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Abstract

In recent years, the mainstream Temporal Rela-
tion (TempRel) classification methods may not
take advantage of the large amount of seman-
tic information contained in golden TempRel
labels which is lost by the traditional discrete
one-hot labels. So we propose a new approach
that can make full use of golden TempRel label
information and make the model performance
better. Firstly we build a TempRel Classifica-
tion model !, which consists of a RoOBERTa and
a Classifier. Secondly we establish fine-grained
templates to automatically generate sentences
to enrich golden TempRel label information
and build an Enhanced Data-set. Thirdly we
use the Enhanced Data-set to train the Knowl-
edge Encoder which has the same structure
as the TempRel Classification model, and get
embedded knowledge. Finally we Trian the
TempRel Classification model with EMbedded
temPoral reLATion knowldgE (TEMPLATE)
by using our designed Cosine balanced MSE
loss function. Extensive experimental results
shows that our approach achieves new state-of-
the-art results on TB-Dense and MATRES and
outperforms the TempRel Classification model
trained with only traditional cross entropy loss
function with up to 5.51%F on TB-Dense and
2.02%F; on MATRES. 2

1 Introduction

Articles such as news usually describe a series of
events with different start and end times. These
events seem to be narrated discretely, but in fact
there are certain connections. The most important
type of event connection is the Temporal Relation
(TempRel). It represents the sequence of events,
which connects the development and evolution of
the events in the article. If we can accurately extract
the TempRel of events in the article, it will help

"Without special instruction, all the mentions of "Tem-
pRel Classification model" in the following are the model
introduced in section 3

2We will release our code and data upon acceptance.

many downstream tasks such as reading compre-
hension (Ning et al., 2020; Zhou et al., 2019), track-
ing biomedical histories (Sun et al., 2019; Bethard
et al., 2016, 2017), generating stories (Yao et al.,
2019; Goldfarb-Tarrant et al., 2020), and forecast-
ing social events (Li et al., 2020; Jin et al., 2021).
Therefore, the TempRel classification has always
been an important natural language processing task,
which has attracted more and more attention in the
NLP community.

The TempRel classification task is to determine
the relationship of the event pair in the candidate re-
lationship set, given two events and one or two sen-
tences of document (where each event is a span of
the sentences). Naturally, all state-of-the-art mod-
els follow the classification view: the sentences and
events are encoded as an embedded representation
and then classified as one of the candidate relations.
The training goal then aims to embed the sentences
and events into a space in which the different rela-
tions are well separated. Recently the mainstream
TempRel classification methods use pre-trained lan-
guage models to encode event representations and
concatenate them, then feed them into a classifier.

On the TempRel classification task, we can see
that all state-of-the-art models (Ma et al., 2021;
Wang et al., 2020; Han et al., 2021; Zhang et al.,
2021; Tan et al., 2021; Ning et al., 2019) repre-
sent a golden TempRel label as a one-hot vector
in training their classification models. But the dis-
crete values which represent TempRel categories
lost abundant semantic information. And one-hot
labels assume that all categories are independent
with each other. However in real situations, Tem-
pRel labels are not completely independent and
have their own internal connections to each other
which are well expressed by the semantic informa-
tion contained in the golden TempRel labels. So
if we can take advantage of this semantic informa-
tion, the TempRel classification performance of the
model will definitely be improved.



On the pre-trained language model distillation
task, we can see that (Sun et al., 2019; Sanh et al.,
2019; Jiao et al., 2020; Sun et al., 2020) compress
pre-trained language model into a smaller one, such
as compress BERT > (the original BERT-Base (De-
vlin et al., 2019) model which has 12 layers of
Transformer) into a smaller BERTg (same struc-
ture as BERT-Base but with only 6 layers of Trans-
former), meanwhile BERTg performs on-par with
BERT 5 (Jiao et al., 2020). BERTg has the same
training data as BERT5 but fewer parameters. It
indicates that general pre-trained language models
have enough parameters and would have performed
better on most downstream tasks. i.e. they have a
lot of potential which is not exploited well. Their
works inspire us that we can improve the TempRel
classification performance of the model by using an
additional loss functions such as mean square error
loss to make the model learn from the embedded
knowledge of golden TempRel labels.

Naturally we build a TempRel Classification
model, which consists of a RoBERTa (Liu et al.,
2019) and a Classifier. And we propose a new ap-
proach that can improve the performance of the
model by learning embedded knowledge which
consists of golden TempRel labels and templates
which we build in section 4.1 with an additional
loss function which we design in section 4.3.

The main contributions of this paper can be sum-
marized as follows:

1. In this paper, we build a TempRel Classifi-
cation model and propose a new approach.
We use templates to enrich the TempRel label
information and encode it as embedded knowl-
edge. Then we use the embedded knowledge
and an additional loss function to make Tem-
pRel Classification model perform better.

2. In order to make our approach achieve better
performance, we further design fine-grained
templates and Cosine balanced MSE loss func-
tion as an additional loss function.

3. We demonstrate the effectiveness of our ap-
proach on TB-Dense and MATRES data-sets.
Our approach outperforms the current best
model with up to 2.27% F; on TB-Dense and
1.47%F on MATRES and outperforms Tem-
pRel Classification model trained with tradi-
tional cross entropy loss function with up to
5.51%F; on TB-Dense and 2.02% F} on MA-
TRES.

2 Related work

In this section, we introduce some works related
to TempRel classification, label embedding and
pre-trained language model distillation.

2.1 TempRel Classification

The TempRel classification task has always been
a popular research topic among NLP community.
(Cheng and Miyao, 2017) introduce the structure
of Bi-directional Long Short-Term Memory (BI-
LSTM) into their model, and encode the sentence
sequence and the dependent sequence between the
event nodes. Finally, the two codes are aggregated
and used for classification. (Ning et al., 2019)
also introduce Long Short-Term Memory (LSTM)
network to encode the event features which take
into account global contexts, and feed their repre-
sentations into a multi-layer perception (MLP) for
TempRel classification. They also introduce prior
knowledge from the Temporal Common Sense
Knowledge Base in the baseline model to assist
classification. (Han et al., 2019) propose a combi-
nation of LSTM and Structured Support Vector Ma-
chine (SSVM). LSTM is used to learn the scoring
function of the relational classifier, and SSVM re-
places the traditional Integer Linear Programming
process for global Maximum posterior inference.
(Wang et al., 2020) propose a joint constrained
learning framework which enforces logical con-
straints within and across multiple temporal and
sub-event relations by converting these constraints
into differentiate learning. (Zhou et al., 2021) pro-
pose Clinical Temporal ReLation Exaction with
Probabilistic Soft Logic Regularization and Global
Inference (CTRL-PG), which leverages the Prob-
abilistic Soft Logic rules to model the temporal
dependencies as a regularization term to jointly
learn a relation classification model. (Han et al.,
2021) propose a further-training strategy, ECONET,
to further train pre-trained language models with
a large-scale temporal relationship corpus which
makes pre-trained language models focus on the
event time relationship in the sentence. Addition-
ally ECONET performs better than the existing
general language model under a low-resource set-
ting through adequate experiments. (Zhang et al.,
2021) propose a new Temporal Graph Transformer
network and utilize syntactic graph which can ex-
plicitly find the connection between two events.
(Tan et al., 2021) claim that the embedding in the
Euclidean space cannot capture richer asymmet-



ric temporal relations, therefore they embed events
into hyperbolic spaces. Then they design a hy-
perbolic neural network and incorporate temporal
commonsense. Unlike their methods, we enable
a simple TempRel Classification model to achieve
state-of-the-art results without using extra data by
encoding golden TempRel label information and
using an additional loss function.

2.2 Label Embedding

Label embedding is to learn the embedding of the
labels in general domain classification tasks and
has been proven to be effective. (Zhang et al., 2018)
propose Multi-Task Label Embedding (MTLE) to
convert labels in text classification task into se-
mantic vectors and turn the original tasks into vec-
tor matching tasks. It uses input sequences from
three or more tasks and learns along with their
labels which benefits from each other and obtain-
ing better sequence representations. (Wang et al.,
2018) propose to regard text classification task as
a label-word joint embedding problem: each la-
bel is embedded in the same space with the word
vectors and introduce attention mechanism. (Yang
et al., 2018) use label embedding and apply a se-
quence generation model to classify text which
takes the correlations between labels into account.
(Guo et al., 2021) propose a novel Label Confusion
Model (LCM) which can learn label confusion to
capture semantic overlap among labels by calcu-
lating the similarity between instance and labels
during training and generate a better label distribu-
tion. In our work, we also encode label information,
but in a different way. We use templates to convert
labels into sentences which have more TempRel
information, then use a new way to encode them.

2.3 Pre-trained Language Model Distillation

Pre-trained Language Model distillation has been
proven a promising way to compress the large mod-
els while maintaining accuracy. (Tang et al., 2019)
distill BERT-large into a single-layer Bi-LSTM,
reducing the number of parameters by 100 times
and increasing the speed training process by 15
times. Although the effect is much worse than
BERT, it can be tied with ELMo. Different from
previous studies, (Sun et al., 2019) propose Patient
Knowledge Distillation, which extracts knowledge
from the intermediate layers of the teacher model to
avoid the phenomenon of over-fitting when only the
last layer is distilled. The previous work is to distill
the fine-tuned BERT, and the smaller model learns

from task-related knowledge. (Sanh et al., 2019)
propose a new strategy which performs distillation
in the pre-training stage. Further, (Jiao et al., 2020)
propose a two-stage learning framework, which
distills the larger model in the pre-trained and fine-
tuning stages respectively, and obtains excellent
results. Inspired by these studies, we could make
the intermediate layers of the model learn from the
embedded knowledge in the fine-tuning stage.

3  Our Baseline Model

Our TempRel Classification model (i.e. baseline
model), represented in Figure 1, is comprised of a
pre-trained language model and a classifier which
consists of two fully connected layers and a tanh ac-
tivation function between them. We use RoBERTa
(Liu et al., 2019), which has been proven to be more
effective than BERT in TempRel classification task
by (Zhao et al., 2021; Tan et al., 2021) for domain
transfer, as our pre-trained language model.

For a given example (s, e1, e2, 1), s is a span of
document, which may be a single sentence or two
sentences. e; and ey are events and each of them
is represented as a span of s. 7 is a golden Tem-
pRel label from the label set { AFTER, BEFORE,
INCLUDE, IS INCLUDED, VAGUE, SIMULTA-
NEOUS}.

We first tokenize s to get a sequence X ) of
tokens i.e. {xg, 1, -, Tn—1}. Then we feed the
sequence X| ) into ROBERTa and get the event
contextual representations e}? and el? correspond-
ing to the tokens of e; and ey respectively. If the
number of tokens of an event is larger than one,
we use the mean value of the hidden states of all
the tokens of the event as the event contextual rep-
resentation. Next, we combine €12 and e}? into a
classification vector ¢ = e12; €32 where ; is used to
denote concatenation. Finally we feed c into the
classifier followed by a soft-max function to get a
distribution over the six TempRel labels.

4 TEMPLATE Approach

Considering the missing information in discrete
values which represent TempRel categories and the
huge inherent underutilized ability of pre-trained
language model, we aspire to propose a new ap-
proach to solve the above weaknesses together. To
this end, we train TempRel Classification model
with embedded knowledge of TempRel informa-
tion and further focus on conquering two key ques-
tions. One is how to efficiently enrich TempRel
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Figure 1: TempRel Classification model consisting of a pre-trained language model and a classifier.
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Figure 2: Process of training TempRel Classification
model with embedded knowledge of TempRel informa-
tion

label information. To solve this problem we design
a fine-grained template in subsection 4.1. Another
is how to learn embedded knowledge of TempRel
information better. To solve this problem we de-
sign a more effective loss function in subsection 4.3.
Figure 2 shows the overall process of our approach.

Firstly, we use templates to enrich the TempRel
label information. We get an additional sentence
set Sudditional through matching golden TempRel
labels and event pairs in Data-set. Then connect
each sentence s in original sentence set S and sen-
tence s’ in Syqgitional tO g€t a new sentence set
Snew, Which forms Enhanced Data-set together
with original labels and event pairs. Secondly, we
train the TempRel Classification model in section 3
with the Enhanced Data-set as Knowledge Encoder,
then feed all sentences in Sy, into the Knowledge

Encoder to get all hidden states of event pairs of
all intermediate layers in RoBERTa as additional
embedded knowledge. Finally, we use both Origi-
nal Data-set and additional embedded knowledge
to train the TempRel Classification model. We
name our TempRel Classification model Trained
with EMbedded temPoral reLATion knowledgE as
TC-TEMPLATE model. And we also name our
approach as TEMPLATE.

Below are all the details of the components of
our approach.

4.1 Build Templates

For taking full advantage of the TempRel label
information, we aim to create effective templates
which can automatically convert each golden Tem-
pRel label into a temporal information-enriched
sentence s to enrich golden TempRel label infor-
mation. So, we design two kinds of templates with
different granularity. For coarse-grained templates,
we directly use the golden TempRel label and the
event pair to describe the TempRel of event pair.
For fine-grained templates, we claim that the time
span of events (i.e. the duration of the events)
guides TempRel classification. So we use the event
start times, event end times and the TempRel be-
tween different events to describe the TempRel of
the event pair in a more subtle level. We show both
the coarse-grained templates and the fine-grained
templates in Table 1.



TempRel Coarse-Grained Templates Fine-Grained Templates

AFTER* the event of e; happens after the beginning of the event of e; is after the end
event of ey happens. of the event of ejs.

BEFORE* the event of e; happens before the end of the event of e; is before the begin-
event of es happens. ning of the event of es.

INCLUDES the event of e; happens dur- the beginning of the event of e; is before the

ing the event of e; happens.

IS_INCLUDED

VAGUE* the temporal relation between
the event of e; and the event
of ey is vague.

SIMULTANEOUS* the event of e and the event

of es happens simultaneously.

the event of e; happens dur-
ing the event of e happens.

beginning of the event of ey and the end of
event of e; is after the end of the event of es.

the beginning of the event of e; is after the
beginning of the event of ey and the end of
event of eq is before the end of the event of es.

the temporal relation between the event of e
and the event of e5 is vague.

the event of e; and the event of ey have the
same beginning and end time.

Table 1: Coarse-Grained Templates and Fine-Grained Templates. All the six TempRel labels are in TB-Dense and

* indicates that the TempRel label also exists in MATRES.

4.2 Embedded Knowledge of TempRel
Information

Having obtained suitable templates, we next con-
vert the TempRel label information enriched by the
templates into embedded knowledge which is more
convenient for the TempRel Classification model
to learn.

For each record (s, e1, e2, ) in data-set, we use r
to match the templates and get s’, then concatenate
s and s’ to get a new sentence Sye,, = s; 5, finally
get a new record (Spew, €1, €2, 7). We combine all
new records into a new data-set i.e. Enhanced Data-
set. We use the Enhanced Data-set to train Tem-
pRel Classification model as Knowledge Encoder,
then use it to extract the embedded knowledge &
= {é1:6}, €3:63, -+ , é1%;¢3%} of TempRel infor-
mation of each record. ég is the hidden state cor-
responding to the event ¢ from the j-th RoOBERTa
Layer, and " is used to denote the hidden state
come from Knowledge Encoder. Additionally, in
the process of training Knowledge Encoder, we
add a dropout layer between the RoOBERTa and the
Classifier, in order to make embedded knowledge
k contain more useful temporal information.

4.3 Train the Model with Embedded
Knowledge of TempRel Information

(Sun et al., 2019) prove the effectiveness of us-
ing mean-square error(MSE) loss between the nor-
malized hidden states in distillation tasks as ad-

ditional training loss. In this way, they make the
small model learn from the large model. Motivated
by this, we can make the event pair hidden states
of all intermediate layers of TempRel Classifica-
tion model {e{; eg }jlil to imitate the embedded
knowledge{é]; & ;21 by using Ly/sp in equation
1. eg is the hidden state corresponding to the event
1 from the j-th RoBERTa Layer. In this way, we
enable TempRel Classification model to learn from
embedded knowledge.

12 N

1
LMSE:E § .
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where N is the number of training samples, d is the
hidden state dimension of RoOBERTa.
Furthermore, we argue that the event hidden
states of different intermediate layers are the event
features under different perspectives and they have
different importances to the learning process of
the TempRel Classification model. But L, ;. treat
them as equally important. We also argue that
the farther the embedded knowledge of é{; é*; is
from the embedding of e{; e%, the more knowledge
is contained in é{; éé for a given layer j. So we
propose a new method to automatically assign dif-



ferent weights w; € { w1, wa, -+ , w2 } to each
layer MSE loss. We design w; as:

1— cos(é{;é%,e{;eg) )
wj = 2 - A
7, (1— cos(el: e, o)

We use the cosine values of the hidden states and
the embedded knowledge of different intermediate
layers to weight their importances. Then we get a
new Cosine balanced MSE (C-MSE) loss Loysk:

12 N W
Lomse =YY (27][ :

j=1 k=1
o 2 3)
J. ] 5] . 5]
e;e €156
j. JH JJH
€7, € €7. €
H 12 =2 2 12 =2 22/ L

Combined with the cross entropy loss and the C-
MSE loss, the final loss function can be formulated
as:

Ltinan = aLeog + BLoymsE 4

where « and (8 are hyper-parameters which weight
the importances of discrete TempRel label informa-
tion and additional enriched embedded knowledge
of TempRel label information of intermediate lay-
ers.

5 Experiments and Results

In this section, we preform experiments on TB-
Dense and MATERS and prove our proposed ap-
proach performs better than previous state-of-the-
art methods. Details on the data-sets, experimental
setup and experimental results are provided in the
following subsections.

5.1 Data-set

TB-Dense (Cassidy et al., 2014) is a densely an-
notated data-set for TempRel extraction, with 10
times as many relations per document as the Time-
Bank. It contains 6 types of relations: AFTER,
BEFORE, INCLUDE, IS INCLUDED, VAGUE,
SIMULTANEOUS. We use the same train (22 doc-
uments), dev (5 documents) and test (9 documents)
splits as previous studies (Han et al., 2021; Zhang
etal., 2021).

MATERS (Ning et al., 2018) contains 275 news
documents from TimeBank (TB), AQUAINT (AQ),
and Platinum (PT). It was annotated by a novel
multi-axis annotation scheme with only 4 types of

temporal relations: BEFORE, AFTER, EQUAL3
and VAGUE. We follow the official split (i.e.,
TB+AQ (255 documents) as the train data-set and
PT (20 documents) as the test data-set). As for the
dev data-set, we use the same split strategy as previ-
ous studies (Ning et al., 2019; Tan et al., 2021). We
randomly select 51 documents (20% of the official
training data) as the dev data-set.

We briefly summarize the data statistics for TB-
Dense and MATRES in Table 2.

Corpora Document Tempral

TB-Dense Train 22 4032
Dev 5 629
Test 9 1427

MATRES Train 204 10097
Dev 51 2643
Test 20 837

Table 2: Data statistics for TB-Dense and MATRES

5.2 Experimental Setup

We use RoBERTa as our pre-trained language
model for fine-tuning and optimize TempRel Clas-
sification model with BERTAdam. In the process of
training Knowledge Encoder, we set the drop prob-
ability of the dropout layer between the ROBERTa
and the Classifier to 0.5, in order to make the
embedded knowledge contain more useful tempo-
ral information. We use grid search strategy to
select best hyper-parameters, and select learning
rate of Classifier € {le-3, 5e-4}, learning rate of
RoBERTa € {le-5, 5¢-6, le-6}, a € [1.2: 0.7], B
€ [1200: 700] and batch size € {16, 24}. Since
there are so many hyper-parameters to select for
our approach, thus we first fix o = 1 and 8 = 1000,
to search the best batch size and learning rates of
Classifier and RoBERTa, then we fix them to search
best « and 3. As for the dimension of the hidden
states between two fully connected layers in the
Classifier, we set it to 36 and 16 for TB-Dense and
MATRES respectively. The training time for one
epoch takes about one minute on GeForce RTX
3090.

5.3 Main Results

As shown in Table 3, we compare our approach
with other state-of-the-art methods in recent years
on TB-Dense and MATRES. We report the best

3We consider EQUAL to be the same as SIMULTANE-
OouUsS.



Model TB-Dense MATRES
JCL (Wang et al., 2020) RoBERTa base - 78.8
ECONET(Han et al., 2021) RoBERTa Large 66.8 79.3
TGT (Zhang et al., 2021) BERT Large 66.7 80.3
Poincaré Event Embeddings (Tan et al., 2021) RoBERTa base - 78.9
HGRU+knowledge (Tan et al., 2021) RoBERTa base - 80.5
TC-TEMPLATE ¢ ssE (ours) RoBERTa base 69.07 81.97
TC (ours) RoBERTa base 63.56 79.95

Table 3: Comparison of various approaches on TempRel classification on TB-Dense and MATRES. Bold denotes
the best performing model. TC denotes TempRel Classification model trained with only cross entropy loss.
TC-TEMPLATE¢ ;s denotes TempRel Classification model trained with additional embedded knowledge of

fine-grained templates and C-MSE loss. F}-score (%)

F1 value for each model. The results of compared
methods are directly taken from the cited papers.
Next, we will introduce our comparison methods:

Joint Constrained Learning (JCL) conducts
joint training on both temporal and hierarchical
relation extraction based on RoBERTa and Bi-
LSTMs. Meanwhile it uses logical constraints and
common sense knowledge. ECONET uses a con-
tinual pre-trained method with mask prediction and
contrastive loss to further train pre-trained language
model with a large-scale TempRel corpus. TGT
utilizes syntactic graph and designs a new Tempo-
ral Graph Transformer network. Poincaré Event
Embeddings leverages hyperbolic embeddings to
directly infer event relations through simple classi-
fier. HGRU embeds events into hyperbolic spaces,
devises an end-to-end architecture composed of hy-
perbolic neural units and introduces common sense
knowledge.

We observe that our TC model achieves
63.56%F1 on TB-Dense and 79.95%F; on MA-
TRES. It demonstrates that our TC model can ef-
fectively classify TempRel, and even achieves a
competitive performance which is close to current
best 80.5%F; on MATRES, although MATRES
is more simple data-set. Furthermore, our TC-
TEMPLATEg ;s g outperforms previous top state-
of-the-art method on TempRel classification with
up to 2.27%F; on TB-Dense and 1.47% F; on MA-
TRES. These experimental results well prove the ef-
fectiveness of the idea of encoding enriched golden
TempRel label information and learning the em-
bedded knowledge through C-MSE loss. There are
two possible reasons for the effectiveness. One is
that we not only take advantage of the large amount
of semantic information contained in golden Tem-
pRel label which is lost by the traditional discrete

one-hot labels, but also use templates to further
enrich this information. At the same time, we ob-
tain many target embedded knowledge with rich
temporal information. The other reason is that our
C-MSE loss function can make the TempRel Clas-
sification model learn from embedded knowledge
better. C-MSE loss function forces the intermedi-
ate layer hidden states of events in the TempRel
Classification model to imitate target embedded
knowledge of golden TempRel label information.
In this process, for better imitation, the TempRel
Classification model force itself to extract more
useful information related to TempRel from sen-
tences which don’t contain any golden TempRel
label.

Unlike ECONET and TGT, which use larger
pre-trained language model, nor TGT and HGRU,
which use networks with complex structure fol-
lowed RoBERTa base or BERT Large, our ap-
proach enables a smaller and simpler model which
only contains a RoOBERTa base and two full con-
nected layers to achieve the state-of-the-art perfor-
mance.

5.4 Ablation Study

We observe that, compared with the TC model,
the TC-TEMPLATE ;5 model performs better.
This confirms the effectiveness of our embedded
knowledge learning approach, which results in an
improvements of 5.51%F} and 2.02%F; on TB-
Dense and MATRES respectively. To go a step fur-
ther, we study the effects of our proposed C-MSE
loss function and fine-grained templates through
following ablation experiments.

Embedding knowledge learning by C-MSE vs
MSE. In order to determine whether our proposed
Cosine balanced MSE loss has a positive effect,
we conduct a comparative experiment. Under the



Model TB-Dense MATRES Model TB-Dense MATRES
TC-TEMPLATEc/sE 69.07 81.97 TC-TEMPLATE f;,. 69.07 81.97
TC-TEMPLATE j;sE 67.87 81.51 TC-TEMPLATE. .4 se 67.72 81.27
TC 63.56 79.95 TC 63.56 79.95

Table 4: Comparison of TC-TEMPLATE models us-
ing C-MSE loss and using MSE loss under the premise
of using fine-grained templates on TB-Dense and MA-
TRES. F;-score (%)

premise of using fine-grained templates, we record
the experimental results of the TC-TEMPLATE
using C-MSE loss and the TC-TEMPLATE using
MSE loss on TB-Dense and MATRES respectively.
The results are showed in Table 4. We can see
that the TempRel Classification model using C-
MSE achieves 1.2%F} and 0.46%F performance
improvement over the same model using simple
MSE respectively, which demonstrates the benefit
of using the cosine value of the intermediate layer
hidden states €7 ; e}, corresponding to the events and
the target embedded knowledge é{; éé to balance
the MSE losses of different intermediate layers in
TempRel Classification model. Because the tradi-
tional MSE loss function treats each intermediate
layer as equally important. It is easy to empha-
size secondary knowledge while ignoring primary
knowledge in training process. While our C-MSE
loss function can re-emphasize the primary knowl-
edge to solve this problem.

Fine-grained templates vs Coarse-grained
templates. In order to study the impact of dif-
ferent granularity templates on model performance,
we also compare F} values of TC-TEMPLATE
models with different granularity templates on TB-
Dense and MATRES under the premise of using
C-MSE loss function. We report the results in Ta-
ble 5. We can see that the TC-TEMPLATE using
fine-grained templates performs better than the TC-
TEMPLATE using coarse-grained templates, and
has 1.35%F' and 0.70% F; improvements on TB-
Dense and MATRES respectively. The reason for
these improvements is not just that fine-grained
templates are longer and describe TempRel more
precisely compared to coarse-grained templates.
It’s also because fine-grained templates use the
start and end times of the events to describe the
TempRel. This way makes fine-grained templates
closer to the annotation rules and actual basis for
judgment than coarse-grained templates. Through
the proven embedded knowledge learning process,
the knowledge of fine-grained templates can better

Table 5: Comparison of TC-TEMPLATE models using
fine-grained templates and coarse-grained templates un-
der the premise of using C-MSE loss on TB-Dense and
MATRES. F-score (%)

enable the model to heuristically learn the TempRel
of events and it orient the TempRel Classification
model to extract more distinguishable features.

6 Conclusion

In recent years, the mainstream TempRel classifica-
tion neural networks focus on using discrete values
to represent temporal relation categories and us-
ing a single cross entropy loss function to train the
model, but it can’t fully utilize the potential of the
model. So we propose a new approach which train
the TempRel Classification model with C-MSE
loss and embedded knowledge from fine-grained
templates and golden TempRel labels. Extensive
experimental results on TB-Dense and MATRES
data-sets show that our approach makes TempRel
Classification model gain a huge improvement and
TC-TEMPLATE ;s E performs better then all pre-
vious state-of-the-art methods on TempRel classifi-
cation tasks.

7 Future Work

There may be two possible limitations in our ap-
proach. First, the enriched embedded knowledge
of golden TempRel label information may contain
some noises which confuse the TempRel Classifica-
tion model in the learning process. Second, we lack
experiments to demonstrate the effectiveness of our
approach on more complex models, even though
we consider our proposed method can be adapted to
more complex models. Because we don’t yet know
how to balance the importances of different com-
ponents of a complex model without introducing
more hyper-parameters. So in the future, we will
further investigate how to reduce the noise of em-
bedded knowledge, and further refine our approach
so that the performances of complex models can
also be improved.
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