
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GASKETRAG: SYSTEMATIC ALIGNMENT OF LARGE
LANGUAGE MODELS WITH RETRIEVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) has emerged as a powerful method for
enhancing the output quality of large language models (LLMs). However, existing
retrievers are not specifically optimized for LLMs, and retraining them requires
substantial resources. Furthermore, current approaches are often constrained to
either improving the relevancy of retrieved documents or refining the documents
post-retrieval. Various stages within the typical RAG pipeline present challenges
in aligning LLMs with retrievers. To address these issues, we propose Gaske-
tRAG, a novel approach that introduces a gasket between the retriever and the
LLM to improve their collaborative performance. By employing innovative tech-
niques, we gather high-quality preference data and use the gasket to optimize both
retrieval ranking and document refinement simultaneously. Our approach circum-
vents the need for constructing complex training and inference pipelines. In a fair
comparison against the latest RAG methods across multiple test datasets, Gaske-
tRAG demonstrated a clear advantage. Our code and data are available anony-
mously at https://anonymous.4open.science/r/9668.

1 INTRODUCTION

Large language models (LLMs) often struggle with outdated knowledge, and updating them through
retraining is both costly and inefficient. Retrieval-augmented generation (RAG) addresses this issue
by retrieving passages relevant to a given query, allowing LLMs to incorporate up-to-date informa-
tion and provide more accurate answers. RAG has demonstrated remarkable effectiveness across
various NLP tasks (Yasunaga et al., 2023; Zhu et al., 2024b; Xiong et al., 2024; Xu et al., 2024a;
Yue et al., 2024).

However, since the retriever and the LLM are typically trained separately, a disconnect exists be-
tween them, making it challenging for them to collaborate effectively (Ke et al., 2024). To be
specific, retrievers are generally trained based on human preferences, designed to retrieve and rank
documents in a way that aligns with human habits. However, the preferences of LLMs do not com-
pletely align with those of humans. Additionally, the documents or passages returned by retrievers
often contain irrelevant information, referred to as noise. LLMs are highly sensitive to such noise
(Xu et al., 2024c; Fang et al., 2024). Similarly, retrievers, constrained by their training data and
model architecture, also exhibit different preferences when processing queries. Therefore, both re-
trievers and LLMs exhibit their own preference biases when dealing with human-written queries and
documents. When integrated into the RAG pipeline, these biases affect the overall performance, a
phenomenon we refer to as the preference gap. Tan et al. (2024) argue that LLMs tend to favor con-
tent they generate themselves over retrieved information, which highlights this gap. Existing work
aimed at improving RAG performance generally focuses on either enhancing the retriever’s ability
to retrieve more relevant documents (Liao et al., 2024; Feng et al., 2024; Yoon et al., 2024a) or re-
fining the retrieved documents to filter out the noise (Xu et al., 2024c; Qian et al., 2024; Yoon et al.,
2024b). Moreover, some studies employ dynamic retrieval methods to balance LLM knowledge
with retrieved information, aiming to generate more precise outputs (Asai et al., 2023; Xu et al.,
2024b). However, this optimization of individual components in the RAG pipeline is based on hu-
man preferences, leveraging the human definition of ”relevance” while overlooking the preferences
of the retriever and LLM.

1

https://anonymous.4open.science/r/9668

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Narrowing this preference gap can help further improve the performance of the RAG system. We
propose GasketRAG, which introduces an intermediate model called gasket, trained using prefer-
ence data collected from both the LLM and the retriever. Gasket serves as an information bottle-
neck to control the behavior of both the retriever and the LLM, aligning them with the ultimate
goal—generating accurate answers. The Gasket model selects useful context from the passages re-
turned by the retriever, using this context to enhance the original query. The retriever then performs
a second round of retrieval based on the enhanced query. Gasket subsequently filter the context,
which is finally passed to the LLM to generate the final answer. We designed a method for col-
lecting high quality preference data that allows the Gasket model to be trained offline. We train the
Gasket model using a weighted Kahneman-Tversky optimization (KTO) (Ethayarajh et al., 2024).
This new practice significantly enhances the stability and data-efficiency of our approach.

In summary, our contributions are as follows:

• We propose a novel method, GasketRAG, which uses an intermediate model to control the
data flow in the RAG pipeline, taking into account the preferences of both the LLM and the
retriever, thereby improving their collaborative performance in generating answers.

• Our preference collection method ensures high data quality and training efficiency, avoiding
the complexity and instability of joint training.

• We meticulously designed experiments to conduct a fair comparison between GasketRAG
and the latest RAG methods.

2 RELATED WORK

Existing RAG optimization methods can be categorized into three main types: retriever optimization,
refinement, and adaptive RAG.

Retriever Optimization D2LLMs (Liao et al., 2024) combine the efficiency of bi-encoders with
the nuanced understanding of LLMs in semantic search by decomposing and distilling an LLM
cross-encoder into a bi-encoder. Search-Adaptor (Yoon et al., 2024a) customizes the embeddings
generated by LLMs for retrieval tasks. Landmark Embedding (Luo et al., 2024) introduces a three-
stage method to train LLaMA-2 (Touvron et al., 2023), enabling it to embed sentences within a win-
dow of context for retrieval purposes. ARL2 (Zhang et al., 2024a) aligns retrievers with LLMs by
leveraging LLM-labeled relevance training data. Additionally, Zhang et al. (2024b) train a multi-task
embedder using a rank-aware reward that incorporates LLM feedback. However, all of these meth-
ods require retraining the retriever, which is computationally expensive. In contrast, our approach
can utilize any off-the-shelf retriever, eliminating the need for retriever retraining and significantly
reducing computational costs.

Beyond retriever training, some studies focus on rewriting queries to enhance retrieval quality. For
instance, CONQRR (Wu et al., 2022) and RRR (Ma et al.) apply reinforcement learning to optimize
query rewriting models based on feedback. Without requiring additional training, LLM4CS (Mao
et al., 2023) prompts the LLM to generate multiple query rewritings and synthesizes their embed-
dings as input for the retriever. While query rewriting can help address the alignment issue between
the retriever and LLM, it falls short in performing fine-grained filtering of retrieval results, leaving
noise in the retrieved documents unaddressed.

Refinement Refinement involves extracting useful information from lengthy retrieved documents.
Zhu et al. (2024a) propose filtering noise by minimizing the mutual information between the refined
text and the retrieved passages, while maximizing the mutual information between the refined text
and the true answer. Similarly, CFIC (Qian et al., 2024) trains a refiner by selecting sentences based
on the generation probabilities of prefix tokens. BGM (Ke et al., 2024) selects documents from the
retrieved set and aligns them with downstream task metrics. Beyond refinement, Info-RAG (Xu
et al., 2024c) integrates the knowledge from the retrieved passages with the LLM’s parameters to
improve its robustness when dealing with noisy retrieval results. Fang et al. (2024) also aim to
enhance LLM robustness by constructing a noisy dataset and using adversarial training. However,
these methods focus exclusively on making the LLM a better document reader, while overlooking
the retrieval preferences of the upstream retriever.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Query

Passages Relevant
Sentences ❄️ LLM Answer Gasket

❄️Retriever

Augment

Preferences

Preferences

First iteration

Second iteration

Only when training

Figure 1: GasketRAG pipeline. GasketRAG involves two iterations. In the first iteration of the outer
loop (green line), the gasket model performs an initial filtering of the retrieval results, selecting
background information that is beneficial for answering the question and enhancing the retrieval
results. This is followed by the second iteration of the inner loop (red line), where the enhanced
query is used to re-retrieve documents, which are then filtered by the gasket model again before the
LLM generates the answer. The orange line represents the collection of preference data from the
outputs of the LLM and Retriever, which is used to train the gasket model.

Adaptive RAG This approach often involves constructing search paths or iteratively interacting
between the retriever and the LLM in an adaptive manner. Self-RAG (Asai et al., 2023) introduces
special tokens that enable the LLM to automatically express its retrieval needs and assess the rele-
vance of retrieved documents. ActiveRAG (Jiang et al., 2023), on the other hand, prompts the LLM
to generate a pseudo-sentence, analyzes low-frequency tokens within it, and conducts targeted re-
trievals to correct factual inaccuracies. Iter-RetGen (Shao et al., 2023) and InteR (Feng et al., 2024)
iteratively refine the query using content generated by the LLM, performing additional retrievals
until a final answer is produced. Self-Ask (Press et al., 2023) and GenGround Shi et al. (2024)
decompose complex questions into simpler sub-questions, repeating the RAG process until a final
answer is reached. However, these methods often require numerous iterations and tend to overlook
alignment between the retriever and LLM during each RAG operation. In contrast, our approach
focuses on optimizing every minimal unit within the RAG pipeline, ensuring better coordination
and performance throughout the entire process.

3 METHOD

3.1 PRELIMINARY

Preference Training Aligning a model πθ with the preferences is to learn the value function
v(rθ(q, y) − EQ[rθ(q, y

′)]), where rθ = log πθ(y|q)
πref(y|q) is a implicit reward function, q is the query,

y is the response and πref is the reference model (Ethayarajh et al., 2024). EQ represents reference
point and Q(Y |q) is a reference point distribution. The loss then is defined as

L(πθ, πref) = Eq,y∼D[aq,yv(rθ(q, y)− EQ[rθ(q, y
′))]], (1)

where aq,y ∈ {−1,+1} is the preferences and y′ is the other possible generations. Inspired by this
approach, we use it as the LLM-aware (or retriever-aware) loss to align the components in the RAG
pipeline.

3.2 OVERVIEW

GasketRAG improves the synergy between the retriever and the LLM generator used for answer
generation. It trains a key sentence selector to achieve the purpose of the data-flow control, called
the gasket model. This helps the retriever accurately find useful passages and provides the LLM-
adapted context, enabling the LLM to generate correct answers. We first collect preference data from
the LLM and retriever, then train the gasket model offline. Finally, the trained model is integrated
into the pipeline to work collaboratively with the LLM and retriever.

Figure 1 depicts how GasketRAG works. A gasket model G is inserted into the RAG pipeline. Given
a query q, the retriever R returns top-k passages. Then, all the sentences in the passages are assigned

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a unique sentence IDs (SIDs). The top-k passages are rewritten as Top-k = {SID1 ⊕ S1, SID2 ⊕
S2, ..., SIDn ⊕ Sn}, ⊕ denotes the concatenation operation. The gasket model will select the sen-
tence IDs related to the query from the top-k passages: G(q, Top-k) = {SID1, SID2, ..., SIDm}.
Subsequently, the query is augmented by the selected sentences: q′ = q ⊕ G(q, Top-k) and trig-
gers the second iteration of retrieval and deliver G(q′, T op-k′), where Top-k′ = R(q′). The newly
retrieved passages are processed following the aforementioned method to instruct the gasket model
re-select relevant sentences. Finally, the selected sentences are input to the LLM to generate an an-
swer Answer = LLM(q,G(q′, T op-k′). Note here we replace the sentence IDs with the referred
sentences.

3.3 PREFERENCE COLLECTION

Preference learning refers to the task of predicting an order relation over a collection of objects.
In the RAG pipeline, learning the LLM’s preference involves understanding how to craft prompts
that guide the LLM to generate the desired answer. Learning the retriever’s preference focuses on
determining how to enhance queries so that the retriever produces high-quality retrieval results. The
desired answer is well-defined because we can easily obtain the ground truth. However, the re-
triever’s output usually lacks explicit labels. Labels for relevant documents are scarce and annotated
by human. Using LLMs to directly annotate relevant documents is computationally expensive and
carries a risk of bias since it is not aligned with the final objective. Therefore, we use an approach
to implicitly collect retriever preferences and directly align them with the output objectives of the
LLM.

LLM preference Given the query q and the selected relevant sentences y = {s1, s2, ..., sm}, the
selection will be labeled as preferred if the LLM answers the query correctly otherwise dispreferred.
Once an LLM preference dataset Dl = {(qi, yi, ai)}|ni=0, where ai ∈ {−1,+1} , is collected, the
gasket model learns a policy πθ to minimize the loss (Eq. 1).

Retriever preference Similarly, the sentence selection will be considered as preferred if the aug-
mented query leads to better results in the second retrieval. However, golden passages are not always
easily obtainable and often rely on manual annotation, which can result in significant workload and
cost. Therefore, we indirectly collect the retriever’s preferences by comparing the answers gener-
ated by the LLM using the results from the two retrieval iterations and analyzing the distribution
of useful information within the retrieved results. The details will be explained later. Similarly, the
retriever preference dataset is denoted by Dl = {(qi, yi, ai)}|ni=0, ai ∈ {−1,+1}.

However, directly synthesize the two datasets Dl and Dr to train the gasket model would introduce
noise into the preferences of the LLM and retriever. Therefore, we extended the preference label a ∈
{strong preferred, weak preferred, weak dispreferred, strong dispreferred}, changing it from binary
to a four-value system. If both the LLM and retriever prefer the gasket selection result, it’s labeled
as strong preferred. If only the LLM prefers it, it’s labeled as weak preferred. If only the retriever
prefers it, it’s labeled as weak dispreferred. If neither prefer it, it’s labeled as strong dispreferred.
Thus, we combine Dl and Dr to create a unified dataset D, which integrates the preferences of both
the LLM and the retriever.

Figure 2 presents the workflow of preference data collection. Given a query q, we first sample mul-
tiple different sentence lists Y = {yi|yi ∼ G(q, Top-k)}|ni=0 from the gasket. The LLM then gen-
erates answers based on these sentence lists, which are used to preliminarily label them as preferred
or dispreferred. Next, we assign weights (strong or weak) to these labeled sentence lists. Similar to
the inference process, each sentence list enters a second iteration. These sentence lists are added to
the original query, forming a corresponding number of augmented queries {q′i}|ni=0. The retriever
uses the augmented queries to retrieve relevant passages, and the gasket generates new sentence lists
Y ′ = {y′i}|ni=0. Note that for each augmented query, only one sentence list is generated. Next,
re-generated sentence lists Y ′ will be divided into two groups based on the corresponding label of
y (preferred or dispreferred). In the preferred group, for each y′, we calculate the average sentence
index number. A lower average index number indicates that the retriever ranks useful information
higher, thus reflecting better retrieval quality. The first and last y′ in the sorted group are selected as
strong preferred and weak preferred, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Query

Passages

Sentence List 2

Sentence List 3

Sentence List 1

❄️ LLM

Answer 👍

Answer 👎

Answer 👍

Gasket❄️
Retriever

❄️
Retriever Gasket

❄️ LLM
Correct

Preferred 👍
Sentence Lists

Dispreferred 👎
Sentence Lists

Augmented Queries Passages
Sentence Lists

Incorrect

Sorted by Avg. ID

Weak Dispreferred

Strong Dispreferred

Strong Preferred

Weak Preferred

Weight Assigning

Low Avg. ID

High Avg. ID

Figure 2: Preference collection. The collection process is divided into two steps, corresponding to
two iterations of inference. In the upper part of the diagram, the selection of the gasket is labeled as
either “preferred” or “dispreferred.” In the lower part, weights are assigned to the samples of these
two labeled groups.

For the dispreferred group, the selection is simpler. We ask the LLM to answer the original query
q again based on y′. If the answer is correct this time, it indicates that the gasket’s filtering has
effectively improved retrieval quality, and the corresponding y′ is labeled as weak preferred. If the
LLM still produces an incorrect answer, y′ is labeled as strong dispreferred.

3.4 GASKET OPTIMIZATION

The gasket model is tasked with two optimization objectives: providing knowledge aligned with the
preferences of the LLM, and offering query background aligned with the preferences of the retriever.
We focus the tasks of achieving these two objectives within a single model, rather than using two
models for joint training, which greatly simplifies the overall pipeline and reduces the difficulty of
optimization. Sentence IDs serve as an information bottleneck, restricting the action space of the
gasket, enabling it to effectively control the behavior of both the LLM and the retriever, and making
it easier for the gasket itself to be optimized from preference data.

Weighted Kahneman-Tversky Optimization We use the Kahneman-Tversky Optimization
(KTO), which directly maximizes the utility of generations instead of the log-likelihood of pref-
erences, to optimize the model. This also simplifies the framework’s complexity and improves data
utilization efficiency. Recalling the loss in Eq. 1, KTO uses a biased method to estimate the expec-
tation EQ of the reward function rθ. The estimation is defined as

ẑ0 = max

0,
1

m

∑
i ̸=j

log
πθ(yj |qi)
πref(yj |qi)

 ,

where qi and yj are mismatched within a batch of samples. When the distribution of p(yi|qi) within
a batch shows significant variation, these mismatched pairs (yj , qi) will result in both πθ(yj |qi) and
πref(yj |qi) having very small values. As a result, the bias in the estimate of z0 will be significantly
large. However, since the gasket model only outputs sentence IDs, the action space is very limited,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and the distribution of p(yj |qi) does not vary significantly, which naturally addresses this issue and
allows for an relatively accurate estimation of EQ. Originally, KTO accepted binary preference data.
To accommodate this, we weighted the training loss for the gasket model:

LG(πθ, πref) = Eq,y∼D[w · aq,yv(rθ(q, y)− ẑ0], (2)

where aq,y ∈ {−1,+1} is the preference and w ∈ {0.5 (weak), 1 (strong)}.

4 EXPERIMENTS

We design experiments to compare the performance of GasketRAG with other RAG methods.

4.1 SETUP

Datasets We perform evaluations on six datasets across three tasks: 1) OpenQA: TriviaQA (Joshi
et al., 2017) and PopQA (Mallen et al., 2023); 2) Multi-hop QA: HotpotQA (Yang et al., 2018) and
WikiMultiHopQA (Ho et al., 2020); 3) Fact-checking: PubHealth (Kotonya & Toni, 2020) and
StrategyQA (Geva et al., 2021). We only used the training data from TriviaQA and HotpotQA to
optimize the gasket model, while other test datasets are treated as independent evaluations. Due to
the time-consuming testing process, we only use the first 1000 queries from each dataset.

Preference Data We used the training sets of TriviaQA (Joshi et al., 2017) and HotpotQA (Yang
et al., 2018) to collect preference data, utilizing only the queries and answers from these datasets.
LLaMA-3.1-8B-Instruct was employed as the gasket model to generate sentence selections. We
follow Zhang et al. (2024c) to finetune LLaMA-3-8B as the answer generator. Since the LLM
sometimes does not follow the exact standard answer format, to avoid labeling correct answers as
dispreferred due to differences in expression or output format, we used not only Exact Match for
evaluation but also leveraged ChatGPT to assess the correctness of the answers. For each query, we
generate 5 samples. If all the answers are correct, we consider the query too simple and not requiring
optimization, so it is discarded. Similarly, if all 5 samples are labeled as dispreferred and the answers
remain incorrect after the second iteration, we consider the query too difficult to effectively train the
gasket model and discard it as well. Table 1 presents the statistics of the collected preference data.
The difficulty is determined by how many incorrect answers are found among the five sentence
selection samples, presented as a percentage. During the data collection process, we observed that
TriviaQA generated more samples with entirely correct answers (which were discarded) compared to
HotpotQA, indicating that TriviaQA is easier than HotpotQA. Therefore, considering data collection
efficiency and balancing difficulty, we collected only 5k samples from TriviaQA and 12k samples
from HotpotQA.

Query Source

TriviaQA HotpotQA Overall

Samples 5006 12805 17811
Strong / Weak Preferred Samples 1396 / 947 3466 / 2278 4862 / 3225
Strong / Weak Dispreferred Samples 1290 / 1373 3353 / 3708 4643 / 5081
Avg. Difficulty 52.19 54.61 53.93
Avg. Prompt Length 1173.67 1177.74 1176.59
Avg. Sentences 63.68 65.36 64.88
Avg. Selected Sentences 3.65 3.81 3.76

Table 1: Preference data statistics.

Metrics We use Accuracy (ACC) as the metric to evaluate the model’s responses, which is de-
termined by checking whether the correct answer is included in the model’s generated content.
However, due to the variability in the model’s responses, the Accuracy metric may introduce errors.
Similar to the strategy used when collecting preference data, we additionally use ChatGPT to assess
whether the model’s response aligns with the reference answer, thereby calculating the Correctness
score.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 BASELINES

We compare GasketRAG with several baselines: 1) Direct, where we prompt the LLM to answer
the question without retrieval; 2) NaiveRAG, a standard RAG process, where the retrieved pas-
sages are passed to the LLM without augmentation; 3) Rewrite-Retrieve-Read (RRR) (Ma et al.),
a method for aligning the retriever and LLM through query rewriting.; 4) Iter-RetGen (Shao et al.,
2023), which synergizes retrieval and generation in iterations; 5) ActiveRAG (Jiang et al., 2023),
a method that predicts the next sentence to anticipate future content and uses it as a query to re-
trieve documents, regenerating the sentence if it contains low-confidence tokens; 6) SelfAsk (Press
et al., 2023), which improves chain-of-thought, where the model proposes follow-up sub-questions
to solve before arriving at the final answer. 7) SelfRAG (Asai et al., 2023), enhancing RAG per-
formance through adaptive retrieval and self-reflection; 8) SearChain (Xu et al., 2024b), which
builds a reasoning chain to iteratively propose unsolved sub-questions and verify the answer with
the retrieval information.

SelfRAG requires an LLM generator with additional special tokens, meaning the model undergoes
extra finetuning. To ensure a fair comparison, we follow Zhang et al. (2024c) to finetune unified
generators using the same training data as Asai et al. (2023). We also use ChatGPT as a generator
to evaluate the different methods. SearChain was reproduced using ChatGPT as the backend.

Implementation Details The gasket model training runs on a 4-GPU H100 node. The base model
is LLaMA-3.1-8B-Instruct1. For sufficient KL-divergence estimate in a KTO step, the batch size
is set to 2 per GPU with 4 gradient accumulation steps. Low-Rank Adaptation (LoRA) is utilized
where the rank and the scaling factor are 16, targeting all linear layers. The learning rate is 1e − 5,
with a warmup ratio of 0.1. For preference data collection, GPT-3.5-turbo serves as the gasket model
to generate sentence selections and as the discriminator to evaluate the correctness of the responses.
ColBERTv2 (Santhanam et al., 2022) is employed as the retriever. We use the 2018 Wikipedia
corpus provided by Karpukhin et al. (2020), where the documents are chunked into passages with a
maximum length of 100 words. For all methods we use the top-10 retrieved passages.

4.3 RESULTS

Method PopQA† TriviaQA HotpotQA WikiMultiHop† PubHealth† StrategyQA†
ACC Correctness ACC Correctness ACC Correctness ACC Correctness ACC ACC

w/ LLaMA-3-8B
Direct 29.2 34.1 66.7 61.6 20.1 40.6 25.0 37.3 73.2 55.7
NaiveRag 36.6 43.7 63.2 61.0 26.7 47.5 20.1 32.0 67.8 57.8
RRR 35.9 43.0 58.8 56.0 23.2 42.8 21.9 29.8 68.3 58.2
Iter-RetGen 34.2 43.5 64.9 61.0 27.0 47.0 20.6 32.9 41.8 55.8
ActiveRAG 35.2 44.6 64.1 60.9 26.5 47.3 18.7 30.1 47.6 56.2
SelfAsk 11.2 16.6 36.0 36.1 14.6 30.2 17.6 26.9 40.6 52.1
SelfRAG 34.9 37.4 56.0 50.8 21.8 38.4 20.4 22.1 64.9 46.7
GasketRAG (ours) 39.1 45.7 67.9 65.5 29.8 54.8 22.7 38.6 72.1 58.1

w/ GPT-3.5-turbo
Direct 32.0 37.0 77.5 71.7 31.8 54.4 37.0 42.7 77.7 68.0
NaiveRag 44.0 45.6 72.6 66.5 38.4 58.9 32.7 37.5 53.9 61.2
RRR 44.7 46.2 71.9 65.9 38.0 58.4 31.2 36.5 53.7 63.3
Iter-RetGen 43.7 45.1 73.5 67.5 43.7 61.0 35.8 38.5 42.6 56.9
ActiveRag 43.7 45.1 73.6 67.8 42.8 61.0 35.0 39.2 50.4 62.0
SelfAsk 35.9 41.4 66.3 62.0 36.7 57.2 39.1 42.8 46.3 38.4
SearChain 31.7 43.7 66.3 63.9 33.5 59.2 32.0 44.5 30.1 60.5
GasketRAG (ours) 44.8 48.2 73.8 69.3 42.8 62.8 37.3 48.0 64.3 61.9

Table 2: Performance comparison between GasketRAG and various RAG methods. † indicates we
do not use the training sets of those datasets to optimize the gasket model. The best scores are
highlighted in bold, while the second-best scores are underlined.

Table 2 gives the results of performance evaluation of GasketRAG and the baselines. Our findings
are as follows.

Effectiveness of GasketRAG It can be observed that our approach outperforms the previous RAG
methods on most test sets and metrics. Apart from the TriviaQA and HotpotQA datasets, where the

1https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

7

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

gasket model was trained using their training sets, significant improvements were also observed on
other test sets. Moreover, GasketRAG demonstrated high stability when handling different types of
questions.

Strong Direct and NaiveRAG We observed that both Direct and NaiveRAG exhibited strong
performance across multiple test sets. We believe this is primarily because the LLM’s parameters
already contain knowledge relevant to these datasets. Additionally, since we used the top-10 re-
trieved passages, the input became lengthy and included a lot of irrelevant information. As a result,
when using RAG methods, the LLM may be distracted. Furthermore, when provided with retrieved
context, the LLM tends to suppress its parametric knowledge (Tan et al., 2024), leading to a decrease
in performance. Another reason could be that the 2018 Wikipedia corpus lacks relevant documents.
For instance, PubHealth involves a substantial amount of biomedical knowledge, which the retriever
may struggle to provide effectively. Nevertheless, GasketRAG still shows significant advantages
over other methods. On PopQA (ACC), TriviaQA (ACC and Correctness), HotpotQA (Correct-
ness) and WikiMultiHop (Correctness), it is the only method (with LLama-3 as the generator) that
surpasses both Direct and NaiveRAG.

Generalization Although the gasket model was trained based on the preferences of LLaMA-3-8B,
it still demonstrates good generalization performance when the generator is replaced with GPT-3.5-
turbo. This is because, during preference learning, the gasket model develops a stronger ability
to filter out irrelevant information, which is a key factor in improving the performance of the RAG
pipeline. As a result, a gasket model trained on the preferences of one LLM can still provide benefits
to other LLMs.

4.4 EFFECTIVENESS OF PREFERENCE TRAINING

We compare the impact of the gasket model trained with KTO and its base model (LLaMA-3.1) on
the performance of GasketRAG. We also used GPT-3.5 as a gasket model for evaluation. Table 3
presents the result. It can be observed that preference alignment significantly improves the perfor-
mance of LLaMA-3.1. Without training, LLaMA-3.1 underperforms NaiveRAG across all tasks. It
can be observed that using a stronger model (GPT-3.5-turbo) did not result in a substantial perfor-
mance improvement. This highlights the importance of eliminating the preference gap between the
retriever and the LLM through preference learning. Furthermore, this underscores that GasketRAG
is not merely a simple refinement or rewriting approach.

Model PopQA TriviaQA HotpotQA WikiMultiHop PubHealth StrategyQA
ACC Correctness ACC Correctness ACC Correctness ACC Correctness ACC ACC

GPT-3.5-turbo 33.9 42.1 66.5 66.3 27.4 49.4 19.9 35.0 69.6 57.5
LLaMA-3.1-8B-Instruct 35.6 42.3 63.6 60.9 24.3 47.5 24.9 37.8 69.6 57.4
Gasket 39.1 45.7 67.9 65.5 29.8 54.8 22.7 38.6 72.1 58.1

Table 3: Performance comparison between the gasket model and the base model.

4.5 EFFECTIVENESS OF WEIGHTED KTO

We retrained the gasket model with the exact same settings, but ignore the sample weights during
loss calculation. Figure 3 exhibits the difference between weighted and non-weighted KTO meth-
ods. The weighted KTO training demonstrates a clear advantage over the non-weighted version.
By further distinguishing between weak and strong preferences in the binary preference data, the
distraction of weak preference samples is reduced, allowing the gasket model to converge more
effectively. Additionally, the non-weighted trained gasket model still shows improvements over
NaiveRAG.

We also train a gasket model with SFT. The result (Figure 3) demonstrates a significant performance
degradation with SFT. SFT provides an unbiased estimation of the target preference, capturing gen-
eral trends in labeled data. However, it offers a biased estimation for the model, as it does not
account for the model’s inherent limitations or specific dynamics. This limitation means that SFT
cannot enable the model to precisely adapt to subtle differences in preferences.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

-3.0

-2.0

-1.0

NaiveRag 36.6

+1.0

+2.0

+3.0

+4.0

+5.0

AC
C

+2.5

+0.5

-2.0

63.2

+4.7
+4.2

-2.8

26.7

+3.1

+1.8

-1.1

20.1

+2.6

-0.9

-2.4

67.8

+4.4
+3.4

-1.0

57.8
+0.3 +0.2 +0.2

PopQA

-2.0

NaiveRag 43.7

+2.0

+4.0

+6.0

Co
rre

ct
ne

ss

+2.0
+0.8

-0.9

TriviaQA

61.0

+4.5
+3.4

-2.2
HotpotQA

47.5

+7.3

+3.4

-1.8

2WikiMultiHopQA

32.0

+6.6

+4.5

+0.9

PubHealth

67.8

+4.2
+3.1

-1.1

StrategyQA

57.7
+0.4 +0.3 +0.0

Weighted Non-Weighted SFT

Figure 3: Comparison between weighted KTO, non-weighted KTO and SFT trained GasketRAG.

4.6 MODEL AND TRAINING DATA SIZE SCALING

We additionally trained two gasket models based on Qwen-2.5: a 0.5B and a 1.5B model. These
were compared with our gasket model based on LlaMA-3.1. From Figure 4a, it can be observed
that as the model size increases, the performance also shows improvement. The 0.5B model has
performance limitations, indicating that regulating the retriever and LLM within the RAG pipeline
requires the gasket model to possess a considerable level of text understanding. Additionally, it is
evident that the 1.5B model demonstrates quite strong performance, slightly lagging behind the 8B
model across datasets but still outperforming other RAG methods. This indicates that GasketRAG
is more efficient compared to other RAG methods. By using a smaller model as the gasket model to
filter sentences, the token sequence length input to the LLM generator is significantly reduced. As a
result, despite requiring two iterations, GasketRAG has light resource demands.

To study the impact of training data sizes on the gasket model. We retrained the gasket model based
on LLaMA-3.1-8B with half the preference data (8.5K). The results are shown in Figure 4b. The
performance gap between the gasket model trained with 8.5K data and the one trained with 17K
data is minimal, demonstrating the high data efficiency of our proposed preference data collection
method and the Weighted KTO training algorithm. GasketRAG requires only a small amount of
preference data to achieve a high level of performance.

0.5B (Qwen-2.5) 1.5B (Qwen-2.5) 8B (LLaMA-3.1)

35
40
45
50
55
60
65
70
75

Co
rre

ct
ne

ss
 (%

)

42.7 46.9 45.7

56.6

62.9
65.5

44.4
48.1

54.8

32.1
35.2

38.6

73.0 72.4 72.1

57.0 57.5 58.1
Datasets

PopQA
TriviaQA
HotPotQA
WikiMultiHopQA
PubHealth
StrategyQA

(a) Percentage change of different model sizes rel-
ative to 0.5B model

PopQA TriviaQA HotPotQA WikiMultiHopQA PubHealth StrategyQA0

10

20

30

40

50

60

70

Co
rre

ct
ne

ss
 (%

) 48.1

65.0

52.1

37.3

71.2

57.2

45.7

65.5

54.8

38.6

72.1

58.1

Gasket 8.5K
Gasket 17K

(b) Gasket models on different training dataset
sizes.

Figure 4: Correctness comparisons between different model and training data sizes.

4.7 EFFECTIVE OF DIFFERENT ITERATIONS

Table 4 reveals the performance of GasketRAG when different number of iterations are applied.
Only one iteration means there is no query augmentation and a second retrieval, where the gasket
model only functions as a information filter. It can be observed that the 2-Iteration GasketRAG
achieves the best overall performance. Information that was not accurately retrieved in the first

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

iteration is often identified after an additional round of adjustment. However, increasing the num-
ber of iterations can also lead to the accumulation and amplification of errors, resulting in some
performance degradation.

Iterations HotpotQA WikiMultiHopQA PopQA TriviaQA
ACC Correctness ACC Correctness ACC Correctness ACC Correctness

1 28.4 52.9 19.1 34.7 38.7 46.4 68.3 65.7
2 29.8 54.8 22.7 38.6 39.1 45.7 67.9 65.5
3 29.6 52.6 21.2 36.2 37.1 44.8 68.4 64.3

Table 4: Iterations of GasketRAG comparison.

4.8 LATENCY ANALYSIS

We measured the latency of each RAG method, as shown in Figure 5. We ran all tests on a single
H100 GPU and recorded the average time the method took from issuing a query to receiving the
final answer. It is worth noting that we used the vLLM (Pisarchyk & Lee, 2020) engine’s API server
with 20 concurrent threads, so the times shown in the graph include the waiting time for requests
in the queue. In the case of synchronous inference, a typical 2-Iteration GasketRAG processes a
query in approximately 0.8 seconds. It can be observed that GasketRAG has slightly higher latency
compared to SelfAsk and Iter-RetGen. However, the 1-Iteration Gasket is significantly faster than
both while also delivering better performance.

Se
lfR

AG

Gas
ke

tR
AG-2I

ts

Se
lfA

sk

Ite
r-R

etG
en

Gas
ke

tR
AG-1I

ts

Ac
tiv

eR
AG RRR

Naiv
eR

AG
0

1

2

3

4

5

6

7

La
te

nc
y

(s
ec

on
ds

)

Figure 5: The average processing latency of each sample.

5 CONCLUSION

In this paper, we propose a new method, GasketRAG, which systematically aligns all components
of the RAG pipeline in an end-to-end manner. By collecting preference data between the LLM and
retriever, we perform Weighted KTO training to obtain a gasket model that effectively coordinates
the RAG process. Our approach eliminates the need for complex joint training and costly data anno-
tation. Through rigorous and fair comparisons in our experiments, the results show that GasketRAG
significantly outperforms other methods. By comparing with strong LLMs without preference train-
ing, we demonstrate the importance of aligning LLMs with retrievers to address the preference gap.
We trained gasket models based on LLMs of various parameter scales, showing that even a much
smaller gasket model can achieve performance surpassing other RAG methods. Additionally, we re-
veal the high data efficiency of GasketRAG, achieving training objectives with only a small amount
of preference data. Due to resource limitations, we have not yet explored GasketRAG’s performance
on more complex and domain-specific tasks, which will be left for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to
Retrieve, Generate, and Critique through Self-Reflection. In The Twelfth International Conference
on Learning Representations, October 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. KTO: Model
Alignment as Prospect Theoretic Optimization, September 2024.

Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiaojun Chen, and Ruifeng Xu. Enhancing Noise
Robustness of Retrieval-Augmented Language Models with Adaptive Adversarial Training. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10028–10039,
Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Jiazhan Feng, Chongyang Tao, Xiubo Geng, Tao Shen, Can Xu, Guodong Long, Dongyan Zhao, and
Daxin Jiang. Synergistic Interplay between Search and Large Language Models for Information
Retrieval. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9571–9583, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies, January
2021.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A Multi-
hop QA Dataset for Comprehensive Evaluation of Reasoning Steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International Committee
on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active Retrieval Augmented Generation. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 7969–7992, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.495.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. In Bon-
nie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781, Online, Novem-
ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.

Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Bridg-
ing the Preference Gap between Retrievers and LLMs. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 10438–10451, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics.

Neema Kotonya and Francesca Toni. Explainable Automated Fact-Checking for Public Health
Claims, October 2020.

Zihan Liao, Hang Yu, Jianguo Li, Jun Wang, and Wei Zhang. D2LLM: Decomposed and Dis-
tilled Large Language Models for Semantic Search. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 14798–14814, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kun Luo, Zheng Liu, Shitao Xiao, Tong Zhou, Yubo Chen, Jun Zhao, and Kang Liu. Landmark Em-
bedding: A Chunking-Free Embedding Method For Retrieval Augmented Long-Context Large
Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 3268–3281, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query Rewriting for Retrieval-
Augmented Large Language Models.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-
Parametric Memories, July 2023.

Kelong Mao, Zhicheng Dou, Fengran Mo, Jiewen Hou, Haonan Chen, and Hongjin Qian. Large
Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversa-
tional Search, October 2023.

Yury Pisarchyk and Juhyun Lee. Efficient Memory Management for Deep Neural Net Inference.
https://arxiv.org/abs/2001.03288v3, January 2020.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Measuring
and Narrowing the Compositionality Gap in Language Models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023,
pp. 5687–5711, Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.findings-emnlp.378.

Hongjin Qian, Zheng Liu, Kelong Mao, Yujia Zhou, and Zhicheng Dou. Grounding Language
Model with Chunking-Free In-Context Retrieval. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1298–1311, Bangkok, Thailand, August 2024. Associ-
ation for Computational Linguistics.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Col-
BERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction. In Marine Carpuat,
Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 3715–3734, Seattle, United States, July 2022. Association for Com-
putational Linguistics. doi: 10.18653/v1/2022.naacl-main.272.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhanc-
ing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 9248–9274, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.620.

Zhengliang Shi, Shuo Zhang, Weiwei Sun, Shen Gao, Pengjie Ren, Zhumin Chen, and Zhaochun
Ren. Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answer-
ing. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7339–
7353, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Hexiang Tan, Fei Sun, Wanli Yang, Yuanzhuo Wang, Qi Cao, and Xueqi Cheng. Blinded by Gen-
erated Contexts: How Language Models Merge Generated and Retrieved Contexts When Knowl-
edge Conflicts? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 6207–6227, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models, February 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zeqiu Wu, Yi Luan, Hannah Rashkin, David Reitter, Hannaneh Hajishirzi, Mari Ostendorf, and Gau-
rav Singh Tomar. CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement
Learning, October 2022.

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong Zhang. Benchmarking Retrieval-Augmented
Generation for Medicine, February 2024.

Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Bowen Jin, May Dongmei Wang, Joyce Ho, and
Carl Yang. RAM-EHR: Retrieval Augmentation Meets Clinical Predictions on Electronic Health
Records. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
754–765, Bangkok, Thailand, August 2024a. Association for Computational Linguistics.

Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua. Search-in-the-Chain:
Interactively Enhancing Large Language Models with Search for Knowledge-intensive Tasks,
February 2024b.

Shicheng Xu, Liang Pang, Mo Yu, Fandong Meng, Huawei Shen, Xueqi Cheng, and Jie Zhou. Unsu-
pervised Information Refinement Training of Large Language Models for Retrieval-Augmented
Generation, June 2024c.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question
Answering, September 2018.

Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, Rich James, Jure Leskovec, Percy Liang,
Mike Lewis, Luke Zettlemoyer, and Wen-tau Yih. Retrieval-Augmented Multimodal Language
Modeling, June 2023.

Jinsung Yoon, Yanfei Chen, Sercan Arik, and Tomas Pfister. Search-Adaptor: Embedding Cus-
tomization for Information Retrieval. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 12230–12247, Bangkok, Thailand, August 2024a. Association for
Computational Linguistics.

Soyoung Yoon, Eunbi Choi, Jiyeon Kim, Hyeongu Yun, Yireun Kim, and Seung-won Hwang.
ListT5: Listwise Reranking with Fusion-in-Decoder Improves Zero-shot Retrieval. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 2287–2308, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics.

Zhenrui Yue, Huimin Zeng, Lanyu Shang, Yifan Liu, Yang Zhang, and Dong Wang. Retrieval
Augmented Fact Verification by Synthesizing Contrastive Arguments. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 10331–10343, Bangkok, Thailand,
August 2024. Association for Computational Linguistics.

LingXi Zhang, Yue Yu, Kuan Wang, and Chao Zhang. ARL2: Aligning Retrievers with Black-box
Large Language Models via Self-guided Adaptive Relevance Labeling. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 3708–3719, Bangkok, Thailand,
August 2024a. Association for Computational Linguistics.

Peitian Zhang, Zheng Liu, Shitao Xiao, Zhicheng Dou, and Jian-Yun Nie. A Multi-Task Embedder
For Retrieval Augmented LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 3537–3553, Bangkok, Thailand, August 2024b. Association for Computational
Linguistics.

Xuanwang Zhang, Yunze Song, Yidong Wang, Shuyun Tang, Xinfeng Li, Zhengran Zeng, Zhen Wu,
Wei Ye, Wenyuan Xu, Yue Zhang, Xinyu Dai, Shikun Zhang, and Qingsong Wen. RAGLAB: A
Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation, Au-
gust 2024c.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kun Zhu, Xiaocheng Feng, Xiyuan Du, Yuxuan Gu, Weijiang Yu, Haotian Wang, Qianglong Chen,
Zheng Chu, Jingchang Chen, and Bing Qin. An Information Bottleneck Perspective for Effec-
tive Noise Filtering on Retrieval-Augmented Generation. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1044–1069, Bangkok, Thailand, August 2024a.
Association for Computational Linguistics.

Yutao Zhu, Peitian Zhang, Chenghao Zhang, Yifei Chen, Binyu Xie, Zheng Liu, Ji-Rong Wen,
and Zhicheng Dou. INTERS: Unlocking the Power of Large Language Models in Search with
Instruction Tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2782–2809, Bangkok, Thailand, August 2024b. Association for Computational Linguistics.

14

	Introduction
	Related Work
	Method
	Preliminary
	Overview
	Preference Collection
	Gasket Optimization

	Experiments
	Setup
	Baselines
	Results
	Effectiveness of Preference Training
	Effectiveness of Weighted KTO
	Model and Training Data Size Scaling
	Effective of Different Iterations
	Latency Analysis

	Conclusion

