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ABSTRACT

As large language models increase in capability, researchers have started to con-
duct surveys of all kinds on these models in order to investigate the population rep-
resented by their responses. In this work, we critically examine language models’
survey responses on the basis of the well-established American Community Sur-
vey by the U.S. Census Bureau and investigate whether they elicit a faithful rep-
resentation of any human population. Using a de-facto standard multiple-choice
prompting technique and evaluating 39 different language models using system-
atic experiments, we establish two dominant patterns: First, models’ responses are
governed by ordering and labeling biases, leading to variations across models that
do not persist after adjusting for systematic biases. Second, models’ responses do
not contain the entropy variations and statistical signals typically found in human
populations, but strongly tend towards uniform answers. As a result, models’ rel-
ative alignment with different demographic subgroups can be predicted from the
subgroups’ entropy, irrespective of the model’s training data or training strategy.
Our findings add important context to recent works that investigate the alignment
of language models with demographic subgroups.

1 INTRODUCTION

Surveys have a long tradition in social science research as a means for gathering statistical infor-
mation about the characteristics, values, and opinions of human populations (Groves et al., 2009).
Many established survey questionnaires together with the carefully collected answer statistics are
publicly available. Machine learning researchers have identified the potential benefits of building on
this valuable data resource to study large language models (LLMs). Survey questions offer a way to
systematically prompt LLMs, and the aggregate statistics over answers collected by surveying hu-
man populations serve as a reference point for evaluation. As a result, the use of surveys has recently
gained popularity for studying LLMs’ alignment (Santurkar et al., 2023; Durmus et al., 2023).1

It is tempting to prompt LLMs with survey questions, due to their syntactic similarity to question
answering tasks (Brown et al., 2020; Liang et al., 2022). However, it is a priori unclear how to
interpret their answers. Rather than knowledge testing, surveys seek to elicit aggregate statistics
over individuals, providing an unbiased view on the population they represent. The quality of survey
data hinges on the validity and robustness of the conclusions that can be drawn from it.

In this work we investigate the survey responses of LLMs on the basis of the American Community
Survey (ACS), the premier demographic survey conducted by the U.S. Census Bureau. We prompt
39 language models of varying size with questions from the ACS, and based on the collected data,
we investigate whether models’ responses elicit a faithful representations of any human population.

2 SURVEYING LANGUAGE MODELS

We employ the de-facto standard methodology to survey language models introduced by Santurkar
et al. (2023). For a given model m and survey question q, we define the model’s survey response
as a categorical random variable Rm

q which can take on kq values corresponding to the number of
answer choices to question q. We determine the event probabilities of Rm

q as follows:

1For a detailed discussion of related work, see Appendix C.4.
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1. We construct an input prompt of the form “Question: <question> \n A. <choice
1 >\n B. <choice 2> \n ... <choice kq> \n Answer:”.2

2. We query the language model m with the input prompt and obtain its output distribution
over next-token probabilities. We select the kq output probabilities corresponding to each
answer choice (e.g., the tokens “A”, “B”, etc.), and we renormalize.

Due to space constraints, we only include in the main text results for GPT-2, GPT-3, and GPT-4.
See Appendix C for the complete results of all surveyed language models.

Survey questions. We use a representative subset of 25 multiple-choice questions from the 2019
ACS questionnaire. We denote the set of questions by Q. The questions cover basic demographic in-
formation, education attainment, healthcare coverage, disability status, family status, veteran status,
employment status, and income. We generally consider the questions and answers as they appear in
the ACS questionnaire, with few exceptions. See Appendix B.1 for further information.

Reference data and evaluation We use the responses collected by the U.S. Census Bureau when
surveying the U.S. population as our reference data. In particular, we use the 2019 ACS public
use microdata sample (henceforth census data). The data contains the anonymized responses of
around 3.2 million individuals in the United States. For each survey question q ∈ Q, we denote the
census’ population-level response as a categorical random variable Cq whose event probabilities are
the relative frequency of each answer choice. We use Uq to denote the uniform distribution. We
use normalized entropy to measure the degree of variation in models’ responses, and we use the
Kullback–Leibler (KL) divergence to measure the similarity between two answer distributions.

Randomized choice ordering. For several investigations we survey models under randomized
choice ordering. This is an established methodology in survey research to adjust for ordering bi-
ases (Groves et al., 2009). For a given question q, we prompt models with all possible permutations
of the answer choice ordering. Choice labels are presented in alphabetical order in all cases. We
use R̄m

q to denote the expected distribution over answers and Ōm
q to denote the expected distribution

over selected choice labels under choice ordering randomization. This distinction serves to decou-
ple a model’s tendency towards picking a particular answer from its tendency towards picking a
particular choice label. See Figure 4 in Appendix B.2 for an illustration of the methodology.

3 INSPECTING MODELS’ SURVEY RESPONSES

We start by surveying the base pre-trained models. For a first investigation, we consider the normal-
ized entropy of models’ responses to the SEX, HICOV, and FER questions, which inquiry about the
person’s sex, whether they are currently covered by any health insurance plan, and whether they gave
birth in the past 12 months, respectively. When surveying the U.S. population, these three questions
elicit responses with very different entropy (e.g., sex is relatively balanced but most people do not
give birth in any given year). In contrast, as shown in Figure 1(a), the entropy of models’ responses
to these three questions are surprisingly similar. In particular, we find that response entropy tends to
increase log-linearly with model size. This trends holds across all ACS questions, see Appendix C.1.

Overall, we find that models’ response distributions seem to be widely independent of the survey
question asked, and variations across models are much larger than variations across questions. This
lead us to suspect that variations across models might arise mostly due to systematic biases.

3.1 TESTING FOR SYSTEMATIC BIASES: A-BIAS

It is well-known that language models’ most likely answer to multiple-choice questions can change
depending on seemingly minor factors such as the ordering of the answer choices (Robinson &
Wingate, 2023). Instead, we seek to measure the extent to which changes in choice ordering alter a
model’s output distribution over answers. We start by measuring A-bias: the tendency of a model
towards picking the answer choice labeled “A”. For an unbiased model that outputs the same answer
distribution irrespective of choice ordering, the expected choice distribution Ōm

q under randomized

2The chosen style of prompt is standard for question answering tasks (Hendrycks et al., 2021), and used
in OpinionQA (Santurkar et al., 2023). We perform several prompt ablations, including the prompt variations
used by Argyle et al. (2022), Santurkar et al. (2023) and Durmus et al. (2023), see Appendix E.
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(a) Entropy of base models’ responses.
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Figure 1: Entropy and A-bias of models’ responses. (a) Models’ variation in entropy across ques-
tions is much smaller than that of the census data. (b) All models suffer from substantial A-bias.
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(a) Entropy of base models’ adjusted responses.
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(b) Divergence to different reference populations.

Figure 2: After adjustment, (a) Base models tend towards uniform answers, and (b) Models’ re-
sponses are more similar to the uniform baseline than to any of the populations considered.

choice ordering would match precisely the uniform distribution. We define A-bias as a models’
deviation from this unbiased baseline, that is, Abiasmq :=

∣∣P(Ōm
q = “A”)− 1/kq

∣∣ .
We measure A-bias for each question q and model m. Results are illustrated in Figure 1(b). We
sort models by their size. We observe all models exhibit substantial A-bias. However, models in the
order of a few billion parameters or fewer consistently exhibit particularly strong A-bias.

We investigate other types of labelling and position bias (e.g., last-choice bias) in Appendix D.
Overall, we find a strong tendency of LLMs to pick up on spurious signals in the way that answers
are ordered and labeled, rather than their semantic meaning. Notably, in contrast to the primacy bias
observed in humans (Groves et al., 2009), we find that models exhibit substantial A-bias even when
randomizing the position of the “A” choice. Our findings are consistent with the concurrent work
of Tjuatja et al. (2023), which similarly finds that LLMs’ exhibit substantial response biases when
prompted with multiple-choice survey questions, and that these biases are generally not human-like.

4 CONTROLLING FOR A-BIAS

To eliminate confounding due to labeling biases, we survey models under randomized choice order-
ing. We refer to the expected response under choice order randomization as the adjusted response.

In Figure 2(a) we plot the normalized entropy of base models’ responses after adjustment. We
find that after adjustment, 1) the variations in responses’ entropy across survey questions are very
small, 2) we no longer observe the trend of the entropy of model responses increasing log-linearly
with model size. In fact, base models’ survey responses are approximately uniform irrespective of
model size or survey question asked. This validates our initial hypothesis that, without adjustment,
variations in responses across models arise predominantly due to systematic biases such as A-bias.

4.1 COMPARING MODEL RESPONSES TO THE U.S. CENSUS

Inspired by the alignment measures proposed by Santurkar et al. (2023) and Durmus et al. (2023),
we investigate the similarity of model responses to the census data. We evaluate the average KL
divergence across questions between adjusted model responses and those of different reference pop-
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Figure 3: Alignment of models with different census subgroups strongly correlated with the sub-
groups’ entropy of responses, both before and after adjusting for choice ordering biases.

ulations, that is, K̄L(m,Ref) = 1
|Q|

∑
q∈Q KL(R̄m

q ||Refq). We consider the responses of the overall
U.S. census, as well as 50 census subgroups corresponding to every state in the United States.

Results are depicted in Figure 2(b). We observe that models are strikingly more similar to the uni-
form baseline than to any of the populations considered. Furthermore, due to the models’ tendency
towards balanced answers, we observe a strong correlation between a models’ similarity (or align-
ment) with a subgroup and the subgroup’s entropy, as shown in Figure 3 (see Appendix C.4 for all
models). Interestingly, this trend also consistently holds pre-adjustment.

Our results indicate that survey-derived alignment measures may be more informative of the refer-
ence populations rather than the language models they aim to evaluate. Particularities, such as model
size, the training data used, or the demographics of the annotators used for fine-tuning with human
feedback seem to have little impact on which population is best represented, and models consistently
appear to be more “aligned” with the subpopulations exhibiting high entropy in their answers.

Beyond the ACS. To inspect whether this trend changes with the content of the questions asked, we
reproduce our experiments with the American Trends Panel (ATP) opinion surveys considered by
Santurkar et al. (2023) and the Pew Research’s Global Attitudes Surveys (GAS) and World Values
Surveys (WVS) considered by Durmus et al. (2023). These surveys encompass around 1500 ques-
tions and 60 U.S. demographic subgroups, and around 2300 questions and 60 national populations,
respectively. We adopt the alignment metrics considered by the aforementioned works. We find that
the insights gained from the ACS also hold for the ATP and GAS/WVS surveys, see Appendix F.

In particular, we similarly find a linear trend between the alignment metrics considered and sub-
groups’ entropy of responses, see Figure 16 in Appendix F.3. This observation explains some of the
findings in prior works. For example, Santurkar et al. (2023) find that “all the base models share
striking similarities–e.g., being most aligned with lower income, moderate, and Protestant or Ro-
man Catholic groups” and “our analysis [...] surfaces groups whose opinions are poorly reflected by
current LLMs (e.g., 65+ and widowed individuals)”. For the ATP surveys, low income, moderate,
and Protestant/Catholic are the demographic subgroups with responses closest to uniformly random
among the income, political ideology, and religion demographic subgroups; whereas age 65+ and
widowed have responses furthest from uniform among the age and marital status subgroups.

5 CONCLUSION

We examined the survey responses of LLMs on the basis of the prime demographic survey of the
United States. To do so, we leveraged a popular methodology to elicit LLMs’ answer distributions
to survey questions. We found that model responses are dominated by systematic ordering biases
and do not exhibit the natural variations in entropy found in the census data. Even after adjusting
for ordering biases, LLMs’ responses still do not resemble those of human populations, irrespective
of model size or fine-tuning with human preferences, but rather trend towards uniform responses.

Taken together, our findings caution to expect robust insights when comparing LLMs’ responses
against those of human populations. In our study we could not find any indication that LLMs elicit
faithful a representation of any human population. Thus, the validity of surveys as an instrument
to measure general properties of LLMs, such as alignment, is unclear at present time. The robust-
ness and quality of an established survey does not seamlessly translate from the results obtained by
surveying human populations to the logits output by large language models.
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A RELATED WORK

Despite the syntactical similarities, evaluating LLMs on the basis of their survey responses differs
from traditional question answering evaluations Liang et al. (2022). Question answering (QA) tasks
predominantly serve the purpose of knowledge testing (e.g., Kwiatkowski et al., 2019; Rajpurkar
et al., 2016; Talmor et al., 2019; Mihaylov et al., 2018). In such setting, a language model’s answer
to some unambiguous input question is extracted by computing its most likely completion (Radford
et al., 2019). Alternatively, models’ most likely response to questions that lack a clear answer (e.g.,
“Angela and Patrick are sitting together. Who is an entrepreneur?”) have been used to investigate
various biases of LLMs (Li et al., 2020; Mao et al., 2021; Perez et al., 2022; Abid et al., 2021; Jiang
et al., 2022).

When evaluating LLMs on the basis of survey questions, it is not models’ most likely completion
that is studied, but rather models’ probability distribution over various answer choices. Santurkar
et al. (2023) study LLMs’ answer distributions for multiple-choice opinion polling questions, mea-
suring their similarity to those of various U.S. demographic groups. They extract models’ answer
distributions from the next token probabilities corresponding to each answer choice. Durmus et al.
(2023) employ a similar methodology but instead consider transnational opinion surveys. We adopt
this popular methodology to investigate the properties of models’ answer distributions on the ba-
sis of a well-established demographic survey, beyond measuring the relative similarity of models’
responses to different human populations.

In addition to asking questions individually, we also prompt models to complete entire survey ques-
tionnaires. We present questions in a sequential manner, keeping a model’s previous answers in
context when prompting the model to answer subsequent questions. This methodology resembles
prior work by Hartmann et al. (2023); Rutinowski et al. (2023); Motoki et al. (2023) who sequen-
tially prompt ChatGPT to answer entire political compass or voting advice questionnaires. But
instead of aggregating answers into a political affinity score, our focus is on examining whether
models’ responses resemble those of human populations.

There is an emerging body of research that integrates LLMs into computational social sci-
ence (Ziems et al., 2023). This includes tasks such as taxonomic labeling, where language models
are employed for tasks such as opinion prediction (Kim & Lee, 2023; Mellon et al., 2022), and
free-form coding, where language models are used to generate explanations for social science con-
structs (Nelson et al., 2021). Recent studies have also investigated the feasibility of using LLMs
to simulate human participants in psychological, psycholinguistic, and social psychology experi-
ments (Dillion et al., 2023; Aher et al., 2023), or as proxies for specific human populations in social
science research (Argyle et al., 2022; Lee et al., 2023; Sanders et al., 2023) and economics (Brand
et al., 2023; Horton, 2023). Within this context, our work suggests caution in relying on the survey
responses of LLMs to elicit synthetic responses that resemble those of human populations.

Previous works have identified that the performance of language models in QA tasks can vary sig-
nificantly depending on the input prompt (Shin et al., 2020; Jiang et al., 2020; Mishra et al., 2022),
such as the order in which few-shot examples are presented (Zhang et al., 2023; Lu et al., 2022).
Robinson & Wingate (2023) identify that in zero-short multiple-choice QA, a model’s most likely
answer can change depending on the order in which answer choices are presented. While we also
study models’ sensitivity to answer choice ordering, we instead study the extent to which changes in
choice ordering affect a model’s output distribution over answers. The concurrent work of Tjuatja
et al. (2023) contrasts the response biases of LLMs to multiple-choice survey questions against those
of humans, and finds that LLMs’ response biases are generally not human-like.

9
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B EXPERIMENTAL DETAILS

We use the American Community Survey (ACS) Public Use Microdata Sample (PUMS) files made
available by the U.S. Census Bureau.3 The data itself is governed by the terms of use provided by the
Census Bureau.4 We download the data directly from the U.S. Census using the Folktables Python
package (Ding et al., 2021). We download the files corresponding to the year 2019.

We consider the base models GPT-2 (Radford et al., 2019), GPT-Neo (Black et al., 2021), Pythia (Bi-
derman et al., 2023), MPT (MosaicML, 2023), LLaMA (Touvron et al., 2023a), Llama 2 (Touvron
et al., 2023b), and GPT-3 (Brown et al., 2020); as well as the instruct variants of MPT 7B and GPT
NeoX 20B, the Dolly fine-tune of Pythia 12B (Databricks, 2023), the Vicuna and Koala fine-tunes of
LLaMA 7B and 13B (Geng et al., 2023; Chiang et al., 2023), Llama 2 Chat (Touvron et al., 2023b),
GPT-3.5, GPT-4 (OpenAI, 2023), and the text-davinci variants of GPT-3 (Ouyang et al., 2022).

We downloaded the publicly available language model weights from their respective official Hug-
gingFace repositories. We run the models in an internal cluster. The total number of GPU hours
needed to complete all experiments is approximately 1500 (NVIDIA A100). The budget spent
querying the OpenAI models was approximately $200.

For the code and data to reproduce all experiments and plots, refer to

https://drive.google.com/drive/folders/1HEPo54-G7fthX7JEyws0MuvJFBk8x7Tt?usp=sharing

The supplementary material additionally contains notebooks to visualize the results of our investi-
gations for different prompt ablations.

B.1 SURVEY QUESTIONNAIRE USED

The exact questionnaire used in our experiments can be retrieved from

https://drive.google.com/drive/folders/1HEPo54-G7fthX7JEyws0MuvJFBk8x7Tt?usp=sharing

We consider 25 questions from the 2019 ACS questionnaire corresponding to the following vari-
ables in the Public Use Microdata Sample: SEX, AGEP, HISP, RAC1P, NATIVITY, CIT, SCH,
SCHL, LANX, ENG, HICOV, DEAR, DEYE, MAR, FER, GCL, MIL, WRK, ESR, JWTRNS,
WKL, WKWN, WKHP, COW, PINCP.

We take all questions as they appear in the ACS, with the exceptions:

• HISP: The ACS contains 5 answer choices corresponding to different Hispanic, Latino, and
Spanish origins, and respondents are instructed to write down their origin if their origin is
not among the choices provided. We instead provide two choices: “Yes” and “No”.

• RAC1P: The ACS contains 15 answer choices, allows for selecting multiple choices, and
respondents are instructed to write down their race if not among those in the multiple
choice. The PUMS then provides up to 170 race codes (RAC2P and RAC3P). We instead
present 9 choices, corresponding to the race codes of the RAC1P varible in the PUMS data
dictionary.

Additionally, the variables ESR and COW are not directly associated with any single question in the
ACS, but rather aggregate employment information. We formulate them as questions by taking the
PUMS data dictionary’s variable and codes descriptions. Lastly, for the questions corresponding to
the variables AGE, WKWN, WKHP, and PINCP, respondents are asked to write down an integer
number. We convert such questions to multiple-choice via binning.

B.2 ADDITIONAL DETAILS ON ADJUSTMENT

For OpenAI’s models, we only have access to the top-5 next-token log probabilities through the
OpenAI API. In this case, we assign to the unseen probabilities (if any) the minimum between the

3https://www.census.gov/programs-surveys/acs/microdata.html
4https://www.census.gov/data/developers/about/terms-of-service.html
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Choice ordering 1
Question: In the past 12 months, has 
this person given birth to any children?
A. Yes
B. No
Answer:

A. Yes B. No

A. No B. Yes

Yes No

+

1/2

1/2

Adjusted
response

0.24P(“B”)0.55P(“A”)

Choice ordering 2
Question: In the past 12 months, has 
this person given birth to any children?
A. No
B. Yes
Answer:

0.29P(“B”)0.63P(“A”)

Response

Response

Figure 4: Adjustment methodology. We compute the expected survey response under all possible
choice ordering permutations.

remaining probability mass and the smallest observed probability, following the methodology of
Santurkar et al. (2023). See Figure 4 for an illustration of the adjustment methodology.

For questions with more than 6 answers we evaluate a maximum of 5000 permutations. For Ope-
nAI’s models we evaluate up to 50 permutations due to the costs of querying the OpenAI API.

B.3 SYSTEM PROMPT USED FOR GPT-3.5 AND GPT-4

When querying GPT-3.5, GPT-4, and GPT-4 Turbo, we use the system prompt Please respond
with a single letter., as otherwise for most questions none of the top-5 logits correspond
to answer choice labels (e.g., “A”, “B”). Note that this problematic arises due to the fact that the
OpenAI API only allows access to the top 5 logits. We adapt the system prompt used by Dorner
et al. (2023) in the context of surveying GPT-4 with standarized personality tests.
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Figure 5: Per-variable normalized entropy of survey responses (without adjustment).

0

1

En
tro

py

SEX AGER HISPR RAC1PR NATIVITY CIT SCH

0

1

En
tro

py

SCHLR LANX ENG HICOV DEAR DEYE MAR

0

1

En
tro

py

FER GCL MIL WRK

109 1010 1011

Model size

ESR

109 1010 1011

Model size

JWTRNS

109 1010 1011

Model size

WKL

Model m
U.S. census
Uniform distribution109 10101011

Model size

0

1

En
tro

py

WKWN

109 1010 1011

Model size

WKHPR

109 1010 1011

Model size

COWR

109 1010 1011

Model size

PINCPR

Figure 6: Per-variable normalized entropy of survey responses (with adjustment).

C DETAILED EXPERIMENTAL RESULTS

C.1 MODEL RESPONSES ACROSS QUESTIONS BEFORE AND AFTER ADJUSTING FOR A-BIAS

The results in this section complement Section 3, and pertain non-instruction-tuned language mod-
els. When surveying models without choice order randomization, we observe that the entropy of
model responses tends to increase log-linearly with model size, often matching the entropy of the
uniform distribution for the larger models. This trend is consistent across survey questions, irre-
spective of the question’s distribution over responses observed in the U.S. census (Figure 5). After
adjusting for choice ordering bias via randomized choice orderings, language models’ survey re-
sponses are highly entropic and strongly trend towards the uniform distribution (Figure 6).
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Figure 7: A-bias in language models’ survey responses.
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Figure 8: Models’ responses are more similar to the uniform baseline than to any of the populations
considered.

C.2 A-BIAS OF INSTRUCTION-TUNED MODELS

The results in this section complement Section 3.1. We observe that all models exhibit substantial A-
bias plotted in Figure 7. This motivates the use of choice-order randomization in order to eliminate
confounding due to labeling biases in models’ responses.

C.3 ALIGNMENT TO DIFFERENT DEMOGRAPHIC SUBGROUPS

The results in this section complement Section 4.1. After adjusting for choice ordering bias, models’
responses are more similar to the uniform baseline than to any of the populations considered, see
Figure 8.

C.4 RELATIVE ALIGNMENT ACROSS DEMOGRAPHIC SUBGROUPS

The results presented here complement those of Section 4.1. We plot the average KL divergence
between each language model and each demopgrahic subpopulation (U.S. state) against the average
entropy of the subgroup’s responses. For readability, we split models into GPT-2 and GPT-Neo (Fig-
ure 9(a)), OpenAI’s API models (Figure 9(b)), MPT, Pythia, GPT-NeoX and its instruction variants
(Figure 9(c)), and LLaMA, Llama 2 and its instruction and chat variants (Figure 9(d)).
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Figure 9: Relative alignment across demographic subgroups for all language models considered.
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D ORDERING BIAS: FURTHER EXPERIMENTS

We conduct additional randomization experiments pertaining to answer choice position and label-
ing bias, complimenting Section 3. We consider the GPT-2, GPT Neo, MPT, Pythia, and LLaMA
models. The experiments follow a consistent setup:

1. We randomize both the order in which choices are presented and the label (i.e., letter) as-
signed to each answer choice. For example, for the ”sex” question, the possible combina-
tions are “A. Male B. Female”, “A. Female B. Male”, “B. Male A. Female”, and “B. Female
A. Male”. Note that in the experiments presented in Section 3.1 we only randomized over
the order in which choices are presented (i.e., the “A” choice was always presented first).

2. We compute the output distribution over responses for choice position (the probability as-
signed to the first, second, etc., answer choice presented) and letter assignment (the proba-
bility assigned to the answer choice assigned “A”, “B”, etc.).

For each model and survey question, we estimate the expected distribution over responses for both
choice position and letter assignment by collecting 3,000 responses (step 2) under different random-
izations of choice position and letter assignment (step 1). A model with no position and labeling
biases would assign the same probability distribution to answer choices (e.g., “male” and “female”)
regardless of position or letter assignment, and therefore the expected distributions over position
(e.g., selecting the first choice) and letter assignment (e.g., selecting “A”) would be uniform.

D.1 DISENTANGLING ORDERING BIAS INTO POSITIONING BIAS AND LABELING BIAS

We perform chi-square tests to determine whether language models’ output responses distributions
over position and letter assignment significantly deviate from the uniform distribution (i.e., if there
exists statistically significant bias in position or letter assignment). Since we collect 3,000 response
distributions under randomized choice position and letter assignment, we ensure a high test power
(≥ 0.98) in detecting small effect sizes (0.1) at a significance level of 0.05.

We find that models exhibit significant positioning and labelling for most survey questions, see
Figure 10. We observe that labelling is more prevalent that positioning bias. While both tend to
decrease with model size, order bias decreases more significantly with model size, whereas labeling
bias tends to be very prevalent across all model sizes. In Figure 11 we plot both the strength of
A-bias and first-choice bias across survey questions. The strength of A-bias tends to be greater than
that of first-choice bias, particularly for the smaller models.
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(b) Significant label bias.

Figure 10: All models exhibit statistically significant letter and ordering bias for most survey ques-
tions.

D.2 I-BIAS

We hypothesize that A-bias is prevalent because the single character “A” is relatively frequent as the
starting word of a sentence in written English. We test this hypothesis by replacing the character
“B” with “I” when presenting the survey questions, since the character “I” is even more frequent
as the starting word of a sentence in written English. We randomize over choice ordering and label
assignment as in the previous evaluation. We find that, when presenting both “A” and “I”, small
models then exhibit I-bias rather than A-bias (Figure 12), supporting our initial hypothesis.
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(b) First choice bias

Figure 11: Models, particularly those with less than a few billion parameters, tend to exhibit stronger
A-bias than first-choice bias.
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(a) A-bias in the “A”, “I” randomization experiment.
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Figure 12: When both “A” and “I” are present, small models exhibit I-bias rather than A-bias.

D.3 USING LETTERS WITH SIMILAR FREQUENCY IN WRITTEN ENGLISH

Motivated by the I-bias experiment, we now examine whether labeling bias can be mitigated by us-
ing letters that have similar frequency in written English. Therefore, instead of assigning to choices
the labels “A”, “B”, etc. we assign the following labels: “R”, “S”, “N”, “L”, “O”, “T”, “M”, “P”,
“W”, “U”, “Y”, “V”. We find that, compared to the “A”, “B”, etc. randomization experiment, the
percentage of questions for which models exhibit significant labeling bias somewhat decreases (Fig-
ure 13). However, models tend to exhibit substantially more position bias. This indicates that, in the
absence of a label that provides a strong signal (e.g., “A” or “I”), models tend to exhibit significantly
higher choice-ordering bias, irrespective of model size.
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Figure 13: “R”, “S”, “N”, etc. randomization experiment. All models, irrespective of size, exhibit
statistically significant letter and positioning bias for most survey questions.
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E PROMPT ABLATIONS

We reproduce our experiments using different prompts to query the model. Due to the cost
of querying OpenAI’s models, we only perform these ablations for models with publicly
available weights. The notebooks with all figures can be retrieved from the repository
https://drive.google.com/drive/folders/1HEPo54-G7fthX7JEyws0MuvJFBk8x7Tt?usp=sharing.
Overall, the prompt ablation results are very consistent with the findings presented in the main text
of the paper. In the following we provide an overview over the different ablations performed. We
enumerate the prompt styles as (P1)-(P8).

Additional context. We first explore whether including additional context signaling that the ques-
tions presented are from the American Community Survey, or that they are to be answered by U.S.
households. Keeping identical survey questions, we append at the start of the prompt one of the
following sentences:

(P1) Bellow is a question from the American Community Survey.

(P2) Answer the following question from the American Community Survey.

(P3) Answer the following question as if you lived at a household in
the
United States.

Asking questions in the second person. We change the framing of the questions.

(P4) We modify the survey questionnaire such that questions are formulated in the second person
rather than the third person (e.g., “What is your sex?” instead of “What is this person’s
sex?”).

Including instructions. Following the prompt ablation of Santurkar et al. (2023), we append at the
start of the prompt one of the following instructions:

(P5) Please read the following multiple-choice question carefully and
select
ONE of the listed options.

(P6) Please read the multiple-choice question below carefully and
select ONE of
the listed options. Here is an example of the format:\nQuestion:
Question 1\nA. Option 1\nB. Option 2\nC. Option 3\nAnswer: C

Chat-style prompt. We consider the prompt used by Durmus et al. (2023):

(P7) Human: {question}\nHere are the options:\n{options}\nAssistant:
If had to select one of the options, my answer would be

Interview-style prompt. We consider the prompt used by Argyle et al. (2022):

(P8) Interviewer: {question}\n{options}\nMe:

F RESULTS FOR ATP AND GAS/WVS

We reproduce the experiments of Sections 3 and 4 using the ATP, and GAS/WVS used by
Santurkar et al. (2023) and Durmus et al. (2023), where questions are presented individually
of one another. We do not consider OpenAI’s models as the cost to reproduce the experi-
ments via the OpenAI API exceeds our budget. We obtain very similar results to those of
the ACS presented in the main text of the paper. The notebooks with all figures can be re-
trieved from the following repository: https://drive.google.com/drive/folders/
1HEPo54-G7fthX7JEyws0MuvJFBk8x7Tt?usp=sharing
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Figure 14: Reproduction of the experiments in Sections 3 and 4 for the ATP surveys.

F.1 ATP SURVEYS

We obtain the ATP survey questions and their corresponding human responses from the Opinion-
sQA repository.5 We present all answer choices when querying the models, but exclude the answer
choices corresponding to refusals from our analysis similarly to Santurkar et al. (2023). When
comparing the similarity of models’ responses to different demographic subgroups, we use the de-
mographic subgroups and the alignment metric considered by Santurkar et al. (2023). For such
metric, higher values of alignment indicate that models’ responses are more similar to the reference
demographic group. We find that all models are more “aligned” with the uniformly random baseline
than with any of the demographic subgroups, see Figure 14.

F.2 GAS AND WVS SURVEYS

We obtain the ATP survey questions and their corresponding human responses from the GlobalOp-
inionsQA repository.6 When comparing the similarity of models’ responses to the population-level
survey responses of different countries, we use the countries and the similarity metric considered
by Durmus et al. (2023). We find that all models produce survey responses that are more similar
to those of the uniformly random baseline than to those of any of the demographic subgroups, see
Figure 15.

F.3 RELATIVE ALIGNMENT FOR ATP AND GAS/WVS SURVEYS

We consider the alignment measures proposed by Santurkar et al. (2023) and Durmus et al. (2023) on
ATP and GAS/VVS opinion surveys for the largest base / instruct models considered. We find that,
similarly to our observations for the ACS, the alignment between models and a given subpopulation
is highly correlated with the entropy of the subpopulations’ responses.

Note that Santurkar et al. (2023) observe that RLHF can result in a “substantial shift [...] towards
more liberal, educated, and wealthy [demographic groups]”. Our results suggest that this could be
an artifact of systematic biases. For the ATP surveys, we observe one outlier for which its alignment
before adjustment is not correlated with the entropy of subgroup’s responses: Llama 2 70B Chat, an
RLHF-tuned model. However, after adjustment, Llama 2 70B Chat’s alignment trend is remarkably
similar to that of Llama 2 70B and all other LLMs, see Figure 17.

5https://github.com/tatsu-lab/opinions_qa
6https://huggingface.co/datasets/Anthropic/llm_global_opinions
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Figure 15: Reproduction of the experiments in Sections 3 and 4 for the GAS/WVS surveys.
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Figure 16: Alignment measures proposed by Santurkar et al. (2023) and Durmus et al. (2023) on
ATP and GAS/VVS opinion surveys for the largest base / instruct models considered. The alignment
between models and a given subpopulation is highly correlated with the entropy of the subpopula-
tions’ responses.
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Figure 17: Alignment measures proposed by Santurkar et al. (2023) and Durmus et al. (2023) on
ATP and GAS/VVS opinion surveys for Llama 2 70B Chat. The correlation between alignment and
the entropy of subgroup’s responses is either non-existent or weak before adjustment. However,
such correlation is much stronger after adjustment, comparable to that of all other language models,
see Figure 16.
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