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ABSTRACT

Federated Class Incremental Learning (FCIL) is a new direction in continual
learning (CL) for addressing catastrophic forgetting and non-IID data distribu-
tion simultaneously. Existing FCIL methods call for high communication costs
and exemplars from previous classes along with performance issues. We pro-
pose a novel rehearsal-free method for FCIL named prototypes-injected prompt
(PIP) that involves 3 main ideas: a) prototype injection on prompt learning, b)
prototype augmentation, and c) weighted Gaussian aggregation on the server
side. Our experiment result shows that the proposed method outperforms the
current state of the arts (SOTAs) with a significant improvement (14 − 33%) in
CIFAR100, MiniImageNet and TinyImageNet datasets. Our extensive analysis
demonstrates the robustness of PIP in different task sizes, and the advantage of re-
quiring smaller participating local clients, and smaller global rounds. For further
study, source codes of PIP, baseline, and experimental logs are shared publicly in
https://anonymous.4open.science/r/an122pouyyt789/.

1 INTRODUCTION

Federated learning (FL) is a machine learning approach that allows multiple local clients to learn a
global model together while protecting the data privacy in each client McMahan et al. (2017)Karim-
ireddy et al. (2020) Shoham et al. (2019) while protecting the data privacy in each client. FL has
recently sparked a great deal of academic interest and achieved outstanding success in a number of
application areas, including medical diagnosis Hwang et al. (2023), autonomous vehicle He et al.
(2023), and wearable technology Baucas et al. (2023). The majority of FL methods are often de-
signed for a static application scenario, assuming the data classes are fixed and known in advance. In
real-world applications, however, the data are often dynamic, allowing local clients to access unseen
target classes online.

Existing studies have the addressed dynamic data challenges in FL through Federated Class Incre-
mental Learning (FCIL) where each local client gathers training data continually and according to
their own preferences in the environment, while new clients with ad hoc, unforeseen classes are al-
ways welcome to join the FL training Dong et al. (2023) Dong et al. (2022) Yoon et al. (2021). The
clients have to cooperatively train a global model to continually learn new classes while maintaining
its capability to recognize the previous classes. In short, the existing FCIL methods tried to answer
catastrophic forgetting and non-independently and identically distributed (non-i.i.d.) problems.

Current SOTAs in FCIL still have not achieved a high performance i.e. leq 75% average accuracy
in the 3 popular benchmark datasets Dong et al. (2023) Dong et al. (2022). the performance Besides
the performance issue, current FCIL methods exchange the whole model between clients and the
central server, resulting in high communication costs during FL training. Besides, some of the FCIL
methods assume that the clients save exemplars (memory) from the previous classes for rehearsal
Dong et al. (2023) Dong et al. (2022). In practice, this is not always feasible because the data may
be confidential and only available for one-time access. Thus, we are motivated to develop a more ef-
ficient and rehearsal-free method for the FCIL problem. We propose a new approach for FCIL based
on prompt learning inspired by prompt learning that performs effectively in stand-alone continual
learning (CL) Wang et al. (2022c) Wang et al. (2022b). Along with the rehearsal-free principle, the
prompt-based approach offers a more efficient communication where clients and the central server
only need to exchange a small model called prompt and supporting parameters, e.g. head layer
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Figure 1: Visualization of current SOTAs in FCIL and our proposed method. It is seen that our
approach imposes much lower communication costs than state-of-the-art methods.

instead of exchanging the whole model. The distinction between the PIP and current SOTAs is visu-
alized in figure 1. The contributions of this paper are summarized as follows: (1) We propose a new
approach, prompt-based federated continual learning to solve the FCIL problem, where clients and
central servers exchange prompts and head layer units instead of a whole model. This approach sig-
nificantly reduces the size of the exchanged parameters between clients and the central server in each
round. (2) We propose a new baseline method for the FCIL problem named Federated-DualPrompt
that already outperforms the current state-of-the-art (SOTA) methods in three benchmark datasets.
(3) We propose a novel method for the FCIL problem named Prototype-Injected Prompt (PIP) that
consists of three main ideas i.e. a) prototype injection on prompt learning, b) prototype augmenta-
tion, and c) weighted Gaussian aggregation on the server side. The proposed method outperforms
the baseline and current SOTAs with a significant gap. (4) We provide a comprehensive analysis in
three benchmark datasets as well as the robustness of the proposed method in different task sizes,
smaller participating clients, and smaller rounds per task. (5) The source codes of PIP are shared
in https://anonymous.4open.science/r/an122pouyyt789/ during the peer-review
process and will be made public upon acceptance of our paper for further study and reproducibility.

2 RELATED WORK

This research relates to the recent study on Class Incremental Learning (CIL) which including:
a) Prompt-based approaches, which trains a trainable set of parameters with a down-streaming
approach for tasks sequence, instead of training the whole model e.g. L2P Wang et al. (2022c),
DualPrompt Wang et al. (2022b), CODA-Prompt Smith et al. (2023), S-Prompt Wang et al. (2022a)
b) Regularization approaches, which adaptively tune the base learner parameter to accommodate
the previous task and current task e.g. EWC Kirkpatrick et al. (2017), SI Zenke et al. (2017),
MAS Aljundi et al. (2018), LWF Li & Hoiem (2017), LWM Dhar et al. (2019). DMC Zhang et al.
(2020). c) Replay/Rehearsal approach, which trains the exemplars (memory) from the previous
task joined with current task data e.g. ICARL Rebuffi et al. (2017), EEIL, Castro et al. (2018), GD
Prabhu et al. (2020), DER/DER++ Buzzega et al. (2020), XDER Boschini et al. (2022), d) Bias
correction approaches, which creates task-wise bias later to help the base learner achieve plasticity
on a new task while maintaining stability on old tasks e.g. BiC Wu et al. (2019), LUCIR Hou
et al. (2019), iL2M Belouadah & Popescu (2019). A recent reserach on Federated Learning (FL)
includes: FedAvg McMahan et al. (2017), Fedbn Li et al. (2021), FedMatchAvg Wang et al. (2020),
Yang et al. (2021), Wang et al. (2021), Shoham et al. (2019), and a relatively new Federated Class
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Incremental Learning(FCIL) problem includes: GLVC Dong et al. (2022), TARGET Zhang et al.
(2023) and LGA Dong et al. (2023).

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

A class incremental learning (CIL) problem is defined as a learning problem of a sequence of fully-
supervised learning tasks T 1, T t, ..., T T where t ∈ {1, ..., T} represents the number of tasks that is
unknown. Each task carries Nt pairs of training samples T t = {xt

i, y
t
i}

Nt
i=1 where xi ∈ X denotes

input image and yi ∈ Y denotes its corresponding class label. Each task carries the same image size
but possesses disjoint target classes. Suppose that Y t labels a class set of a task t and Y t−1 denotes
a class set of task t − th, ∀t, t − 1, Y t ∩ Y t−1 = ∅. Federated Class-Incremental Learning (FCIL)
is the extension of conventional class-incremental learning in a federated way, where a set of clients
collaborate with each other coordinated by a central server. Given local clients {Sl}Ll=1 and a global
central server SG, for the r − th global round (r = 1, ..., R), a set of local clients Sl are randomly
selected from all participating clients by the global server. The selected clients at the r − th round
simulate real-world conditions where only a small number of registered clients join in a round of
federated learning. The clients may carry a different set of training samples T r,t

1 ̸= T r,t
2 ... ̸= T r,t

l

where l ∈ {1, ..., L}, and T r,t
l = {xr,t

li , y
r,t
li }

Nr,t
l

i=1 is not shareable between clients or between the
client and central server. Technically, on each global round r− th for the t− th incremental task, a
set of selected clients {Sl}Ll=1 is selected, then each client Sl conducts local CIL training using its
training samples T r,t

l to produce an optimal local model Θr,t
l . Then the selected clients send their

local models to global server SG to be aggregated, producing the latest global model parameter Θr,t
G .

Global server SG then distributes the global model to all clients for the next global round process.

3.2 FEDERATED CLASS INCREMENTAL LEARNING VIA PROMPT-BASED FEDERATED
CONTINUAL LEARNING

Inspired by transfer learning in NLP, prompt-based learning was proposed in continual learning. In
prompt-based continual learning, a client uses a frozen backbone model e.g. Vision Transformer
(ViT) as a feature extractor. The ViT embedding layer transforms an input image x ∈ Rw×h×c,
where w, h, c are the image’s width, height, and channel respectively, into sequence-like output fea-
ture h ∈ RL×D, where L is the sequence length and D is the embedding dimension. We extend the
prompt-based continual learning into prompt-based federated continual learning for the FCIL prob-
lem. In this approach, the client only updates the learnable parameters called prompt p ∈ RLp×D,
and its classification (head) layer fϕ, where Lp is the sequence length and D is the embedding di-
mension and ϕ is head layer parameter. In FCIL setting, on each global round r − th for the t− th
task, the selected clients {Sl}Ll=1 updates pl and ϕl parameters which are aggregated by global server
SG producing global model parameters pG and ϕG. In this approach, rather than updating the whole
model, i.e. backbone and head layers, clients only update a far smaller amount of parameters, i.e.
prompt and head layer only. In addition, clients and the central server require smaller communica-
tion costs as the clients and server exchange a smaller size of data on each round. The distinction
between this proposed approach and the existing state-of-the-art (SOTA) methods is that the existing
SOTAs update and aggregate the whole model i.e. Θ = (θ, ϕ) where a model FΘ(x) = fϕ(gθ(x)),
gθ(.) is feature extractor and fϕ(.) is classifier.

3.3 BASELINE METHOD: FEDERATED DUALPROMPT

In this study, we propose a baseline method named Federated DualPrompt (Fed-DualPrompt) by
customizing DualPrompt Wang et al. (2022b) for federated class incremental learning problems.
The role of the baseline is to demonstrate our proposed new approach i.e. FCIL via prompt-based
federated continual learning that is more effective and efficient than current SOTAs.

Prompt-Structure: Following DualPrompt structure Fed-DualPrompt uses 2 prompt types, i.e. G-
Prompt and E-Prompt. G-Prompt is a trainable shared parameter for all tasks defined as g ∈ RLg×D

where Lg is the sequence length and D is the embedding dimension. E-Prompt is a set of task-
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specific parameters defined as E = {et}Tt=1 where et ∈ RLe×D, Le is the sequence length and D is
the embedding dimension.

Clients: On a round r − th of t − th task, each client Sl with its available training samples T r,t
l

conducts local training to optimize the t−th task E-prompt etl , G-prompt gl and head layer parameter
ϕl following Wang et al. (2022b). Given a pre-trained ViT backbone f with N Multi head Self-
Attention (MSA), h(i), i = 1, 2..., N represents input for i − th MSA layer, suppose that we want
to attach G-prompt gl and E-prompt etl into the i − th and j − th MSA layer respectively, then G-
prompt gl and E-prompt etl transform feature h(i) and h(j) via prompt function as defined in equation
1. Note that h(i) and h(j) are the extension of h, a sequence-like parameter produced by the ViT
embedding layer for i− th and j − th MSA layer.

(h(i)
gl
, h(j)

el
) = (fprompt(gl, h

(i)), fprompt(e
t
l , h

(j))) (1)

Following Wang et al. (2022b), DualPrompt accommodates two types of function fprompt i.e.
prompt tuningLester et al. (2021) and prefix tuning Li & Liang (2021). Previous study Wang et al.
(2022b) investigated that prefix tuning is more effective for CIL problems, thus we use prefix tuning
for fprompt for the proposed baseline method as defined in equation 2, where p ∈ RLp×D could be
G-prompt gl and E-prompt etl that is split into pK ∈ RLp/2×D and pV ∈ RLp/2×D.

fprompt(p, h) = MSA(hQ, [pK ;hK ], [pV ;hV ]) (2)

MSA function is defined as in equation 3 following Vaswani et al. (2017) where hQ, hK , and hV

are input query, key, and value, WQ, WK , and WV are the projection matrices, and m is number of
head, and in DualPrompt hQ = hK = hV = h ∈ RL×D.

MSA(hQ, hK , hV ) = Concat(h1, ..., hm)WO

where hi = Attention(hQW
Q
i , hKWK

i , hV W
V
i )

(3)

Objective: Given a pre-trained ViT backbone with attached G-prompt gl and E-prompt etl , head
layer fϕl

, task-wise key ktl associated with etl , the learning objective of each client Sl is defined
as in equation 4, where L represents cross-entropy loss, Lmatch represents matching loss, and λ
represents a constant factor.

min
gl,etl ,k

t
l ,ϕl

L(fϕl
(fgl,etl (x), y)) + λLmatch(x, k

t
l ), x ∈ T

r,t
l (4)

Server: Central server SG coordinates local clients training and aggregates locally optimal param-
eters from selected local clients into a global model. The parameter aggregation for the baseline
method is defined in the equation 5 where gl, e

t
l and ϕl are the G-prompt, E-prompt, and head layer

parameter of client-l respectively and gG, e
t
G and ϕG are the G-prompt, E-prompt and head layer pa-

rameter of global model respectively, and L is the number of selected local clients. The pseudo-code
of the baseline is presented in Algorithm 1 in Appendix A

(gG, e
t
G, ϕG) =

1

L

L∑
l=1

(gl, e
t
l , ϕl) (5)

4 PROPOSED METHOD: PROTOTYPE-INJECTED PROMPT (PIP)

Prompt Structure and Function: We adopt the prompt structure from the baseline method that
uses G-prompt and E-prompt as defined in the previous subsection as well as the prompt function as
defined in equation 1, 2 and 3. Our approach also incorporates other prompt functions i.e. prompt
tuning Lester et al. (2021) and other prompt structures i.e. L2P Wang et al. (2022c) and CODA-
PromptSmith et al. (2023).

PIP ideas: Given a baseline framework where on r−th round of t−th task, clients {Sl}Ll=1 conducts
continual learning with T̂ r,t

l ⊂ T r,t
l where |T̂ r,t

l | = η|T r,t
l |, η ∈ (0, 1) is the percentage of available

classes in each client, and |.| represents the number of elements, then the optimized parameters will
be: ϕ̂l, ĝl, êtl = argmin

ĝl,êtl ,k̂
t
l ,ϕ̂

E(x̂,ŷ)∼T̂ r,t
l

[L(fϕ̂l
(f

ĝl,êtl
(x̂), ŷ)) + λLmatch(x̂, k̂tl )] only optimal

for T̂ r,t
l but not T r,t

l . Aggregating the prompts and head doesn’t guarantee the models optimal for
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T r,t
l since in the next round the participating clients and their available data may be different from the

current rounds’ {Sr,t
l }Ll=1 ̸= {S

r+1,t
l }Ll=1, T̂ r+1,t

l ̸= T̂ r,t
l . Furthermore, learning a label space into

multiple steps e.g. rounds leads to catastrophic forgetting. Our first idea is to a shareable prototype
sets (W t, YW t ) and injects into prompt learning process that satisfies T̂ r,t

l ∪ (W t, YW t) ≈ T r,t
l ,

where W t is the prototype feature set, and YW t is the prototype label set. Therefore, the learning
objective of each client satisfies argmin

ĝl,êtl ,k̂
t
l ,ϕ̂

E(x̂,ŷ)∼T̂ r,t
l

[L(fϕ̂l
(f

ĝl,êtl
(x̂) ∪W t, ŷ ∪ YW t)) +

λLmatch(x̂, k̂tl )] ≈ argmin
ĝl,êtl ,k̂

t
l ,ϕ̂

E(x,y)∼T̂ r,t
l

[L(fϕ̂l
(f

ĝl,êtl
(x), y)) + λLmatch(x, k̂tl )]. The pro-

totype sharing ensures each client receives globally available labels gathered from all participating
clients to learn, rather than its locally available labels as W t = W t

1 ∪W t
2 ∪ ...∪W t

l ∪ ...W t
L ⊇W t

l
for l ∈ {1...L}. Our second idea i.e. prototype augmentation handles imbalance class between
locally available classes and unavailable classes that are represented by the shared prototypes. Sup-
pose that xc1 is the sample for class c1 ∈ C1, wt

c2 ∈ W t is the prototype of class c2 ∈ C2, where
C1 and C2 are the available and unavailable classes in client-l, we have |xc1| = Nc1 ≫ 1, while
|wt

c2| = 1. The prototype augmentations create artificial prototypes that satisfy |wt
c2| ≈ |xc1|. Our

third idea i.e. server weighted Gaussian aggregation treats clients’ contribution in global aggre-
gation proportionally based on their participation and the number of training samples. It is based on
the best practice that the model that learns more, has weight more convergence rather than a newly
participating model. We view clients as observers of their local data and the parameters they produce
as Gaussian distributions.

Clients: Similar to the baseline method, given a pre-trained ViT model f , with N MSA layers,
G-prompt gl and E-prompt El = {etl}Tt=1, and head layer fϕ, each client Sl conduct a local CIL
training on r − th round of t − th task with its training samples T r,t

l . The distinction between the
proposed method and the baseline is that the proposed method generates a set of prototypes W t and
utilizes it to optimize gl, etl , and ϕl. Later on, the prototype set is aggregated by the central server
and returned to clients so that the clients receive a more completed and generalized prototype set.

Prototype: We define a set of prototypes on the t− th task on a client Sl as W t
l = {wt

lc}c=b
c=a, w

t
lc ∈

R1×D, and their labels as YW t
l

= {c}c=b
c=a where [a, b] is the available classes in T r,t

l , and
D is the embedding dimension. Assuming that the prototype follows a Gaussian distribution
wt

lc ∼ N (µt
lc, Σ

t
lc) and the prototype is considered as D disjoint uni-variate distribution, then we

have wt
lc ∼ N (µt

lc, σ
t
lc
2
) where σt

lc
2
= ID.σt

lc,i
2
, i ∈ {1, 2..D}. We compute the prototype wt

lc

properties by equations 6 and 7.

µt
lc =

1∑Nl

li=1 1 if(yli = c)

Nl∑
li=1

fgl,etl (xli) if(yli = c) (6)

σt
lc
2
=

1∑Nl

li=1 1 if(yli = c)

Nl∑
li=1

(µt
c − fgl,etl (xli))

2 if(yli = c) (7)

Prototype augmentation: We can simply assign wt
lc by µt

lc to generate a single prototype for class-
c. However, we enrich the prototypes by using an augmentation as defined in equation 8 to generate
m augmented prototypes for class-c based on Gaussian distribution wt

lc ∼ N (µt
lc, σ

t
lc
2
), and β is a

random value in (0, 1) range.

wt
lc = {µt

lc} ∪ {ut
lci}i=m

i=1 , where ut
lci = µt

lc + βσt
lc,m = 1..5 (8)

Objective: We extend the baseline learning mechanism by injecting the set of prototypes W t and
its label set YW t into prompt-generated features fgl,etl (x) before patching into the head layer fϕ.
Therefore, the learning objective of each client is defined as in equation 9. In the first round of
federated learning, each client has a prototype set from its available classes W t = W t

l , but after the
aggregation process, it utilizes the aggregated prototype set W t = W t

G ⊇W t
l ,

min
gl,etl ,k

t
l ,ϕl

L(fϕl
(fgl,etl (x) ∪W t, y ∪ YW t)) + λLmatch(x, k

t
l ), x ∈ Dt (9)

Server weighted aggregation: We define the weight of a client-l on the t-th task as ωl = ρt,lN ,
where ρt is the total of client-l participation until t-th task and N = |T r,t

l | is the number of samples
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that available in the client-l at that time. We design a Gaussian-based weighted aggregation as
defined in equations 10 and 11. The derivation of the proposed weighted aggregation in presented
in Appendix B. The pseudo-code of PIP is presented in Algorithm 2 in Appendix C

(gG, e
t
G, ϕG) =

1∑L
l=1 ωl

L∑
l=1

(glωl, e
t
lωl, ϕlωl) (10)

wt
Gc = N (µt

Gc, σ
t
Gc

2
), where

µt
Gc =

1∑L
l=1 a

t
lcωl

L∑
l=1

atlcµ
t
lcωl

σt
Gc

2
=

1∑L
l=1 a

t
lcωl

L∑
l=1

atlc(µ
t
lc
2
+ σt

lc
2
)ωl − µt

Gc
2

atlc = 1, if(µt
lc exists) else = 0

(11)

5 EXPERIMENT RESULTS AND ANALYSIS

5.1 EXPERIMENTAL SETTING

Datasets: Our experiment is conducted using three main benchmarks in FCIL i.e. split CIFAR100,
split MiniImageNet, and split TinyImageNet. The CIFAR100 and miniImageNet datasets each con-
tain 100 classes while TinyImagenet is a dtaset with 200 classes. We follow settings from Dong et al.
(2022) and Dong et al. (2023) where the dataset is split equally into all tasks. In our main numerical
result, The dataset is split into 10 tasks i.e. 10 classes per task for CIFAR100 and MiniImageNet,
and 20 classes per task for the TinyImageNet dataset. In our further analysis, we investigate the
performance of the proposed methods in different task sizes e.g. T=5 and T=20.

Benchmark Algorithms: PIP is compared with 10 state-of-the-art algorithms: LGA Dong et al.
(2023), GLFCDong et al. (2022), AFCKang et al. (2022)+FL, DyToxDouillard et al. (2022)+FL,
SS-ILAhn et al. (2021)+FL, GeoDLSimon et al. (2021)+iCaRLRebuffi et al. (2017)+FL, DDEHu
et al. (2021)+iCaRLRebuffi et al. (2017)+FL, PODNetDouillard et al. (2020)+FL, BiCWu et al.
(2019)+FL, iCaRLRebuffi et al. (2017)+FL, and the proposed baseline model (Fed-DualPrompt)

Experimental Details: Our numerical study is executed under a single NVIDIA A100 GPU with 40
GB memory across 3 runs with different random seeds {2021,2022,2023}. PIP and Fed-DualPrompt
use pre-trained ViT as the backbone network, while the competitors use LeNet LeCun et al. (2015)
as the feature extractor. Following Dong et al. (2023) and Dong et al. (2022), each experiment is
simulated by 30 total clients and 1 global server, where in each round, 10 (33.33%) local clients are
selected randomly. Each client randomly receives 60% (η = 0.6) class label space. The total global
round is set to 100, the local clients’ epoch is set to 2, and the learning rate is set by choosing the
best value from {0.02,0.002}.

5.2 NUMERICAL RESULTS

The numerical result of the consolidated algorithms is summarized in table 1. The complete nu-
merical result is shown in tables 4, 5, and 6 in Appendix D. The baseline method already achieves
higher average accuracy (Avg) than the SOTA methods with 1 − 13% improvement in accuracy.
The baseline also experiences a lower performance drop (PD) (19 − 27%) compared to the SOTA
methods (≥ 26%) except in the CIFAR100 dataset vs. LGA. The proposed method (PIP) achieves
the highest accuracy with ≥ 10% gap compared to the baseline method, and ≥ 14% gap compared
to the competitor methods. The proposed method also achieves the lowest performance drop with
(10 − 13%) gap compared to the baseline and ≥ 12% gap compared to the competitor methods.
The table shows that PIP achieves a higher gap in TinyImageNet which is a relatively more complex
problem than in MiniImageNet and CIFAR100.

Looking at per-task performance, tables 4, 5, and 6 show that PIP achieves the highest accuracy in
all tasks in those three datasets. In the first task, the proposed method achieves higher performance
with a small gap 1−4% gap compared to the baseline method. However, with the increasing number
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of tasks, the gap gets higher e.g. 5− 12% in task-2, 5− 20% in task-3, and 6− 20% in task-10 (last
task). It shows that the proposed method handles catastrophic forgetting better than the baseline
method.

CIFAR100 MiniImageNet TinyImageNet
Method Avg PD Imp Avg PD Imp Avg PD Imp
iCaRL+FL 51.79 52.30 36.21 46.46 41.30 44.56 40.14 35.00 46.12
BiC+FL 55.01 48.00 32.99 49.03 40.30 41.99 42.13 36.30 44.13
PODNet+FL 59.66 44.00 28.34 52.56 36.00 38.46 44.60 35.40 41.66
DDE+iCaRL+FL 58.79 43.70 29.21 52.30 37.00 38.72 44.46 37.70 41.80
GeoDL+iCaRL+FL 61.52 40.70 26.48 49.90 37.00 41.12 44.63 36.30 41.63
SS-IL+FL 54.90 44.30 33.10 46.43 32.40 44.59 37.90 35.00 48.36
DyTox+FL 65.35 34.10 22.65 50.30 41.00 40.72 45.43 42.60 40.83
AFC+FL 58.18 42.00 29.82 53.42 46.40 37.60 41.95 46.60 44.31
GLFC 66.92 40.00 21.08 56.99 30.30 34.03 47.89 31.00 38.37
LGA 73.45 26.70 14.55 67.51 25.50 23.51 53.18 33.00 33.08
Fed-DualPrompt 74.23 27.06 13.77 80.14 19.07 10.88 66.39 24.98 19.87
PIP(Ours) 88.00 14.39 - 91.02 9.23 - 86.26 11.36 -

Table 1: Summarized numerical results on CIFAR100, MniImageNet, and TinyImageNet (T=10),
”Avg” denotes the average accuracy of all tasks, ”PD” denotes performance drop, and ”Imp” denotes
improvement/gap of PIP compared to the respective method

5.3 ABLATION STUDY

We conducted an ablation study to investigate the contribution of each component of the proposed
method. The result is summarized in Table 2, while the detailed result is presented in Appendix F.
The result shows that the prototype and augmentation contribute the most to the improvement of the
performance as shown by the performance difference of configurations E vs. F (12%), and G vs.
H (16%). The weighted aggregation improves performance up to 1% as shown by the performance
difference of PIP and configuration F. The head layer aggregation also plays an important role in the
proposed method as shown that the absence of this component decreases performance with ≥ 6%
margin. The absence of two components e.g. prototype and head aggregation (configuration C)
or prototype and weighted aggregation (configuration E) impact significantly the performance with
22% and 13% accuracy drop respectively. The absence of three components i.e. prototype, weighted
aggregation, and head aggregation (configuration A) cost a 23% performance drop in the method.

Config. Prompt Proto+Aug W.Agg Head T1 (C=10) T10 (C=100) Avg PD Imp
A ✓ 82.15 60.66 65.69 21.49 22.59
B ✓ ✓ 90.99 77.56 81.59 13.43 6.69
C ✓ ✓ 82.13 61.35 66.10 20.78 22.18
D ✓ ✓ ✓ 91.37 78.47 82.41 12.90 5.87
E ✓ ✓ 96.60 70.68 75.38 25.92 12.90
F ✓ ✓ ✓ 98.90 84.17 87.82 14.73 0.46
G ✓ ✓ ✓ 98.60 69.94 72.57 28.66 15.71

PIP ✓ ✓ ✓ ✓ 98.60 84.60 88.28 14.00 -

Table 2: Ablation study on CIFAR100 dataset in one-seeded run i.e. 2021. ”Avg” denotes the
average accuracy of all tasks, ”PD” denotes performance drop, and ”Imp” denotes improvement/gap
of PIP compared to the respective configuration

5.4 FURTHER ANALAYIS

a) Different task size: We evaluate the performance of the proposed method compared to the com-
petitor methods in different task size i.e. T=5 and T=20 to further investigate the robustness of the
proposed method. Figure 2 summarizes the performance of the consolidated methods in CIFAR100,
MiniImageNet, and TinyImageNet with T=5 (upper figures) and T=20 (bottom figures). Both in
T=5 and T=20 settings, PIP achieves the highest performance in every task. Besides, all figures
show that the proposed method has gentle slopes compared to the baseline and competitor methods.
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It shows that the proposed method experiences the lowest performance drop from tth to t + 1th
task. It confirmed the robustness of the proposed method in different task-size settings. The baseline
(Fed-DualPrompt) method achieves better accuracy than the competitor methods in all 6 settings,
except in CIFAR100 with the T=5 setting. In CIFAR100 with the T=5 setting, the baseline method
achieves higher performance in task-1 and task-5, but lower performance in task-3, and compara-
ble performance in task-2 and task-4. It shows the promising idea of the federated prompt-based
approach for the FCIL problem.

Figure 2: Performance of the consolidated methods in CIFAR100, MiniImageNet and TinyImageNet
with T=5 and T=20

b) Small local clients: We evaluate the performance of the proposed method in smaller selected lo-
cal clients to advance our investigation of the robustness of the proposed method on smaller selected
local clients. This simulates cross-device federated learning where in a round only a small portion
of registered clients participate in the federated learning process. In our experiment with 30 total
clients, we investigate the performance of the consolidated methods with 3 (10%) and 2 (6.67%)
selected clients compared with the default setting with 10 clients (33.33%). Figure 3 shows the per-
formance of the consolidated methods in smaller local clients scenarios, while the complete result
is presented in Appendix H. The figure shows that the proposed method experiences the lowest per-
formance degradation in a smaller number of local clients. The figures show that both in CIFAR100
and TinyImageNet datasets, the proposed method still achieves higher accuracy than the baseline
and the competitor methods with 10 participating local clients.

c) Small global rounds: We continue the previous experiment in smaller selected local clients into
smaller local clients with smaller global rounds to study the robustness of the proposed method on
a more extreme condition. This scenario simulates a condition where the model is urgently needed
by the clients. In our experiment, we use 30 total clients and 3 (10%) local clients. Figure 4
summarizes our investigation on the performance of the proposed methods with 20 to 100 (default)
global rounds in CIFAR100 and TinyImageNet datasets, while the complete result is presented in
Appendix I. The figure shows a common trend that the performance of the method is decreasing
with the decreasing of global rounds. However, our proposed method (PIP) experiences a relatively
small amount of performance drop with the decreasing global rounds. Meanwhile, the baseline
method experiences a significant drop in the CIFAR100 dataset when the number of global rounds
is reduced to 20. Besides, It may experience over-fitting when the number of global rounds is too
high as shown by the result on the TinyImageNet dataset. Compared to the current SOTA (GLFC
and LGA) methods with the default number of global round (100), our proposed method (PIP) still
achieve higher performance, even though the number of global rounds is reduced to 20 (20% default
setting).

8
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Figure 3: Performance of the consolidated methods in CIFAR100 and TinyImageNet with smaller
local clients

Figure 4: Performance of the consolidated methods in CIFAR100 and TinyImageNet with smaller
local clients and smaller rounds

5.5 COMPLEXITY AND RUNNING TIME ANALYSIS

We evaluate the complexity of the proposed method as well as the complexity of the baseline method.
Our complexity analysis shows that both the baseline method and our proposed method has the same
complexity i.e. O(R.L.N) where R is the number of global round, L is the number of participat-
ing local clients in each round, and N is the size of the training data in each client. The detailed
complexity analysis is provided in Appendix E. Table 5.5 summarizes the training time of the con-
solidated method in three datasets with T=10. The table shows that the proposed method requires
lower training time than the current SOTA methods in all datasets. The training time is higher than
the baseline training time because in our proposed method there are additional processes that do not
exist in the baseline i.e. prototype generation, augmentation, injection (concatenation with prompt
features), aggregation, and feedback.

Method CIFAR100 MiniImageNet TinyImagenet
GLFC 24.3h 36.6h 46.4h
LGA 23.2h 35.7h 45.9h
Fed-DualPrompt 11.3h 11.1h 19.5h
PIP(Ours) 13.0h 14.5h 25.5h

Table 3: Training time of the consolidated algorithm in CIFARR100, MiniImagenet and TinyIma-
geNet

6 CONCLUDING REMARKS

In this paper, we propose a new approach named prompt-based federated learning, a new baseline
named Fed-DualPrompt, and a novel method named prototype-injected prompt (PIP) for the FCIL
problem. PIP consists of three main ideas: a) prototype injection on prompt, b) prototype augmen-
tation, and c) weighted Gaussian aggregation on the server side. Our experimental result shows that
the proposed method outperforms the current SOTAs with a significant gap (14−33%) in CIFAR100,
MiniImageNet, and TinyImageNet datasets. Our extensive analysis demonstrates the robustness of
our proposed method in different task sizes, smaller participating local clients, and smaller global
rounds. Our proposed method has the same complexity as the baseline method and experimentally
requires shorter training time than the current SOTAs. In practice, our proposed method can be
applied in both cross-silo and cross-domain federated class incremental learning.
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A BASELINE ALGORITHM

Here we present the detailed algorithm of the proposed baseline in Algorithm 1.

Algorithm 1 Fed-DualPrompt
1: Input: Number of clients N , number of selected local clients L, total number of rounds R,

number of task T , local epochs E, batch size B.
2: Distribute frozen ViT backbone f to all clients {Sl}Nl=1 and central server SG

3: Initiate G-prompt, E-prompt, and head layer for all clients and central server gG = gl, EG =
{etG}t=T

t=1 = El = {etl}t=T
t=1 , ϕG = ϕl, l ∈ {1..L}

4: RT ← R/T , RT represents round per task
5: for t = 1 : T do
6: for r = 1 : RT do
7: Sl ← randomly select L local clients from N total clients
8: Clients execute:
9: Receive global parameters i.e. prompt, key, and head layer gG, etG, and ϕG

10: Assign local parameters (gl, etl , ϕl)← (gG, e
t
G, ϕG)

11: B ← Split T r,t
l = T t

l into B sized batches
12: for e = 1 : E do
13: for b = 1 : B do
14: Compute prompt-generated feature fgl,etl (x) as in Eq.1 to 3
15: Compute logits fϕl

(fgl,etl (x))
16: Compute loss Ltotal = L+ Lmatch as in Eq.4
17: Update local parameters (gl, etl , ϕl) based on Ltotal

18: end for
19: end for
20: Store local parameters (gl, etl , ϕl)
21: Send local parameters (gl, etl , ϕl) to server
22: Server executes:
23: Receives selected local clients Sl parameters (gl, etl , ϕl)
24: Aggregates clients’ parameters into global parameters (gG, etG, ϕG)← (gl, e

t
l , ϕl) Eq5

25: Send global parameters (gG, etG, ϕG) to clients for the next round
26: end for
27: end for
28: Output: Global parameters (gG, etG, ϕG) and local parameters (gl, etl , ϕl), l ∈ 1..N

B DERIVATION OF WEIGHTED AGGREGATION

Suppose that we have n samples of an observation xi with the weight of wi. The we mean and
variance as:

µ =
1∑n

i=1 wi

n∑
i=1

(xi.wi) (12)

σ2 =
1∑n

i=1 wi

n∑
i=1

wi(xi − µ)
2 ≈ 1∑n

i=1 wi

n∑
i=1

(wixi
2 − wiµ

2) (13)

Or we have
n∑

i=1

wiσ
2 =

n∑
i=1

(wixi
2 − wiµ

2) =

n∑
i=1

wixi
2 −

n∑
i=1

wiµ
2 (14)

that equal
n∑

i=1

wiσ
2 +

n∑
i=1

wiµ
2 =

n∑
i=1

wixi
2 (15)

If we have another m observation, then we have
n+m∑
i=1

wiσ
2 +

n+m∑
i=1

wiµ
2 =

n+m∑
i=1

wixi
2 (16)
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n+m∑
i=1

wiσ
2 +

n+m∑
i=1

wiµ
2 =

n∑
i=1

wixi
2 +

n+m∑
i=n+1

wixi
2 (17)

n+m∑
i=1

wiσ
2 +

n+m∑
i=1

wiµ
2 = (

n∑
i=1

wiσ1:n
2 +

n∑
i=1

wiµ1:n
2) + (

n+m∑
i=n+1

wiσn+1:m
2 +

n+m∑
i=n+1

wiµn+1:m
2)

(18)
n+m∑
i=1

wiσ
2 +

n+m∑
i=1

wiµ
2 =

n∑
i=1

wi(σ
2
1:n + µ1:n

2) +

n+m∑
i=n+1

wi(σ
2
n+1:m + µn+1:m

2) (19)

Therefore:

σ2 =

∑n
i=1 wi(σ

2
1:n + µ1:n

2) +
∑n+m

i=n+1 wi(σ
2
n+1:m + µn+1:m

2)−
∑n+m

i=1 wiµ
2∑n+m

i=1 wi

(20)

σ2 =

∑n
i=1 wi(σ

2
1:n + µ1:n

2) +
∑n+m

i=n+1 wi(σ
2
n+1:m + µn+1:m

2)∑n+m
i=1 wi

− µ2 (21)

The derivation above shows that if we have two weighted Gaussian distributions e.g. X1 ∼
N (µ1, σ1

2) and X2 ∼ N (µ2, σ
2
2) with total weight W1 and W2 respectively, then the aggregated

distribution will be:

µ∗ = (µ1.W1 + µ2.W2)

W1 +W2
(22)

σ∗2 =
((µ1

2 + σ1
2).W1 + (µ2

2 + σ2
2).W2)

W1 +W2
− µ∗2 (23)

Generalizing equations above into N observations i.e. X1 ∼ N (µ1, σ1
2), X2 ∼ N (µ2, σ2

2), ...
XN ∼ N (µN , σN

2) with total weight W1, W2, ... WN respectively. then the aggregated distribution
will be: s

µ∗ =
∑N

i=1(µi.Wi)∑N
i=1 Wi

(24)

σ∗2 =

∑N
i=1(µi

2 + σi
2).Wi∑N

i=1 Wi

− µ∗2 (25)

C PIP ALGORITHM

Here we present the detailed algorithm of our proposed method in Algorithm 2.

D COMPLETE NUMERICAL RESULT ON 3 BENCHMARK DATASETS (T=10)

E COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the baseline and the proposed method. Suppose that
Nl is the total samples of a dataset of a client across all tasks, t ∈ {1, ..., T} is task index, N t

l =

|T r,t
l | = |T t

l | is the number of samples on task tin client-l that satisfy
∑T

t=1N
t
l = Nl, R is the

total rounds of federated learning, E is the number of local epoch for each client training. β is
the number of batches on each task that satisfy

∑β
b=1 N

t
bl = N t

l . We simplify the derivation by
analyzing the complexity in a common case that the tasks are divided evenly, therefore we have
|T 1

l | = |T 2
l |... = |T t

l |... = |T T
l |, that equal Nl = T.N t

l = T.|T t
l |. Let O(.) denote the complexity

of a process.

Baseline Complexity:Following the pseudo-code in Algorithm 1 then we have

O(Baseline) = O(1) + T.RT .(O(clients) +O(server)) (26)
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Algorithm 2 Algorithm 2: PIP
1: Input: Number of clients N , number of selected local clients L, total number of rounds R,

number of task T , local epochs E, batch size B.
2: Distribute frozen ViT backbone f to all clients {Sl}Nl=1 and central server SG

3: Initiate G-prompt, E-prompt, key, and head layer for all clients and central server gG = gl,
EG = {etG}t=T

t=1 = El = {etl}t=T
t=1 , ϕG = ϕl, l ∈ {1..L}

4: RT ← R/T , RT represents round per task
5: for t = 1 : T do
6: Init global and local prototypes W t

G = W t
l ,= W t = ∅

7: for r = 1 : RT do
8: Sl ← randomly select L local clients from N total clients
9: Clients execute:

10: Receive global parameters i.e. prompt, prototypes, and head layer gG, etG, W
t
G, and ϕG

11: Assign local parameters (gl, etl , ϕl, W
t
l )← (gG, e

t
G, ϕG, W

t
G)

12: B ← Split T r,t
l = T t

l into B sized batches
13: for e = 1 : E do
14: for b = 1 : B do
15: Compute prompt-generated feature fgl,etl (x) as in Eq.1 to 3
16: Compute logits with prototypes fϕl

(fgl,etl (x) ∪W t)
17: Compute loss Ltotal = L+ Lmatch as in Eq.9
18: Update local parameters (gl, etl , ϕl) based on Ltotal

19: end for
20: if W t

l = ∅ then
21: Compute prototype µt

lc, σ
t
lc
2 for class-c available in T r,t

l Eq.6 and 7
22: end if
23: Augment the prototypes Eq. 8
24: Unify mean and augmented prototype into W t

l
25: end for
26: Compute prototype µt

lc, σ
t
lc
2 for class-c available in T r,t

l Eq.6 and 7
27: Set W t

l = {(µt
lc, σ

t
lc
2
)}, for class-c available in T r,t

l
28: Store local parameters (gl, etl , ϕl, W

t
l )

29: Compute clients’ weight ωt
l

30: Send local parameters (gl, etl , ϕl, W
t
l ) and weight ωt

l to server
31: Server executes:
32: Receives selected local clients Sl parameters (gl, etl , ϕl, W

t
l )

33: Aggregates (using weighted aggregation) clients’ prompt, and head layer into global
parameters and weight ωt

l (gG, e
t
G, ϕG)← (gl, e

t
l , ϕl) as in Eq10

34: Aggregates (using weighted aggregation) clients’ prototypes into global prototypes
W t

G ←W t
l as in Eq11

35: Send global parameters (gG, etG, ϕG) to clients for the next round
36: end for
37: end for
38: Output: Global parameters (gG, etG, ϕG) and local parameters (gl, etl , ϕl), l ∈ 1..N
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Method 10 20 30 40 50 60 70 80 90 100 Avg PD Imp
iCaRL+FL 89.00 55.00 57.00 52.30 50.30 49.30 46.30 41.70 40.30 36.70 51.79 52.30 36.21
BiC+FL 88.70 63.30 61.30 56.70 53.00 51.70 48.00 44.00 42.70 40.70 55.01 48.00 32.99
PODNet+FL 89.00 71.30 69.00 63.30 59.00 55.30 50.70 48.70 45.30 45.00 59.66 44.00 28.34
DDE+iCaRL+FL 88.00 70.00 67.30 62.00 57.30 54.70 50.30 48.30 45.70 44.30 58.79 43.70 29.21
GeoDL+iCaRL+FL 87.00 76.00 70.30 64.30 60.70 57.30 54.70 50.30 48.30 46.30 61.52 40.70 26.48
SS-IL+FL 88.30 66.30 54.00 54.00 44.70 54.70 50.00 47.70 45.30 44.00 54.90 44.30 33.10
DyTox+FL 86.20 76.90 73.30 69.50 62.10 62.70 58.10 57.20 55.40 52.10 65.35 34.10 22.65
AFC+FL 85.60 73.00 65.10 62.40 54.00 53.10 51.90 47.00 46.10 43.60 58.18 42.00 29.82
GLFC 90.00 82.30 77.00 72.30 65.00 66.30 59.70 56.30 50.30 50.00 66.92 40.00 21.08
LGA 89.60 83.20 79.30 76.10 72.90 71.70 68.40 65.70 64.70 62.90 73.45 26.70 14.55
Fed-DualPrompt 96.80 81.55 75.72 72.56 69.54 67.34 69.93 69.18 69.90 69.74 74.23 27.06 13.77
PIP(Ours) 98.70 92.85 89.42 87.58 87.01 85.32 85.19 84.79 84.84 84.31 88.00 14.39 -

Table 4: Complete numerical result of consolidated methods on CIFAR-100 Dataset. ”Avg” denotes
the average accuracy of all tasks, ”PD” denotes performance drop, and ”Imp” denotes improve-
ment/gap of PIP compared to the respective method

Method 10 20 30 40 50 60 70 80 90 100 Avg PD Imp
iCaRL+FL 74.00 62.30 56.30 47.70 46.00 40.30 37.70 34.30 33.30 32.70 46.46 41.30 44.56
BiC+FL 74.30 63.00 57.70 51.30 48.30 46.00 42.70 37.70 35.30 34.00 49.03 40.30 41.99
PODNet+FL 74.30 64.00 59.00 56.70 52.70 50.30 47.00 43.30 40.00 38.30 52.56 36.00 38.46
DDE+iCaRL+FL 76.00 57.70 58.00 56.30 53.30 50.70 47.30 44.00 40.70 39.00 52.30 37.00 38.72
GeoDL+iCaRL+FL 74.00 63.30 54.70 53.30 50.70 46.70 41.30 39.70 38.30 37.00 49.90 37.00 41.12
SS-IL+FL 69.70 60.00 50.30 45.70 41.70 44.30 39.00 38.30 38.00 37.30 46.43 32.40 44.59
DyTox+FL 76.30 68.30 64.80 58.60 45.40 41.30 39.70 37.10 36.20 35.30 50.30 41.00 40.72
AFC+FL 82.50 74.10 66.80 60.00 48.00 44.30 42.50 40.90 39.00 36.10 53.42 46.40 37.60
GLFC 73.00 69.30 68.00 61.00 58.30 54.00 51.30 48.00 44.30 42.70 56.99 30.30 34.03
LGA 83.00 74.20 72.30 72.20 68.10 65.80 64.00 59.60 58.40 57.50 67.51 25.50 23.51
Fed-DualPrompt 97.57 83.55 82.52 79.22 76.64 76.19 75.82 75.85 75.56 78.50 80.14 19.07 10.88
PIP(Ours) 98.43 90.92 90.42 90.68 90.17 90.68 90.26 90.44 88.94 89.21 91.02 9.23 -

Table 5: Complete numerical result of consolidated methods on MiniImageNet Dataset. ”Avg”
denotes the average accuracy of all tasks, ”PD” denotes performance drop, and ”Imp” denotes im-
provement/gap of PIP compared to the respective method

Method 20 40 60 80 100 120 140 160 180 200 Avg PD Imp
iCaRL+FL 63.00 53.00 48.00 41.70 38.00 36.00 33.30 30.70 29.70 28.00 40.14 35.00 46.12
BiC+FL 65.30 52.70 49.30 46.00 40.30 38.30 35.70 33.00 31.70 29.00 42.13 36.30 44.13
PODNet+FL 66.70 53.30 50.00 47.30 43.70 42.70 40.00 37.30 33.70 31.30 44.60 35.40 41.66
DDE+iCaRL+FL 69.00 52.00 50.70 47.00 43.30 42.00 39.30 37.00 33.00 31.30 44.46 37.70 41.80
GeoDL+iCaRL+FL 66.30 54.30 52.00 48.70 45.00 42.00 39.30 36.00 32.70 30.00 44.63 36.30 41.63
SS-IL+FL 62.00 48.70 40.00 38.00 37.00 35.00 32.30 30.30 28.70 27.00 37.90 35.00 48.36
DyTox+FL 73.20 66.60 48.00 47.10 41.60 40.80 37.40 36.20 32.80 30.60 45.43 42.60 40.83
AFC+FL 73.70 59.10 50.80 43.10 37.00 35.20 32.60 32.00 28.90 27.10 41.95 46.60 44.31
GLFC 66.00 58.30 55.30 51.00 47.70 45.30 43.00 40.00 37.30 35.00 47.89 31.00 38.37
LGA 70.30 64.00 60.30 58.00 55.80 53.10 47.90 45.30 39.80 37.30 53.18 33.00 33.08
Fed-DualPrompt 86.27 74.55 71.16 65.88 63.33 62.03 61.34 59.88 58.20 61.29 66.39 24.98 19.87
PIP(Ours) 92.77 86.35 86.62 87.53 86.73 87.02 85.29 84.92 83.95 81.40 86.26 11.36 -

Table 6: Complete numerical result of consolidated methods on TinyImageNet Dataset. ”Avg”
denotes the average accuracy of all tasks, ”PD” denotes performance drop, and ”Imp” denotes im-
provement/gap of PIP compared to the respective method
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O(Baseline) = O(1) + T.RT .(L.O(1client) +O(server)) (27)
O(Baseline) = O(1) + T.RT .(L.O(1client) +O(1)) (28)

O(Baseline) = O(1) + T.RT .L.O(E.

β∑
b=1

N t
bl +O(1)) +O(T.RT .) (29)

O(Baseline) = O(1) +O(T.RT .L.E.

β∑
b=1

N t
bl) +O(T.RT .L.) +O(T.RT ) (30)

O(Baseline) = O(T.RT .L.E.

β∑
b=1

N t
bl) +O(T.RT .L.) +O(T.RT ) (31)

From the definition above that
∑β

b=1 N
t
bl = N t

l , RT = R/T , Nl = T.N t
l = T , and L ≥ 1 therefore

the complexity of the baseline will be

O(Baseline) = O(T.R/T.L.E.N t
l ) +O(T.R/T.L.) +O(T.R/T ) (32)

O(Baseline) = O(R.L.E.N t
l ) +O(R.L) +O(R) (33)

O(Baseline) = O(R.L.E.N t
l ) (34)

Since N t
l < Nl and E is set as a small constant in our method i.e. 2, then the baseline complexity

will be:
O(Baseline) = O(R.L.Nl) (35)

PIP Complexity:Following the pseudo-code in Algorithm 2, PIP generates prototypes when its
prototype set is empty after a local epoch of a round-r (line 21), augment the prototypes in each
local epoch (23), and updates the prototypes after local epochs (line 26-27). Knowing that generating
prototypes from T r,t

l costs O(N t
l ), augmenting the prototypes costs O(1) since it runs m ∈ {1..5}

times, then the PIP complexity will be:

O(PIP ) = O(1) + T.RT .(O(clients) +O(server)) (36)
O(PIP ) = O(1) + T.RT .(L.O(1client) +O(server)) (37)

O(PIP ) = O(1) + T.RT .(L.O(1client) +O(1)) (38)

O(PIP ) = O(1) + T.RT .L.O(E.(

β∑
b=1

N t
bl +N t

l ) +O(N t
l ) +O(1)) +O(T.RT ) (39)

Since we have
∑β

b=1 N
t
bl = N t

l , then we have

O(PIP ) = O(1) + T.RT .L.O(E.(N t
l +N t

l ) +O(N t
l ) +O(1)) +O(T.RT ) (40)

O(PIP ) = O(1) + T.RT .L.O(E.(N t
l ) +O(N t

l ) +O(1)) +O(T.RT ) (41)
O(PIP ) = O(1) +O(T.RT .L.E.N t

l ) +O(T.RT .L.N
t
l ) +O(T.RT .L) +O(T.RT ) (42)

O(PIP ) = O(T.RT .L.E.N t
l ) +O(T.RT .L.N

t
l ) +O(T.RT .L) +O(T.RT ) (43)

Substituting the equalities in the previous definition that RT = R/T and Nl = T.N t
l = T the

complexity of PIP will be

O(PIP ) = O(T.R/T.L.E.N t
l ) +O(T.R/T.L.N t

l ) +O(T.R/T.L) +O(T.R/T ) (44)

O(PIP ) = O(R.L.E.N t
l ) +O(R.L.N t

l ) +O(R.L) +O(R) (45)
O(Baseline) = O(R.L.E.N t

l ) (46)
Since N t

l < Nl and E is set as a small constant in our method i.e. 2, then the PIP complexity will
be:

O(Baseline) = O(R.L.Nl) (47)

Our derivation shows that the baseline and our proposed method (PIP) have the same complexity i.e.
O(R.L.Nl) where R is total global rounds, L is the number of selected local clients in each round
and Nl is the number of samples in each client.
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Config. Prompt Proto W.Agg Head 10 20 30 40 50 Avg PD Imp
A v 82.15 69.97 67.06 64.52 63.78 - - -
B v v 90.99 85.46 83.65 81.99 80.90 - - -
C v v 82.13 69.85 67.18 65.15 64.11 - - -
D v v v 91.37 86.46 84.37 82.79 81.87 - - -
E v v 96.60 83.20 77.10 74.08 70.86 - - -
F v v v 98.90 91.80 88.80 87.25 86.78 - - -
G v v v 98.60 71.80 68.73 67.68 68.44 - - -

PIP v v v v 98.60 92.90 89.57 87.78 87.14 - - -
Config. Prompt Proto W.Agg Head 60 70 80 90 100 Avg PD Imp

A v 62.99 62.72 61.90 61.12 60.66 65.69 21.49 22.59
B v v 79.07 78.63 78.99 78.69 77.56 81.59 13.43 6.69
C v v 63.50 62.84 62.78 62.16 61.35 66.10 20.78 22.18
D v v v 79.72 79.78 79.74 79.54 78.47 82.41 12.90 5.87
E v v 68.73 71.83 70.00 70.71 70.68 75.38 25.92 12.90
F v v v 85.52 85.29 84.83 84.86 84.17 87.82 14.73 0.46
G v v v 69.48 70.31 70.98 69.77 69.94 72.57 28.66 15.71

PIP v v v v 85.93 85.60 85.45 85.22 84.60 88.28 14.00 -

Table 7: Complete numerical result of ablation study on CIFAR100 dataset (T=10) on one seeded
run i.e. 2021. ”Avg” denotes the average accuracy of all tasks, ”PD” denotes performance drop, and
”Imp” denotes improvement/gap of PIP compared to the respective configuration

F COMPLETE NUMERICAL RESULT OF ABLATION STUDY

G COMPLETE NUMERICAL RESULT OF EXPERIMENT ON 3 BENCHMARK
DATASETS T=5 AND T=20

In this section, we present the detailed numerical results on different task sizes (T=5) and (T=20) on
CIFAR100, MiniImageNet, and TinyImageNet datasets.

CIFAR100 (T=5) MiniImageNet (T=5)
Method 20 40 60 80 100 Avg. 20 40 60 80 100 Avg.
iCaRL+FL 77.00 59.60 51.90 44.40 39.60 54.50 73.50 56.20 46.20 40.20 35.50 50.32
BiC+FL 78.40 60.40 53.20 47.50 41.20 56.14 72.60 56.80 49.20 43.50 38.70 52.16
PODNet+FL 77.60 62.10 56.30 50.80 43.30 58.02 73.10 58.40 53.20 46.50 43.40 54.92
DDE+iCaRL+FL 77.00 60.20 55.70 49.30 42.50 56.94 72.30 57.20 51.70 44.30 41.30 53.36
GeoDL+iCaRL+FL 72.50 61.10 54.00 49.50 44.50 56.32 71.80 59.60 52.30 46.10 42.50 54.46
SS-IL+FL 78.10 61.80 52.80 48.80 46.00 57.50 66.50 52.10 42.60 36.70 36.50 46.88
DyTox+FL 78.80 70.50 63.90 59.90 55.90 65.80 69.60 64.20 59.10 53.40 48.50 58.96
AFC+FL 71.10 63.80 58.40 53.60 46.40 58.66 78.00 64.50 57.00 51.30 47.30 59.62
GLFC 83.70 75.50 66.50 62.10 53.80 68.32 79.70 73.40 65.20 58.10 51.80 65.64
LGA 83.30 77.30 72.80 67.80 63.70 72.98 78.90 75.50 68.10 62.10 61.90 69.30
Fed-DualPrompt 93.15 76.88 67.55 66.56 66.06 74.04 94.35 81.13 74.67 73.51 76.67 80.06
PIP(Ours) 96.75 86.35 83.57 80.68 79.71 85.41 95.30 89.68 88.52 88.44 87.32 89.85

Table 8: Complete numerical results on CIFAR100 and MniImageNet dataset (T=5) in one-seeded
run i.e. 2021

H COMPLETE NUMERICAL RESULT OF EXPERIMENT ON SMALLER LOCAL
CLIENTS

In this section, we present the detailed numerical results of smaller local clients on CIFAR100, and
TinyImageNet datasets.
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Method 40 80 120 160 200 Avg.
iCaRL+FL 65.00 48.00 42.70 38.70 35.00 45.88
BiC+FL 65.70 48.70 43.00 40.30 35.70 46.68
PODNet+FL 66.00 50.30 44.70 41.30 37.00 47.86
DDE+iCaRL+FL 63.00 51.30 45.30 41.00 36.00 47.32
GeoDL+iCaRL+FL 65.30 50.00 45.00 40.70 36.00 47.4
SS-IL+FL 65.00 42.30 38.30 35.00 30.30 42.18
DyTox+FL 58.60 43.10 41.60 37.20 32.90 42.68
AFC+FL 62.50 52.10 45.70 43.20 35.70 47.84
GLFC 66.00 55.30 49.00 45.00 40.30 51.12
LGA 67.70 59.80 53.50 47.90 43.80 54.54
Fed-DualPrompt 85.10 67.23 60.25 55.99 58.59 65.43
PIP(Ours) 91.20 84.95 83.80 81.86 79.16 84.19

Table 9: Complete numerical results on TinyImageNet dataset (T=5) in one seeded run i.e. 2021

Method 5 10 15 20 25 30 35 40 45 50 Avg
iCaRL+FL 82.00 80.00 67.00 62.00 61.30 60.30 57.00 54.30 53.00 51.70 -
BiC+FL 82.00 77.30 68.30 64.00 63.70 62.30 60.30 58.70 55.00 53.30 -
PODNet+FL 83.00 76.30 70.30 68.00 66.30 67.00 65.30 61.70 61.30 58.70 -
DDE+iCaRL+FL 83.00 75.30 69.70 65.00 67.00 63.70 59.30 58.00 60.00 55.30 -
GeoDL+iCaRL+FL 82.00 78.30 71.30 67.70 68.00 65.30 64.30 60.00 58.70 56.00 -
SS-IL+FL 83.00 73.30 63.70 61.30 60.30 59.30 57.30 56.00 54.70 53.30 -
DyTox+FL 79.60 78.30 67.10 65.60 68.50 64.30 63.70 61.00 58.80 59.00 -
AFC+FL 75.60 69.60 57.10 58.50 45.50 55.40 51.40 50.40 45.20 42.40 -
GLFC 82.20 82.50 74.90 75.20 73.30 71.50 70.10 67.70 64.60 65.90 -
LGA 85.80 85.90 80.70 78.90 78.40 74.60 75.10 71.30 68.90 69.20 -
Fed-DualPrompt 94.80 91.40 85.13 85.00 84.20 80.17 79.14 76.75 76.60 75.46 -
PIP(Ours) 98.40 96.70 92.67 91.65 90.88 88.47 88.37 86.87 87.00 86.30 -
Method 55 60 65 70 75 80 85 90 95 100 Avg
iCaRL+FL 50.30 50.00 48.70 48.00 46.70 45.00 45.00 44.00 43.30 42.70 46.37
BiC+FL 52.00 51.30 50.30 49.70 48.00 47.00 46.30 45.70 45.30 44.30 63.23
PODNet+FL 56.30 55.00 54.00 53.00 51.00 50.30 49.30 48.00 48.30 47.70 44.82
DDE+iCaRL+FL 54.70 54.00 53.30 52.00 50.70 50.00 49.30 48.70 48.00 47.30 45.39
GeoDL+iCaRL+FL 55.30 55.00 53.70 53.00 51.70 50.70 50.00 49.00 49.30 48.00 47.67
SS-IL+FL 52.30 52.00 51.30 50.70 50.00 49.30 49.00 48.30 48.00 47.70 46.88
DyTox+FL 56.20 58.50 58.30 58.20 55.00 51.80 49.70 48.70 49.00 52.70 49.00
AFC+FL 41.30 35.60 37.10 37.80 38.90 35.20 34.40 34.50 36.20 33.80 38.34
GLFC 63.70 64.20 62.00 61.00 60.20 58.90 57.60 59.30 56.80 56.80 46.29
LGA 68.30 67.70 65.50 65.60 64.00 63.00 63.10 63.70 61.60 60.50 47.62
Fed-DualPrompt 75.60 72.80 71.92 72.37 70.89 70.94 71.16 71.11 70.89 70.30 60.58
PIP(Ours) 84.53 83.70 82.88 83.16 82.08 82.54 82.69 82.39 82.78 81.49 70.27

Table 10: Complete numerical results on CIFAR100 dataset (T=20) in one-seeded run i.e. 2021

I COMPLETE NUMERICAL RESULT OF EXPERIMENT ON SMALLER GLOBAL
ROUNDS

In this section, we present the detailed numerical results of smaller global rounds on CIFAR100, and
TinyImageNet datasets.
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Method 5 10 15 20 25 30 35 40 45 50 Avg
iCaRL+FL 83.00 66.00 61.30 56.00 56.30 53.00 49.70 47.00 46.30 46.00 -
BiC+FL 82.30 64.70 59.00 58.30 57.00 54.70 52.30 50.30 49.00 47.70 -
PODNet+FL 81.70 63.30 60.30 59.30 58.30 56.30 55.00 53.30 51.70 50.00 -
DDE+iCaRL+FL 80.00 60.70 58.70 56.30 57.00 55.30 53.00 51.70 50.30 49.30 -
GeoDL+iCaRL+FL 82.30 66.30 62.70 61.00 60.30 58.00 56.30 55.30 53.00 51.30 -
SS-IL+FL 80.00 65.30 61.70 57.30 56.30 54.00 51.30 50.00 49.30 48.30 -
DyTox+FL 71.60 52.70 61.60 53.20 56.80 48.90 45.70 49.40 39.10 44.10 -
AFC+FL 72.40 53.00 51.80 38.10 41.40 39.60 41.20 37.20 33.70 32.40 -
GLFC 84.00 71.70 70.00 69.30 67.30 66.30 61.00 60.70 59.30 58.70 -
LGA 78.80 79.40 76.80 73.50 69.80 68.50 67.30 66.10 63.80 62.10 -
Fed-DualPrompt 96.20 94.50 88.73 86.80 86.04 86.80 85.83 85.63 86.11 85.90 -
PIP(Ours) 97.80 96.70 94.33 92.45 91.92 91.70 91.09 90.80 91.07 90.34 -
Method 55 60 65 70 75 80 85 90 95 100 Avg
iCaRL+FL 44.00 42.30 40.00 39.70 37.30 36.00 34.70 34.30 33.00 32.00 37.33
BiC+FL 46.70 44.00 42.70 41.30 40.30 38.00 37.00 36.30 34.70 33.00 39.40
PODNet+FL 49.30 48.00 47.00 45.30 44.70 43.70 42.00 39.70 38.70 37.00 43.54
DDE+iCaRL+FL 48.70 48.30 47.70 46.70 45.70 44.30 42.30 40.00 38.30 37.30 43.93
GeoDL+iCaRL+FL 50.00 48.70 48.00 46.30 45.00 44.00 41.70 40.00 38.00 36.70 43.84
SS-IL+FL 47.00 45.00 44.30 43.00 41.30 40.70 39.30 38.70 37.00 36.00 41.23
DyTox+FL 37.70 35.20 33.60 31.50 28.60 27.30 27.10 26.50 25.80 24.90 29.82
AFC+FL 29.70 33.50 29.60 30.20 25.10 25.10 26.10 24.60 24.00 23.50 27.14
GLFC 55.30 53.00 52.00 50.30 49.70 47.30 46.00 42.70 40.30 39.00 47.56
LGA 60.60 59.80 57.20 56.80 55.10 54.70 54.10 53.20 51.60 48.20 55.13
Fed-DualPrompt 85.82 85.97 85.78 84.63 84.71 84.53 82.81 81.73 81.96 82.35 84.03
PIP(Ours) 89.69 90.03 89.97 89.43 89.20 89.14 88.38 87.39 87.89 88.04 88.92

Table 11: Complete numerical results on MiniImageNet dataset (T=20) in one-seeded run i.e. 2021

Method 10 20 30 40 50 60 70 80 90 100 Avg
iCaRL+FL 67.00 59.30 54.00 48.30 46.70 44.70 43.30 39.00 37.30 33.00 -
BiC+FL 67.30 59.70 54.70 50.00 48.30 45.30 43.00 40.70 38.00 33.70 -
PODNet+FL 69.00 59.30 55.00 51.70 50.00 46.70 43.70 41.00 39.30 38.00 -
DDE+iCaRL+FL 70.00 59.30 53.30 51.00 48.30 45.70 42.30 40.00 38.00 36.30 -
GeoDL+iCaRL+FL 66.30 56.70 51.00 49.70 44.70 42.30 41.00 39.00 37.30 35.00 -
SS-IL+FL 66.70 54.00 47.70 45.30 42.30 42.00 40.70 38.00 36.00 34.30 -
DyTox+FL 77.60 70.20 63.40 56.60 52.00 44.60 51.60 39.60 41.50 39.00 -
AFC+FL 74.00 62.90 57.60 54.20 45.10 44.40 40.70 36.90 33.00 33.60 -
GLFC 68.70 63.30 61.70 57.30 56.00 53.00 50.30 47.70 46.30 45.00 -
LGA 74.00 67.60 64.90 61.00 58.90 55.70 53.60 51.30 50.10 48.80 -
Fed-DualPrompt 79.40 78.90 79.00 78.10 76.48 77.53 77.14 76.85 76.04 75.48 -
PIP(Ours) 89.20 87.80 86.93 85.00 84.12 85.70 86.31 86.62 86.76 86.44 -
Method 110 120 130 140 150 160 170 180 190 200 Avg
iCaRL+FL 32.00 30.30 28.00 27.00 26.30 25.30 24.70 24.00 22.70 22.00 36.75
BiC+FL 32.70 32.30 30.30 29.00 27.70 27.30 26.00 25.70 24.30 23.30 37.97
PODNet+FL 37.00 35.70 34.70 34.00 33.00 32.30 31.00 30.00 29.30 28.00 40.94
DDE+iCaRL+FL 35.00 33.70 32.00 31.00 30.30 30.00 28.70 28.30 27.30 26.00 39.33
GeoDL+iCaRL+FL 33.70 32.00 31.00 30.30 28.70 28.00 27.30 26.30 25.00 24.70 37.50
SS-IL+FL 33.00 31.00 29.30 28.30 27.70 27.00 26.30 26.00 25.00 24.30 36.25
DyTox+FL 37.80 31.20 34.20 30.60 29.80 29.20 28.30 27.50 26.80 15.30 41.34
AFC+FL 30.80 28.90 27.10 22.80 24.50 23.60 22.10 20.70 18.40 18.10 35.97
GLFC 42.70 41.00 40.00 39.30 38.00 36.70 35.30 34.00 33.00 31.70 46.05
LGA 45.20 43.70 42.80 41.20 40.50 38.90 37.40 36.60 35.10 33.80 49.06
Fed-DualPrompt 75.20 75.37 75.23 73.90 73.76 72.80 73.27 72.20 72.28 71.69 75.53
PIP(Ours) 86.80 86.22 86.22 85.67 85.81 84.30 84.35 83.49 83.72 83.33 85.74

Table 12: Complete numerical results on TinyImageNet dataset (T=20) in one-seeded run i.e. 2021

20



Under review as a conference paper at ICLR 2024

Method 10 20 30 40 50 60 70 80 90 100 Avg
GLFC-10clients 90.00 82.30 77.00 72.30 65.00 66.30 59.70 56.30 50.30 50.00 66.92
GLFC-3clients 86.70 74.50 71.70 65.63 65.26 60.37 54.51 52.63 48.30 44.56 62.42
GLFC-2clients 85.00 71.80 65.10 64.58 54.96 51.00 44.79 49.69 41.42 45.61 57.39
LGA-10clients 89.60 83.20 79.30 76.10 72.90 71.70 68.40 65.70 64.70 62.90 73.45
LGA-3clients 85.50 74.30 75.70 72.80 71.02 66.50 64.57 61.04 61.22 56.05 68.87
LGA-2clients 86.40 76.35 78.07 67.75 63.40 62.67 61.57 56.61 60.39 53.61 66.68
Fed-DualPrompt-10clients 96.60 83.20 77.10 74.08 70.86 68.73 71.83 70.00 70.71 70.68 75.38
Fed-DualPrompt-3clients 88.30 83.20 80.27 77.45 74.26 71.73 73.91 73.34 72.42 74.72 76.96
Fed-DualPrompt-2clients 90.10 76.95 71.93 71.40 68.14 69.55 69.14 67.66 67.93 68.92 72.17
PIP(Ours)-10clients 98.60 92.90 89.57 87.78 87.14 85.93 85.60 85.45 85.22 84.60 88.28
PIP(Ours)-3clients 98.40 92.00 90.57 89.03 87.72 83.30 83.69 82.71 82.36 80.88 87.06
PIP(Ours)-2clients 96.70 90.15 88.80 86.70 83.34 79.20 79.34 78.30 77.94 77.28 83.78

Table 13: Complete numerical results on CIFAR100 (T=10) with smaller participating clients in
one-seeded run i.e. 2021

Method 20 40 60 80 100 120 140 160 180 200 Avg
GLFC-10clients 66.00 58.30 55.30 51.00 47.70 45.30 43.00 40.00 37.30 35.00 47.89
GLFC-3clients 55.60 37.70 26.37 19.88 - - - - - - 34.89
GLFC-2clients 53.40 39.20 27.40 11.08 - - - - - - 32.77
LGA-10clients 70.30 64.00 60.30 58.00 55.80 53.10 47.90 45.30 39.80 37.30 53.18
LGA-3clients 73.30 69.55 60.30 52.75 47.16 - - - - - 60.61
LGA-2clients 71.4 59.75 57.167 54.425 49.96 - - - - - 58.54
Fed-DualPrompt-10clients 86.60 75.70 71.33 66.33 64.28 62.83 62.27 61.19 59.99 62.60 67.31
Fed-DualPrompt-3clients 73.00 70.15 68.30 65.20 63.78 62.22 63.23 62.44 64.47 68.35 66.11
Fed-DualPrompt-2clients 67.50 63.95 65.50 66.43 68.30 68.90 67.66 67.25 65.37 69.43 67.03
PIP(Ours)-10clients 92.70 87.90 86.83 88.23 87.04 87.18 85.96 85.13 84.62 82.35 86.79
PIP(Ours)-3clients 90.40 87.10 85.03 86.90 85.92 85.05 83.64 82.64 82.40 80.95 85.00
PIP(Ours)-2clients 90.10 84.40 82.97 84.23 82.46 82.33 80.33 78.51 78.61 77.34 82.13

Table 14: Complete numerical results on TinyImageNet (T=10) with smaller participating clients in
one-seeded run i.e. 2021. GLFC and LGA performance is averaged from their first 4 and 5 tasks
respectively due to crash

Rounds Method 10 20 30 40 50 60 70 80 90 100 Avg
10 Fed-DualPrompt 88.30 83.20 80.27 77.45 74.26 71.73 73.91 73.34 72.42 74.72 76.96
10 PIP (Our) 98.40 92.00 90.57 89.03 87.72 83.30 83.69 82.71 82.36 80.88 87.06
8 Fed-DualPrompt 90.10 76.95 71.93 71.40 68.14 69.55 69.14 67.66 67.93 68.92 72.17
8 PIP (Our) 96.70 90.15 88.80 86.70 83.34 79.20 79.34 78.30 77.94 77.28 83.78
6 Fed-DualPrompt 85.90 85.40 81.37 78.53 74.14 72.68 73.16 72.63 73.77 73.78 77.13
6 PIP (Our) 97.60 91.40 87.03 86.10 85.36 82.13 82.00 81.69 80.80 80.15 85.43
4 Fed-DualPrompt 85.30 84.40 81.10 78.13 73.82 71.95 73.00 71.28 72.42 71.47 76.29
4 PIP (Our) 97.70 93.65 88.13 86.38 84.20 82.97 82.26 81.36 81.27 79.87 85.78
2 Fed-DualPrompt 88.20 81.45 78.07 76.45 74.10 72.60 71.06 69.98 69.34 68.91 75.02
2 PIP (Our) 97.80 91.05 86.40 83.33 83.42 81.27 81.13 82.01 81.01 80.28 84.77

Table 15: Complete numerical results on CIFAR100 (T=10, local clients = 3) with smaller rounds
in one-seeded run i.e. 2021
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Rounds Method 20 40 60 80 100 120 140 160 180 200 Avg
10 Fed-DualPrompt 86.60 75.70 71.33 66.33 64.28 62.83 62.27 61.19 59.99 62.60 67.31
10 PIP 92.70 87.90 86.83 88.23 87.04 87.18 85.96 85.13 84.62 82.35 86.79
8 Fed-DualPrompt 74.80 72.05 71.60 70.08 68.14 66.72 66.63 65.80 65.57 71.81 69.32
8 PIP 90.10 87.10 87.17 87.53 86.16 86.33 85.23 83.98 83.06 81.64 85.83
6 Fed-DualPrompt 73.40 73.10 72.07 70.60 69.30 67.68 66.69 67.60 66.43 71.02 69.79
6 PIP 91.50 87.20 87.97 89.30 87.76 87.78 86.20 85.88 84.78 82.94 87.13
4 Fed-DualPrompt 72.30 72.05 73.27 71.60 71.48 69.70 68.74 67.20 67.26 69.40 70.30
4 PIP (Our) 90.70 87.15 87.17 87.43 86.98 86.75 85.17 84.05 83.26 82.11 86.08
2 Fed-DualPrompt 73.90 75.55 75.10 74.28 72.44 72.75 71.51 69.45 68.78 70.71 72.45
2 PIP (Our) 89.20 87.90 87.63 88.48 87.52 86.68 84.86 83.00 83.31 82.14 86.07

Table 16: Complete numerical results on TinyImageNet (T=10, local clients = 3) with smaller rounds
in one-seeded run i.e. 2021
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