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ABSTRACT

Federated Class Incremental Learning (FCIL) is a new direction in continual
learning (CL) for addressing catastrophic forgetting and non-IID data distribu-
tion simultaneously. Existing FCIL methods call for high communication costs
and exemplars from previous classes along with performance issues. We pro-
pose a novel rehearsal-free method for FCIL named prototypes-injected prompt
(PIP) that involves 3 main ideas: a) prototype injection on prompt learning, b)
prototype augmentation, and c) weighted Gaussian aggregation on the server
side. Our experiment result shows that the proposed method outperforms the
current state of the arts (SOTAs) with a significant improvement (14 — 33%) in
CIFAR100, MinilmageNet and TinyImageNet datasets. Our extensive analysis
demonstrates the robustness of PIP in different task sizes, and the advantage of re-
quiring smaller participating local clients, and smaller global rounds. For further
study, source codes of PIP, baseline, and experimental logs are shared publicly in
https://anonymous.4open.science/r/anl22pouyyt789/.

1 INTRODUCTION

Federated learning (FL) is a machine learning approach that allows multiple local clients to learn a
global model together while protecting the data privacy in each client McMahan et al.|(2017)Karim-
ireddy et al.| (2020) Shoham et al.| (2019) while protecting the data privacy in each client. FL has
recently sparked a great deal of academic interest and achieved outstanding success in a number of
application areas, including medical diagnosis [Hwang et al.| (2023), autonomous vehicle |He et al.
(2023), and wearable technology Baucas et al|(2023). The majority of FL. methods are often de-
signed for a static application scenario, assuming the data classes are fixed and known in advance. In
real-world applications, however, the data are often dynamic, allowing local clients to access unseen
target classes online.

Existing studies have the addressed dynamic data challenges in FL through Federated Class Incre-
mental Learning (FCIL) where each local client gathers training data continually and according to
their own preferences in the environment, while new clients with ad hoc, unforeseen classes are al-
ways welcome to join the FL training |Dong et al.| (2023) |Dong et al.[(2022) |Yoon et al.[(2021). The
clients have to cooperatively train a global model to continually learn new classes while maintaining
its capability to recognize the previous classes. In short, the existing FCIL methods tried to answer
catastrophic forgetting and non-independently and identically distributed (non-i.i.d.) problems.

Current SOTAs in FCIL still have not achieved a high performance i.e. leq 75% average accuracy
in the 3 popular benchmark datasets Dong et al.|(2023)) Dong et al|(2022). the performance Besides
the performance issue, current FCIL methods exchange the whole model between clients and the
central server, resulting in high communication costs during FL training. Besides, some of the FCIL
methods assume that the clients save exemplars (memory) from the previous classes for rehearsal
Dong et al.| (2023) Dong et al.|(2022)). In practice, this is not always feasible because the data may
be confidential and only available for one-time access. Thus, we are motivated to develop a more ef-
ficient and rehearsal-free method for the FCIL problem. We propose a new approach for FCIL based
on prompt learning inspired by prompt learning that performs effectively in stand-alone continual
learning (CL) [Wang et al.|(2022c)|Wang et al.| (2022b). Along with the rehearsal-free principle, the
prompt-based approach offers a more efficient communication where clients and the central server
only need to exchange a small model called prompt and supporting parameters, e.g. head layer


https://anonymous.4open.science/r/an122pouyyt789/

Under review as a conference paper at ICLR 2024

Server Server

— Prompts
Model Global Model ( Prompts prompis Agregpation General Prompts

Agregation
4 > KA~ Head Head Head General Head
‘057l '—‘ '—‘ Agregatm

Prototyp? -- el

- Wisiooe:  [WPisiopes A e Prototypes
- - gregation
——
Eents St

Head | | Head — —— Head —
O

i ¢
.
0> 3 D>
y | | S — S

Client-1|| Client-i DNN Model Client-n Client-1| | Client-i |
J&Z ) (< 2K params) Backbone
My, B> o0 Network | |
< 80K params) ‘ Head ? (ViT)
>2M
2000
o o A L =
1 k-1 7;; 1 /K1 77C
=S - EEEZ- BEso®s " RS EEEZ- BEsom
EREDE wwbl=s LEEEE == e HeBSs EEESER
“mal WE ArEEE ENEES fml WE AFEEE EREEY
EETHS - @EdsP Edc ms EESHS - EEEsP Ed ms
EMA~E STERE IR L] SVERS WS
Existing SOTAs Our Work

Figure 1: Visualization of current SOTAs in FCIL and our proposed method. It is seen that our
approach imposes much lower communication costs than state-of-the-art methods.

instead of exchanging the whole model. The distinction between the PIP and current SOTAs is visu-
alized in figure[I] The contributions of this paper are summarized as follows: (1) We propose a new
approach, prompt-based federated continual learning to solve the FCIL problem, where clients and
central servers exchange prompts and head layer units instead of a whole model. This approach sig-
nificantly reduces the size of the exchanged parameters between clients and the central server in each
round. (2) We propose a new baseline method for the FCIL problem named Federated-DualPrompt
that already outperforms the current state-of-the-art (SOTA) methods in three benchmark datasets.
(3) We propose a novel method for the FCIL problem named Prototype-Injected Prompt (PIP) that
consists of three main ideas i.e. a) prototype injection on prompt learning, b) prototype augmenta-
tion, and c) weighted Gaussian aggregation on the server side. The proposed method outperforms
the baseline and current SOTAs with a significant gap. (4) We provide a comprehensive analysis in
three benchmark datasets as well as the robustness of the proposed method in different task sizes,
smaller participating clients, and smaller rounds per task. (5) The source codes of PIP are shared
inhttps://anonymous.4open.science/r/anl22pouyyt 789/ during the peer-review
process and will be made public upon acceptance of our paper for further study and reproducibility.

2 RELATED WORK

This research relates to the recent study on Class Incremental Learning (CIL) which including:
a) Prompt-based approaches, which trains a trainable set of parameters with a down-streaming

approach for tasks sequence, instead of training the whole model e.g. L2P (2022¢),
DualPrompt|[Wang et al.| (2022b), CODA-Prompt Smith et al.| (2023)), S-Prompt|[Wang et al.| (20224))
b) Regularization approaches, which adaptively tune the base learner parameter to accommodate
the previous task and current task e.g. EWC [Kirkpatrick et al| (2017), SI Zenke et al| (2017),
MAS [Aljundi et al.| (2018), LWF|Li & Hoiem| (2017), LWM Dhar et al.| (2019). DMC [Zhang et al|

2020). c) Replay/Rehearsal approach, which trains the exemplars (memory) from the previous
task joined with current task data e.g. ICARL [Rebuffi et al.|(2017), EEIL, |Castro et al.| (2018)), GD
Prabhu et al.| (2020), DER/DER++ Buzzega et al.| (2020), XDER [Boschini et al.| (2022)), d) Bias
correction approaches, which creates task-wise bias later to help the base learner achieve plasticity

on a new task while maintaining stability on old tasks e.g. BiC (2019), LUCIR
(2019), iL2M Belouadah & Popescu| (2019). A recent reserach on Federated Learning (FL)

includes: FedAvgMcMahan et al.| (2017), Fedbn [Li et al| (2021), FedMatchAvg (2020),
[Yang et al.| (2021), [Wang et al.|(2021), Shoham et al.| (2019), and a relatively new Federated Class
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Incremental Learning(FCIL) problem includes: GLVC Dong et al.|(2022), TARGET Zhang et al.
(2023)) and LGA [Dong et al.[(2023).

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

A class incremental learning (CIL) problem is defined as a learning problem of a sequence of fully-
supervised learning tasks 71, 7, ..., 77 where t € {1, ..., T} represents the number of tasks that is
unknown. Each task carries N; pairs of training samples 7' = {z!, yf}?{:ﬁl where z; € X denotes
input image and y; € ) denotes its corresponding class label. Each task carries the same image size
but possesses disjoint target classes. Suppose that Y labels a class set of a task ¢ and Y*~! denotes
a class set of task t — th, Vt,t — 1,Y* N Y*~! = (). Federated Class-Incremental Learning (FCIL)
is the extension of conventional class-incremental learning in a federated way, where a set of clients
collaborate with each other coordinated by a central server. Given local clients {S;}%_; and a global
central server Sg, for the r — th global round (r = 1, ..., R), a set of local clients S; are randomly
selected from all participating clients by the global server. The selected clients at the » — th round
simulate real-world conditions where only a small number of registered clients join in a round of
federated learning. The clients may carry a different set of training samples 7,"" # T5°"... # 7,

NIt .
where | € {1,...,L}, and 7" = {x};%,y;;"};., is not shareable between clients or between the
client and central server. Technically, on each global round r — th for the ¢t — th incremental task, a

set of selected clients {S;}/, is selected, then each client S; conducts local CIL training using its
training samples 7;" " to produce an optimal local model @f’t. Then the selected clients send their

local models to global server S¢ to be aggregated, producing the latest global model parameter @gt.
Global server S then distributes the global model to all clients for the next global round process.

3.2 FEDERATED CLASS INCREMENTAL LEARNING VIA PROMPT-BASED FEDERATED
CONTINUAL LEARNING

Inspired by transfer learning in NLP, prompt-based learning was proposed in continual learning. In
prompt-based continual learning, a client uses a frozen backbone model e.g. Vision Transformer
(ViT) as a feature extractor. The ViT embedding layer transforms an input image z € R%*"*¢,
where w, h, c are the image’s width, height, and channel respectively, into sequence-like output fea-
ture h € RY*P, where L is the sequence length and D is the embedding dimension. We extend the
prompt-based continual learning into prompt-based federated continual learning for the FCIL prob-
lem. In this approach, the client only updates the learnable parameters called prompt p € RL»*D,
and its classification (head) layer fs, where L,, is the sequence length and D is the embedding di-
mension and ¢ is head layer parameter. In FCIL setting, on each global round r — th for the t — th
task, the selected clients {.S; }%-_, updates p; and ¢; parameters which are aggregated by global server
S¢ producing global model parameters pg and ¢¢. In this approach, rather than updating the whole
model, i.e. backbone and head layers, clients only update a far smaller amount of parameters, i.e.
prompt and head layer only. In addition, clients and the central server require smaller communica-
tion costs as the clients and server exchange a smaller size of data on each round. The distinction
between this proposed approach and the existing state-of-the-art (SOTA) methods is that the existing
SOTAs update and aggregate the whole model i.e. © = (6, ¢) where a model Fg(x) = fs(gs(z)),
go(.) is feature extractor and f,(.) is classifier.

3.3 BASELINE METHOD: FEDERATED DUALPROMPT

In this study, we propose a baseline method named Federated DualPrompt (Fed-DualPrompt) by
customizing DualPrompt Wang et al.| (2022b) for federated class incremental learning problems.
The role of the baseline is to demonstrate our proposed new approach i.e. FCIL via prompt-based
federated continual learning that is more effective and efficient than current SOTAs.

Prompt-Structure: Following DualPrompt structure Fed-DualPrompt uses 2 prompt types, i.e. G-
Prompt and E-Prompt. G-Prompt is a trainable shared parameter for all tasks defined as g € RFs* P
where L, is the sequence length and D is the embedding dimension. E-Prompt is a set of task-
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specific parameters defined as F = {e’}]_, where ¢! € RF<*D_ L, is the sequence length and D is
the embedding dimension.

Clients: On a round r — th of ¢t — th task, each client S; with its available training samples 7'l”
conducts local training to optimize the t—¢h task E-prompt e}, G-prompt g; and head layer parameter
¢; following |Wang et al.| (2022b). Given a pre-trained ViT backbone f with N Multi head Self-
Attention (MSA), h(*),i = 1,2..., N represents input for i — th MSA layer, suppose that we want
to attach G-prompt g; and E-prompt e} into the i — th and j — th MSA layer respectively, then G-
prompt g; and E-prompt €] transform feature R and h{9) via prompt function as defined in equation
Note that (Y and h{7) are the extension of h, a sequence-like parameter produced by the ViT
embedding layer for ¢ — th and j — th MSA layer.

(WS h8) = (forompt (91, BD), forompe (e}, B9))) (1)

Following Wang et al| (2022b), DualPrompt accommodates two types of function fprompt i.€.
prompt tuningLester et al.| (2021) and prefix tuning |Li & Liang| (2021). Previous study [Wang et al.
(2022b)) investigated that prefix tuning is more effective for CIL problems, thus we use prefix tuning
for fprompt for the proposed baseline method as defined in equation 2| where p € RE»*P could be

G-prompt g; and E-prompt e that is split into py € RE»/2XD and py, € REv/2XD,

fprompt (D, h) = MSA(hqg, [pr; hi], [pv; hv]) 2

MSA function is defined as in equation [3| following |Vaswani et al.| (2017) where hq, hg, and hy
are input query, key, and value, Wq, Wi, and Wy, are the projection matrices, and m is number of
head, and in DualPrompt hg = hx =hy = h € RLxD,

MSA(hg, hi,hv) = Concat(hy, ..., by )W

3)
where h; = Attentzon(hQWQ he W hy WY

Objective: Given a pre-trained ViT backbone with attached G-prompt g; and E-prompt e}, head
layer f,,, task-wise key k! associated with €], the learning objective of each client .S; is defined
as in equation 4] where L represents cross-entropy loss, L,,qtch represents matching loss, and A
represents a constant factor.

i L(fo(fe(2):9)) + A maten (. Kf), v € T @)
Server: Central server S coordinates local clients training and aggregates locally optimal param-
eters from selected local clients into a global model The parameter aggregation for the baseline
method is defined in the equatlonlwhere gl, el and ¢; are the G-prompt, E-prompt, and head layer
parameter of client-/ respectively and g¢, eG and ¢¢ are the G-prompt, E-prompt and head layer pa-
rameter of global model respectively, and L is the number of selected local clients. The pseudo-code
of the baseline is presented in Algorithm [I]in Appendix [A]

(gG7€G7¢G = Z glael7¢l (5)

4 PROPOSED METHOD: PROTOTYPE-INJECTED PROMPT (PIP)

Prompt Structure and Function: We adopt the prompt structure from the baseline method that
uses G-prompt and E-prompt as defined in the previous subsection as well as the prompt function as
defined in equation [T} [2]and 3] Our approach also incorporates other prompt functions i.e. prompt
tuning [Lester et al.| (2021)) and other prompt structures i.e. L2P [Wang et al.| (2022c)) and CODA-
PromptSmith et al.[(2023).

PIP ideas: Given a baseline framework where on r—th round of t—th task, clients {S; }~_, conducts

continual learning with 7,* < 7" where |7,”"| = n|7T,""|,n € (0,1) is the percentage of available
classes in each client, and || represents the number of elements, then the optlmlzed parameters will

be: qbl,gl,el = argmin LR, @E(z,y)w;' [L (f@(fql o (2),9)) + AMmaten(Z, k:t)] only optimal
for 77 but not 77 . Aggregating the prompts and head doesn’t guarantee the models optimal for
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’77’t since in the next round the participating clients and their available data may be different from the
current rounds’ { )"}, # {S] TV Y, T, # T,7". Furthermore, learning a label space into
multiple steps e.g. rounds leads to catastrophic forgetting. Our first idea is to a shareable prototype
sets (W, Yy¢) and injects into prompt learning process that satisfies 7,”" U (W*, Yyye) ~ 7,7,
where W is the prototype feature set, and YWt is the prototype label set Therefore, the learmng
objective of each client satisfies argmin, N 3B, PFT <[L(f, (fgz,el’( YUWELGUYe)) +

AL maten (2, kl)] ~ argmin, cit L <L (f@(fgl,e} (2),v)) + Aloaten (2, k})]. The pro-
totype sharing ensures each chent recelves globally available labels gathered from all participating
clients to learn, rather than its locally available labels as W* = Wi UWL U ...UW}/U..W} D W}
for I € {1...L}. Our second idea i.e. prototype augmentation handles imbalance class between
locally available classes and unavailable classes that are represented by the shared prototypes. Sup-
pose that z. is the sample for class c1 € C1, wl, € W' is the prototype of class ¢2 € C2, where
C'1 and C?2 are the available and unavailable classes in client-l, we have |z.1| = N > 1, while
|wty| = 1. The prototype augmentations create artificial prototypes that satisfy |w’y| & |z.1|. Our
third idea i.e. server weighted Gaussian aggregation treats clients’ contribution in global aggre-
gation proportionally based on their participation and the number of training samples. It is based on
the best practice that the model that learns more, has weight more convergence rather than a newly
participating model. We view clients as observers of their local data and the parameters they produce
as Gaussian distributions.

Clients: Similar to the baseline method, given a pre-trained ViT model f, with N MSA layers,
G-prompt ¢, and E-prompt E; = {e!}}_,, and head layer f,, each client S; conduct a local CIL
training on r — th round of ¢ — th task with its training samples 77” The distinction between the
proposed method and the baseline is that the proposed method generates a set of prototypes W and
utilizes it to optimize g;, e}, and ¢;. Later on, the prototype set is aggregated by the central server
and returned to clients so that the clients receive a more completed and generalized prototype set.

Prototype: We define a set of prototypes on the t — th task on a client S; as W} = {w} }¢=%, wlc €
R™D | and their labels as Ywe = {c}Z b where [a,b] is the available classes in 7', and
D is the embedding dimension. Assuming that the prototype follows a Gaussian distribution
wj, ~ N(pl,, 2!,) and the prototype is considered as D disjoint uni-variate distribution, then we
have w}, ~ N (uf,, chz) where Jltcz = ID.O'ltC’iZ,i € {1,2..D}. We compute the prototype w},
properties by equations 6] and

. 1
Hie = foret (@) if (v = ¢ (6)
e S it =) Z ) il =9

t2 1 al t 2

of. = D (k= fgrer (@) if (i = c) (7)

li= 111f(yh—c) li=1
Prototype augmentation: We can simply a331gn wf, by pul. to generate a single prototype for class-
c. However, we enrich the prototypes by using an augmentation as defined in equatlong]to generate

m augmented prototypes for class-c based on Gaussian distribution w!, ~ N'(uf., of.%), and Bis a
random value in (0, 1) range.

wlc - {:ulc} U {ulm}z Tv where ufm = .ch + /Bgltc7 m=1.5 ®)
Objective: We extend the baseline learning mechanism by injecting the set of prototypes W* and
its label set Yy« into prompt-generated features fgl,ez‘ (x) before patching into the head layer fy.
Therefore, the learning objective of each client is defined as in equation [0} In the first round of
federated learning, each client has a prototype set from its available classes W* = W/, but after the
aggregation process, it utilizes the aggregated prototype set W' = W} D WY,

I?LITI o ﬁ(f¢l (fgl,ef (x) U Wtuy U YWt)) + Aﬁmatch(x’ klt)vx €Dy )
g€,k 1

Server weighted aggregation: We define the weight of a client-1 on the t-th task as w; = p¢ IV,
where p; is the total of client-1 participation until t-th task and N = |7, ’t| is the number of samples
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that available in the client-l at that time. We design a Gaussian-based weighted aggregation as
defined in equations 10| and The derivation of the proposed weighted aggregation in presented
in Appendix [B] The pseudo-code of PIP is presented in Algorithm [2]in Appendix [C]

L
1
(96:€6,96) = = Z(glwlvefwlvd)lwl) (10)
PR R
wg, = N (pbe, UtGCQ), where
1 L
Hoe = <7 D Aleliei
D11 G 15
. (11)
2 1 2 2 2
O—th - <L 3 Zaf((uf(‘ + J;c )wl - lu‘th

L t
Dol G 1=

aj. =1, if(u}, exists) else =0

5 EXPERIMENT RESULTS AND ANALYSIS

5.1 EXPERIMENTAL SETTING

Datasets: Our experiment is conducted using three main benchmarks in FCIL i.e. split CIFAR100,
split MinilmageNet, and split TinyImageNet. The CIFAR100 and minilmageNet datasets each con-
tain 100 classes while TinyImagenet is a dtaset with 200 classes. We follow settings from Dong et al.
(2022) and Dong et al.|(2023)) where the dataset is split equally into all tasks. In our main numerical
result, The dataset is split into 10 tasks i.e. 10 classes per task for CIFAR100 and MinilmageNet,
and 20 classes per task for the TinylmageNet dataset. In our further analysis, we investigate the
performance of the proposed methods in different task sizes e.g. T=5 and T=20.

Benchmark Algorithms: PIP is compared with 10 state-of-the-art algorithms: LGA Dong et al.
(2023), GLFCDong et al.| (2022), AFCKang et al.| (2022)+FL, DyToxDouillard et al.| (2022)+FL,
SS-IL/Ahn et al.| (2021)+FL, GeoDLSimon et al. (2021)+iCaRLRebuffi et al.| (2017)+FL, DDEHu
et al.| (2021)+iCaRLRebuffi et al.| (2017)+FL, PODNetDouillard et al.| (2020)+FL, BiCWu et al.
(2019)+FL, iCaRLRebuffi et al.| (2017)+FL, and the proposed baseline model (Fed-DualPrompt)

Experimental Details: Our numerical study is executed under a single NVIDIA A100 GPU with 40
GB memory across 3 runs with different random seeds {2021,2022,2023}. PIP and Fed-DualPrompt
use pre-trained ViT as the backbone network, while the competitors use LeNet|LeCun et al.|(2015)
as the feature extractor. Following |Dong et al.| (2023) and [Dong et al.| (2022)), each experiment is
simulated by 30 total clients and 1 global server, where in each round, 10 (33.33%) local clients are
selected randomly. Each client randomly receives 60% (7 = 0.6) class label space. The total global
round is set to 100, the local clients’ epoch is set to 2, and the learning rate is set by choosing the
best value from {0.02,0.002}.

5.2 NUMERICAL RESULTS

The numerical result of the consolidated algorithms is summarized in table [I| The complete nu-
merical result is shown in tables ] [5] and[6]in Appendix [D] The baseline method already achieves
higher average accuracy (Avg) than the SOTA methods with 1 — 13% improvement in accuracy.
The baseline also experiences a lower performance drop (PD) (19 — 27%) compared to the SOTA
methods (> 26%) except in the CIFAR100 dataset vs. LGA. The proposed method (PIP) achieves
the highest accuracy with > 10% gap compared to the baseline method, and > 14% gap compared
to the competitor methods. The proposed method also achieves the lowest performance drop with
(10 — 13%) gap compared to the baseline and > 12% gap compared to the competitor methods.
The table shows that PIP achieves a higher gap in TinylmageNet which is a relatively more complex
problem than in MinilmageNet and CIFAR100.

Looking at per-task performance, tables [4] [5] and [6] show that PIP achieves the highest accuracy in
all tasks in those three datasets. In the first task, the proposed method achieves higher performance
with a small gap 1 —4% gap compared to the baseline method. However, with the increasing number
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of tasks, the gap gets higher e.g. 5 — 12% in task-2, 5 — 20% in task-3, and 6 — 20% in task-10 (last
task). It shows that the proposed method handles catastrophic forgetting better than the baseline
method.

CIFAR100 MinilmageNet TinyImageNet
Method Avg PD Imp Avg PD Imp Avg PD Imp
iCaRL+FL 51.79 5230 3621 | 4646 4130 44.56 | 40.14 35.00 46.12
BiC+FL 55.01 48.00 3299 | 49.03 40.30 41.99 | 42.13 36.30 44.13
PODNet+FL 59.66 44.00 2834 | 5256 36.00 38.46 | 4460 3540 41.66

DDE+iCaRL+FL 58.79 43770 2921 | 5230 37.00 38.72 | 4446 37.70 41.80
GeoDL+iCaRL+FL 61.52 40.70 26.48 | 4990 37.00 41.12 | 4463 36.30 41.63

SS-IL+FL 5490 4430 33.10 | 46.43 3240 4459 | 3790 35.00 48.36
DyTox+FL 65.35 3410 2265 | 5030 41.00 40.72 | 4543 42.60 40.83
AFC+FL 58.18 42.00 29.82 | 53.42 4640 37.60 | 41.95 46.60 44.31
GLFC 66.92 40.00 21.08 | 56.99 3030 34.03 | 47.89 31.00 38.37
LGA 7345 2670 1455 | 67.51 2550 23.51 | 53.18 33.00 33.08
Fed-DualPrompt 7423 27.06 13.77 | 80.14 19.07 10.88 | 66.39 2498 19.87
PIP(Ours) 88.00 14.39 - 91.02 9.23 - 86.26 11.36 -

Table 1: Summarized numerical results on CIFAR100, MnilmageNet, and TinylmageNet (T=10),
”Avg” denotes the average accuracy of all tasks, ”PD” denotes performance drop, and "Imp” denotes
improvement/gap of PIP compared to the respective method

5.3 ABLATION STUDY

We conducted an ablation study to investigate the contribution of each component of the proposed
method. The result is summarized in Table 2] while the detailed result is presented in Appendix [/
The result shows that the prototype and augmentation contribute the most to the improvement of the
performance as shown by the performance difference of configurations E vs. F (12%), and G vs.
H (16%). The weighted aggregation improves performance up to 1% as shown by the performance
difference of PIP and configuration F. The head layer aggregation also plays an important role in the
proposed method as shown that the absence of this component decreases performance with > 6%
margin. The absence of two components e.g. prototype and head aggregation (configuration C)
or prototype and weighted aggregation (configuration E) impact significantly the performance with
22% and 13% accuracy drop respectively. The absence of three components i.e. prototype, weighted
aggregation, and head aggregation (configuration A) cost a 23% performance drop in the method.

Config. Prompt Proto+Aug W.Agg Head TI(C=10) TI10(C=100) Avg PD Imp

A v 82.15 60.66 65.69 2149 2259
B v v 90.99 77.56 81.59 1343 6.69
C v v 82.13 61.35 66.10 20.78 22.18
D v v v 91.37 78.47 8241 1290 5.87
E v v 96.60 70.68 75.38 2592 1290
F v v v 98.90 84.17 87.82 1473  0.46
G v v v 98.60 69.94 72.57 28.66 15.71
PIP v v v v 98.60 84.60 88.28 14.00 -

Table 2: Ablation study on CIFARIO0 dataset in one-seeded run i.e. 2021. ”Avg” denotes the
average accuracy of all tasks, ”PD” denotes performance drop, and “Imp”” denotes improvement/gap
of PIP compared to the respective configuration

5.4 FURTHER ANALAYIS

a) Different task size: We evaluate the performance of the proposed method compared to the com-
petitor methods in different task size i.e. T=5 and T=20 to further investigate the robustness of the
proposed method. Figure2]summarizes the performance of the consolidated methods in CIFAR100,
MinilmageNet, and TinylmageNet with T=5 (upper figures) and T=20 (bottom figures). Both in
T=5 and T=20 settings, PIP achieves the highest performance in every task. Besides, all figures
show that the proposed method has gentle slopes compared to the baseline and competitor methods.
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It shows that the proposed method experiences the lowest performance drop from 4, to t + 14
task. It confirmed the robustness of the proposed method in different task-size settings. The baseline
(Fed-DualPrompt) method achieves better accuracy than the competitor methods in all 6 settings,
except in CIFAR100 with the T=5 setting. In CIFAR100 with the T=5 setting, the baseline method
achieves higher performance in task-1 and task-5, but lower performance in task-3, and compara-
ble performance in task-2 and task-4. It shows the promising idea of the federated prompt-based
approach for the FCIL problem.

CIFAR100(T=5) MinilmageNet(T=5) TinylmageNet(T=5)

10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
CIFAR100(T=20) MinilmageNet(T=20) TinylmageNet(T=20)

Accuracy(%)

ST

~ K
v R

Ny

25 50 75 100 125 150 175 200 2 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Number of Classes Number of Classes Number of Classes
—— iCaRL+FL  —< PODNet+FL GeoDL+iCaRL+FL DyTox+FL ~—<— GLFC —e— Fed-DualPrompt
—¥— BIC+FL —>— DDE+iCaRL+FL ~ —e— SS-IL+FL —¥— AFC+FL LGA  —— PIP(Ours)

Figure 2: Performance of the consolidated methods in CIFAR100, MinilmageNet and TinyImageNet
with T=5 and T=20

b) Small local clients: We evaluate the performance of the proposed method in smaller selected lo-
cal clients to advance our investigation of the robustness of the proposed method on smaller selected
local clients. This simulates cross-device federated learning where in a round only a small portion
of registered clients participate in the federated learning process. In our experiment with 30 total
clients, we investigate the performance of the consolidated methods with 3 (10%) and 2 (6.67%)
selected clients compared with the default setting with 10 clients (33.33%). Figure [3| shows the per-
formance of the consolidated methods in smaller local clients scenarios, while the complete result
is presented in Appendix [H} The figure shows that the proposed method experiences the lowest per-
formance degradation in a smaller number of local clients. The figures show that both in CIFAR100
and TinyImageNet datasets, the proposed method still achieves higher accuracy than the baseline
and the competitor methods with 10 participating local clients.

¢) Small global rounds: We continue the previous experiment in smaller selected local clients into
smaller local clients with smaller global rounds to study the robustness of the proposed method on
a more extreme condition. This scenario simulates a condition where the model is urgently needed
by the clients. In our experiment, we use 30 total clients and 3 (10%) local clients. Figure [
summarizes our investigation on the performance of the proposed methods with 20 to 100 (default)
global rounds in CIFAR100 and TinyImageNet datasets, while the complete result is presented in
Appendix [I| The figure shows a common trend that the performance of the method is decreasing
with the decreasing of global rounds. However, our proposed method (PIP) experiences a relatively
small amount of performance drop with the decreasing global rounds. Meanwhile, the baseline
method experiences a significant drop in the CIFAR100 dataset when the number of global rounds
is reduced to 20. Besides, It may experience over-fitting when the number of global rounds is too
high as shown by the result on the TinyImageNet dataset. Compared to the current SOTA (GLFC
and LGA) methods with the default number of global round (100), our proposed method (PIP) still
achieve higher performance, even though the number of global rounds is reduced to 20 (20% default
setting).
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Figure 3: Performance of the consolidated methods in CIFAR100 and TinyImageNet with smaller
local clients
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Figure 4: Performance of the consolidated methods in CIFAR100 and TinylmageNet with smaller
local clients and smaller rounds

5.5 COMPLEXITY AND RUNNING TIME ANALYSIS

We evaluate the complexity of the proposed method as well as the complexity of the baseline method.
Our complexity analysis shows that both the baseline method and our proposed method has the same
complexity i.e. O(R.L.N) where R is the number of global round, L is the number of participat-
ing local clients in each round, and N is the size of the training data in each client. The detailed
complexity analysis is provided in Appendix [E] Table[5.5] summarizes the training time of the con-
solidated method in three datasets with T=10. The table shows that the proposed method requires
lower training time than the current SOTA methods in all datasets. The training time is higher than
the baseline training time because in our proposed method there are additional processes that do not
exist in the baseline i.e. prototype generation, augmentation, injection (concatenation with prompt
features), aggregation, and feedback.

Method CIFAR1I00 MinilmageNet Tinylmagenet
GLFC 24.3h 36.6h 46.4h
LGA 23.2h 35.7h 45.9h
Fed-DualPrompt 11.3h 11.1h 19.5h
PIP(Ours) 13.0h 14.5h 25.5h

Table 3: Training time of the consolidated algorithm in CIFARR100, Minilmagenet and TinyIma-
geNet

6 CONCLUDING REMARKS

In this paper, we propose a new approach named prompt-based federated learning, a new baseline
named Fed-DualPrompt, and a novel method named prototype-injected prompt (PIP) for the FCIL
problem. PIP consists of three main ideas: a) prototype injection on prompt, b) prototype augmen-
tation, and c¢) weighted Gaussian aggregation on the server side. Our experimental result shows that
the proposed method outperforms the current SOTAs with a significant gap (14—33%) in CIFAR100,
MinilmageNet, and TinyImageNet datasets. Our extensive analysis demonstrates the robustness of
our proposed method in different task sizes, smaller participating local clients, and smaller global
rounds. Our proposed method has the same complexity as the baseline method and experimentally
requires shorter training time than the current SOTAs. In practice, our proposed method can be
applied in both cross-silo and cross-domain federated class incremental learning.
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A BASELINE ALGORITHM

Here we present the detailed algorithm of the proposed baseline in Algorithm|[T}

Algorithm 1 Fed-DualPrompt
1: Input: Number of clients IV, number of selected local clients L, total number of rounds R,
number of task T, local epochs FE, batch size B.
2: Distribute frozen ViT backbone f to all clients {.S;}i¥, and central server S¢
Initiate G-prompt, E-prompt, and head layer for all clients and central server g¢ = ¢g;, Eg =

{eghi=l = Ev={e}i={, o = éu, L € {1..L}

w

4: Ry < R/T, Ry represents round per task
5:fort=1:Tdo
6: forr=1: Ry do
7: S; < randomly select L local clients from N total clients
8: Clients execute:
9: Receive global parameters i.e. prompt, key, and head layer g¢, ek, and ¢
10: Assign local parameters (g;, e, ¢;) < (9¢, €4, ¢c)
11: B+ Split 7, = T,! into B sized batches
12: fore=1:FEdo
13: forb=1:Bdo
14: Compute prompt-generated feature f,, et (z) asin Eq to
15: Compute logits fg, (fg, et (2))
16: Compute 108s Liotal = L + Lonaten as in Eqf]
17: Update local parameters (g;, e, ¢;) based on Lot
18: end for
19: end for
20: Store local parameters (g;, €}, ¢;)
21: Send local parameters (g;, €], ¢;) to server
22: Server executes:
23: Receives selected local clients S; parameters (g, €}, ¢;)
24: Aggregates clients’ parameters into global parameters (g, ek, ¢c) < (91, €}, ¢1) E
25: Send global parameters (g¢, ek, ¢¢) to clients for the next round
26: end for
27: end for

28: Output: Global parameters (g¢, ef;, ¢¢) and local parameters (g;, e}, ¢;),l € 1..N

B DERIVATION OF WEIGHTED AGGREGATION

Suppose that we have n samples of an observation z; with the weight of w;. The we mean and

variance as:
n

1

b= D _(wiw;) (12)
i1 Wi ;
1 1 -
2 2 2 2
ot ==n wi(z; —p)” ~ = D (wiri”™ —wip®) 13)
i1 Wi ; i1 Wi ;
Or we have . . . N
ZwmQ = Z(wixiz —wip?) = Zwixiz - Zwi;ﬂ (14)
i=1 i=1 i=1 i=1
that equal

zn:wiJQ +zn:wiu2 = iwixﬂ (15)
i=1 i=1 i=1

If we have another m observation, then we have

n+m n+m n+m

Z w;o? + Z wi/f = Z w2 (16)
i=1 i=1 i=1

13
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n+m n+m n+m
Z wio? + Z wtu = Zw xi2 + Z wWiT2 (17
i=n+1
n+m n+m n n+m n+m
Z w; U + Z sz - szal n Zwi,ul:nQ) +( Z wi0n+1:m2 + Z wi/’bn+1:m2)
=1 i=n+1 1=n+1
(18)
n+m n4m n+m
Z w;o? + Z wip? = Zw, Ot + Hi1:”) + Z Wi (074 yam + Bt tim”) (19
1=n+1
Therefore:
+ +
2 Z?=1 wi (07, + pr1n®) + 22;;34 w; (o 721+1:m + fng1im®) — Z?:fn w; 20
o = n+m (20)
Zz 1 wi
2 Z?:l wi(J%:n + Ml:n2) + Z?+ﬁ1 wz( Opt1:m T Mn+1:m2) 2 21
o° = tm iy (21
doici Wi

The derivation above shows that if we have two weighted Gaussian distributions e.g. X; ~
N (p1, 01?) and Xo ~ N'(u2, 02) with total weight Wy and W, respectively, then the aggregated

distribution will be:
(1. W1 + po . Wa)

= 22
ok W+ Wa (22)
o (1?4 01%). W1 + (u2® + 02%).Wa) 2
- - 23
o* W, W, Lox (23)

Generalizing equations above into N observations i.e. X7 ~ N (u1, 012), Xo ~ N(pe, 022),
XN ~ N(un,on?) with total weight Wy, W, ... Wy respectively. then the aggregated distribution

will be: s N
iq (- Wy
e — Zl_}v(u ) 24)
Zi:l Wi
N 2 2
1 (1 i) Wi
ox? = Zz_l(ZM:N +I/;‘/ ) — (25)
i=1 "V

C PIP ALGORITHM

Here we present the detailed algorithm of our proposed method in Algorithm 2}

D COMPLETE NUMERICAL RESULT ON 3 BENCHMARK DATASETS (T=10)

E COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the baseline and the proposed method. Suppose that
N, is the total samples of a dataset of a client across all tasks, ¢ € {1,...,T} is task index, Nlt =
= |T,!| is the number of samples on task tin client-I that satisty 3", Nf = Nj, R is the
total rounds of federated learning, E is the number of local epoch for each client training. [ is
the number of batches on each task that satisfy Zb 1\ NI, = N}. We simplify the derivation by
analyzing the complexity in a common case that the tasks are d1V1ded evenly, therefore we have
T =|T72|... = |T}|... =|T,7|, thatequal N; = T.N} = T.|T}|. Let O(.) denote the complexity
of a process.

Baseline Complexity:Following the pseudo-code in Algorithm [I|then we have
O(Baseline) = O(1) + T.Rr.(O(clients) + O(server)) (26)

14
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Algorithm 2 Algorithm 2: PIP

1:

w

A A

| S G U Y
SV RXF NN 200

RN NN
AU A s

LW W WK NN
b

34:

35:
36:
37:
38:

Input: Number of clients IV, number of selected local clients L, total number of rounds R,
number of task 7, local epochs F, batch size B.
Distribute frozen ViT backbone f to all clients {S;}}Y ; and central server S
Initiate G-prompt, E-prompt, key, and head layer for all clients and central server g¢ = g,
Eg ={ec}i=] = E1 = {¢f}i=]. dc = du, L € {1.L}
Rr + R/T, Rr represents round per task
fort=1:Tdo
Init global and local prototypes Wk = W}, = W' =
forr=1: Ry do
S; < randomly select L local clients from N total clients
Clients execute:
Receive global parameters i.e. prompt, prototypes, and head layer g¢, ek, W, and ¢
Assign local parameters (g;, e}, ¢, W) + (9a, €, ¢a, WE)
B+ Split 7, = T;! into B sized batches
fore=1:FEdo
forb=1:Bdo
Compute prompt-generated feature fgl et (z) asin Eq to
Compute logits with prototypes fy, (fg, () UW?)
Compute 10ss Liotar = L + Linatcn as in EqP)
Update local parameters (g;, €}, ¢;) based on Lot
end for
if W}/ = 0 then
Compute prototype s, altcz for class-c available in 7, EqEI and
end if
Augment the prototypes Eq.
Unify mean and augmented prototype into W
end for
Compute prototype 4!, altc2 for class-c available in 7, Eq@ and

Set Wi = {(l,, ot.>)}, for class-c available in 7,""

Store local parameters (g;, €}, ¢1, W)

Compute clients’ weight w

Send local parameters (g;, €}, ¢;, W}') and weight w} to server

Server executes:

Receives selected local clients \S; parameters (g;, ef, o1, Wlt)

Aggregates (using weighted aggregation) clients’ prompt, and head layer into global
parameters and weight w! (9¢, €&, ¢c) < (g, e}, ¢1) as in Eq10

Aggregates (using weighted aggregation) clients’ prototypes into global prototypes
W, < W asin Eq11]
Send global parameters (g, ek, ¢¢) to clients for the next round
end for
end for
Output: Global parameters (g¢, €l;, ¢¢) and local parameters (g;, e}, ¢;),l € 1.N

15



Under review as a conference paper at ICLR 2024

Method 10 20 30 40 50 60 70 80 90 100 Avg PD Imp
iCaRL+FL 89.00 55.00 57.00 52.30 50.30 49.30 46.30 41.70 40.30 36.70 51.79 52.30 36.21
BiC+FL 88.70 63.30 61.30 56.70 53.00 51.70 48.00 44.00 42.70 40.70 55.01 48.00 32.99
PODNet+FL 89.00 71.30 69.00 63.30 59.00 55.30 50.70 48.70 45.30 45.00 59.66 44.00 28.34
DDE+iCaRL+FL 88.00 70.00 67.30 62.00 57.30 54.70 50.30 48.30 45.70 44.30 58.79 43.70 29.21
GeoDL+iCaRL+FL  87.00 76.00 70.30 64.30 60.70 57.30 54.70 50.30 48.30 46.30 61.52 40.70 26.48
SS-IL+FL 88.30 66.30 54.00 54.00 44.70 54.70 50.00 47.70 45.30 44.00 54.90 44.30 33.10
DyTox+FL 86.20 76.90 73.30 69.50 62.10 62.70 58.10 57.20 55.40 52.10 65.35 34.10 22.65
AFC+FL 85.60 73.00 65.10 62.40 54.00 53.10 51.90 47.00 46.10 43.60 58.18 42.00 29.82
GLFC 90.00 82.30 77.00 72.30 65.00 66.30 59.70 56.30 50.30 50.00 66.92 40.00 21.08
LGA 89.60 83.20 79.30 76.10 72.90 71.70 68.40 65.70 64.70 62.90 73.45 26.70 14.55
Fed-DualPrompt 96.80 81.55 75.72 72.56 69.54 67.34 69.93 69.18 69.90 69.74 74.23 27.06 13.77
PIP(Ours) 98.70 92.85 89.42 87.58 87.01 85.32 85.19 84.79 84.84 84.31 88.00 14.39 -

Table 4: Complete numerical result of consolidated methods on CIFAR-100 Dataset. ”Avg” denotes
the average accuracy of all tasks, "PD” denotes performance drop, and “Imp” denotes improve-
ment/gap of PIP compared to the respective method

Method 10 20 30 40 50 60 70 80 90 100 Avg PD Imp
iCaRL+FL 74.00 62.30 56.30 47.70 46.00 40.30 37.70 34.30 33.30 32.70 46.46 41.30 44.56
BiC+FL 74.30 63.00 57.70 51.30 48.30 46.00 42.70 37.70 35.30 34.00 49.03 40.30 41.99
PODNet+FL 74.30 64.00 59.00 56.70 52.70 50.30 47.00 43.30 40.00 38.30 52.56 36.00 38.46
DDE+iCaRL+FL 76.00 57.70 58.00 56.30 53.30 50.70 47.30 44.00 40.70 39.00 52.30 37.00 38.72
GeoDL+iCaRL+FL  74.00 63.30 54.70 53.30 50.70 46.70 41.30 39.70 38.30 37.00 49.90 37.00 41.12
SS-IL+FL 69.70 60.00 50.30 45.70 41.70 44.30 39.00 38.30 38.00 37.30 46.43 32.40 44.59
DyTox+FL 76.30 68.30 64.80 58.60 45.40 41.30 39.70 37.10 36.20 35.30 50.30 41.00 40.72
AFC+FL 82.50 74.10 66.80 60.00 48.00 44.30 42.50 40.90 39.00 36.10 53.42 46.40 37.60
GLFC 73.00 69.30 68.00 61.00 58.30 54.00 51.30 48.00 44.30 42.70 56.99 30.30 34.03
LGA 83.00 74.20 72.30 72.20 68.10 65.80 64.00 59.60 58.40 57.50 67.51 25.50 23.51
Fed-DualPrompt 97.57 83.55 82.52 79.22 76.64 76.19 75.82 75.85 75.56 78.50 80.14 19.07 10.88
PIP(Ours) 98.43 90.92 90.42 90.68 90.17 90.68 90.26 90.44 88.94 89.21 91.02 9.23 -

Table 5: Complete numerical result of consolidated methods on MinilmageNet Dataset. “Avg”
denotes the average accuracy of all tasks, ”PD” denotes performance drop, and "Imp” denotes im-
provement/gap of PIP compared to the respective method

Method 20 40 60 80 100 120 140 160 180 200 Avg PD Imp
iCaRL+FL 63.00 53.00 48.00 41.70 38.00 36.00 33.30 30.70 29.70 28.00 40.14 35.00 46.12
BiC+FL 65.30 52.70 49.30 46.00 40.30 38.30 35.70 33.00 31.70 29.00 42.13 36.30 44.13
PODNet+FL 66.70 53.30 50.00 47.30 43.70 42.70 40.00 37.30 33.70 31.30 44.60 35.40 41.66
DDE+iCaRL+FL 69.00 52.00 50.70 47.00 43.30 42.00 39.30 37.00 33.00 31.30 44.46 37.70 41.80
GeoDL+iCaRL+FL  66.30 54.30 52.00 48.70 45.00 42.00 39.30 36.00 32.70 30.00 44.63 36.30 41.63
SS-IL+FL 62.00 48.70 40.00 38.00 37.00 35.00 32.30 30.30 28.70 27.00 37.90 35.00 48.36
DyTox+FL 73.20 66.60 48.00 47.10 41.60 40.80 37.40 36.20 32.80 30.60 45.43 42.60 40.83
AFC+FL 73.70 59.10 50.80 43.10 37.00 35.20 32.60 32.00 28.90 27.10 41.95 46.60 44.31
GLFC 66.00 58.30 55.30 51.00 47.70 45.30 43.00 40.00 37.30 35.00 47.89 31.00 38.37
LGA 70.30 64.00 60.30 58.00 55.80 53.10 47.90 45.30 39.80 37.30 53.18 33.00 33.08
Fed-DualPrompt 86.27 74.55 71.16 65.88 63.33 62.03 61.34 59.88 58.20 61.29 66.39 24.98 19.87
PIP(Ours) 92.77 86.35 86.62 87.53 86.73 87.02 85.29 84.92 83.95 81.40 86.26 11.36 -

Table 6: Complete numerical result of consolidated methods on TinyImageNet Dataset. “Avg”
denotes the average accuracy of all tasks, ”PD” denotes performance drop, and "Imp” denotes im-
provement/gap of PIP compared to the respective method
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O(Baseline) = O(1) + T .Ry.(L.O(1client) + O(server)) (27)
O(Baseline) = O(1) + T.Rr.(L.O(1client) + O(1)) (28)
B
O(Baseline) = O(1) + T.Ry.L.O(E. Y | N}, + O(1)) + O(T.Rr.) (29)
b=1
B
O(Baseline) = O(1) + O(T.Ry.L.E. >  Nj;) + O(T.Ry.L.) + O(T.Rr) (30)
b=1
B
O(Baseline) = O(T.Ry.L.E. Y _ Njj) + O(T.Ry.L.) + O(T.Ry) (31)
b=1

From the definition above that Zle N}, = N},Rr =R/T,N, =T.N} =T, and L > 1 therefore
the complexity of the baseline will be

O(Baseline) = O(T.R/T.L.E.N}) + O(T.R/T.L.) + O(T.R/T) (32)
O(Baseline) = O(R.L.E.N}) + O(R.L) + O(R) (33)
O(Baseline) = O(R.L.E.N}) 34

Since N} < N and E is set as a small constant in our method i.e. 2, then the baseline complexity
will be:
O(Baseline) = O(R.L.N;) (35)

PIP Complexity:Following the pseudo-code in Algorithm [2| PIP generates prototypes when its
prototype set is empty after a local epoch of a round-r (line 21), augment the prototypes in each
local epoch (23), and updates the prototypes after local epochs (line 26-27). Knowing that generating
prototypes from 7'1” costs O(N}), augmenting the prototypes costs O(1) since it runs m € {1..5}
times, then the PIP complexity will be:

O(PIP) = O(1) + T.Rr.(O(clients) + O(server)) (36)
O(PIP)=0(1) + T.Ry.(L.O(1client) + O(server)) (37)
O(PIP) = O(1) + T.Rr.(L.O(1client) + O(1)) (38)
B
O(PIP) =O(1) + T.RT.L.O(E.(Z Nf 4+ NP + O(N}) +0(1)) + O(T.Rr) (39)
b=1

Since we have Zle N}, = NI, then we have
O(PIP) = O(1) + T.Rr.L.O(E.(N} + N}) + O(N}) + O(1)) + O(T.R7) (40)
O(PIP) = O(1) + T.Ry.L.O(E.(N}) + O(N}) + O(1)) + O(T.Rr) (41)
O(PIP) = O(1) + O(T.Ry.L.E.N}) + O(T.Ry.L.N}) + O(T.Ry.L) + O(T.Ry)  (42)
O(PIP) = O(T.Ry.L.E.N}) + O(T.Ry.L.N}) + O(T.Ry.L) + O(T.Ry) (43)
Substituting the equalities in the previous definition that Ry = R/T and N, = T.N} = T the

complexity of PIP will be

O(PIP) = O(T.R/T.L.E.N}) + O(T.R/T.L.N}) + O(T.R/T.L) + O(T.R/T) (44)
O(PIP) = O(R.L.E.N}) + O(R.L.N}) + O(R.L) + O(R) (45)
O(Baseline) = O(R.L.E.N}) (46)

Since N} < N and E is set as a small constant in our method i.e. 2, then the PIP complexity will
be:
O(Baseline) = O(R.L.N;) 47)

Our derivation shows that the baseline and our proposed method (PIP) have the same complexity i.e.

O(R.L.N;) where R is total global rounds, L is the number of selected local clients in each round
and NV, is the number of samples in each client.
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Config. Prompt Proto W.Agg Head 10 20 30 40 50 Avg PD Imp
A v 82.15 6997 67.06 6452 63.78 - - -
B v v 90.99 8546 83.65 81.99 80.90 - - -
C v v 82.13 6985 67.18 65.15 64.11 - - -
D v v v 91.37 86.46 8437 82.79 81.87 - - -
E v v 96.60 83.20 77.10 74.08 70.86 - - -
F v v v 98.90 91.80 88.80 87.25 86.78 - - -
G v v v 98.60 71.80 68.73 67.68 68.44 - - -
PIP v v v v 98.60 9290 89.57 87.78 87.14 - - -
Config. Prompt Proto W.Agg Head 60 70 80 90 100 Avg PD Imp
A v 62.99 62772 6190 61.12 60.66 65.69 2149 22.59
B v v 79.07 78.63 7899 78.69 7756 8159 1343 6.69
C v v 63.50 62.84 6278 62.16 61.35 66.10 20.78 22.18
D v v v 79.72  79.78 79.74 79.54 7847 8241 1290 5.87
E v v 68.73 71.83 70.00 70.71 70.68 7538 2592 1290
F v v v 85.52 8529 84.83 8486 84.17 87.82 1473 0.46
G v v v 69.48 7031 7098 69.77 69.94 7257 28.66 15.71
PIP v v v v 8593 85.60 8545 85.22 84.60 88.28 14.00 -

Table 7: Complete numerical result of ablation study on CIFAR100 dataset (T=10) on one seeded
runi.e. 2021. ”Avg” denotes the average accuracy of all tasks, ”PD” denotes performance drop, and
”Imp” denotes improvement/gap of PIP compared to the respective configuration

F COMPLETE NUMERICAL RESULT OF ABLATION STUDY

G COMPLETE NUMERICAL RESULT OF EXPERIMENT ON 3 BENCHMARK

DATASETS T=5 AND T=20

In this section, we present the detailed numerical results on different task sizes (T=5) and (T=20) on
CIFAR100, MinilmageNet, and TinyImageNet datasets.

CIFAR100 (T=5)

MinilmageNet (T=5)

Method 20 40 60 80 100 Avg. 20 40 60 80 100 Avg.
iCaRL+FL 77.00 59.60 5190 4440 39.60 5450 | 73.50 56.20 4620 40.20 35.50 50.32
BiC+FL 7840 60.40 5320 47.50 4120 56.14 | 72.60 56.80 49.20 4350 38.70 52.16
PODNet+FL 77.60 62.10 5630 50.80 4330 58.02 | 73.10 5840 5320 4650 4340 5492
DDE+iCaRL+FL 77.00 6020 55770 4930 4250 5694 | 7230 57.20 51.70 4430 4130 53.36
GeoDL+iCaRL+FL 7250 61.10 54.00 49.50 4450 56.32 | 71.80 59.60 52.30 46.10 42.50 54.46
SS-IL+FL 78.10 61.80 52.80 48.80 46.00 57.50 | 66.50 52.10 42.60 36.70 36.50 46.88
DyTox+FL 78.80 70.50 6390 5990 5590 65.80 | 69.60 6420 59.10 5340 4850 58.96
AFC+FL 71.10 63.80 5840 53.60 46.40 58.66 | 78.00 64.50 57.00 5130 47.30 59.62
GLFC 83.70 7550 66.50 62.10 5380 6832 | 79.70 73.40 6520 58.10 51.80 65.64
LGA 83.30 77.30 7280 67.80 63.70 7298 | 7890 7550 68.10 62.10 61.90 69.30
Fed-DualPrompt 93.15 76.88 67.55 6656 66.06 74.04 | 9435 81.13 74.67 7351 76.67 80.06
PIP(Ours) 96.75 86.35 83.57 80.68 79.71 8541 | 9530 89.68 88.52 88.44 87.32 89.85

Table 8: Complete numerical results on CIFAR100 and MnilmageNet dataset (T=5) in one-seeded

run i.e. 2021

H COMPLETE NUMERICAL RESULT OF EXPERIMENT ON SMALLER LOCAL

CLIENTS

In this section, we present the detailed numerical results of smaller local clients on CIFAR100, and

TinyImageNet datasets.
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Method 40 80 120 160 200 Avg.
iCaRL+FL 65.00 48.00 4270 3870 35.00 45.88
BiC+FL 65.70 4870 43.00 4030 3570 46.68
PODNet+FL 66.00 5030 44.70 4130 37.00 47.86
DDE+iCaRL+FL 63.00 5130 4530 41.00 36.00 47.32
GeoDL+iCaRL+FL  65.30 50.00 45.00 40.70 36.00 474
SS-IL+FL 65.00 4230 3830 35.00 3030 42.18
DyTox+FL 58.60 43.10 41.60 37.20 3290 42.68
AFC+FL 62.50 52.10 4570 4320 3570 47.84
GLFC 66.00 5530 49.00 45.00 4030 51.12
LGA 67.70 59.80 5350 4790 43.80 54.54
Fed-DualPrompt 85.10 67.23 60.25 5599 58.59 65.43
PIP(Ours) 91.20 8495 83.80 8186 79.16 84.19

Table 9: Complete numerical results on TinylmageNet dataset (T=5) in one seeded run i.e. 2021

Method 5 10 15 20 25 30 35 40 45 50 Avg
iCaRL+FL 82.00 80.00 67.00 62.00 6130 6030 57.00 5430 53.00 51.70 -
BiC+FL 82.00 77.30 6830 6400 63.70 6230 6030 58.70 55.00 53.30 -
PODNet+FL 83.00 76.30 7030 68.00 6630 67.00 6530 61.70 6130 58.70 -
DDE+iCaRL+FL 83.00 7530 69.70 65.00 67.00 63.70 59.30 58.00 60.00 55.30 -
GeoDL+iCaRL+FL  82.00 7830 7130 67.70 68.00 6530 6430 60.00 58.70 56.00 -
SS-IL+FL 83.00 7330 63.70 6130 60.30 5930 57.30 56.00 54.70 53.30 -
DyTox+FL 79.60 7830 67.10 65.60 6850 6430 63.70 61.00 58.80 59.00 -
AFC+FL 75.60 69.60 57.10 5850 4550 5540 5140 5040 4520 42.40 -
GLFC 8220 82,50 7490 7520 7330 7150 70.10 67.70 64.60 65.90 -
LGA 85.80 8590 80.70 7890 7840 7460 75.10 7130 6890 69.20 -
Fed-DualPrompt 94.80 9140 85.13 85.00 84.20 80.17 79.14 76.75 76.60 75.46 -
PIP(Ours) 98.40 96.70 92.67 91.65 90.88 88.47 88.37 86.87 87.00 86.30 -
Method 55 60 65 70 75 80 85 90 95 100 Avg
iCaRL+FL 50.30  50.00 48.70 48.00 46.70 45.00 45.00 44.00 43.30 42770 46.37
BiC+FL 52.00 5130 5030 49.70 48.00 47.00 4630 4570 4530 4430 63.23
PODNet+FL 56.30 55.00 54.00 53.00 51.00 5030 4930 48.00 4830 47.70 44.82
DDE+iCaRL+FL 5470 54.00 5330 52.00 50.70 50.00 4930 48.70 48.00 4730 45.39
GeoDL+iCaRL+FL 5530 55.00 53.70 53.00 51.70 50.70 50.00 49.00 4930 48.00 47.67
SS-IL+FL 5230 52.00 51.30 50.70 50.00 49.30 49.00 4830 48.00 47.70 46.88
DyTox+FL 56.20 5850 5830 5820 55.00 51.80 49.70 4870 49.00 52.70 49.00
AFC+FL 4130 3560 37.10 37.80 3890 3520 3440 3450 3620 33.80 3834
GLFC 63.70 6420 62.00 61.00 6020 5890 57.60 5930 56.80 56.80 46.29
LGA 68.30 67.70 6550 65.60 64.00 63.00 63.10 6370 61.60 60.50 47.62
Fed-DualPrompt 75.60 7280 7192 7237 7089 7094 71.16 71.11 70.89 7030 60.58
PIP(Ours) 84.53 83.70 82.88 83.16 82.08 82.54 82.69 8239 82.78 8149 70.27

Table 10: Complete numerical results on CIFAR100 dataset (T=20) in one-seeded run i.e. 2021

I COMPLETE NUMERICAL RESULT OF EXPERIMENT ON SMALLER GLOBAL

ROUNDS

In this section, we present the detailed numerical results of smaller global rounds on CIFAR100, and

TinyImageNet datasets.
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Method 5 10 15 20 25 30 35 40 45 50 Avg
iCaRL+FL 83.00 66.00 6130 56.00 5630 53.00 49.70 47.00 4630 46.00 -
BiC+FL 8230 64.70 59.00 5830 57.00 5470 5230 5030 49.00 47.70 -
PODNet+FL 81.70  63.30 6030 59.30 5830 5630 55.00 53.30 51.70 50.00 -

DDE+iCaRL+FL 80.00 60.70 5870 56.30 57.00 5530 53.00 51.70 5030 49.30 -
GeoDL+iCaRL+FL 8230 66.30 62.70 61.00 6030 58.00 56.30 5530 53.00 51.30 -

SS-IL+FL 80.00 6530 61.70 5730 5630 54.00 51.30 50.00 4930 48.30 -
DyTox+FL 71.60 5270 61.60 5320 56.80 4890 45.70 49.40 39.10 44.10 -
AFC+FL 7240 53.00 51.80 38.10 41.40 39.60 4120 3720 33.70 3240 -
GLFC 84.00 71.70 70.00 69.30 67.30 6630 61.00 60.70 5930 58.70 -
LGA 78.80 79.40 76.80 73.50 69.80 6850 67.30 66.10 63.80 62.10 -
Fed-DualPrompt 96.20 9450 88.73 86.80 86.04 86.80 85.83 85.63 86.11 85.90 -
PIP(Ours) 97.80 96.70 9433 9245 9192 91.70 91.09 90.80 91.07 90.34 -
Method 55 60 65 70 75 80 85 90 95 100 Avg
iCaRL+FL 44.00 4230 40.00 39.70 3730 36.00 3470 3430 33.00 32.00 37.33
BiC+FL 46.70 44.00 42770 4130 4030 38.00 37.00 3630 3470 33.00 39.40
PODNet+FL 4930 48.00 47.00 4530 4470 4370 42.00 39.70 38.70 37.00 43.54

DDE+iCaRL+FL 48.70 4830 4770 46.70 4570 4430 4230 40.00 38.30 3730 4393
GeoDL+iCaRL+FL  50.00 48.70 48.00 46.30 45.00 44.00 41.70 40.00 38.00 36.70 43.84

SS-IL+FL 47.00 45.00 4430 43.00 4130 40.70 3930 38770 37.00 36.00 41123
DyTox+FL 37.70 3520 33.60 3150 28.60 2730 27.10 2650 25.80 2490 29.82
AFC+FL 29.70 3350 29.60 30.20 25.10 25.10 26.10 24.60 24.00 23.50 27.14
GLFC 5530 53.00 52.00 50.30 49.70 4730 46.00 42770 4030 39.00 47.56
LGA 60.60 59.80 5720 56.80 55.10 5470 54.10 5320 51.60 4820 55.13
Fed-DualPrompt 85.82 8597 8578 84.63 8471 8453 8281 81.73 8196 8235 84.03
PIP(Ours) 89.69 90.03 89.97 8943 89.20 89.14 88.38 87.39 87.89 88.04 88.92

Table 11: Complete numerical results on MinilmageNet dataset (T=20) in one-seeded run i.e. 2021

Method 10 20 30 40 50 60 70 80 90 100 Avg
iCaRL+FL 67.00 5930 54.00 4830 46.70 4470 43.30 39.00 37.30 33.00 -
BiC+FL 67.30 59.70 5470 50.00 4830 4530 43.00 40.70 38.00 33.70 -
PODNet+FL 69.00 5930 55.00 51.70 50.00 46.70 43.70 41.00 39.30 38.00 -

DDE+iCaRL+FL 70.00 5930 5330 51.00 4830 4570 4230 40.00 38.00 36.30 -
GeoDL+iCaRL+FL  66.30 56.70 51.00 49.70 4470 4230 41.00 39.00 37.30 35.00 -

SS-IL+FL 66.70 54.00 47.70 4530 4230 42.00 40.70 38.00 36.00 34.30 -
DyTox+FL 77.60 7020 6340 56.60 52.00 4460 51.60 39.60 41.50 39.00 -
AFC+FL 74.00 6290 57.60 5420 4510 4440 40.70 3690 33.00 33.60 -
GLFC 68.70 6330 61.70 57.30 56.00 53.00 5030 47.70 46.30 45.00 -
LGA 74.00 67.60 6490 61.00 5890 5570 53.60 5130 50.10 48.80 -
Fed-DualPrompt 7940 7890 79.00 78.10 76.48 77.53 77.14 76.85 76.04 7548 -
PIP(Ours) 89.20 87.80 86.93 85.00 84.12 8570 86.31 86.62 86.76 86.44 -
Method 110 120 130 140 150 160 170 180 190 200 Avg
iCaRL+FL 32.00 30.30 28.00 27.00 2630 2530 2470 24.00 2270 22.00 36.75
BiC+FL 3270 3230 3030 29.00 27.70 2730 26.00 2570 2430 2330 37.97
PODNet+FL 37.00 35.70 3470 34.00 33.00 3230 31.00 30.00 29.30 28.00 40.94

DDE+iCaRL+FL 35.00 33.70 32.00 31.00 30.30 30.00 28.70 2830 2730 26.00 39.33
GeoDL+iCaRL+FL  33.70 32.00 31.00 30.30 2870 28.00 27.30 2630 25.00 2470 37.50

SS-IL+FL 33.00 31.00 2930 2830 27.70 27.00 26.30 26.00 25.00 2430 36.25
DyTox+FL 37.80 31.20 3420 30.60 29.80 2920 28.30 2750 26.80 1530 41.34
AFC+FL 30.80 2890 27.10 22.80 2450 2360 22.10 20.70 1840 18.10 3597
GLFC 42770  41.00 40.00 3930 38.00 36.70 3530 34.00 33.00 31.70 46.05
LGA 4520 43770 42.80 41.20 4050 3890 3740 36.60 35.10 33.80 49.06
Fed-DualPrompt 75.20 7537 7523 7390 73776 72.80 7327 7220 7228 71.69 7553
PIP(Ours) 86.80 86.22 86.22 85.67 8581 8430 8435 8349 83.72 8333 85.74

Table 12: Complete numerical results on TinylmageNet dataset (T=20) in one-seeded run i.e. 2021
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Method 10 20 30 40 50 60 70 80 90 100 Avg
GLFC-10clients 90.00 8230 77.00 7230 65.00 6630 59.70 5630 50.30 50.00 66.92
GLFC-3clients 86.70 7450 71.70 65.63 65.26 60.37 5451 52.63 48.30 4456 62.42
GLFC-2clients 85.00 71.80 65.10 64.58 5496 51.00 4479 49.69 4142 4561 57.39
LGA-10clients 89.60 8320 7930 76.10 7290 71.70 6840 6570 64.70 6290 73.45
LGA-3clients 8550 7430 7570 72.80 71.02 6650 6457 61.04 6122 56.05 68.87
LGA-2clients 86.40 7635 78.07 6775 6340 62.67 6157 56.61 6039 53.61 66.68
Fed-DualPrompt-10clients  96.60 83.20 77.10 74.08 70.86 68.73 71.83 70.00 70.71 70.68 75.38
Fed-DualPrompt-3clients 88.30 83.20 80.27 7745 7426 71.73 7391 7334 7242 7472 76.96
Fed-DualPrompt-2clients 90.10 7695 7193 7140 68.14 69.55 69.14 67.66 6793 6892 72.17
PIP(Ours)-10clients 98.60 92.90 89.57 87.78 87.14 8593 85.60 8545 8522 84.60 88.28
PIP(Ours)-3clients 98.40 92.00 90.57 89.03 87.72 8330 83.69 8271 8236 80.88 87.06
PIP(Ours)-2clients 96.70 90.15 88.80 86.70 83.34 79.20 79.34 7830 7794 77.28 83.78
Table 13: Complete numerical results on CIFAR100 (T=10) with smaller participating clients in
one-seeded run i.e. 2021
Method 20 40 60 80 100 120 140 160 180 200 Avg
GLFC-10clients 66.00 5830 5530 51.00 47.70 4530 43.00 40.00 3730 35.00 47.89
GLFC-3clients 55.60 37.70  26.37 19.88 - - - - - - 34.89
GLFC-2clients 53.40 3920 27.40 11.08 - - - - - - 32.77
LGA-10clients 70.30  64.00 60.30 58.00 55.80 53.10 4790 4530 39.80 37.30 53.18
LGA-3clients 7330 69.55  60.30 52775  47.16 - - - - - 60.61
LGA-2clients 714 5975 57.167 54425 49.96 - - - - - 58.54
Fed-DualPrompt-10clients  86.60 75.70  71.33 66.33  64.28 62.83 6227 61.19 5999 62.60 67.31
Fed-DualPrompt-3clients 73.00 70.15 68.30 65.20 63.78 6222 6323 6244 6447 6835 66.11
Fed-DualPrompt-2clients 67.50 6395 6550 66.43 68.30 6890 67.66 67.25 6537 6943 67.03
PIP(Ours)-10clients 92.70 87.90 86.83 88.23 87.04 87.18 8596 85.13 84.62 8235 86.79
PIP(Ours)-3clients 9040 87.10 85.03 86.90 8592 8505 83.64 82.64 8240 80.95 85.00
PIP(Ours)-2clients 90.10 84.40 82.97 84.23 8246 8233 8033 78.51 78.61 77.34 82.13
Table 14: Complete numerical results on TinyImageNet (T=10) with smaller participating clients in
one-seeded run i.e. 2021. GLFC and LGA performance is averaged from their first 4 and 5 tasks
respectively due to crash
Rounds  Method 10 20 30 40 50 60 70 80 90 100 Avg
10 Fed-DualPrompt  88.30 83.20 80.27 7745 7426 71.73 7391 7334 7242 7472 76.96
10 PIP (Our) 98.40 92.00 90.57 89.03 87.72 8330 83.69 8271 8236 80.88 87.06
8 Fed-DualPrompt 90.10 7695 7193 7140 68.14 6955 69.14 67.66 6793 6892 72.17
8 PIP (Our) 96.70 90.15 88.80 86.70 83.34 79.20 79.34 7830 77.94 77.28 83.78
6 Fed-DualPrompt 8590 8540 81.37 7853 74.14 72.68 73.16 72.63 73.77 7378 77.13
6 PIP (Our) 97.60 91.40 87.03 86.10 8536 82.13 82.00 81.69 80.80 80.15 85.43
4 Fed-DualPrompt 8530 84.40 81.10 78.13 73.82 7195 73.00 7128 7242 7147 76.29
4 PIP (Our) 97.70 93.65 88.13 86.38 84.20 82.97 8226 8136 8127 79.87 85.78
2 Fed-DualPrompt 88.20 81.45 78.07 7645 7410 72.60 71.06 69.98 6934 6891 75.02
2 PIP (Our) 97.80 91.05 86.40 8333 8342 81.27 81.13 82.01 81.01 80.28 84.77

Table 15: Complete numerical results on CIFAR100 (T=10,

in one-seeded run i.e. 2021
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Rounds  Method

20

40

60

80

100

120

140

160

180

200

Avg

Fed-DualPrompt
PIP

86.60
92.70

75.70
87.90

71.33
86.83

66.33
88.23

64.28
87.04

62.83
87.18

62.27
85.96

61.19
85.13

59.99
84.62

62.60
82.35

67.31
86.79

Fed-DualPrompt
PIP

74.80
90.10

72.05
87.10

71.60
87.17

70.08
87.53

68.14
86.16

66.72
86.33

66.63
85.23

65.80
83.98

65.57
83.06

71.81
81.64

69.32
85.83

Fed-DualPrompt
PIP

73.40
91.50

73.10
87.20

72.07
87.97

70.60
89.30

69.30
87.76

67.68
87.78

66.69
86.20

67.60
85.88

66.43
84.78

71.02
82.94

69.79
87.13

Fed-DualPrompt
PIP (Our)

72.30
90.70

72.05
87.15

73.27
87.17

71.60
87.43

71.48
86.98

69.70
86.75

68.74
85.17

67.20
84.05

67.26
83.26

69.40
82.11

70.30
86.08

Fed-DualPrompt
PIP (Our)

—_ =
NN-&LO\O\OOOOOO

73.90
89.20

75.55
87.90

75.10
87.63

74.28
88.48

72.44
87.52

72.75
86.68

71.51
84.86

69.45
83.00

68.78
83.31

70.71
82.14

72.45
86.07

Table 16: Complete numerical results on TinyImageNet (T=10, local clients = 3) with smaller rounds

in one-seeded run i.e. 2021
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