
Under review as submission to TMLR

Can LLMs Effectively Leverage Graph Structural Information
through Prompts in Text-Attributed Graphs, and Why?

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs) are gaining increasing attention for their capability to process1

graphs with rich text attributes, especially in a zero-shot fashion. Recent studies demon-2

strate that LLMs obtain decent text classification performance on common text-rich graph3

benchmarks, and the performance can be improved by appending encoded structural infor-4

mation as natural languages into prompts. We aim to understand why the incorporation5

of structural information inherent in graph data can improve the prediction performance of6

LLMs. First, we rule out the concern of data leakage by curating a novel leakage-free dataset7

and conducting a comparative analysis alongside a previously widely-used dataset. Second,8

as past work usually encodes the ego-graph by describing the graph structure in natural9

language, we ask the question: do LLMs understand the graph structure in accordance with10

the intent of the prompt designers? Third, we investigate why LLMs can improve their11

performance after incorporating structural information. Our exploration of these questions12

reveals that (i) there is no substantial evidence that the performance of LLMs is signifi-13

cantly attributed to data leakage; (ii) instead of understanding prompts as graph structures14

as intended by the prompt designers, LLMs tend to process prompts more as contextual15

paragraphs and (iii) the most efficient elements of the local neighborhood included in the16

prompt are phrases that are pertinent to the node label, rather than the graph structure.17

1 Introduction18

Large Language Models (LLMs) have gained great popularity for a broad range of applications (Brown et al.,19

2020; OpenAI, 2023). Recently, there have been a few studies exploring LLMs’ effectiveness on graph data,20

particularly focusing on node classification in text-rich graphs. Consider citation networks as an example,21

where each node represents a research paper, and each edge indicates a citation relationship between papers.22

Previous studies have reported decent classification accuracy of LLMs on node-level information alone (Wang23

et al., 2023; He et al., 2023; Chen et al., 2023). Moreover, recent work also suggests that the incorporation24

of structural information, e.g., describing the local graph structure and listing the neighboring papers’ titles25

in natural language, can further improve the accuracy (Chen et al., 2023; Guo et al., 2023; Hu et al., 2023).26

However, the benefit of incorporating structural information can vary across datasets, and the underlying27

mechanisms remain not fully understood. Indeed, a notable concern arises as most node classification bench-28

marks have a data cut-off that predates the training data cut-off of LLMs like ChatGPT. This discrepancy29

raises concerns about data leakage–LLMs may have seen and memorized at least part of the test data of30

the common benchmark datasets–which could undermine the reliability of studies using earlier benchmark31

datasets. Furthermore, the variation in performance across different datasets highlights the necessity of a32

deeper understanding of how LLMs process and benefit from the inclusion of structural information.33

To this end, this paper focuses on three concrete questions relevant to the incorporation of structural infor-34

mation into LLMs. First, we seek to understand whether the performance gain of LLMs on common node35

classification datasets comes from data leakage. Second, we investigate whether LLMs understand the graph36

structure as intended by the prompt designer. Third, we investigate potential reasons why LLMs benefit37

from structural information.38
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For the first question, we investigate the extent to which data leakage might artificially inflate the perfor-39

mance of LLMs in Section 3.2. To rigorously measure the data leakage effect, we collect a new dataset,40

ensuring that the test nodes are sampled from time periods post the data cut-off of ChatGPT (OpenAI,41

2022) and LLaMA-2 (Touvron et al., 2023).42

For the second question, we investigate how LLMs process structural information - as graphs or paragraphs43

- by two adversarial settings in Section 3.3. Concretely, we linearize or randomly rewire the ego-graph44

and then compare the performance between LLMs and Message Passing Neural Networks (MPNNs). We45

conclude that LLMs understand the input prompt more as linearized paragraphs than as graph-structured46

data, even though the prompts are intended to represent graph structural information.47

For the third question, we probe into two related factors accounting for the improved performance: homophily48

and the richness of textual node features. In Section 3.4, we examine the impact of homophily (the tendency49

of similar nodes to connect) on the classification performance of LLMs. Through controlled experiments and50

correlation analyses, we establish a positive relationship between the local homophily ratio and the prediction51

accuracy of LLMs. It also implies that homophily is important because it enables the local neighborhood52

to offer relevant phrases, thereby enhancing classification performance. In Section 3.5, we investigate the53

circumstances under which structural information provides minimal improvement, by varying the richness of54

textual information of the target node. Therefore, we discover that LLMs benefit from structural information55

primarily when the target node lacks sufficient textual information.56

Our key findings are summarized as follows. (i) There is no strong evidence that data leakage is a major factor57

contributing to the performance of LLMs on node classification benchmark datasets. (ii) LLMs understand58

the prompts as linearized paragraphs, despite the prompt designers’ intent to describe the graph structure59

in natural language. (iii) The most efficient elements of the local neighborhood included in the prompt are60

phrases that are pertinent to the node label, rather than the graph structure.61

Overall, this study investigate the underlying mechanism of how LLMs process graph data. Our findings62

clarify that data leakage does not significantly boost LLMs’ performance on node classification tasks. While63

the performance does not come from data leakage, our study finds that LLMs do not benefit from the topo-64

logical structure of the ego-graph either. On the contrary, we discover that the effectiveness of incorporating65

structural information into the prompts largely depends on the phrases related to the node label. This66

insight opens new avenues for utilizing LLMs in graph-based applications and for further exploration into67

advanced methods of incorporating structured data into LLM frameworks.68

2 Related Literature69

Data leakage in LLMs. Data leakage in LLMs has become a focal point of discussion due to the models’70

intrinsic ability to memorize training data. As demonstrated by Carlini et al. (2022), LLMs can emit71

memorized portions of their training data when appropriately prompted, a phenomenon that intensifies with72

increased model capacity and training data duplication. While memorization is inherent to their function, it73

raises serious security and privacy concerns. A study by Carlini et al. (2021) shows that extraction attacks can74

recover sensitive information such as personally identifiable information (PII) from GPT-2 (Radford et al.,75

2019). This capability to store and potentially leak personal data is further explored by Huang et al. (2022),76

confirming that although the risk is relatively low, there is a tangible potential for information leakage.77

Specifically, Carlini et al. (2022) show that the 6 billion parameter GPT-J model (Wang & Komatsuzaki,78

2021) memorizes at least 1% of its training dataset. Furthermore, the issue of data leakage complicates79

the evaluation of these models. As highlighted by Aiyappa et al. (2023), the closed nature and continuous80

updates of models like ChatGPT make it challenging to prevent data contamination, affecting the reliability81

of evaluation on LLMs in various applications. In node classification tasks, a concurrent work by Chen et al.82

(2023) observe that a specific prompt alteration significantly improved performance on ogbn-arxiv, raising83

concerns about potential test data leakage. In this work, we take a rigorous approach by curating a new84

dataset for node classification tasks, which is explicitly designed to address the data leakage issues in existing85

benchmarks.86
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LLMs on Text-Rich Graphs. Recently there has been a series of research on LLMs and text-rich graphs.87

He et al. (2023) propose a method where LLMs perform zero-shot predictions along with generating explana-88

tions for their decisions, which are then used to enhance node features for training Message Passing Neural89

Networks (MPNNs) (Gilmer et al., 2017) to predict node categories. Chen et al. (2023) extend the work of90

He et al. (2023) by using LLMs both as feature enhancers and as predictors for node classification. They91

offer several observations such as Chain-of-thoughts is not contributing to performance gains. Guo et al.92

(2023) perform an empirical study on using LLMs to solve structure and semantic understanding tasks. More93

recently, Ye et al. (2023) propose InstructGLM for the instruction tuning of LLMs, like LLaMA (Touvron94

et al., 2023), for node classification tasks. Zhao et al. (2023) introduces GraphText to encode graph into95

natural languages using a graph-syntax tree. Our study differs with this line of research in terms of the96

motivation: while we are using text-rich graph datasets as a testbed, our primary goal is to gain deeper97

understanding of LLMs’ capability of processing the graph modality, instead of leveraging LLMs to better98

solve node classification tasks.99

A few previous studies observe that LLMs have decent classification performance on text-rich graphs based100

on node-level feature only (He et al., 2023; Chen et al., 2023; Guo et al., 2023; Hu et al., 2023). For example,101

predicting the category of a paper based on its title and abstract. These investigations typically involve102

using manually crafted templates to describe neighborhood information around the target node hop-by-hop.103

Furthermore, several studies have noted that integrating structural information can moderately enhance104

prediction accuracy. Hu et al. (2023) observe that “Incorporating structural information can slightly improve105

the performance of GPT in node-level tasks”. Similarly, Chen et al. (2023) find that including neighborhood106

summarization could lead to performance gains, verified across four datasets. Guo et al. (2023) report a107

significant 10% improvement in prediction accuracy on ogbn-arxiv when employing 2-hop summarization,108

compared to using only the target node. Moreover, they find that 2-hop summarization outperforms 1-hop109

summarization. However, these studies primarily focus on empirical observations without delving into the110

underlying reasons behind LLMs’ improved performance with added structural information.111

Homophily in graph learning. The concept of homophily (McPherson et al., 2001), which describes112

the tendency of nodes to form connections with similar nodes, plays an important role in the effectiveness of113

various graph learning methods (Zhu et al., 2020; Halcrow et al., 2020; Maurya et al., 2021; Lim et al., 2021).114

The principle of homophily enables MPNNs to smooth node representations by aggregating features from115

their likely similarly-labeled neighboring nodes. This aggregation process is particularly effective in various116

types of real-world graphs, such as political networks (Knoke, 1990), and citation networks (Ciotti et al.,117

2016). Despite its benefits, the reliance on homophily presents a challenge: MPNNs tend to underperform in118

graphs characterized by heterophily, where connected nodes are likely to differ in properties or labels (Zhu119

et al., 2020). Notably, the impact of homophily on the integration of structured data into LLMs remains an120

open area for exploration.121

3 Why Can LLMs Benefit from Structural Information?122

3.1 Research Questions123

In this section, we aim to gain a deeper understanding of three central questions. First, does the classification124

performance of LLMs on common node classification datasets come from data leakage? Second, do LLMs125

understand the graph structure as intended by the prompt designers? Third, what factors contribute to126

LLMs benefiting from structural information? To ground our study, we experiment with the ChatGPT API127

and LLaMA-2-7B model on node classification datasets that have textual node features.128

For the first question, we investigate the potential impact of data leakage in Section 3.2. For the second129

question, we first investigate whether LLMs understand the input prompts as graph structure in Section 3.3.130

Building on this insight that LLMs actually understand the input prompts more as a linearized paragraph,131

we explore two contributing factors of LLMs performance after incorporating structural information. In132

Section 3.4, we explore the influence of homophily on LLMs performance. In Section 3.5, we assess how the133

feature richness of target node affects the performance of LLMs.134
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Table 1: Prompt styles and their corresponding templates. For the style “k-hop title+label”, we only include
the labels for neighbor nodes in training set or validation set. The “attention extraction” and “attention
prediction” are respectively the two steps of prompts for the k-hop attention strategy.

Prompt Style Prompt Template

Zero-shot Abstract: <abstract>\nTitle: <title>\nDo not give any reasoning or logic for your answer.
\nAnswer: \n\n

Zero-shot CoT Abstract: <abstract>\nTitle: <title>\nAnswer: \n\nLet’s think step by step. \n

Few-shot Abstract: <few-shot abstract>\n... \nAnswer: \n\n<few-shot label>\n... (more few-shot
examples)\nAbstract: <abstract>... \nAnswer: \n\n

k-hop title, k-hop
title+label

Abstract: <abstract>\nTitle: <title>\nIt has following neighbor papers at hop 1:\n
Paper 1 title: <paper 1 title>\nLabel: <paper 1 label>\nIt is linked to paper <list of papers
linked to paper 1>\n
Paper 2 title: <paper 2 title>\nLabel: <paper 2 label>\nIt is linked to paper <list of papers
linked to paper 2>\n
... (more 1-hop neighbors)\n
It has following neighbor papers at hop 2:\n
... (more 2-hop neighbors)\n
Do not give any reasoning or logic for your answer. \nAnswer: \n\n

k-hop attention. Step 1:
Attention extraction

The paper of interest is <title>. Please return a Python list of at most <k> indices of the
most related papers among the following neighbors, ordered from most related to least related.
If there are fewer than <k> neighbors, just rank the neighbors by relevance. The list should
look like this: [1, 2, 3, ...]\n1: <neighbor title 1>\n... (more 1-hop neighbors) \n

k-hop attention. Step 2:
Attention prediction

Abstract: <abstract>\nTitle: <title>\nIt has following important neighbors, from most re-
lated to least related:\n(more neighbors chosen by attention)\nDo not give any reasoning or
logic for your answer. \nAnswer: \n\n

Linearized k-hop title,
k-hop title+label:

Abstract: <abstract>\nTitle: <title>\n
<paper 1 title>\nLabel: <paper 1 label>\n
<paper 2 title>\nLabel: <paper 2 label>\n
... (more 1-hop neighbors)\n
... (more 2-hop neighbors)\n
Do not give any reasoning or logic for your answer. \nAnswer: \n\n

3.2 Data Leakage as a Potential Contributor of Performance135

While LLMs have achieved decent classification performance on common node classification datasets, there is136

a risk that the performance of LLMs is artificially inflated by data leakage (He et al., 2023; Guo et al., 2023; Hu137

et al., 2023). Note that most node classification benchmark datasets have a data cut-off at 2019 (see Table 9138

in Appendix B.1), but ChatGPT (the model used throughout the paper is gpt-3.5-turbo-0613) was trained139

on data up to September 2021 (OpenAI, 2023) and LLaMA-2 was trained on data up to September 2022 1.140

While the training datasets of ChatGPT and LLaMA-2 are not publicly available, given the widespread of141

these datasets on the internet and the enormous training corpus of ChatGPT and LLaMA-2, it is reasonable142

to worry about the data leakage issue on these datasets.143

To this end, we curate a new node classification dataset, arxiv-2023, which is designed to resemble another144

widely-used dataset, ogbn-arxiv (Hu et al., 2020) as much as possible except that the test nodes are145

chosen as arXiv Computer Science (CS) papers published in 2023. With the new dataset, we can rigorously146

investigate the influence of data leakage by comparing the LLM performance between arxiv-2023 and147

ogbn-arxiv.148

Dataset collection. While, ideally, we should curate the new dataset by simply extending ogbn-arxiv by149

including new papers, this is practically challenging for a couple of reasons. In particular, ogbn-arxiv rep-150

resents arXiv CS papers in the Microsoft Academic Graph (MAG) until 2019 (Hu et al., 2020), where MAG151

is a heterogeneous graph representing scholarly communications (Wang et al., 2020). Unfortunately, MAG152

1https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md
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Table 2: Statistics of ogbn-arxiv and arxiv-2023 datasets. Both represent directed citation networks
where each node corresponds to a paper published on arXiv and each edge indicates one paper citing another.
The metrics In-Degree/Out-Degree, Average Degree, and Published Year are presented for test nodes.

Full Dataset Test Set

Dataset #Nodes #Edges In-Degree/Out-Degree Average Degree Published Year

ogbn-arxiv 169343 1166243 1.33/11.1 12.43 2019
arxiv-2023 33868 305672 0.16/10.6 10.76 2023

Figure 1: Proportional distribution of labels in ogbn-arxiv and arxiv-2023 datasets. Each label represents
an arXiv Computer Science Category.

and its APIs were retired in 2021 and no subsequent data is available.2 Furthermore, the pipeline to collect153

and construct MAG is not publicly released. Consequently, we develop our own data collection pipeline to154

create arxiv-2023. Specifically, we first sample test nodes from arXiv CS papers published in 2023, and155

then gather papers within a 2-hop of these test nodes to create a citation network. More details about156

collection can be found in Appendix B.2.157

Comparison between arxiv-2023 and ogbn-arxiv. As can be seen in Table 2, arxiv-2023 and ogbn-158

arxiv share great similarities in their network characteristics, with consistent in-degree/out-degree pointing159

to analogous citation behaviors. arxiv-2023 shows a lower average in-degree in the test set, which is160

likely because the test papers in arxiv-2023 are new and have not had much time to accumulate citations.161

Additionally, Figure 1 illustrates that the label distributions of the two datasets are comparable. A notable162

trend from arxiv-2023, in alignment with arXiv statistics,3 indicates a rise in AI-related categories like ML,163

LG, CL, reflecting the current academic focus.164

Furthermore, we compare the performance of MPNNs on the two datasets. As can be seen from the two165

bottom rows in Table 3, we observe that the performance metrics for MPNNs (GCN and SAGE) across both166

datasets are closely matched, suggesting that both datasets present comparable challenges for classification.167

For a more comprehensive setting of MPNNs, one can refer to Appendix C.168

LLM performance on arxiv-2023 and ogbn-arxiv. To test LLMs on arxiv-2023 and ogbn-arxiv,169

we create prompts that encode both the textual features and the local graph structure of a target node in170

natural language as in Table 1, and then request ChatGPT API or LLaMA-2-7B to make predictions for the171

target node4. The prompt for each node is formulated in one of several styles, as we introduce in details in172

2https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
3https://info.arxiv.org/help/stats/2021_by_area/index.html
4We have used gpt-3.5-turbo-0613 and LLaMA-2-7B-chat for throughout the experiments, unless stated otherwise.
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Table 3: Comparison between ChatGPT’s performance on ogbn-arxiv and arxiv-2023. Best results in
prompting methods are in bold. 1-hop attention means attention extraction and prediction over 1-hop
neighbors

Rich context Scarce context

Prompt style ogbn-arxiv arxiv-2023 Prompt style ogbn-arxiv arxiv-2023

Zero-shot 74.0 73.5 Zero-shot 69.8 66.6
Few-shot 72.9 73.6 1-hop title 72.3 70.7
Zero-shot CoT 71.8 73.7 1-hop title+label 74.3 70.4
1-hop title+label 75.1 73.8 2-hop title 71.3 68.9
2-hop title+label 74.5 73.2 2-hop title+label 74.2 68.5
1-hop attention 74.7 73.7 1-hop attention 71.3 69.6
GCN 75.4 70.3 GCN 74.8 70.3
SAGE 75.0 70.9 SAGE 74.4 69.1

Appendix A. Additionally, a fixed dataset-level instruction is attached to the prompt when the prompt is173

sent to all LLMs. The dataset-level instructions are listed in Table 8, Appendix A.174

If data leakage is a major contributor of performance on ogbn-arxiv, we would expect the performance175

drop of LLMs between ogbn-arxiv (may have leakage problem) and arxiv-2023 (leakage-free) should be176

significantly greater than the drop on MPNNs on two datasets. This is because LLMs may benefit from177

their memory on ogbn-arxiv, but this advantage is not likely on arxiv-2023. However, as shown in Table 3,178

we observe the contrary: the performance drop of ChatGPT between ogbn-arxiv and arxiv-2023 is less179

than the drop on MPNNs on two datasets (1.3% compared to 5.1% in rich context, 3.6% compared to 4.5% in180

scarce context). For LLaMA-2-7B, we also observe no significant drop compared to MPNNs (6.7% compared181

to 5.1% in rich context, 4% compared to 4.5% in scarce context. See Appendix D.2, Table 10). This means182

that LLMs actually generalize well to leakage-free data.183

To conclude, the observed results neither offer clear evidence in favor of data leakage nor does it advocate that184

data leakage predominantly improves LLM’s performance. Instead, LLM’s consistent performance across185

both datasets stresses its resilience and ability to generalize across varying distribution domains.186

3.3 Are LLMs Treating the Prompts as Graphs as Intended by Prompt Designers on Text-attributed187

Graphs?188

Previous works design templates to encode the ego-graph around the target node into natural languages by189

listing neighboring nodes’ text information (Chen et al., 2023; Hu et al., 2023) or giving edge indexes (Tang190

et al., 2023), adjacency lists (Das et al., 2023) or neighborhood summary (Guo et al., 2023). One major191

similarity of these templates is sequentially describing the ego graph around the target node in natural192

language, usually starting with the target node, then the immediate (1-hop) neighbors of the target node,193

and then progressing to the subsequent levels (2-hop, 3-hop, etc.). However, it is unclear whether LLMs194

actually understand the prompt as intended. Thus, we ask the question: do LLMs treat the input prompt195

as a graph, as expected by the prompt designers, or merely as a paragraph of text with augmented key-196

words? This question is fundamental in understanding the performance gain after incorporating structural197

information. If LLMs just process the prompt as a paragraph consisting of neighboring papers’ titles, then198

the performance gain can only come from the extra phrases included in neighboring nodes, instead of the199

topological information. We investigate this question by two adversarial experiments:200

1. Linearize ego-graph. We create a linearized version of the graph-structured prompts by only keeping201

all neighbors’ text attributes in the prompts. We then test the linearized prompts against the202

graph-structured prompts. Templates of both linearized and graph-structured prompts are shown203

in Table 1.204

2. Rewire ego-graph. We randomly rewire the ego-graph by different strategies. Then we compare the205

performance of MPNNs and LLMs under each strategy.206
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Table 4: Comparison of classification accuracy between graph-structured prompts and linearized prompts
on arxiv-2023. The performance difference is negligible between two prompt styles, implying that LLMs
are treating prompts simply as linearized paragraphs.

Prompt Style 1-hop title 1-hop title+label 2-hop title 2-hop title+label 1-hop attention
Graph-structured prompt 71.1 67.3 69.6 67.7 74.7
Linearized prompt 70.9 69.1 70.8 68.2 74.9

Figure 2: Example of rewiring ego-graphs for node 0. Three rewiring strategies are evaluated: “random”
keeps 1-hop neighbors and randomly connect 2-hop neighbors to 1-hop neighbors; “extreme” keeps 1-hop
neighbors and connects all 2-hop neighbors connect to a random 1-hop neighbor; “Path” randomly connects
1-hop neighbors as a path.

Adversarial Experiment on Linearizing the Ego-graph. To verify whether prompts are processed as207

linearized paragraphs, we create a linearized version of k-hop title, k-hop title+label and k-hop attention by208

stripping away descriptive text about the ego-graph structure from the original prompt. For instance, in the209

original k-hop title, a typical introduction like “It has the following neighbor papers at hop k:” is removed.210

In the linearized version, we condense this to a single paragraph comprising all neighbors’ titles, as shown in211

the last row of Table 1. We then compare the performance of the graph-structured and linearized prompts on212

ChatGPT. As indicated in Table 4, the results reveal minimal performance disparity across all five prompt213

styles after linearization 5. A notable finding is that in the 1-hop attention category, even the elimination of214

text specifying neighbors’ importance ranking (“It has the following important neighbors, from most related215

to least related”) has little impact. These findings imply that LLMs tend to process prompts in a linearized216

paragraph format.217

Adversarial Experiment on Rewiring the Ego-graph. We evaluate both MPNNs and LLMs in an218

adversarial setting where the ego-graph is randomly rewired using three different strategies: “Random”219

keeps 1-hop neighbors and randomly connects 2-hop neighbors to 1-hop neighbors; “Extreme” retains 1-hop220

neighbors and connects all 2-hop neighbors to a random 1-hop neighbor; “Path” randomly connects all 1-hop221

neighbors into a path, as shown in Figure 2. For LLMs, we use the 2-hop title as the prompting style. The222

results in Table 5 show that LLMs experience a notably smaller average performance drop compared to223

MPNNs when subjected to ego-graph rewiring. The average drop of LLMs is -0.25%, compared to -5.55%224

on MPNNs. When the prompt encompasses all neighborhood textual information, surprisingly the explicit225

ego-graph structure has minimal impact on LLMs’ performance. LLMs’ resilience to changes in ego-graph226

structures suggests that LLMs may process prompts more like paragraphs than graphs.227

In summary, our study suggests that LLMs interpret inputs more as contextual paragraphs than as graphs228

with topological structures, which contradicts the intention of prompt designers. By two adversarial exper-229

iments, we show that neither linearizing nor rewiring ego-graph has significant impact on the classification230

performance of LLMs.231

5The model used here is ChatGPT in September, 2023
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Table 5: Performance of MPNNs and LLMs under adversarial settings, where we randomly rewire the
ego-graph. The last column “Average Drop” denotes the average change of performance in three rewiring
strategies compared to the original graph. A larger drop in the last column indicates a greater influence
from rewiring the ego-graph.

Dataset Model Original Random Extreme Path Average Drop

Cora

GCN 84.6 85.2 82.7 78.4 -2.5
SAGE 84.1 83.8 82.7 78.5 -2.4
ChatGPT 68.3 68.6 69.4 68.6 0.6
LLaMA-2-7B 52.2 53.5 53.5 54.1 1.5

Arxiv

GCN 74.7 65.2 68.2 59.3 -10.5
SAGE 75.2 71.0 67.0 66.2 -7.1
ChatGPT 71.5 71.4 71.1 69.0 -1
LLaMA-2-7B 48.3 48.9 49.2 44.4 -0.8

Arxiv-2023

GCN 69.8 64.5 66.1 59.9 -6.3
SAGE 68.1 66.5 63.4 60.8 -4.5
ChatGPT 68.7 69.0 69.1 67.8 0
LLaMA-2-7B 47.6 48.1 47.9 41.3 -1.8

Figure 3: Performance comparison of dropping neighbors using different strategies across arxiv-2023, cora,
and ogbn-product datasets. Three dropping strategies are evaluated: “drop same” removes neighbors with
the same label as the target node; “drop different” removes neighbors with different labels as the target node;
and “drop random” randomly selects neighbors for removal. When percentage is 1, “drop same” strategy
drops all same-label neighbors but preserves all different-label neighbors, and “drop different” strategy drops
all different-label neighbors but preserves all same-label neighbors. Details about the strategies are stated
in Appendix E.

3.4 Impact of Homophily on LLMs Classification Accuracy232

In the preceding section, we established that LLMs understand the input prompts more as a linearized233

paragraph. Thus, we hypothesize that relevance of these paragraph prompts to the target node might234

influence the predictive accuracy of LLMs. Here, we investigate a related factor contributing to the improved235

performance after incorporating structural information, particularly homophily. Homophily, the tendency236

of nodes with similar characteristics to connect, is foundational for many MPNNs. In fact, the degree of237

homophily in a dataset often correlates with the efficacy of MPNNs in classification tasks (Zhu et al., 2020;238

2021; Lim et al., 2021; Maurya et al., 2021). Given this significance, it becomes imperative to explore if and239

how homophily impacts the efficacy of LLMs in similar classification contexts, drawing potential parallels or240

contrasts with MPNN behaviors.241

Since LLM performs node-wise prediction over the neighborhood surrounding the target node, we use local242

homophily ratio (Loveland et al., 2023) to measure the degree of homophily with respect to the target node.243

For a prompt to predict the category of a target node, the local homophily ratio is defined as the fraction of244

8
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Table 6: Point biserial correlation between local homophily ratio and prediction correctness across five
datasets (p-values in brackets). Point biserial correlation ranges between [−1, 1], where a value of 1 indicates
a perfect positive relationship. A higher correlation value indicates that the local homophily ratio and
prediction correctness are more positively related.

Prompt Style ogbn-arxiv cora pubmed arxiv-2023 ogbn-product
Zero-shot 0.440 (0.000) 0.070 (0.106) 0.278 (0.000) 0.367 (0.000) 0.387 (0.000)
1-hop title+label 0.518 (0.000) 0.222 (0.000) 0.443 (0.000) 0.481 (0.000) 0.560 (0.000)

neighbors sharing the same groundtruth label as the target node over the total number of neighbors included245

in the prompt. Intuitively, a higher local homophily ratio signals scenarios where a node is surrounded by a246

greater proportion of neighbors from the same category.247

The neighbor dropping experiment. We design a controlled experiment to demonstrate the effect248

of local homophily ratio on prediction accuracy. We gradually drop neighbors in three different ways: a)249

drop the neighbors with same label as the target node; b) drop the neighbors with different label as the250

target node; and c) drop neighbors randomly. We include details about the neighbor dropping strategies251

in Appendix E. The experimental results are shown in Figure 3, where we observe an evident trend: as we252

selectively remove neighbors sharing the same labels, there’s a decrease in prediction accuracy. Conversely,253

discarding neighbors with different labels leads to an increase in accuracy. This selective dropping inherently254

modifies the local homophily ratio within the prompts. The results show that accuracy of predictions made255

by LLMs is positively related to local homophily ratio. Combine this observation with the premise that LLMs256

actually understand the prompts as a paragraph, we propose that the significance of homophily is intrinsic.257

This is because LLMs benefit from structural information only when the neighborhood is homophilous,258

meaning the neighbors contain phrases related to the groundtruth label of the target node. Conversely,259

diminishing the local homophily ratio by excluding such neighbors can adversely affect prediction accuracy.260

Correlation study. Building on the insights from the dropping neighbors experiment, we further investi-261

gate the relationship between local homophily ratio and the prediction correctness across different datasets.262

Each node possesses two key attributes: a) its local homophily ratio, which is a continuous random variable263

in [0, 1], and b) its prediction correctness, which is a binary random variable (0 indicating an incorrect pre-264

diction and 1 indicating a correct prediction). To quantify the correlation between these two attributes, we265

employ the point biserial correlation method (Kornbrot, 2014). This correlation coefficient ranges between266

-1 and 1, where a value of 1 signifies a perfect positive relationship. The results of our analysis across five267

datasets are detailed in Table 6.268

For the cora dataset, we observe no significant correlation when only the title is used in prompts. However,269

a positive correlation emerges when neighbors are included alongside the title. This suggests that the more270

homophily is incorporated into the prompt, the more accurate the prediction becomes.271

For the other datasets, a positive correlation is evident in both the zero-shot and 1-hop title+label settings.272

In Table 6, zero-shot prediction (the one that doesn’t use structural information at all) also showed high273

correlation with the homophily ratio of the node. This suggests a complicated mechanism for LLMs to274

perform better on homophilous nodes: those nodes are easier to be classified in the first place; the added275

structural information has some additional contributions. Homophilous nodes are easier to classify potentially276

because nodes that are not homophilous often blend various topics, which makes predicting their category277

more challenging than homophilous nodes.278

In summary, our findings underline the critical role of homophily in influencing LLM’s text classification279

performance with extra structural information. The experiments and analyses consistently point to a positive280

relationship between local homophily ratio and prediction correctness. It further suggests that homophily281

matters because, only with homophily, the local neighborhood can provide relevant phrases, thus improving282

the overall performance.283

9



Under review as submission to TMLR

3.5 Influence of Structural Information on LLMs Under Varying Textual Contexts284

In Sections 3.3 and 3.4, we show that LLMs understand the prompt describing the ego-graph more as a285

paragraph. Moreover, the benefit of incorporating the structural information is positively related to how286

homophilous the ego-graph is. Building on these findings, we want to investigate when this benefit might287

deminish given a fixed set of neighboring nodes. In particular, we are examining the influence of the textual288

feature richness of the target node. Our study involves experiments on four node classification benchmark289

datasets with textual node features: cora (McCallum et al., 2000; Lu & Getoor, 2003; Sen et al., 2008;290

Yang et al., 2016), pubmed (Namata et al., 2012; Yang et al., 2016), ogbn-arxiv (Hu et al., 2020) and291

ogbn-product (Hu et al., 2020)6.292

Richness of textual node features. To examine how the richness of the target node’s textual features293

affects text classification accuracy, we compare two different settings:294

• Rich textual context. In this setting, the nodes are associated with abundant textual features. Specif-295

ically, in citation networks (cora, pubmed and ogbn-arxiv), both the paper title and abstract296

are associated with each node as textual features. In the co-purchasing network (ogbn-product),297

both the product title and product content are associated with each node as textual features. This298

setting is adopted by several prior studies (Chen et al., 2023; Ye et al., 2023; Guo et al., 2023; Wang299

et al., 2023; He et al., 2023).300

• Scarce textual context. In this setting, the nodes are associated with limited textual features. In301

citation networks (cora, pubmed and ogbn-arxiv), only the paper title is used as textual features.302

In product networks (ogbn-product), only the product name is associated with each node as303

textual features. While this setting is less explored in the literature, it is of great practical importance304

due to the prevalence of short texts in social networks (Alsmadi & Gan, 2019). Such limited textual305

features present challenges like feature sparseness and non-standardization, reducing the effectiveness306

of traditional methods (Song et al., 2014). In such scenarios, we expect the structural information307

becomes more useful for the predictions.308

Experimental results. The experimental results of different prompting methods under the two settings309

with different richness of textual context are shown in Table 7. We have the following observations: When310

LLMs are powerful enough, they only benefit from structural information when node feature are scarce: if311

the node has enough relevant phrases in its own features, the local neighborhood won’t be useful anymore.312

For ChatGPT under rich textual context, the improvement from structural information is minimal. While313

this improvement is significantly larger when the node level features are scarce.314

In conclusion, LLMs only benefit from structural information when the target node does not contain enough315

phrases for the model to make reasonable prediction.316

4 Conclusions and Future Work317

In conclusion, our study provides key insights into the application of LLMs in processing structured data,318

particularly in node classification tasks on text-rich graphs. In this study, we have adapted node classification319

datasets with textual features from graph learning benchmarks to establish a testbed for LLMs augmented320

with structured data. By curating a new dataset, we show that data leakage is not the major contributor321

of LLMs on common node classification benchmarks. Our findings also raise critical concerns regarding the322

actual depth of understanding that LLMs have of structured data. By two adversarial experiments, we show323

that LLMs actually do not understand the prompts as graphs, which is not intended by prompt designers.324

As a consequence, LLMs only show improvement from structural information when the neighborhood is325

homophilous. Moreover, our findings suggest that when the target node itself contains a wealth of relevant326

phrases, the additional structural information becomes redundant.327

6Please see Appendix B.1 for the details of the datasets.
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Table 7: Classification accuracy of ChatGPT API for the ogbn-arxiv, cora, pubmed, and ogbn-product
datasets. ↑ denotes the improvements of best prompt style that leverages structural information over zero-
shot method. Best results are in bold.

Textual context Prompt style ogbn-arxiv cora pubmed ogbn-product

Rich

Zero-shot 74.0 66.1 88.6 83.7
Few-shot 72.9 65.1 85.0 83.8

Zero-shot CoT 71.8 56.6 81.9 80.5
1-hop title+label 75.1 72.5 89.1 85.2
2-hop title+label 74.5 74.7 89.7 86.2

1-hop attention 74.7 72.5 88.8 86.2

↑ 1.1 8.6 1.1 2.5

Scarce

Zero-shot 69.8 61.8 85.7 78.5
1-hop title 72.3 69.6 84.8 80.5

1-hop title+label 74.3 73.9 86.4 85.3
2-hop title 71.3 69.9 86.2 80.6

2-hop title+label 74.2 74.5 86.9 85.4
1-hop attention 71.3 74.7 85.1 83.9

↑ 4.5 12.9 1.2 6.9

This study also opens several avenues for future research. Firstly, the findings of this study, as well as the328

new dataset curated by this work, establish a proper benchmark setup for more advanced methods to encode329

structural information for LLMs, such as finetuning or adapter training. Secondly, while we find that data330

leakage is not a major concern for the prompting methods examined in this paper, it is still possible that331

more advanced methods can elicit the memory of the LLMs from training corpus. We may need further332

investigation on the data leakage issue when proceeding with evaluating other methods. Finally, our results333

imply that LLMs might be relying on shallow, surface-level patterns rather than grasping the underlying334

relational complexity of graph structures. Future research may be aimed at developing methods that enable335

LLMs to deeply parse and comprehend graph topologies.336
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A Details about Prompting Format and Settings455

We utilize a two-part prompt structure, in line with the ChatGPT Chat Completions API7 and LLaMA-2-7B456

format. Each call involves a system prompt and a user prompt. The system prompt, detailed in Table 8,457

sets LLM’s objective and return format. The user prompt, outlined in Table 1, provides information on the458

target node and its neighborhood for prediction. To standardize LLM’s output format, we append “Do not459

give any reasoning or logic for your answer” to the end of all prompts, except zero-shot CoT prompts.460

Prompt styles. Here we introduce the design of prompt styles in our experiments. The exact prompt461

templates can be found in Table 1.462

We first have a few prompt styles that do not encode structural information.463

• Zero-shot: LLMs make zero-shot predictions based on the target node’s textual features only.464

• Few-shot: LLMs make predictions on nodes’ textual features only but with few-shot examples from465

the training set.466

• Zero-shot Chain-of-Thought (CoT): Adding “Let’s think step by step” to the end of the zero-shot467

prompt (Kojima et al., 2022). This simple change has been shown to boost LLMs’ performance on468

various tasks comparable to CoT prompts (Wei et al., 2022).469

Then we have two strategies for prompt design conceptually inspired by MPNNs, where information from470

neighboring nodes is aggregated to enhance the representation of the target node:471

The first strategy incorporates randomly selected neighbors into the prompt. The idea behind this strategy472

is to aggregate information from neighboring nodes, following the paradigms of GCN (Kipf & Welling, 2016)473

and GraphSAGE (Hamilton et al., 2017). The inclusion of 1-hop neighborhood information in the prompt474

can be seen as an analogous operation to a single-layer aggregation in GCN, where messages from direct475

neighbors are aggregated. Specifically, we have two styles:476

• k-hop title: LLMs make predictions based on the target node’s textual features as well as titles of477

neighbors up to k-hop.478

• k-hop title+label: In addition to k-hop title, we include the labels for neighbors in training set or479

validation set.480

7https://platform.openai.com/docs/guides/gpt/chat-completions-api
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The second strategy is designed to weigh the influence of neighboring nodes during the prediction pro-481

cess. This strategy is inspired by Graph Attention Networks (GAT) (Veličković et al., 2017), which employ482

attention mechanisms to dynamically allocate weights to neighboring nodes based on their task-specific im-483

portance. The strategy consists of two steps. a) Attention extraction: the LLM ranks neighbors based on484

their relevance to the target node. b) Attention prediction: the LLM makes predictions based on the target485

node and top-ranked neighbors. We name the whole strategy as k-hop attention in our experiment results.486

Table 8: System prompts for each dataset.

Dataset System Prompt
ogbn-arxiv,
arxiv-2023

Please predict the most appropriate arXiv Computer Science (CS) sub-category for
the paper. The predicted sub-category should be in the format ’cs.XX’.

cora Please predict the most appropriate category for the paper. Choose from the fol-
lowing categories:\nRule Learning\nNeural Networks\nCase Based\nGenetic Algo-
rithms\nTheory\nReinforcement Learning\nProbabilistic Methods\n

pubmed Please predict the most likely type of the paper. Your answer should be chosen
from:\nType 1 diabetes\nType 2 diabetes\nExperimentally induced diabetes.\n

ogbn-product Please predict the most likely category of this product from Amazon. Your answer
should be chosen from the list:\nHome & Kitchen\nHealth & Personal Care\n. . .

We outline the details for each prompting method as follows:487

1. Few-shot: Two correct example predictions from ChatGPT are added before the target node infor-488

mation.489

2. Target node with neighbors: For datasets ogbn-arxiv, cora, pubmed and arxiv-2023, prompts490

include up to 20 one-hop and 5 two-hop neighbors. For ogbn-product, up to 40 one-hop and 10491

two-hop neighbors are included.492

3. Attention extraction: The maximum number of neighbors is the same as Target node with neighbors.493

We only consider one-hop attention in this study, setting the attention number k to 5.494

Common settings for all methods include a temperature of 0 and a maximum output token limit of 500. If495

a neighbor belongs to the training or validation set, its label is included in the prompt.496

B Datasets Information497

In this section we detail the information about benchmark datasets and the collection pipeline of arxiv-498

2023.499

B.1 Datasets Statistics and Splits500

Table 9 presents basic statistics for each dataset. For detailed information on datasets and methods to obtain501

raw text attributes, please see Appendix A in Chen et al. (2023).502

The dataset splits are as follows:503

1. cora: Training/Validation/Testing ratios are 0.1/0.2/0.2.504

2. pubmed: Training/Validation/Testing ratios are 0.6/0.2/0.2, following He et al. (2023).505

3. ogbn-arxiv: Original OGB (Hu et al., 2020) splits are used, categorizing papers by their publication506

year: training (pre-2017), validation (2018), and testing (2019).507
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Table 9: Statistics of datasets. Data cut-off indicates the latest data coverage of the dataset.

Dataset #Nodes #Edges #Task Metric #Test Nodes Data Cut-Off
cora 2,708 5,429 7 Accuracy 542 2000
pubmed 19,717 44,338 3 Accuracy 1,000 2000
ogbn-arxiv 169,343 1,166,243 40 Accuracy 1,000 2019
ogbn-product 2,449,029 61,859,140 1 Accuracy 1,000 2019
arxiv-2023 33,868 305,672 40 Accuracy 668 2023

4. ogbn-product: Original OGB splits are used based on sales ranking: top 8% for training, next508

2% for validation, and the remainder for testing.509

5. arxiv-2023: Year-based splits similar to ogbn-arxivis adopted: training (pre-2019), validation510

(2020), and testing (2023).511

Due to API cost and rate limits, we test on a random sample of 1,000 nodes for pubmed, ogbn-arxiv, and512

ogbn-product, using a fixed seed for reproducibility.513

B.2 Collection of arxiv-2023514

The detailed pipeline is as follows:515

1. Sample 668 test nodes from around 46,000 arXiv CS papers published from January 1 to August516

22, 2023.517

2. Extract references to identify one-hop and two-hop neighbors. References were obtained by two steps.518

First, we search for valid arXiv IDs within each paper, following a method similar to (Clement et al.,519

2019). Second, we use AnyStyle to extract the titles of the references,8 which we then search for via520

the arXiv API.9 Titles found on arXiv are considered valid citations if they have a small levenshtein521

distance (Miller et al., 2009) from the searched title. To prevent duplicate searches, we skip any522

references that already have a matched arXiv ID. To comply with the arXiv API’s rate limit, each523

paper is restricted to a maximum of 30 searches. For papers published before 2019, we attempt to524

match them to nodes in the ogbn-arxiv based on titles. Unmatched pre-2019 nodes are excluded525

from our dataset.526

3. Construct a citation network using nodes from step 2. Basically for each node we need a list of527

paper it cites. While references for test nodes and one-hop nodes are obtained through both arXiv528

ID matching and title searching, the references for two-hop nodes are solely determined by arXiv ID529

matching, due to rate limit constraints. Dataset statistics are in Table 2. We have similar test node530

degrees between ogbn-arxiv and arxiv-2023.531

C MPNNs as Baselines532

Embedding generation. We adapt the embedding generation pipeline from Hu et al. (2020) to train a533

skip-gram model (Mikolov et al., 2013) on corpus comprising titles and abstracts from both ogbn-arxiv and534

arxiv-2023. Each paper’s 128-dimensional feature vector is then obtained by averaging the word embeddings535

in its title.536

8https://github.com/inukshuk/anystyle
9https://info.arxiv.org/help/api/basics.html
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Hyperparameter tunning. Baseline models GCN and SAGE are implemented with PyG (Fey & Lenssen,537

2019). For hyperparameter tunning, we perform a random search on the following hyperparameter tuning538

range for every model following Ma et al. (2022):539

• Number of layers: {2, 3}.540

• Hidden size: {32, 64}.541

• Learning rate: {.001, .005, .01, .1}.542

• Dropout rate: {.2, .4, .6, .8}.543

• Weight decay: {.0001, .001, .01, .1}.544

Each model is run on 100 random configurations and each random configuration is run for 3 times on ogbn-545

arxiv and arxiv-2023. The max training epoch number is 2000. When training is finished, we use the546

model with highest average validation accuracy on the dataset for testing.547

D Additional Analysis on the influence of structural information on LLMs.548

D.1 Classification accuracy on LLaMA-2-7B-chat549

The results in the main paper are based on gpt-3.5-turbo-0613. Here we test the performance of550

LLaMA-2-7B-chat. The results are shown in Table 10. The model gains significant improvement after551

incorporating structural information in both rich and scarce textual context. The results align with our ob-552

servation in the paper with ChatGPT that incorporating structural information actually brings performance553

improvement in both rich and scarce contexts. But a different observation is that the improvement in scarce554

textual context is not necessarily higher than the improvement in rich textual context. This may be because555

LLaMA-2-7B is not able to sufficiently leverage the entire text for the prediction in zero-shot prediction.556

Combining the results of ChatGPT, the conclusion is that, with powerful enough LLM and rich text (e.g.557

ChatGPT with rich context), the structural information is marginal. But when the text information is scarce558

or if the LLM cannot fully utilize the text information, structural information can be significantly helpful.559

D.2 The Nuances of When Structural Information Saturates on LLMs and MPNNs.560

We compare the performance increase from incorporating structural information for LLMs and MPNNs561

respectively in Table 11. The average increase from structural data of ChatGPT on 4 datasets is 2.78%562

(rich context) and 5.44% (scarce context). But the increase from structural data of MPNNs is 6.98% (rich563

context) and 14.07% (scarce context), which is significantly higher than the gain of LLMs. It means that564

The benefit of structural information saturates earlier on ChatGPT than MPNNs.565

While it’s true that structural information is generally more helpful when text is scarce, quantitatively566

ChatGPT behaves differently from GNNs: the benefit of structural information saturates much earlier567

than GNNs with moderate rich textual features; and this is non-trivial since LLaMA-2 doesn’t saturate as568

early as ChatGPT. The average increase from structural data on 4 datasets for ChatGPT/MPNNs/LLaMA-569

2-7B-chat are 2.78%/6.98%/21.7% respectively.570

E Additional Analysis for Dropping experiments571

Details about dropping experiments. We have three different strategies: a) drop the neighbors with572

same label (drop same), b) drop the neighbors with different label (drop different), c) drop neighbors ran-573

domly (drop random). Let’s define x as the number of neighbors with the same ground truth label as the574

target node, and y as the number of neighbors with a different label from the target node. Given a dropping575

percentage p, we elaborate on the three strategies:576

1. drop random: We randomly drop (x + y)p neighbors.577
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Table 10: Classification accuracy for the ogbn-arxiv, cora, arxiv-2023, pubmed, and ogbn-
product datasets on LLaMA-2-7B-chat. ↑ denotes the improvements of best prompt style that leverages
structural information over zero-shot method. Best results are in bold.

Textual Context Prompt Style ogbn-arxiv cora arxiv-2023 pubmed ogbn-product

Scarce

Zero-shot 38.8 24.5 38.2 70.1 51.7
1-hop title 51.5 44.8 45.5 70.9 52.8

1-hop title+label 58.0 71.0 53.4 75.5 78.9
↑ 19.2 46.5 15.2 5.4 27.2

Rich

Zero-shot 45.1 18.1 45.1 71.6 51.3
1-hop title 51.6 51.5 50.0 68.8 52.1

1-hop title+label 66.9 66.7 60.2 73.0 77.2
↑ 21.8 48.6 15.1 1.4 25.9

Table 11: Classification accuracy for the ogbn-arxiv, cora, arxiv-2023, pubmed on ChatGPT as well as
GCN, SAGE and MLP. ↑ (LLMs) denotes the improvements of best prompt style that leverages structural
information over zero-shot method. ↑ (MPNNs) denotes the improvements of the best MPNNs over MLP
(without structural information).

Textual Context Prompt Style ogbn-arxiv cora arxiv-2023 pubmed
Rich Zero-shot 74.0 66.1 73.5 88.6

1-hop title+label 75.1 72.5 73.8 89.1
2-hop title+label 74.5 74.7 73.2 89.7
1-hop title+label, attention 74.7 72.5 73.7 88.8
↑ (LLMs) 1.1 8.6 0.3 1.1
MLP 69.9 65.4 69.7 86.2
GCN 75.4 83.0 70.3 88.4
SAGE 75.0 83.2 70.9 90.0
↑ (MPNNs) 5.5 17.8 1.3 3.8

Scarce Zero-shot 69.8 61.8 66.6 85.9
1-hop title 72.3 69.6 70.7 80.8
1-hop title+label 74.3 73.9 70.4 84.7
2-hop title 71.3 69.9 68.9 83.5
2-hop title+label 74.2 74.5 68.5 86.4
↑ (LLMs) 4.5 12.7 4.1 0.5
MLP 61.9 55.7 58.5 82.0
GCN 74.8 81.2 70.3 87.1
SAGE 74.4 78.8 69.1 87.9
↑ (MPNNs) 13.0 25.6 11.8 6.0

2. drop same: We retain max(x − (x + y)p, 0) neighbors with the same labels as the target node while578

preserving all y neighbors with different labels.579

3. drop different: We retain max(y − (x + y)p, 0) neighbors with the different labels from the target580

node while preserving all x neighbors with same labels.581

We further explain this by an example. Assume node A has 10 neighbors and 6 of the neighbors have same582

labels as A. When dropping percentage is 0.5, drop same strategy drops 5 nodes with same label, resulting583

in 1 neighbor with same label and 4 neighbors with different labels. drop different strategy drops all 4 nodes584

with different labels, resulting in 6 neighbors with same label.585

Ablation study on the effect of labels in the prompt We investigate the possibility that LLMs are586

relying on a simple majority vote in its prediction. We propose a new neighbor dropping experiment with587

three different prompting styles for neighbors: (i) 1-hop title+label, (ii) 1-hop title and (iii) 1-hop label.588

1-hop label means that we only include the label of the neighboring papers, which is used as an ablation589

study to gauge whether LLM is performing a majority vote based on label information.590

If LLMs do rely on a majority vote to determine its prediction. We would expect that the “drop different”591

curve with 1-hop label goes higher than 1-hop title+label because we are dropping more and more neighbors592

with different labels. However, we are not observing this in Figure 4 and 5, and the 1-hop label curve is lower593
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Figure 4: Performance comparison of dropping neighbors using different strategies on cora dataset. Three
dropping strategies are evaluated: (i) 1-hop title+label, (ii) 1-hop title and (iii) 1-hop label

Figure 5: Performance comparison of dropping neighbors using different strategies on arxiv-2023 dataset.
Three dropping strategies are evaluated: (i) 1-hop title+label, (ii) 1-hop title and (iii) 1-hop label

than 1-hop title+label curve. This observation refutes the hypothesis that LLMs rely on simple majority594

vote for prediction. Instead, including more context information will help LLMs to make more accurate595

predictions as 1-hop title+label “drop different” curve is higher than 1-hop label “drop different” curve.596

Adding Neighbors instead of Dropping To further investigate whether LLMs are benefiting from597

structural information, we conducted an additional experiment of adding neighbors instead of dropping598

neighbors. One could argue that adding neighbors that has different groundtruth labels as the target node599

can still provide some benefits. The results is shown in 6. For all three datasets, adding neighbors with600

different labels will decrease the prediction performance.601

F Additional Analysis for Data Leakage602

Investigating data leakage through prompt variability. Chen et al. (2023) reveal considerable fluc-603

tuations in Language Model (LLM) performance on ogbn-arxivwhen using three distinct prompt words:604

"arXiv cs subcategory," "arXiv identifier," and natural language. These variations have been interpreted as605

potential indicators of data leakage.606

To delve deeper into this issue, we expand upon their experiments by testing additional prompt words.607

We also introduce two experimental settings: one with label options provided and another without. As608

displayed in Table 12, the relative efficacy of various prompts on ogbn-arxiv mirrors their performance on609

arxiv-2023. Importantly, prompts with options underperform on both datasets, underscoring a consistent610

trend.611
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Figure 6: Performance comparison of adding neighbors using different strategies across arxiv-2023, cora,
and ogbn-product datasets. Three adding strategies are evaluated: “add same” adds neighbors with the
same label as the target node; “add different” adds neighbors with different labels as the target node; and
“add random” randomly selects neighbors for addition. When percentage is 1, “add same” strategy adds
all same-label neighbors but excludes all different-label neighbors, and “add different” strategy adds all
different-label neighbors but excludes all same-label neighbors.

Also, utilizing structural information in the prompts can somewhat mitigate the performance drop from less612

effective prompts. Indicate that LLMs can leverage structural information to improve predictions. This613

further supports that there is no conclusive evidence for data leakage.614

Table 12: Performance across different prompt types between ogbn-arxiv and arxiv-2023.

System Prompt Zero-shot 1-hop title+label

ogbn-arxiv arxiv-2023 ogbn-arxiv arxiv-2023

Please predict the most appropriate arXiv Computer Science
(CS) sub-category for the paper. The predicted sub-category
should be in the format ’cs.XX’.

74.0 73.7 74.3 70.4

Please predict the most appropriate arXiv Computer Science
(CS) sub-category for the paper. Your answer should be chosen
from cs.AI, ..cs.SY. The predicted sub-category should be in the
format ’cs.XX’.

66.0 68.1 70.7 67.9

Please predict the most appropriate original arXiv identifier for
the paper. The predicted arxiv identifier should be in the format
’arxiv cs.xx’.

71.3 70.8 73.7 67.5

Please predict the most appropriate original arXiv identifier for
the paper. Your answer should be chosen from cs.ai,.. cs.sy.
The predicted arxiv identifier should be in the format ’arxiv
cs.xx’.

58.4 57.2 71.7 64.2

Please predict the most appropriate category for the paper.
Your answer should be chosen from "Artificial Intelligence",..
"Systems and Control".

54.6 53.4 74.1 67.8
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