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Abstract

Differential privacy is often studied under two
different models of neighboring datasets: the
add-remove model and the swap model. While
the swap model is frequently used in the aca-
demic literature to simplify analysis, many prac-
tical applications rely on the more conservative
add-remove model, where obtaining tight results
can be difficult. Here, we study the problem of
one-dimensional mean estimation under the add-
remove model. We propose a new algorithm and
show that it is min-max optimal, achieving the
best possible constant in the leading term of the
mean squared error for all ε, and that this con-
stant is the same as the optimal algorithm under
the swap model. These results show that the add-
remove and swap models give nearly identical
errors for mean estimation, even though the add-
remove model cannot treat the size of the dataset
as public information. We also demonstrate empir-
ically that our proposed algorithm yields at least a
factor of two improvement in mean squared error
over algorithms frequently used in practice. One
of our main technical contributions is a new hour-
glass mechanism, which might be of independent
interest in other scenarios.

1. Introduction
Mean estimation is one of the simplest and most widely used
techniques in statistics, and is often deployed as a subroutine
for more complex analyses. However, the mean of a dataset
can reveal private information, and so a variety of differ-
entially private methods have been proposed to estimate
it. These include private mean estimation with robustness
(Liu et al., 2021), mean estimation under statistical models
(Kamath et al., 2020), and techniques with instance-specific
guarantees (Huang et al., 2021; Dick et al., 2023).
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However, despite the ubiquitous nature of differentially pri-
vate mean estimation, fundamental questions remain about
the optimal error that can be achieved under commonly used
variants of differential privacy. We begin with the general
definition of a differentially private mechanism.
Definition 1.1 (Differential privacy (Dwork et al., 2014)). A
randomized, real-valued algorithm A satisfies ε-differential
privacy if for any two neighboring datasets D,D′ and for
any output S ⊆ R, it holds that

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S].

It remains to specify what makes two datasets neighbors.
Two definitions are commonly used. The first, called the
swap model (Dwork et al., 2006; Vadhan, 2017), defines
two datasets D and D′ as neighboring if and only if

|D \D′| = 1 and |D′ \D| = 1.

The second, called the add-remove model (Dwork et al.,
2014, Definition 2.4), defines D and D′ as neighboring if
and only if

|D \D′|+ |D′ \D| = 1.

Intuitively, under the swap model, D′ is obtained from D
by changing a value, while under the add-remove model, it
is obtained by adding or removing a value.

While both neighborhood models of differential privacy
are studied in the literature, the add-remove model is more
frequently used for statistical queries in practice (McSh-
erry, 2009; Wilson et al., 2019; Rogers et al., 2020; Amin
et al., 2022), likely because it is more conservative: the add-
remove model protects the size of the input dataset, while
the swap model does not. Furthermore, a ε-DP algorithm un-
der the add-remove model is also a 2ε-DP algorithm under
the swap model, so in this sense the relationship is strict.

Here, we revisit the problem of scalar mean estimation in the
add-remove model of differential privacy, proposing a new
algorithm that is min-max optimal, including the constant
on the leading term of the error, and showing that the add-
remove and swap models give nearly identical errors despite
the former’s additional protections.

1.1. Setting

Let Dn(`, u) denote the set of all datasets consisting of n
real values in the range [`, u], letD≥n(`, u) denote the set of
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all datasets consisting of at least n real values in the range
[`, u], and let D∗(`, u) denote the set of datasets of all sizes
with values in [`, u].

Given a dataset D = {x1, x2, . . . , }, the mean is given by

µ(D) ,
1

|D|
∑
x∈D

x.

We measure the utility of a mean estimator µ̂ : D∗(`, u)→
[`, u] for a dataset D in terms of mean squared error (MSE),

L(µ̂,D) , E[(µ̂(D)− µ(D))2],

where the expectation is over the randomization of the esti-
mator. Typically, for private estimators, L(µ̂,D) decreases
with the size of D as O(1/|D|2). Hence, we measure the
normalized mean squared error as

Lnorm(µ̂,D) , |D|2L(µ̂,D).

Let Asw
ε denote the set of all ε-differentially private algo-

rithms under the swap model, and let Aar
ε denote the set of

all ε-differentially private algorithms under the add-remove
model. The min-max normalized mean squared error for
sufficiently large datasets (of size at least n0) in the swap
model is defined as

Rsw(ε, n0, `, u) , inf
µ̂∈Asw

ε

sup
D∈D≥n0

(`,u)

Lnorm(µ̂,D),

and similarly in the add-remove model is

Rar(ε, n0, `, u) , inf
µ̂∈Aar

ε

sup
D∈D≥n0

(`,u)

Lnorm(µ̂,D).

1.2. Optimality in the swap model

Geng and Viswanath (2014) showed that

Rsw(ε, n0, `, u) = (u− `)2 · σ2(ε)·(1± o(1)), (1)

where the o(1) term (here and throughout the paper) tends
to zero as n0 →∞ for fixed ε, ` and u, and

σ2(ε) =
2−2/3e−2ε/3(1 + e−ε)2/3 + e−ε

(1− e−ε)2
. (2)

As ε→ 0, σ2(ε)→ 2/ε2, and hence for small values of ε

Rsw(ε, n0, `, u)
ε→0
≈ 2(u− `)2

ε2
(1± o(1)) . (3)

The Laplace mechanism matches this mean squared error
up to the o(1) term, and in this sense is optimal as ε→ 0.

However, for larger ε, the Laplace mechanism is not optimal.
Geng and Viswanath (2014) defined a class of differentially
private mechanisms called staircase mechanisms whose den-
sity is parameterized by γ ∈ [0, 1] and showed that, for any
monotonic loss, there exists a γ such that the staircase mech-
anism is the optimal differentially private mechanism for
that loss. We provide a definition of the staircase mechanism
in Definition A.1 for completeness.

1.3. Optimality in the add-remove model

The story is a bit more complicated under the add-remove
model. Since the mean is the ratio of the sum (s ,

∑
x∈D x)

to the count (n , |D|), one simple algorithm for private
mean estimation is to use a fraction of the privacy budget
(say, ε/2) to estimate the sum as ŝ, use the remaining privacy
budget (ε/2) to estimate the count as n̂, and finally estimate
the mean as ŝ/n̂. Since the true mean always lies in the
range [`, u], we can additionally clip the result to [`, u] to
improve accuracy. This standard algorithm is shown in
Algorithm 1, where Clip(x, [a, b]) = max(a,min(x, b)).

Algorithm 1 Independent noise addition.
Input: Multiset D ⊂ [l, u], ε > 0.

1 Let w = max(|`|, |u|).
2 Let s =

∑
x∈D x.

3 Let n = |D|.
4 Let ŝ = s+ Zs, where Zs ∼ Lap( 2w

ε ).
5 Let n̂ = n+ Zn, where Zn ∼ Lap( 2

ε ).
6 Output µ̂ = Clip( ŝn̂ , [`, u]).

Algorithm 2 Shifted noise addition.
Input: Multiset D ⊂ [l, u], ε > 0.

1 Let w = u− l and m = l+u
2 .

2 Let D′ = D −m.
3 Let s =

∑
x∈D′ x.

4 Let n = |D′|.
5 Let ŝ = s+ Zs, where Zs ∼ Lap(wε ).
6 Let n̂ = n+ Zn, where Zn ∼ Lap( 2

ε ).
7 Output µ̂ = Clip( ŝn̂ , [−

w
2 ,

w
2 ]) +m.

The noise added in Algorithm 1 is proportional to
max(|`|, |u|), which can be badly suboptimal, for instance if
l = 106 and u = 106+1. Algorithm 2 modifies Algorithm 1
by shifting the inputs by (` + u)/2 before computing the
sum, reducing the sensitivity to (u− `)/2. This improves
the error, sometimes dramatically. It can be shown that, for
any dataset D ∈ D∗(`, u),

Lnorm(Algorithm 2, `, u) ≤ 4(u− `)2

ε2
(1 + o(1))

and hence

Rar(ε, n0, `, u) ≤ 4(u− `)2

ε2
(1 + o(1)) . (4)

For simplicity, we drop n0 in the notation of Rsw and Rar
for the rest of the paper.

This result is still a factor of two larger than the swap model
lower bound in (3), and the loss is even further from Rsw
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in the low-privacy regime where ε is large. Recently, Ka-
math et al. (2023) proposed a generic mechanism to convert
a differentially private algorithm in the swap model to a
differentially private algorithm in the add-remove model
and instantiated it for the unbiased mean estimation prob-
lem. However, their focus was not the constant in the mean
squared error, and the stated result (Kamath et al., 2023,
Theorem D.6) has a constant of 9. We note that swap and
add-remove models are also referred to as bounded and un-
bounded models of differential privacy, respectively (Tramèr
et al., 2015; Takagi et al., 2023).

Thus, a natural question remains: is mean estimation in
the add-remove model inherently harder than in the swap
model? We show in this paper that the answer is no.

2. Our contributions
We propose a new mean estimation algorithm in Algo-
rithm 3, introducing two key improvements over Algo-
rithm 2:

Transformed noise addition. Instead of estimating the
sum and count directly as in Algorithm 2, the new algorithm
estimates a linear transformation of the sum and count to
reduce `1 sensitivity. This is sufficient to achieve optimal er-
ror using the vector Laplace mechanism in the high-privacy
regime where ε is small.

The hourglass mechanism. To achieve optimal error in the
low-privacy regime where ε is large, we propose a new two-
dimensional noise distribution called the hourglass mecha-
nism. It has the desirable property that the marginal distribu-
tion over either dimension is the optimal univariate staircase
mechanism (Geng and Viswanath, 2014).

We show that the hourglass mechanism can be sampled ef-
ficiently, and prove a bound on the mean squared error
of Algorithm 3 when the noise is drawn from the hour-
glass mechanism. Combined with an information-theoretic
lower bound on Rar(ε, `, u), this shows that Algorithm 3 is
optimal for all ε, `, and u.

These bounds also match the result of Geng and Viswanath
(2014) for Rsw(ε, `, u), establishing that the swap model
and the add-remove model give the same mean squared
error (up to o(1) terms).

We note in passing that, when the bounds ` and u are un-
known, Algorithm 3 can be combined with standard clipping
algorithms to perform on unbounded domains (Amin et al.,
2019).

2.1. Overview of technical results

We first analyze Algorithm 2 as a baseline and provide a
dataset specific upper bound in Lemma 3.2, proving that for

any dataset D, its mean squared error is upper bounded by(
2(u− l)2

|D|2ε2
+

8(µ− u+`
2 )2

|D|2ε2

)
(1 + o(1)) .

We then analyze Algorithm 3 with Laplace noise in Theo-
rem 3.3, showing that its error is at most(

(u− l)2

|D|2ε2
+

4(µ− u+`
2 )2

|D|2ε2

)
(1 + o(1)) , (5)

and hence

Rar(ε, `, u) ≤ 2(u− `)2

ε2
(1 + o(1)) .

This is the same as the min-max MSE of the swap model
for small values of ε.

We next analyze Algorithm 3 with noise drawn from the
two-dimensional staircase mechanism proposed by Geng
et al. (2015) in Lemma 4.4, and show that its error is at most(

(u− l)2σ̃2(ε)

|D|2

)
(1 + o(1)) ,

where σ̃2(ε) is the variance of the two-dimensional staircase
mechanism optimized for mean squared error with privacy
guarantee ε. While the above result is better than (5) for
large values of ε, it still does not match the error of the swap
model in general. This is due to the fact that for large values
of ε, the error of the swap model scales as

σ2(ε) = Θ
(

(u− `)2e−2ε/3
)
,

while the error of the two dimensional staircase mechanism
applied in Algorithm 3 scales as

σ̃2(ε) = Θ
(

(u− `)2e−ε/2
)
.

(See Lemma A.3 in the Appendix for details.)

We finally analyze Algorithm 3 with noise drawn from the
hourglass mechanism in Theorem 4.5, showing that its error
is upper bounded by(

(u− l)2σ2(ε)

|D|2

)
(1 + o(1)) ,

where σ2(ε) is given in (2), matching the swap model lower
bound in (1).

In addition, we prove an information-theoretic lower bound
for the add-remove model in Theorem 5.2:

Rar(ε, `, u) ≥ (u− `)2 · σ2(ε) · (1− o(1)) ,
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Algorithm 3 Transformed noise addition.
Input: Multiset D ⊂ [l, u], ε > 0.

1 Let w = u− l.
2 Let D′ = D − l.
3 Let s1 =

∑
x∈D′ x/w.

4 Let s2 =
∑
x∈D′(1− x/w).

5 Let Z = (Z1, Z2) ∼ two-dim. noise mechanism(ε).
6 Let ŝ1 = s1 + Z1.
7 Let ŝ2 = s2 + Z2.
8 Output µ̂ = w · Clip( ŝ1

ŝ1+ŝ2
, [0, 1]) + l.

establishing that

Rar(ε, `, u) = (u− `)2 · σ2(ε) · (1± o(1)) ,

and therefore that Algorithm 3 is optimal, as well as that the
add-remove and swap models have equivalent mean squared
error for mean estimation.

The rest of the paper is organized as follows. In Section 3
we discuss the high-privacy regime, showing how a linear
transformation on the sum and count leads to optimal error
using the Laplace mechanism. In Section 4, we generalize
our results result to the low-privacy regime, introducing
the hourglass mechanism in Section 4.1 and applying it to
mean estimation in Section 4.2. In Section 5 we prove an
information-theoretic lower bound showing that our results
with the hourglass mechanism are optimal in the add-remove
model and match the optimal error in the swap model as
well. Finally, in Section 6, we empirically demonstrate the
performance of our algorithm.

3. High privacy regime
We first build intuition by viewing Algorithms 1 and 2 geo-
metrically, drawing on the framework of Hardt and Talwar
(2010); Awan and Slavković (2021). To simplify, we will
assume ` = 0 and u = 1. Let

q(D) =

(∑
x∈D

x,
∑
x∈D

1

)

be the two-dimensional vector containing the sum and count
for dataset D. Define the sensitivity space S(q) to be the
set of possible values for q(D) − q(D′) when D and D′

are neighboring datasets. Under the add-remove model,
the sensitivity space for q is ∪x∈[0,1]{(x, 1), (−x,−1)}, de-
picted by the two bold line segments in the middle plot
of Figure 1. Throughout the paper, we use (x, y) to de-
note a two-dimensional vector, and [a, b] to denote a closed
interval. We use [(x1, y1), (x2, y2)] to denote a segment
in the two-dimensional space with end points (x1, y1) and
(x2, y2), with both ends included.

The standard vector Laplace mechanism can be used to
obtain a differentially private estimate of q(D) based on its
sensitivity. In particular, the mechanism adds noise scaled
to the maximum `1 norm of the sensitivity space—that is,
the smallest constant a such that the `1 ball {x : ‖x‖1 = a}
contains S(q). Here, the minimum value of a is 2, as shown
by the red diamond in the middle plot of Figure 1. And,
indeed, adding Laplace noise scaled to a = 2 is precisely
what Algorithm 1 does.

However, noise added in this way actually supports a much
larger sensitivity space than just S(q), as can be seen in the
figure. This means that Algorithm 1 is effectively “wasting”
noise to protect against changes to q that cannot occur, un-
necessarily increasing error. (The problem is even worse
when the range [`, u] is far from zero, as noted earlier.)

Compared to this naive approach, Algorithm 2 is signifi-
cantly better, since the shift in Line 2 maps values in the
dataset from [0, 1] to [− 1

2 ,
1
2 ]. The bold line segments in

the right plot of Figure 1 depict the new sensitivity space,
which is contained by the `1 ball with smaller scale a = 1
(shown in orange).

In fact, one can show that Algorithm 2 is equivalent to the
following procedure:

1. Apply a linear transformation given by the matrix[
1 − 1

2
0 1

2

]
to the sum and count vector q(D).

2. Add vector Laplace noise to the transformed vector
according to its (reduced) sensitivity (a = 1).

3. Reverse the transformation by applying the inverse

matrix
[
1 1
0 2

]
, then divide to estimate the mean and

truncate as before.

For a detailed proof of the above claim, see Appendix B.

In the original (untransformed) q-space, depicted in the mid-
dle plot of Figure 1, the region protected by the resulting
noise distribution is a parallelogram, shown in orange. Com-
pared with the red diamond of Algorithm 1, this region more
tightly encloses the sensitivity space, reducing noise and
increasing accuracy. However, it still does not perfectly
enclose S(q).

3.1. Optimizing the Laplace mechanism via linear
transformation

The approach in Algorithm 3 is to transform q so that the `1
unit ball encloses it as tightly as possible. To do this, it maps
the two segments of the sensitivity space [(0, 1), (1, 1)] and
[(−1,−1), (0,−1)] onto two sides of the `1 ball using the
transformation shown in the left plot of Figure 1. The en-
closing `1 ball is depicted in blue.
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Figure 1. The Laplace mechanism applied to different linear transformations of S(q). The middle plot shows the original sensitivity
space, where red denotes the noise ball used by Algorithm 1; orange the ball used by Algorithm 2, and blue the ball used by Algorithm 3,
which is the smallest convex shape possible. The left plot shows the transformed space used by Algorithm 3, and the right plot shows the
transformed space used by Algorithm 2.

More concretely, Algorithm 3 computes the the scaled sum
(denoted by s1) and the difference of count and scaled sum
(denoted by s2). It then privatizes both s1 and s2 and uses
them to compute mean. Next, we prove that Algorithm 3
instantiated with Laplace noise is not just intuitively better
but in fact optimal for minimizing the mean squared error
of the mean when ε is sufficiently small.

3.2. Analysis of Laplace noise algorithms

We first state a technical result which we use in proving
upper bounds.

Lemma 3.1. Let b ≥ 0. Let a be such that |a|/b ≤M . Let

C = Za
b −

aZb
b2 and F =

∣∣∣ 2MZ2
b

b2

∣∣∣+
∣∣ 2ZaZb

b2

∣∣. Then,

E

[(
Clip

(
a+ Za
b+ Zb

)
− a

b

)2
]
≤ E

[
C2
]

+ E
[
F 2
]

+ 2
√
E [C2]E [F 2]

+ 4M2Pr(Zb < −b/2).

We provide the proof in Appendix C. We next state an upper
bound on the mean squared error of Algorithm 2.

Lemma 3.2. The output of Algorithm 2 is ε-differentially
private. For any dataset D ∈ D∗(`, u), the mean squared
error of Algorithm 2 is upper bounded by(

2(u− l)2

|D|2ε2
+

8(µ−m)2

|D|2ε2

)
(1 + o(1))

≤ 4(u− l)2

|D|2ε2
(1 + o(1)) ,

where m = `+u
2 .

We provide the proof in Appendix D. We finally prove the
upper bound on the mean squared error of Algorithm 3 when
the noise distribution is Laplace.

Theorem 3.3. Let Z1 and Z2 be sampled from independent
Laplace distributions with parameter ε. Then the output
of Algorithm 3 is ε-differentially private. Furthermore, for
any dataset D ∈ D∗(`, u), the mean squared error of Algo-
rithm 3 is upper bounded by(

(u− l)2

|D|2ε2
+

4(µ−m)2

|D|2ε2

)
(1 + o(1))

≤ 2(u− l)2

|D|2ε2
(1 + o(1)) ,

where m = `+u
2 .

Proof. Let s = (s1, s2) be a two-dimensional vector. Let s′

and s′′ be vectors corresponding to two neighboring datasets.
Then the `1 sensitivity is bounded by ‖s′ − s′′‖1 ≤ 1.

In lines 5 and 6 of the algorithm, we add Lap(1/ε) noise to
each coordinate. Hence (ŝ1, ŝ2) is an ε differentially private
vector and, by the post-processing lemma, the output µ̂ is ε
differentially private.

The proof of the error bound relies heavily on Lemma 3.1.
Let n = |D|. Since clipping only reduces the error,

E[(µ̂− µ)2] ≤ (u− `)2E

[(
ŝ1

ŝ1 + ŝ2
− s1
n

)2
]
.

Let a = s1, b = n, Za = Z1 ∼ Lap(1/ε), Zb = Z1 + Z2,
and M = 1. To usefully apply Lemma 3.1, we need bounds
for E[C2], E[F 2], and Pr(Zb < −b/2). We bound each of
these below.

E[C2] = E

[(
Z1

n
−

( s1n )(Z1 + Z2)

n

)2
]

=
1

n2
E
[((

(1− s1
n

)
Z1 −

s1
n
Z2

)2]
=

1

n2ε2
+

4( s1n −
1
2 ))2

n2ε2
. (6)
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Since (x+ y)2 ≤ 2x2 + 2y2,

E[F 2] ≤ 8

n4
E[(Z1 + Z2)4] +

8

n4
E[(Z1 + Z2)2Z2

1 ]

= O

(
1

n4ε4

)
= o

(
1

n2ε2

)
,

where the last equality follows from the moments of the
Laplace distribution (Kotz et al., 2012). Finally,

Pr(Zb < −b/2) ≤ Pr(Z1 + Z2 < −n/2)

≤ Pr(Z1 < −n/4) + Pr(Z2 < −n/4)

= O
(
e−O(nε)

)
= o

(
1

n2ε2

)
,

where the last equality follows from the tail bounds of the
Laplace distribution. Combining the three bounds above
with Lemma 3.1 and observing the fact that µ = ` + s1w

n
yields the theorem.

Theorem 3.3 implies the following corollary, which shows
that, in the high-privacy regime where ε is small, the error
of the add-remove model matches the swap model (Equa-
tion 3).
Corollary 3.4.

Rar(ε, `, u) ≤ 2(u− l)2

ε2
(1 + o(1)) .

4. Generalization to all values of ε
In this section we design an optimal ε-DP mechanism for
private mean estimation in the add-remove model for any
ε, dropping the high-privacy assumption. We prove the op-
timality of the new mechanism with respect to Rar(ε, `, u),
and show that the optimal min-max error for the add-remove
model is equivalent to that for the swap model, for any ε, up
to a (1 + o(1)) constant factor.

We first motivate the new mechanism, which we call the
hourglass mechanism. Observe that, in Algorithm 3, s1+s2
always sums to an integer, and hence the sensitivity space
of (s1, s2) is just the two bold segments on the left graph
in Figure 1. Previously, we used the Laplace mechanism
to protect the convex hull of these segments, but this is
(still) a strict superset of the actual sensitivity space, which
is non-convex. Figure 2a shows how many points in the
`1 unit ball actually cannot be reached by taking a single
step to a neighboring database. The hourglass mechanism
is designed to protect this sensitivity space more precisely,
allowing for less noise. We formalize this notion and show
that when the hourglass mechanism is used in Algorithm
3 to noise (s1, s2), the result is an optimal private mean
estimator for all values of ε.

In particular, it is known that for privately computing one-
dimensional sums (such as s1 or s2) the optimal mechanism

is the staircase mechanism (Geng and Viswanath, 2014).
The hourglass mechanism is constructed so that its marginal
distributions both exactly match the univariate hourglass
mechanism, with no change in ε.

4.1. Hourglass mechanism

The hourglass mechanism adds two-dimensional noise
drawn from a distribution parameterized by γ ∈ (0, 1]. Its
density fγ(x, y) is supported on {(x, y) : x+ y = k∆, k ∈
Z}. For x ≥ 0, we divide each diagonal line x + y = k∆
into regions according to the value of x. For integers i ≥ 1:

Ak : x ∈ [0, (k + γ)∆)

Bk(i) : x ∈ [(k + γ + i− 1)∆, (k + γ + i)∆)

Note that, for k < 0, Ak is always empty, and Bk(i) does
not contain any points with x ≥ 0 unless i ≥ −k. See
Figure 2b for an illustration.

The density of the hourglass noise distribution is given by

fγ(x, y) ∝

{
e−k·ε, (x, y) ∈ Ak
e−(2i+k)·ε, (x, y) ∈ Bk(i) .

(7)

For x < 0, fγ(x, y) = fγ(−x,−y). See Figure 2c for an
illustration of the density when ∆ = 1 and γ = 0.4.

Note that the hourglass mechanism is different from the
natural extension of the univariate staircase mechanism to
two dimensions as proposed by Geng et al. (2015). The
latter is known to be optimal for an `1-ball sensitivity space,
but does not have the properties shown in Lemma 4.2, which
are key to the optimality of the hourglass mechanism, and
does not perform as well in practice (see Section 6).

Theorem 4.1. Let q : D → R2 be a query such that for any
two neighboring datasets D and D′,

q(D)− q(D′) ∈ {(x0,∆− x0) : x0 ∈ [0,∆]}.

Then the hourglass mechanism given by

q(D) + (Z1, Z2),

where Z1, Z2 are sampled according to the density fγ , is
ε-DP.

Proof. We provide an intuition based on Figure 2c here and
a detailed proof in Appendix E.2. Recall that a segment
marked by integer j in Figure 2c has density proportional to
e−jε, and on neighboring databases the noise distribution
is effectively shifted by (x0, 1 − x0) for some x0 ∈ [0, 1].
Thus, to ensure privacy, it must be the case that the integers
marking any pair of points (x, y) and (x+ x0, y + 1− x0),
which are on adjacent lines in Figure 2c and not more than
one unit apart along either axis, differ by at most one. By
construction, this is true across the support of fγ .
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(a) The “hourglass” sensitivity space.
Blue solid arrows show how, when mov-
ing to a neighboring database, the origin
can shift only to points along the line
segments (0, 1) to (1, 0) and (0,−1) to
(−1, 0). Red dashed arrows show how
points like (0.5,−0.5) are only reachable
via a chain of two neighboring steps, even
though though they lie within the `1 unit
ball.

(b) Illustration of the line segments
Ak and Bk(i) used to define the hour-
glass distribution for ∆ = 1 and γ = 0.4.
Note that the segments are only active for
x ≥ 0.

(c) The hourglass density for ∆ = 1 and
γ = 0.4. Bolder segments have higher
density; in particular, points on a line seg-
ment marked j have density proportional
to e−jε.

Figure 2. The hourglass mechanism.

We now show that the marginal distributions of the hour-
glass mechanism are univariate staircase mechanisms, which
is the key ingredient to proving optimal utility guarantees.

Lemma 4.2 (Marginal distribution). The marginal densi-
ties fγ(x) and fγ(y) match the ε-DP univariate staircase
mechanism with parameter γ. That is, fγ(x) ∝ e−εd|x|−γe,
and fγ(y) ∝ e−εd|y|−γe.

Proof. Assume x ≥ 0, and let j ≥ 0 be the unique integer
for which x ∈ [j− 1 + γ, j+ γ). Then the marginal density
for x is

fγ(x) ∝
∞∑

k=−∞

fγ(x, k − x) (8)

=

j−1∑
k=−∞

e−(2j−k)ε +

∞∑
k=j

e−kε (9)

The first term follows because j − k ≥ 1 in this range, and
so x ∈ Bk(j−k). The second term follows because x ∈ Ak
in this range. Summing the geometric series, the above is
equal to

e−(j+1)ε/(1− e−ε) + e−jε/(1− e−ε) ∝ e−jε ,

which is precisely the staircase density. The densities for
x < 0 and y are handled symmetrically.

Next we derive the conditional distribution of y given x.

Lemma 4.3 (Conditional distribution). The conditional
probability under fγ of y given a fixed x is a geometric

distribution with ratio e−ε. In particular, for any y such
that y + x is an integer,

fγ(Y = y|x) =
1− e−ε

1 + e−ε
e−ε|y−y0(x)|,

where

y0(x) =

{
−x+ bx+ (1− γ)c, x ≥ 0

−x− b−x+ (1− γ)c, x < 0
(10)

Using the above lemmas, we get a simple sampling algo-
rithm for the hourglass distribution: first sample x from
a univariate staircase mechanism with γ and ε, and then
sample y from the geometric distribution in Lemma 4.3.

4.2. Implications for mean estimation

Before proceeding to analyze the accuracy of the hourglass
mechanism for mean estimation, we first consider the two-
dimensional staircase mechanism.

Lemma 4.4. Let Z1 and Z2 be sampled by the two-
dimensional staircase mechanism with parameter ε and
with parameter γ optimized for mean squared error. Then
the output of Algorithm 3 is ε-DP. Furthermore, for any
dataset D ∈ D∗(`, u), the MSE of Algorithm 3 is upper
bounded by (

(u− l)2σ̃2(ε)

|D|2

)
(1 + o(1)) ,

where σ̃2(ε) is the variance of the two-dimensional staircase
mechanism optimized for MSE.

7
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The proof is provided in Appendix F. We now state our
main upper bound for all values of ε. The proof is similar to
that of Lemma 4.4 together with the fact that the marginal
distribution along each dimension is the same as the univari-
ate staircase mechanism (Lemma 4.2). We provide the full
proof in Appendix G.

Theorem 4.5. Let Z1 and Z2 be sampled by the hour-
glass mechanism with parameter ε and γ as given by Geng
and Viswanath (2014, Equation 50). Then the output of
Algorithm 3 is ε-differentially private. Furthermore, for
any dataset D ∈ D∗(`, u), the mean squared error of Algo-
rithm 3 is upper bounded by(

(u− l)2σ2(ε)

|D|2

)
(1 + o(1)) ,

where σ2(ε) is defined in (2).

5. Lower bound
We next state a well-known result of Geng and Viswanath
(2014) that we will use to prove our lower bound.

Lemma 5.1 (Geng and Viswanath (2014, Section VI.C)).
Let k > 0 and let Dk denote the collection of all datasets of
size at most k where each value lies in the range [0, 1]. For
D ∈ Dk, let S(D) denote the sum of the elements in D. Let
Ŝ denote an estimator of the same sum. Then, for any ε,

inf
Ŝ∈Aar

ε

sup
D∈Dk

E
[
(Ŝ − S(D))2

]
≥ σ2(ε)(1− o(1)),

where σ2(ε) is given by (2). Here the o(1) term goes to zero
as k tends to infinity.

Lemma 5.1 provides a lower bound for estimating the sum.
We construct a class of datasets D′ with varying size such
that for every dataset in D′ there exists a corresponding
dataset in Dk (as defined in Lemma 5.1) with the same
sum. Hence, any differentially private mean estimator for
the datasets in D′ can be modified to obtain a differentially
private sum estimator for the datasets in Dk. We use this
observation to show the following lower bound on the min-
max MSE of mean estimation under the add-remove model
of differential privacy.

Theorem 5.2.

Rar(ε, `, u) ≥ (u− `)2 · σ2(ε)(1− o(1)).

Combining Theorem 4.5 together with Theorem 5.2 and (2)
yields the following result.

Corollary 5.3. For any ε > 0, Rar(ε, `, u) is equal to

2−2/3e−2ε/3(1 + e−ε)2/3 + e−ε

(1− e−ε)2
(1± o(1)) .

Furthermore, the hourglass mechanism with suitable value
of γ achieves this normalized MSE.

6. Experiments
In Figure 3 we plot the empirical performance of the algo-
rithms discussed in Sections 3 and 4.1 on synthetic datasets
and explore how the performance changes with parameters
such as the privacy budget ε and the true mean µ. The
underlying datasets are generated i.i.d. with varying µ in
the range [` = 0, u = 1]. All datasets have 10, 000 points,
and mean squared error is computed over 100, 000 runs of
each algorithm. The errors are normalized by |D|

2ε2

2 to keep
them in a similar range across a wide range of parameters.

Figures 3a and 3b compare the performance of Algorithms
1, 2 and 3 using the Laplace mechanism, varying ε and µ,
respectively. These plots focus on the high-privacy regime,
where Algorithm 3 was shown to be optimal. Indeed, Algo-
rithm 3 outperforms the others, reducing error over Algo-
rithms 2 by roughly a factor of two, which matches the ratio
of upper bounds in Lemma 3.2 and Theorem 3.3. Similarly,
in Figure 3a, Algorithm 3 closely matches the lower bound
σ2(ε) from (2) when ε < 1.

In Figure 3b, we explore how the error changes with the
true mean of the data. As analyzed in (6), the error is largest
when µ approaches 0 or 1. However, the error also drops
when µ becomes very close to 0 or 1, since ŝ1

n̂ falls out of
the range [`, u] with probability approaching 50%. In these
cases the clipping operation significantly reduces the mean
squared error.

Finally, we compare the two-dimensional staircase mech-
anism to Algorithm 3 with noise from the hour-
glass mechanism in Figure 3c, focusing on the low-privacy
regime where ε is large. The lower bound in Figure 3c
is again σ2(ε), but notice now that as ε grows, the hour-
glass mechanism continues to match the lower-bound indef-
initely, and increasingly outperforms the two-dimensional
staircase mechanism. In Figure 4 (Appendix I), we show
that both mechanisms also have a similar M-shaped error
curve over µ. In Appendix I, we provide additional exper-
iments to demonstrate that the proposed algorithm outper-
forms existing algorithms on small datasets.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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(a) All Laplace mechanisms, high privacy
regime, varying ε.

(b) All Laplace mechanisms, high privacy
regime, varying µ.

(c) Hourglass and 2D staircase mecha-
nisms, low privacy regime, varying ε.

Figure 3. Error comparison of different algorithms with varying ε or µ.
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A. Properties of staircase mechanisms
We first define both the one-dimensional and two-dimensional staircase mechanisms.

Definition A.1 (Univariate staircase mechanism). Let ∆ be the sensitivity of the underlying query. The univariate staircase
mechanism (Geng and Viswanath, 2014) is parameterized by γ ∈ [0, 1] and is given by

fγ(x) =


a(γ), x ∈ [0, γ∆)

a(γ)e−ε, x ∈ [γ∆,∆)

e−kεfγ(x− k∆), x ∈ [k∆, (k + 1)∆)

fγ(−x), x < 0.

(11)

Here a(γ) is the normalization factor and given by

a(γ) =
1− e−ε

2∆ (γ + e−ε(1− γ))
.

Definition A.2 (Two-dimensional staircase mechanism). Let ∆ be the sensitivity of the underlying query. The two-
dimensional staircase mechanism (Geng et al., 2015) is parameterized by γ ∈ [0, 1] and is given by

fγ(x, y) =

{
a(γ)e−εk, |x|+ |y| ∈ [k∆, (k + γ)∆)

a(γ)e−ε(k+1), |x|+ |y| ∈ [(k + γ)∆ + k + 1)∆),
(12)

Here a(γ) is the normalization factor and given by

a(γ) =
(1− e−ε)2

2 (e−ε(e−ε + (1− e−ε)γ) + (1− e−ε)(e−ε + (1− e−ε)γ2))
.

We prove the following result for the MSE of the two-dimensional staircase mechanism.

Lemma A.3. Let ε ≥ ε0 for a sufficiently large value of ε0. Then, for the two-dimensional stair-case mechanism,

min
γ

Efγ [x2] = min
γ

Efγ [y2] = ∆2 ·Θ
(
e−ε/2

)
,

Proof. Without loss of generality, we assume the sensitivity to be one. By symmetry,

min
γ

Efγ [x2] = min
γ

Efγ [y2],

and it suffices to consider Efγ [x2]. For k ≥ 1, it can be shown that∫
|x|+|y|∈[k,k+1)

x2dxdy = Θ
(
k3
)
.

Similarly, ∫
|x|+|y|∈[γ,1)

x2dxdy = Θ (1) ,

and ∫
|x|+|y|∈[0,γ)

x2dxdy = Θ
(
γ4
)
.

Furthermore,

a(γ) = Θ

(
1

e−ε + γ2

)
.

11
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Combining the above four equations yields,

Efγ [x2] = a(γ)Θ

γ4 + e−ε +
∑
k≥1

(e−kε + e(k+1)ε)k3


= a(γ)Θ

(
γ4 + e−ε

)
= Θ

(
γ4 + e−ε

e−ε + γ2

)
.

Minimizing over γ yields the desired result.

We next prove a result on the moments of both one-dimensional and two-dimensional staircase mechanisms.

Lemma A.4. Let 16 ≥ m ≥ 0. For both the one-dimensional and two-dimensional staircase mechanisms that guarantees
ε-differential privacy for sensitivity one queries,

E[xm] =
1

εm−2
·O
(
E[x2]

)
Proof. We provide the proof for the univariate staircase mechanism. The proof for the two-dimensional stair case mechanism
is similar and omitted. Let a(γ) denote the normalization term in the definition of univariate staircase mechanism Geng et al.
(2015, equation 26). Since γ ≤ 1,

Efγ [xm] = a(γ)Θ

γm +
∑
k≥1

e−kεkm


(a)
= a(γ)O

γ2 +
∑
k≥1

e−kεkm


(b)
= a(γ)O

γ2 +
1

(1− e−ε)m−2
∑
k≥1

e−kεk2


=

1

(1− e−ε)m−2
a(γ)O

γ2 +
∑
k≥1

e−kεk2


=

1

(1− e−ε)m−2
·O
(
Efγ [x2]

)
(c)
=

1

εm−2
·O
(
Efγ [x2]

)
,

where (a) uses the fact that γ ≤ 1, (c) follows from the fact that 1− e−ε ≤ ε. To prove (b) notice that

(1− e−ε)
∑
k≥1

e−k·εkm =
∑
k≥1

e−k·ε(km − (k − 1)m) = O

∑
k≥1

e−k·εkm−1

 .

We next state a concentration property of both one-dimensional and two-dimensional staircase mechanisms.

Lemma A.5. Let n ≥ 10. For both the one-dimensional and two-dimensional staircase mechanisms that guarantees
ε-differential privacy for sensitivity one,

Pr(x ≤ −n) ≤ e−nε/2.

12
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Proof. We provide the proof for the univariate staircase mechanism. The proof for the two-dimensional stair case mechanism
is similar and omitted. Let a(γ) denote the normalization term in the definition of univariate staircase mechanism Geng et al.
(2015, equation 26). Note that for the univariate staircase mechanism,

a(γ) ≤ 1− e−ε

2e−ε
.

We now bound the desired quantity as follows.

Pr(x ≤ −n) ≤
∑
k≥n

a(γ)e−kε

= a(γ)
e−nε

1− e−ε

≤ (1− e−ε)eε e−nε

1− e−ε

= e−(n−1)ε,

where the last inequality follows from the bound on a(γ).

B. Viewing Algorithm 2 via the lens of linear transformation
In Section 3, we have claimed that Algorithm 2 is equivalent to the following procedure:

1. Apply a linear transformation given by the matrix
[
1 − 1

2
0 1

2

]
to the sum and count vector q(D).

2. Add vector Laplace noise to the transformed vector according to its (reduced) sensitivity (a = 1).

3. Reverse the transformation by applying the inverse matrix
[
1 1
0 2

]
, then divide to estimate the mean and truncate as

before.

Here we prove this claim by showing that both the procedures sample a two-dimensional vector (x, y) that they use to noise
the sum and count is sampled from the same joint distribution. Since the private mean is computed by taking the division of
noisy sum over noisy count, the resulting private mean has the same distribution.

Proof. Without loss of generality, we only have to prove it for [`, u] = [0, 1]. The proof easily extends to general range
bound [`, u].

Given D, let s0 =
∑
x∈D x denote the true sum of the values in D, and let n denote the true size. Algorithm 2 first

computes s = s0 − n
2 and then adds noise Zs ∼ Lap( 1

ε ) to obtain ŝ = s0 − n
2 + Zs. It also computes n̂ = n+ Zn, where

Zn ∼ Lap( 2
ε ). Finally, before clipping, it computes the noisy mean as:

ŝ

n̂
+

1

2
=
s0 − n

2 + Zs

n+ Zn
+

1

2

=
s0 − n

2 + Zs + n
2 + 1

2Zn

n+ Zn

=
s0 + Zs + 1

2Zn

n+ Zn

On the other hand, for the algorithm using matrix transformation:

1. Step 1, computes the vector (s0 − n
2 ,

n
2 ).
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2. Step 2 adds random vector noise (Z1, Z2, where Z1 ∼ Lap( 1
ε ), Z2 ∼ Lap( 1

ε )).

3. Step 3 applies the inverse transformation to obtain ((s0 − n
2 +Z1) + (n2 +Z2), n+ 2Z2) = (s0 +Z1 +Z2, n+ 2Z2).

The private mean is computed by taking the ratio of noisy sum and noisy count and applying clipping.

Since Z1 has the same distribution as Zs, Z2 has the same distribution as 1
2Zn, this yields the same result as Algorithm

2.

C. Proof of Lemma 3.1
We first focus on the upper bound.(

Clip
(
a+ Za
b+ Zb

)
− a

b

)2

=

(
Clip

(
a+ Za
b+ Zb

)
− a

b

)2

1Zb≥−b/2 +

(
Clip

(
a+ Za
b+ Zb

)
− a

b

)2

1Zb<−b/2

≤
(

Clip
(
a+ Za
b+ Zb

)
− a

b

)2

1Zb≥−b/2 + 4M21Zb<−b/2

≤
(

Clip
(
a+ Za
b+ Zb

)
− a

b

)2

1Zb≥−b/2 + 4M21Zb<−b/2,

where the first inequality uses the fact that both Clip
(
a+Za
b+Zb

)
and a

b lie in [0, 1] and the last inequality uses the fact that
clipping is a projection operator. Taking expectation on both sides yield,

E

[(
Clip

(
a+ Za
b+ Zb

)
− a

b

)2
]
≤ E

[(
a+ Za
b+ Zb

− a

b

)2

1Zb≥−b/2

]
+ 4M2Pr(Zb < −b/2).

We now use algebraic manipulation to simplify a+Za
b+Zb

− a
b .

a+ Za
b+ Zb

− a

b
=
Za
b

+
a+ Za
b+ Zb

− a+ Za
b

=
Za
b
− (a+ Za)(Zb)

(b+ Zb)(b)

=
Za
b
− aZb

(b+ Zb)(b)
− ZaZb

(b+ Zb)(b)

=
Za
b
− aZb

b2
+
aZb
b2
− aZb

(b+ Zb)(b)
− ZaZb

(b+ Zb)(b)

=
Za
b
− aZb

b2
+

aZ2
b

b2(b+ Zb)
− ZaZb

(b+ Zb)(b)
.

Let C = Za
b −

aZb
b2 and D =

aZ2
b

b2(b+Zb)
− ZaZb

(b+Zb)(b)
.

E

[(
a+ Za
b+ Zb

− a

b

)2

1Zb≥−b/2

]
= E

[
(C +D)

2
1Zb≥−b/2

]
= E

[
C21Zb≥−b/2

]
+ E

[
D21Zb≥−b/2

]
+ E

[
2CD1Zb≥−b/2

]
≤ E

[
C21Zb≥−b/2

]
+ E

[
D21Zb≥−b/2

]
+ 2
√
E [C2]E

[
D21Zb≥−b/2

]
,

where the last inequality uses Cauchy-Schwarz inequality. We next upper bound D. If Zb ≥ −b/2, and |a| ≤ bM , then

|D| =
∣∣∣∣ aZ2

b

b2(b+ Zb)
− ZaZb

(b+ Zb)(b)

∣∣∣∣ ≤ ∣∣∣∣ aZ2
b

b2(b+ Zb)

∣∣∣∣+

∣∣∣∣ ZaZb
(b+ Zb)(b)

∣∣∣∣
≤
∣∣∣∣ MZ2

b

b(b+ Zb)

∣∣∣∣+

∣∣∣∣ ZaZb
(b+ Zb)(b)

∣∣∣∣
≤
∣∣∣∣2MZ2

b

b2

∣∣∣∣+

∣∣∣∣2ZaZbb2

∣∣∣∣ .
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Let F =
∣∣∣ 2MZ2

b

b2

∣∣∣+
∣∣ 2ZaZb

b2

∣∣. Combing the above bound with previous equations yields the upper bound:

E

[(
a+ Za
b+ Zb

− a

b

)2

1Zb≥−b/2

]
≤ E

[
C21Zb≥−b/2

]
+ E

[
D21Zb≥−b/2

]
+ 2
√
E [C2]E

[
D21Zb≥−b/2

]
≤ E

[
C21Zb≥−b/2

]
+ E

[
F 21Zb≥−b/2

]
+ 2
√
E [C2]E

[
F 21Zb≥−b/2

]
≤ E

[
C2
]

+ E
[
F 2
]

+ 2
√
E [C2]E [F 2].

D. Proof of Lemma 3.2
The differential privacy guarantee follows by the properties of Laplace mechanism and composition theorem and in the
rest of the proof, we focus on the MSE guarantees. The analysis of MSE heavily relies in Lemma 3.1. Let n = |D|, a = s,
b = n, Za = Zs ∼ Lap(w/ε), Zb = Zn = Lap(2/ε), and M = (u− `)/2. With these definitions, to apply Lemma 3.1, we
need to bound E[C2], E[F 2], and Pr(Zb < −b/2). We bound each of the terms below.

E[C2] = E

[(
Zs
n
− (µ−m)Zn

n

)2
]

=
2(u− l)2

n2ε2
+

8(µ−m)2

n2ε2
.

Since (x+ y)2 ≤ 2x2 + 2y2,

E[F 2] ≤ 8
(u− `)2

n4
E
[
Z4
n

]
+ 8

1

n4
E
[
Z2
aZ

2
b

]
= o

(
(u− l)2

n2ε2

)
.

Finally, by the tail bounds of the Laplace mechanism,

M2Pr(Zb < −b/2) ≤ (u− `)2Pr(Zn < −n/2)

= o

(
(u− l)2

n2ε2

)
.

Combining the above three equations together with Lemma 3.1 yields the lemma.

E. Analysis of the hourglass mechanism
E.1. Computing normalization constant

Let c(γ) be the normalizing factor that ensures the sum of the probabilities is one.

From the paper Geng and Viswanath (2014), we know the normalizing factor for the univariate staircase mechanism to be

a(γ) ,
1− e−ε

2(γ +−ε (1− γ))
.

From Lemma 4.2, the marginal of the hourglass distribution is the univariate staircase distribution. hence,∑
y

fγ(x, y) = a(γ),

where a(γ) is the normalization factor in the univariate staircase distribution. Observe that if x = 0, then for all integer y,
(x, y) ∈ Ay and hence ∑

y

fγ(x, y) =
∑
y

c(γ)e−εy = c(γ)
1− e−ε

1 + e−ε
.

Hence,

c(γ) =
1− e−ε

1 + e−ε
a(γ) =

(1− e−ε)2

2∆(1 + e−ε)(γ + e−ε(1− γ))
.
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E.2. Proof of Theorem 4.1

Let D and D′ be two neighboring datasets such that q(D)−Q(D0) = −(x0, 1− x0). Let let q̃(D) denote the output of the
hourglass mechanism. To provide differential privacy guarantee, it suffices to prove upper and lower bounds for

Pr(q̃(D) = (x, y))

Pr(q̃(D′) = (x, y))
.

Let Z̄ be a sample from the hourglass mechanism, then

Pr(q̃(D) = (x, y))

Pr(q̃(D′) = (x, y))
=

Pr(q(D) + Z̄ = (x, y))

Pr(q(D′) + Z̄ = (x, y))

=
Pr(q(D′)− (x0, 1− x0) + Z̄ = (x, y))

Pr(q(D′) + Z̄ = (x, y))

=
Pr(Z̄ = (x, y)− q(D′) + (x0, 1− x0))

Pr(Z̄ = (x, y)− q(D′))

=
Pr(Z̄ = (x′, y′) + (x0, 1− x0))

Pr(Z̄ = (x′, y′)

=
fγ(x′ + x0, y

′ + 1− x0))

fγ(x′, y′)
,

where (x′, y′) = (x, y)− q(D′). Hence, to prove the privacy guarantee, it suffices to prove upper and lower bounds on the
ratio,

R(x, y, x0) ,
fγ(x+ x0, y + 1− x0))

fγ(x, y)
,

for all x, y and x0 ∈ [0, 1]. Without loss of generality, we assume that ∆ = 1. Let S = {Ak, Bk(i) : ∀k, i}. Note that
S partitions the domain of fγ into disjoint partitions. We observe that if (x, y) ∈ A−1, then fγ(x, y) = c(γ)e−ε and for
all x0, fγ(x + x0, y + 1 − x0) ∈ {c(γ), c(γ)e−2ε}, hence if (x, y) ∈ A−1 then R(x, y, x0) ∈ {e−ε, eε} for all x0. If
(x, y) /∈ A−1, then (x+ x0, y+ 1− x0) belongs to at most two sets in S and hence fγ(x+ x0, y+ 1− x0) is monotonic in
x0 and proving the result for x0 ∈ {0, 1} suffices.

We now focus on the case when x0 ∈ {0, 1}. Of these two cases, by symmetry it suffices to consider x0 = 0. Furthermore,
we show the result when x + y = k for some x ≥ 0. The proof for the other side is similar and omitted. We prove
the result by dividing the problem into subcases depending the value of (x, y). Subcase (A): If (x, y) ∈ Ak for some k,
then (x, y + 1) ∈ Ak+1 and hence R(x, y, 0) = e−ε. Subcase (B1): If (x, y) ∈ Bk(1), then (x, y) ∈ Ak+1 and hence
R(x, y, 0) = eε. Subcase (B2): If (x, y) ∈ Bk(i) for i ≥ 2, then (x, y) ∈ Bk+1(i− 1) and hence R(x, y, 0) = eε. Hence,
we have shown that for all x, y and x0 ∈ {0, 1},

R(x, y, x0) ∈ {e−ε, eε}.

F. Proof of Lemma 4.4
The privacy guarantee is similar to that of Theorem 3.3 and is omitted. As before, the proof of utility heavily relies in
Lemma 3.1. Let n = |D|. Observe that

E[(µ̂− µ)2] ≤ (u− `)2E

[(
ŝ1

ŝ1 + ŝ2
− s1
n

)2
]
.

Let a = s1, b = n, Za = Z1, Zb = Z1 + Z2, where Z1, Z2 are from the two-dimensional staircase mechanism. Let M = 1.
With these definitions, to apply Lemma 3.1, we need to bound E[C2], E[F 2], and Pr(Zb < −b/2). We bound each of the

16
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terms below. Let α = s1
n .

E[C2] = E

[(
Z1

n
−

( s1n )(Z1 + Z2)

n

)2
]

=
1

n2
E
[
(1− α)2Z2

1 + α2Z2
2 − 2(1− α)αZ1, Z2

]
≤ 1

n2
E
[
(1− α)2Z2

1 + α2Z2
2

]
+ 2(1− α)α

√
E [Z2

1 , Z
2
2 ]

≤ 1

n2
(1− α)2σ̃2(ε) + α2σ̃2(ε) + 2(1− α)ασ̃2(ε)

=
σ̃2(ε)

n2
,

where the first inequality follows by the Cauchy-Schwarz inequality. Since (x+ y)2 ≤ 2x2 + 2y2,

E[F 2] ≤ 8

n4
E[(Z1 + Z2)4] +

8

n4
E[(Z1 + Z2)2Z2

1 ]

= o

(
σ̃2(ε)

n2

)
,

where the last equality follows from Lemma A.4. Finally,

Pr(Zb < −b/2) ≤ Pr(Z1 + Z2 < −n/2)

≤ Pr(Z1 < −n/4) + Pr(Z2 < −n/4)

= o

(
σ̃2(ε)

n2

)
,

where the last equality follows from Lemma A.5. Combining the above three equations together with Lemma 3.1 and
observing the fact that µ = `+ s1w

n yields the result.

G. Proof of Theorem 4.5
The privacy guarantee is similar to that of Theorem 3.3 and is omitted. As before, the proof of utility heavily relies in
Lemma 3.1. Let n = |D|. Observe that

E[(µ̂− µ)2] ≤ (u− `)2E

[(
ŝ1

ŝ1 + ŝ2
− s1
n

)2
]
.

Let a = s1, b = n, Za = Z1, Zb = Z1 + Z2, where Z1, Z2 are from the hourglass mechanism. Let M = 1. With these
definitions, to apply Lemma 3.1, we need to bound E[C2], E[F 2], and Pr(Zb < −b/2). We bound each of the terms below.
Let α = s1

n .

E[C2] = E

[(
Z1

n
−

( s1n )(Z1 + Z2)

n

)2
]

=
1

n2
E
[
(1− α)2Z2

1 + α2Z2
2 − 2(1− α)αZ1, Z2

]
≤ 1

n2
E
[
(1− α)2Z2

1 + α2Z2
2

]
+ 2(1− α)α

√
E [Z2

1 , Z
2
2 ]

≤ 1

n2
(1− α)2σ̃2(ε) + α2σ̃2(ε) + 2(1− α)ασ̃2(ε)

=
σ2(ε)

n2
,

17



Mean Estimation in the Add-Remove Model

where the first inequality follows by the Cauchy-Schwarz inequality. Since (x+ y)2 ≤ 2x2 + 2y2,

E[F 2] ≤ 8

n4
E[(Z1 + Z2)4] +

8

n4
E[(Z1 + Z2)2Z2

1 ]

= o

(
σ2(ε)

n2

)
,

where the last equality follows from Lemma A.4 and the fact that the marginal distribution of hourglass mechanism is same
as the staircase mechanism.. Finally,

Pr(Zb < −b/2) ≤ Pr(Z1 + Z2 < −n/2)

≤ Pr(Z1 < −n/4) + Pr(Z2 < −n/4)

= o

(
σ2(ε)

n2

)
,

where the last equality follows from Lemma A.5 and the fact that the marginal distribution of hourglass mechanism is same
as the staircase mechanism. Combining the above three equations together with Lemma 3.1 and observing the fact that
µ = `+ s1w

n yields the theorem.

H. Proof of Theorem 5.2
We first state the following lemma, which removes the dependence on ` and u.

Lemma H.1.
Rar(ε, `, u) = (u− `)2Rar(ε, 0, 1).

Proof. Given a dataset from D ∈ D∗(`, u), one can create a dataset in f(D) ∈ D∗(0, 1) by applying the transformation
f(x) = x−`

u−` to each of the points. Let µ̂ be a mean estimation algorithm for datasets in D∗(0, 1), then given a dataset
from D ∈ D∗(`, u), one can scale all points by applying f and compute the output as µ̂′(D) = f−1(µ̂(f(D)). If µ̂ is an
ε-differentially private algorithm, then µ̂′ is also an ε-differentially private algorithm. Furthermore, the utilities are related
by

L(µ̂′, D) ≤ (u− `)2L(µ̂, f(D)).

Taking supremum over datasets D and infimum over all differentially private algorithms yields

Rar(ε, `, u) ≤ (u− `)2Rar(ε, 0, 1).

The proof for the other direction is similar and omitted.

Proof of Theorem 5.2. By Lemma H.1, it suffices to consider the scenario when ` = 0 and u = 1. Let Dk and S(D) be the
same as those be defined as in Lemma 5.1. Let D̃k be the set of all datasets obtaining by combining each dataset in Dk with
n values of zeros. Observe for any dataset D̃ in D̃k,

µ(D̃) =
S(D̃)

|D̃|
≤ k

n
.

Suppose we have an ε-differentially private estimator µ̂ on D̃k. We convert it to an estimator of sum for datasets in Dk as

Ŝ(D) = nµ̂(D∪{0}n),

where {0}n is a dataset with n zeros. For this estimator, based on the Lemma 5.1, there exists a D ∈ Dk such that

E
[
(Ŝ(D)− S(D))2

]
≥ σ2(ε)(1− o(1))

and hence
E
[
(nµ̂(D∪{0}n)− S(D))2

]
≥ σ2(ε)(1− o(1))
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Figure 4. Hourglass and two dimensional staircase mechanisms, low privacy regime, varying µ.

We now upper bound the left hand side of the above expression. For brevity, let µ̂ = µ̂(D∪{0}n) and µ = µ(D ∪ {0}n),
and S = S(D) = S(D ∪ {0}n). Observe that

E
[
(nµ̂− S)2

]
= E

[
(nµ̂− nµ+ nµ− S)2

]
= E

[
(nµ̂− nµ)2

]
+ E

[
(nµ− S)2

]
− 2E [(nµ̂− nµ)(nµ− S)]

≤ E
[
(nµ̂− nµ)2

]
+ E

[
(nµ− S)2

]
+ 2
√
E [(nµ̂− nµ)2]E [(nµ− S)2]

≤ E
[
(nµ̂− nµ)2

]
+
k4

n2
+ 2
√
E [(nµ̂− nµ)2]

k2

n

≤ E
[
(nµ̂− nµ)2

]
+
k4

n2
+
k3

n

≤ |D|2E
[
(µ̂− µ)2

]
+
k4

n2
+
k3

n
,

where the first inequality follows by Cauchy-Schwarz inequality, the second inequality follows by observing that |nµ−S| ≤
kµ ≤ k2/n, and the third inequality follows by observing that both µ̂ and µ lie in [0, k/n]. Setting k = o(n1/3) yields the
following theorem.

I. Additional experiments
In this section, we explore how the MSEs of different algorithms change when the the size of the dataset |D| changes. The
errors are normalized by ε2

2 to keep them in a similar range across different privacy regimes. We choose |D| ∈ {2i}i=0,...,6

and observe the trend of changes in MSEs for all listed algorithms.

Figure 5a shows how the MSEs (normalized by ε2

2 ) of different Laplace mechanisms vary as a function of |D| for ε = 1.0
and µ = 0.01. The lower bound (red curve), as in Section 6, is developed from using the univariate staircase mechanism
with optimal γ on private mean in the swap model. One can see that only Algorithm 3 converges to the lower bound as |D|
grows bigger, being about two times better than Algorithm 2 when |D| ≥ 16.

On the other hand, Figure 5c and 5d compare the MSEs (normalized by ε2

2 ) of the two-dimensional staircase and the
hourglass mechanism in the low privacy regime when ε = 4.0 and µ = 0.01. The ratio of the former over latter is found to
be always bigger than one, showing hourglass mechanism to be better.

Table 1 lists the MSEs of all the algorithms listed in the paper for very large values of ε. Although some of these budget
values are unlikely to be used in practice, we provide these results for completeness. One can see that hourglass performs
exponentially better compared to all the other algorithms as ε grows larger.
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(a) High privacy regime, all Laplace mechanisms, vary-
ing n = |D|.

(b) High privacy regime, ratio of MSE, varying n =
|D|.

(c) Low privacy regime, 2D staircase and hour-
glass mechanisms, varying n = |D|.

(d) Low privacy regime, ratio of MSE, varying n =
|D|.

Figure 5. Experiments for different dataset sizes n.

Table 1. MSEs of different algorithms for extremely high privacy budgets
ε Alg 1 Alg 2 Alg 3 2D staircase hourglass lower bound
4 3.99 1.95 0.98 0.93 0.52 0.51
8 3.99 1.95 0.99 0.66 0.11 0.10
16 4.00 1.97 0.97 1.70 1.14e-2 1.10e-2
32 4.01 1.94 0.98 1.20e-3 5.86e-8 5.73e-8
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