⊥̸⊥XS|Y)

ERM 9.9± 0.1 11.6± 0.7
IRM 74.9± 0.1 69.6± 1.3
ACTIR 74.8± 0.4 43.5± 2.6
SFB (Ours) w/o adapt 74.7± 1.2 74.9± 3.6
SFB (Ours) w. adapt 89.2± 2.9 88.6± 1.4



F.2. ColorMNIST

F.2.1. COMPARISON TO BASELINES

We now provide results on the “standard” CMNIST test domain, which has a color-label correlation of -0.9 (see Fig. 5 and
red dot of Fig. 1a), in order to compare to the relevant baselines. As shown in Table 4: (i) SFB learns a stable predictor with
performance comparable to other invariant-prediction methods; and (ii) only SFB is capable of harnessing the spurious color
feature in the test domain without labels, leading to a near-optimal boost in performance. Note that “Oracle w/o adapt.”
refers to an ERM model trained on grayscale images, while “Oracle w. adapt” refers to an ERM model trained on labelled
test-domain data.

Table 4. CMNIST test accuracies.
Algorithm Test Acc.

ERM (Vapnik, 1998) 27.9± 1.5
GroupDRO (Sagawa et al., 2019) 29.0± 1.1
IRM (Arjovsky et al., 2020) 69.7± 0.9
V-REx (Krueger et al., 2021) 71.6± 0.5
EQRM (Eastwood et al., 2022) 71.4± 0.4
SFB (Ours) w/o adapt. 70.6± 1.8
SFB (Ours) w. adapt. 88.1± 1.8

Oracle w/o adapt. 72.1± 0.7
Oracle w. adapt. 89.9± 0.1

F.2.2. ABLATIONS

We now provide ablations on the CMNIST dataset to illustrate the effectiveness of the different components of SFB. In
particular, we focus on bias correction and calibration, while also showing how multiple rounds of pseudo-labelling can
improve performance in practice.

Bias correction. To adapt the unstable classifier in the test domain, SFB employs the bias-corrected adaptation algorithm
of Alg. 1 (or Alg. 2 for the multi-class case) which corrects for biases caused by possible disagreements between the
stable-predictor pseudo-labels Ŷ and the true label Y. In this (sub)section, we investigate the performance of SFB with and
without bias correction (BC).

Calibration. As discussed in § 3, correctly combining the stable and unstable predictions post-adaptation requires them
to be properly calibrated. In particular, it requires the stable predictor fS to be calibrated with respect to the true labels Y
and the unstable predictor fU to be calibrated with respect to the pseudo-labels Ŷ. In this (sub)section, we investigate the
performance of SFB with and without post-hoc calibration (in particular, simple temperature scaling (Guo et al., 2017)).
More specifically, we investigate the effect of calibrating the stable predictor (CS) and calibrating the unstable predictor (CU).

Multiple rounds of pseudo-labelling. While SFB learns the optimal unstable classifier he
U in the test domain given

enough unlabelled data, § 3 showed how more accurate pseudo-labels Ŷ improve the sample efficiency of SFB. In particular,
in a restricted-sample setting, more accurate pseudo-labels result in an unstable classifier he

U which better harnesses XU in
the test domain. With this in mind, note that, after adapting, we expect the joint predictions of SFB to be more accurate
than its stable-only predictions. This raises the question: can we use these improved predictions to form more accurate
pseudo-labels, and, in turn, an unstable classifier he

U that leads to even better performance? Furthermore, can we repeat this
process, using multiple rounds of pseudo-labelling to refine our pseudo-labels and ultimately he

U? While this multi-round
approach loses the asymptotic guarantees of Thm. 3.5, we found it to work quite well in practice. In this (sub)section, we
thus investigate the performance of SFB with and without multiple rounds of pseudo-labelling (PL rounds).

Results. Table 5 reports the ablations of SFB on ColorMNIST. Here we see that: (i) bias correction significantly boosts
performance (+BC); (ii) calibrating the stable predictor also boosts performance without (+CS) and with (+BC+CS) bias
correction, with the latter leading to the best performance; (iii) calibrating the unstable predictor (with respect to the



Table 5. SFB ablations on ColorMNIST. Means and standard errors are over 3 random seeds. BC: bias correction. CS: post-hoc
calibration of the stable classifier. CU: post-hoc calibration of the unstable classifier. PL Rounds: Number of pseudo-labelling rounds
used. GT adapt: adapting using true labels in the test domain.

Model Bias Calibration PL Rounds Test Acc.
Correction Stable Unstable

SFB w/o adapt 1 70.6± 1.8

SFB with adapt 1 78.0± 2.9
+BC 1 83.4± 2.8
+CS 1 80.6± 3.4
+CU 1 76.6± 2.4
+BC+CS+CU 1 84.4± 2.2
+BC+CS 1 84.9± 2.6
+BC+CS 2 87.4± 1.9
+BC+CS 3 88.1± 1.8
+BC+CS 4 88.6± 1.3
+BC+CS 5 88.7± 1.3

SFB with GT adapt 1 89.0± 0.3

pseudo-labels) slightly hurts performance without (+CU) and with (+BC+CS+CU) bias correction and stable-predictor
calibration; (iv) multiple rounds of pseudo-labelling boosts performance, while also reducing the performance variation
across random seeds; (v) using bias correction, stable-predictor calibration and 5 rounds of pseudo-labelling results in
near-optimal adaptation performance, as indicated by the similar performance of SFB when using true labels Y to adapt he

U
(denoted “SFB with GT adapt” in Table 5).

F.3. Camelyon17

Table 2 shows mixed results for Camelyon17 (Bandi et al., 2018). On the one hand, adapting gives SFB a small
performance boost and reduces the variance across random seeds. On the other hand, the adapted performance is on par
with both IRM and ERM. In line with (Gulrajani and Lopez-Paz, 2020), we found that a properly-tuned ERM model can be
difficult to beat on real-world datasets, particularly when they don’t contain severe distribution shift. While we conducted
this proper tuning for ERM, IRM and SFB (see Appendix G.3), doing so for ACTIR was non-trivial. We thus report the
result from their paper (Jiang and Veitch, 2022, Tab. 1), which is likely lower due to sub-optimal hyperparameters (they
report ≈70% for ERM and IRM).

Table 6. Camelyon17 test-domain accuracies. Mean and standard errors are over 5 random seeds.

Algorithm Accuracy

ERM 90.2± 1.1
IRM 90.2± 1.1
ACTIR 77.7± 1.7†

SFB w/o adapt 89.8± 1.2
SFB w. adapt 90.3± 0.7

G. Implementation Details
Below we provide further implementation details for each of the experiments/datasets considered in this work. Code for
reproducing all experimental results will be made available upon acceptance.



G.1. ColorMNIST

Training details. We follow the setup of Eastwood et al. (2022, §6.1) and build on their open-source code2. In particular,
we use the original MNIST training set to create training and validation sets for each domain, and the original MNIST
test set for the test sets of each domain. For all methods, we use a 2-hidden-layer MLP with 390 hidden units, the Adam
optimizer, a learning rate of 0.0001 with cosine scheduling, and dropout with p = 0.2. In addition, we use full batches
(size 25000), 400 steps for ERM pertaining (which directly corresponds to the delicate penalty “annealing” or warm-up
periods used by penalty-based methods on ColorMNIST (Arjovsky et al., 2020; Krueger et al., 2021; Eastwood et al.,
2022)), and 600 total steps. We sweep over stability-penalty weights in {50, 100, 500, 1000, 5000} for IRM, VREx and
SFB and α’s in 1− {e−100, e−250, e−500, e−750, e−1000} for EQRM. As the stable (shape) and unstable (color) features
are conditionally independent given the label, we fix SFB’s conditional-independence penalty weight λC = 0. As is the
standard for ColorMNIST, we use a test-domain validation set to select the best settings (after the total number of steps),
and then report the mean and standard error over 10 random seeds on a test-domain test set. As in previous works, the
hyperparameter ranges of all methods are selected by peeking at test-domain performance. While far from ideal, this is quite
difficult to avoid with ColorMNIST and highlights a core problem with hyperparameter selection in DG—as discussed
by many previous works (Arjovsky et al., 2020; Krueger et al., 2021; Gulrajani and Lopez-Paz, 2020; Zhang et al., 2022;
Eastwood et al., 2022).

Adaptation details. For SFB’s unsupervised adaptation in the test domain, we use a batch size of 2048 and employ the
bias correction of Alg. 1. In addition, we calibrate the stable predictor using post-hoc temperature scaling, choosing the
temperature to minimize the expected calibration error (ECE, (Guo et al., 2017)) across the two training domains. Again
using the two training domains for hyperparameter selection, we sweep over adaptation learning rates in {0.1, 0.01}, choose
the best adaptation step in [5, 20] (via early stopping), and sweep over the number of pseudo-labelling rounds in [1, 3].
Finally, we report the mean and standard error over 3 random seeds for adaptation.

G.2. PACS

We follow the experimental setup of Jiang and Veitch (2022, Section 6.4) and build on their open-source implementation3.
This means using an ImageNet-pretrained ResNet-18, the Adam optimizer with a learning rate of 10−4, and, following
(Gulrajani and Lopez-Paz, 2020), choosing hyperparameters using leave-one-domain-out cross-validation. This is akin to
K-fold cross-validation except with domains, meaning that we train 3 models—each time leaving out 1 of the 3 training
domains for validation—and then select hyperparameters based on the best average performance across the held-out
validation domains. Finally, we use the selected hyperparameters to retrain the model using all 3 training domains.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20}, λC in {0.01, 0.1, 1}, and learning rates in {10−4, 50−4}. For SFB’s
unsupervised adaptation, we employ the multi-class bias correction of Alg. 2 and calibrate the stable predictor using post-hoc
temperature scaling, choosing the temperature to minimize the expected calibration error (ECE, (Guo et al., 2017)) across
the three training domains. In addition, we use the Adam optimizer with an adaptation learning rate of 0.01, choosing
the number of adaptation steps in [1, 20] (via early stopping) using the training domains. Finally, we report the mean and
standard error over 3 random seeds.

G.3. Camelyon17

We follow the experimental setup of Jiang and Veitch (2022, Section 6.3) and build on their open-source implementation4.
This means using an ImageNet-pretrained ResNet-18, the Adam optimizer, and, following (Koh et al., 2021), choosing
hyperparameters using the validation domain (hospital 4). In contrast to (Jiang and Veitch, 2022), we use a learning rate
of 10−5 for all methods, rather than 10−4, and employ early stopping using the validation domain. We found this to
significantly improve all methods. E.g., the baselines of ERM and IRM improve by approximately 20 percentage points,
jumping from ≈ 70% to ≈ 90%.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20} and λC in {0.01, 0.1, 1}. For SFB’s unsupervised adaptation, we
employ the bias correction of Alg. 1 and calibrate the stable predictor using post-hoc temperature scaling, choosing the

2https://github.com/cianeastwood/qrm/tree/main/CMNIST
3https://github.com/ybjiaang/ACTIR.
4See Footenote 3.

https://github.com/cianeastwood/qrm/tree/main/CMNIST
https://github.com/ybjiaang/ACTIR


temperature to minimize the expected calibration error (ECE, (Guo et al., 2017)) on the validation domain. In addition, we
use the Adam optimizer with an adaptation learning rate of 0.01, choosing the number of adaptation steps in [1, 20] (via
early stopping) using the validation domain. Finally, we report the mean and standard error over 3 random seeds.

G.4. Synthetic

Following Jiang and Veitch (2022), we use a simple three-layer network with 8 units in each hidden layer and the Adam
optimizer, choosing hyperparameters using the validation domain.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20} and λC in {0.01, 0.1, 1}. For SFB’s unsupervised adaptation, we
employ the bias correction of Alg. 1 and calibrate the stable predictor using post-hoc temperature scaling, choosing the
temperature to minimize the expected calibration error (ECE, (Guo et al., 2017)) on the validation domain. In addition, we
use the Adam optimizer with an adaptation learning rate of 0.01, choosing the number of adaptation steps in [1, 20] (via
early stopping) using the validation domain. Finally, we report the mean and standard error over 100 random seeds.

H. Further Related Work
Domain generalization. A fundamental starting point for work in domain generalization and robustness is the observation
that certain “stable” features, often direct causes of the label, may have an invariant relationship with the label across
domains (Peters et al., 2016; Arjovsky et al., 2020; Veitch et al., 2021; Schölkopf, 2022; Makar et al., 2022; Zheng and
Makar, 2022). However, such stable or causal predictors often discard highly-informative but unstable information about the
label. Rothenhäusler et al. (2021) show that we may need to trade-off stability and predictiveness, with the causal predictor
often too conservative. Eastwood et al. (2022) seek such a trade-off via an interpretable probability-of-generalization
parameter. The current work is motivated by the idea that one might avoid such a trade-off by changing how spurious
features are used at test time, rather than discarding them at training time.

Test-domain adaptation with labels. Fine-tuning part of a model using a small number of labelled test-domain examples
is a common way to deal with distribution shift (Fei-Fei et al., 2006; Finn et al., 2017; Eastwood et al., 2021). More recently,
it has been shown that simply retraining the last layer of an ERM-trained model outperforms more robust feature-learning
methods on spurious correlation benchmarks (Rosenfeld et al., 2022; Kirichenko et al., 2022). In particular, Jiang and Veitch
(2022) do so when using a conditional-independence assumption similar to ours. All of these works require labels in the test
domain, while we seek to adapt without labels.

Learning with noisy labels. An intermediate goal in our work, namely learning a model to predict Y from XU using
pseudo-labels based on XS, is an instance of learning with noisy labels, a widely studied problem (Scott et al., 2013;
Natarajan et al., 2013; Blanchard et al., 2016; Song et al., 2022; Li et al., 2017b; Tanaka et al., 2018). Specifically, under
the complementarity assumption (XS ⊥⊥ XU |Y), the accuracy of the pseudo-labels on each class is independent of XU ,
placing us in the so-called class-conditional random noise model (Scott et al., 2013; Natarajan et al., 2013; Blanchard
et al., 2016). As we discuss in Section 3, our theoretical insights about the special structure of pseudo-labels complement
existing results on learning under this model. Our bias-correction (Eq. (3.1)) for PY|XU

is also closely related to the “method
of unbiased estimators” (Natarajan et al., 2013). However, rather than correcting the loss used in ERM, our post-hoc bias
correction applies to any calibrated classifier. Moreover, our ultimate goal, learning a predictor of Y jointly using XS and
XU , is not captured by learning with noisy labels.

Co-training. Our use of stable-feature pseudo-labels to train a classifier based on a disjoint subset of (unstable) features
is reminiscent of co-training (Blum and Mitchell, 1998). Both methods benefit from conditional independence of the two
feature subsets given the label to ensure that they provide complementary information.5 The key difference is that while
co-training requires (a small number of) labeled samples from the same distribution as the test data, our method instead
uses labeled data from a different distribution (training domains), along with the assumption of a stable feature.

Using spurious or unstable features without labels. Bui et al. (2021) exploit-domain specific or unstable features with a
meta-learning approach. However, they use the unstable features in the same way in the test domain, which, by their very
definition, can lead to degraded performance. In contrast, we seek a robust approach to safely harness the unstable features

5See Krogel and Scheffer (2004) and Theorem 1 of Blum and Mitchell (1998) for discussion of this assumption.



in the test domain, as summarised in Table 1. Sun et al. (2022) share the goal of exploiting spurious or unstable features to
go “beyond invariance”. However, their approach requires labels for the spurious features at training time and only applies
to label shifts. In contrast, we do not require labels for the spurious features and are not restricted to label shifts.

Self-learning via pseudo-labelling. In the source-free and test-time domain adaptation literature, adapting to the test
domain using a model’s own pseudo-labels is a common approach (Lee et al., 2013; Liang et al., 2020; Wang et al., 2021;
Iwasawa and Matsuo, 2021)—see Rusak et al. (2022) for a recent review. In contrast to these approaches, we use one
model to provide the pseudo-labels (the stable model) and the other to use/adapt to the pseudo-labels (the unstable model).
In addition, while the majority of this pseudo-labelling work is purely empirical, we provide theoretical justification and
guarantees for our SFB approach.

I. Limitations
In our view, the most significant limitation of this work is the assumption of complementarity (i.e., that the spurious features
are conditionally independent of the stable features, given the label). Complementarity is implicit in the causal generative
models assumed by existing related work (Rojas-Carulla et al., 2018; von Kügelgen et al., 2021; Jiang and Veitch, 2022),
and, as Example A.1 in Appendix A.1 demonstrates, is cannot simply be dropped from our theoretical motivation. In
the related context of co-training, this condition was initially assumed and then weakened in subsequent work (Blum and
Mitchell, 1998; Balcan et al., 2004; Abney, 2002; Wang and Zhou, 2010); similarly, we hope future work will identify
weaker conditions that are sufficient for SFB to succeed. On the other hand, our experimental results on the synthetic
dataset of Appendix F.1, as well as the real datasets of PACS and Camelyon17, suggest that SFB may be robust to
violations of complementarity—perhaps mirroring the surprisingly good practical performance of methods such as naive
Bayes classification which are justified under similar assumptions (Rish et al., 2001).

J. Discussion
This work demonstrated, both theoretically and practically, how to adapt spurious but informative features to new test
domains using only a stable, complementary training signal. Our proposed Stable Feature Boosting algorithm can provide
significant performance gains compared to only using stable features or using unadapted spurious features, without requiring
any true labels in the test domain. In theory, the most significant limitation of SFB is its assumption of complementarity
(i.e., conditional independence of spurious features and stable features, given the label). Importantly, our experimental
results suggest that SFB may robust to violations of complementarity in practice; on real-world datasets such as PACS or
Camelyon17, where there is no reason to believe complementarity holds, SFB performs at least as well or better than
unadapted methods such as ERM and IRM.


