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Abstract

Language models have achieved significant success in
demonstrating intelligent capabilities. Incorporating these
models into clinical healthcare can greatly benefit society.
However, they face challenges in clinical tasks due to the
need for domain-specific knowledge and expertise and the
limited availability of relevant data samples for fine-tuning.
Prompt tuning and optimization with fixed language model
weights have emerged as highly effective strategies to address
this. These approaches adapt pre-trained language models for
diverse downstream tasks, particularly in data-scarce (few-
shot) settings. In clinical healthcare, natural-language-level
discrete prompt optimization is preferred for its superior in-
terpretability and reliability compared to continuous, differ-
entiable prompt vectors. However, the few-shot discrete clin-
ical prompt optimization is unexplored. To tackle this chal-
lenge, in this paper, we introduce a novel scheme, Clinic-
Prompt, that models the non-differentiable discrete prompt
optimization as a reinforcement learning problem and incor-
porates clinical knowledge into the optimization to enhance
the performance in two clinical applications: multi-label In-
ternational Classification of Diseases (ICD) code classifica-
tion and mortality prediction. Furthermore, we demonstrate
the applicability of Clinic-Prompt in a large language model
(GPT-4o-mini) setting for the Medication Status Extraction
task. Experimental results demonstrate the effectiveness of
Clinic-Prompt, improving the performance and applicability
of pre-trained models for clinical tasks, with a 2.17% increase
in F1-micro and 2.32% increase in accuracy, respectively.

Introduction
Language models have demonstrated remarkable intelli-
gence capabilities to process, understand, and respond to
complex queries, which makes them promising candidates
for incorporation into clinical healthcare applications. Also,
the rapid growth of electronic health records has led to an in-
creased demand for automated clinical decision support sys-
tems. However, many clinical tasks are challenging due to
the large number of classes, complex medical terminology,
and the need for domain expertise. For example, the multi-
label classification task of assigning International Classifi-
cation of Diseases (ICD) codes from the MIMIC-III dataset
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(Johnson et al. 2016) involves 8,692 unique ICD-9 codes.
The subsequent MIMIC-IV dataset (Johnson et al. 2023) in-
creases this number to 14,092 unique ICD-9 and ICD-10
codes and updates the class format. The rapid changes in the
dataset format add to the complexity and challenge of adapt-
ing new updates. Currently, most proposed methods rely on
fine-tuning models to enhance Language Model (LM) per-
formance in this domain, often requiring external domain
knowledge and expertise for each specific task as in KEPT
(Yang et al. 2022) or MSMN (Yuan, Tan, and Huang 2022).

However, in the medical domain, large amounts of data
to fine-tune the model are not always available. In this sit-
uation, few-shot prompt training is a promising approach.
This approach can solve a wide range of problems using
large pre-trained language models (LMs), including left-to-
right models such as GPTs (Radford et al. 2019; Brown et al.
2020) and masked LMs such as BERT (Devlin et al. 2018),
RoBERTa (Liu et al. 2019), etc. Compared to conventional
fine-tuning that expensively updates the massive LM param-
eters for each downstream task, prompting concatenates the
inputs with an additional piece of text that steers the LM to
produce the desired outputs, where it can be made automat-
ically. For example, using AutoPrompt (Shin et al. 2020) or
RLPrompt (Deng et al. 2022).

Clinical knowledge-enriched language models, for exam-
ple, Clinical-Longformer (Li et al. 2023) or large model like
BioMedLM (Bolton et al. 2024), have been used for fine-
tuning on downstream clinical tasks. However, the explo-
ration of leveraging these models for automatic prompt ap-
proaches remains relatively underexplored. Previous works
focus on prompt engineering by exploiting manual templates
as well as external medical knowledge as in (Taylor et al.
2023; Lu, Zhao, and Wang 2023) make it less applicable for
different tasks. This gap presents an opportunity to investi-
gate how prompt optimization can improve the performance
and applicability of pre-trained models in clinical settings.

Additionally, in clinical healthcare, natural-language-
level discrete prompt optimization is preferred for its supe-
rior interpretability and reliability compared to continuous,
differentiable prompt vectors (Deng et al. 2022; Xue et al.
2024). However, the non-differentiable discrete prompt op-
timization can not use the gradient-based optimization meth-
ods. In this paper, we model the discrete clinical prompt op-
timization into a reinforcement learning (RL) problem and



redesign the policy model, rewards, and incorporates clini-
cal knowledge. First, a Policy LM to generate the discrete
prompt automatically. Secondly, a single-layer MLP is in-
serted in the middle of the frozen Policy LM. This layer
is trained using Reinforcement Learning (RL) by adjust-
ing the reward function of the downstream task. Lastly, a
Task LM with a simple verbalizer setting is modified to en-
sure the framework’s applicability across different down-
stream tasks. Our proposed framework, Clinic-Prompt, im-
proves RL-based optimization results by leveraging the clin-
ical model in the Policy LM to enable prompt searching in
clinical space and further feeding input-aware Policy LM.
In the few-shot setting, Clinic-Prompt also consistently im-
proves upon the baseline and achieves results similar to the
full-set setting.

Related Work

The existing prompt-based approaches for clinical tasks are
not yet prominent, often relying on static templates to im-
prove fine-tuning strategies (Yang et al. 2022; Yuan, Tan,
and Huang 2022; Wang, Xiao, and Sun 2023; Shoham and
Rappoport 2023). On the other hand, few-shot prompt learn-
ing studies adapting GPT-3 to clinical tasks have observed a
decrease in performance compared to general domain tasks
(Moradi et al. 2021; Gutiérrez et al. 2022). This suggests
that even large PLMs may not yield optimal results in spe-
cialized domains, highlighting the need for domain-specific
PLMs. Other studies used frozen PLMs for zero-shot classi-
fication (Sivarajkumar and Wang 2022) and generative tasks
(Boyle et al. 2023), the other (Taylor et al. 2023) com-
bined various handcrafted discrete prompt templates with
soft prompt learning strategies, finding that prompt learn-
ing outperformed traditional classification head training on
frozen PLMs. They also found that smaller, domain-specific
PLMs can be more effective than large, general PLMs.

The prompt learning strategy itself often resorts to tuning
soft prompts (e.g., embeddings) (Li and Liang 2021; Qian
et al. 2022; An et al. 2022) which fall short of interpretability
and applicability when gradients of PLMs are not accessible
and often expensive to compute. It is thus often desirable to
use discrete prompts which consist of concrete tokens from
a vocabulary. In the other hand, previous work have found
that the choice of prompt format, training examples, and
prompt order can cause the performance to vary quite sig-
nificantly (Zhao et al. 2021). Thus, effort have been made
to explore discrete prompt formation strategy by selecting
from multiple paraphrased prompts (Prasad et al. 2023; Hao
et al. 2022), using gradient information to edit the prompt
tokens (Shin et al. 2020), and modeling searching of vocabu-
lary (Deng et al. 2022) and editing space (Zhang et al. 2023)
with RL-based framework.

Our work builds upon these finding by introducing dis-
crete prompt optimization for clinical tasks. Furthermore,
we also explore how exploiting the vocabulary space of clin-
ical PLM affecting the prompt generation process. In ad-
dition, we investigate the impact of few-shot settings on
prompt learning.

Methods Few Auto Opt LLM
1) Healthprompt ✗ ✗ ✗ ✗
2) Clinical Manual & CoT ✓ ✗ ✗ ✓
3) RLPrompt ✓ ✓ ✓ ✗
Clinic-Prompt (Ours) ✓ ✓ ✓ ✓

Table 1: Comparisons between Clinic-Prompt and related
works of prompt learning in clinical and non-clinical set-
ting. Few: few-shot, Auto: automatic, Opt: optimize. Works
of 1) Sivarajkumar and Wang (2022), 2) Taylor et al. (2023);
Sivarajkumar et al. (2024), and 3) Deng et al. (2022)

Figure 1: Overview of Clinic-Prompt: RL-based discrete
prompt optimization using input-aware knowledge for clin-
ical tasks. Step 1: input-aware prompt generation via Policy
LM. Step 2: Reinforcement Learning (RL) optimization us-
ing a single-layer MLP. Step 3 : Task LM: masked LM mod-
eling for classification tasks. All of LM are kept frozen, with
only the task-specific MLP (in red) being trained.

Methods
In this section, we will describe the prompt and reward de-
sign in the clinical tasks, specifically in three tasks: Mor-
tality prediction, ICD Code Classification, and Medication
Status Extraction.

Adapting RL-based Discrete Prompt Optimization
for Clinical Tasks
Combination of discrete text prompt z with input x is
feasible to execute various NLP tasks directly by using
a pre-trained LM’s generative distribution PLM(y|z,x),
without needing to fine-tune the model (Brown et al. 2020;
Gao, Fisch, and Chen 2021). The LM here is a masked
language model (MLM) such as BERT (Devlin et al.
2018) or a similar model for longer input like Longformer
(Beltagy, Peters, and Cohan 2020) where it is the case for
many clinical documents, and y is the class-label token or
verbalizer in the mask position. See Figure 1 (right) for
illustrative examples. We use yLM(z,x) to denote the LM
output on x prompted by z.

Our goal is to find the optimal discrete prompt z∗ from
vocabulary V to maximize some downstream performance



measure R of yLM(z∗,x). The metric R(y) can be as sim-
ple as a match with gold label y∗. Assuming the prompts
have fixed length T , we write the task of discrete prompt
optimization in the general format below:

max
z∈VT

R(yLM(z,x)) (1)

Automatically searching for discrete prompt z can be for-
mulated as a Reinforcement Learning (RL) problem as sim-
ilarly has been done by Deng et al. (2022) and Zhang et al.
(2023). An agent selects prompt tokens [z1, ..., zT ] one by
one to maximize the reward R(yLM(z,x)). At time step t,
the agent receives previous prompt tokens z<t and generates
the next prompt token zt according to a policy π(zt|z<t).
After the agent finishes the entire prompt ẑ, it receives the
task reward R(yLM(ẑ,x)). Parameterizing the policy net-
work with θ, we can rewrite the problem as

max
θ

R(yLM(ẑ,x)), ẑ ∼
T∏

t=1

πθ(zt|z<t). (2)

The RL formulation above has the key advantage of not
needing gradient access to the LM, treating it instead as a
black-box function. This enables us to optimize prompts for
LMs whose gradients are too expensive to compute, or LMs
that are solely available as inference APIs (e.g., GPT-4).

The policy network πθ is parameterized to adapt a frozen
pre-trained LM (i.e., policy LM) with a simple MLP layer
that contains all the parameters θ to be trained. During train-
ing, we compute the MLP gradients by back-propagating
through the policy LM. After training, we discard the MLP
and simply use the learned discrete text prompt for infer-
ence. Figure 1 (left) illustrates the policy LM architecture.
Specifically, we use the LM to extract contextual embed-
dings of partial prompt ẑ<t, apply the added task-specific
MLP layer to compute the adapted embeddings, and pass
the output into the model’s original LM head to obtain the
next prompt token probabilities.

Task LM Design for In-hospital Mortality Prediction
In-hospital mortality is a task that describes whether a pa-
tient died during the current admission and is a binary clas-
sification task (Van Aken et al. 2021). We adopt the typical
prompting setting (Brown et al. 2020; Schick and Schütze
2021b), which solves classification by token infilling for an
MLM like BERT by selecting tokens that correspond to a set
of predetermined class labels, a.k.a., verbalizers.

However, in the clinical-domain, selecting vocabulary for
verbalizers presents a challenge due to the potential speci-
ficity of certain terms in the LM vocabulary. To address this,
we present the mortality binary classification task to assign a
binary label yi ∈ {0, 1} which is represented by vocabulary
token yes (or no) in the incorporated [MASK] token corre-
sponds with the label deceased. This approach determines
whether an instance is positive (or negative) for the given
class, which gives an input format z.deceased.[MASK].x.
Utilizing this format facilitates its application to other tasks
with unique label names, enhancing adaptability and con-
sistency across different classification tasks. In the next sec-

tion, we use a similar format for the multi-label classification
task.

Task LM Design for ICD Coding Multi-Label Clas-
sification Automatic International Classification of Dis-
eases (ICD) coding aims to assign multiple ICD codes to
a medical note input with an average length of 3,000+
tokens, making it a multi-label classification task. Simi-
lar to the previous task, we assign a binary label yi ∈
{0, 1} for each ICD code in the label space Y in the in-
corporated [MASK] token, where 1 means that input is pos-
itive for an ICD disease or procedure and i ∈ [1, Nc].
We reformulate multi-label classification task input format
as z1.c1 : [MASK], . . . , zNc .cNc : [MASK].x. following Yang
et al. (2022). For each candidate code, ci is a short code
description phrase in a free text. For instance, code 40.0 has
description incision of lymphatic structures. Code descrip-
tions c is the set of all Nc numbers of ci.

Task LM Design for Medication Status Extraction The
medication status extraction task extracts a list of medica-
tions from medical notes and labels each with a status mod-
ifier: active, discontinued, or neither. We will use this task
for LLM evaluation using OpenAI API. This task can be
split into two subtasks: extraction and multiclass classifica-
tion (Agrawal et al. 2022). We only evaluate the classifica-
tion task and use Structured Output features from OpenAI
API for the extraction part. We use the template of the prior
work (Sivarajkumar et al. 2024) for the task input format.

Reward Function Design Both in-hospital mortality pre-
diction and ICD coding tasks are formulated in a similar
fashion, which is a binary classification for each possible
class, making it easy to design a general reward function.
The classification task aims to correctly assign input text x
to its ground truth label y from a set of classes Y . Given
prompt z and training example (x, y), we compute the re-
ward similarly to hinge loss as the gap between the label
probability and the highest probability from other classes.
Using the short hand Pz(y) := PLM(y|z,x) to denote the
probability of label y, we can write the gap as Gapz(y) :=
Pz(y) − maxy′ ̸=yPz(y

′). The gap value is positive when
the prediction is correct and negative otherwise. We denote
Correct := 1[Gapz(y) > 0]. For a correct prediction, we
multiply the positive reward by a large number to signal its
desirability. The resulting reward function in general for bi-
nary classification is defined as:

R(x, y) = λ1−Correct
1 λCorrect

2 Gapz(y) (3)

Adjusting Equation 3 to ICD coding multi-label classifica-
tion task is straightforward as follows:

R(x, y) =
1

|Y|
Σi∈|Y|λ1−Correct

1 λCorrect
2 Gapz(yi) (4)

For the medication status extraction task, we set up the
predicted class to have a probability of 1 and all other classes
to have a probability of 0, similar to the work of Xue et al.
(2024). For instance, when GPT-4 extracts and classifies the
status medication insulin as active, we assign a probability
of 1 to the active class and 0 to the other two classes. The



designated probabilities are then used to compute the Gap,
where subsequent steps remain the same as in Equation 4.

Replacing General Policy LM with
Domain-Specific LM
The RL approach explores the prompt in the vocabulary V
space guided by the reward signals. This is important as
prompt generation for clinical application needs the flex-
ibility of the policy network to adjust it to more suit-
able LM’s vocabulary. Considering previous works (Schick
and Schütze 2021a; Gao, Fisch, and Chen 2021), simple
words used to define template such as It was .[Input]

or [Input]. In summary ., where we can observe
came from general, not specific-domain vocabulary. How-
ever, for clinical application (Sivarajkumar and Wang
2022; Taylor et al. 2023) showed that hand-crafted
templates with clinical-domain influenced prompt may
be more suitable, such as [Input]. Disease: . and
[Input]. disorder.

This motivates us to explore the prompt space by chang-
ing the policy network between general LM and clinical LM,
and examine its impact on the classification performance.
After training the policy, we select tokens greedily during
inference to produce a deterministic prompt. Later, from the
experiment, we observed that changing the general LM used
in the policy network to clinical LM does not suffice to get
a clinical-domain influenced prompt.

We summarised the average sequence of length as in Gee
et al. (2022) on prompts generated from clinical LM, using
both general and clinical domain-specific tokenizers. Let T
be a tokenizer associated with vocabulary V , given string w,
the mapping function is T : w → (s1, . . . , sn), si ∈ V .
Different tokenizers will have different mapping functions
which result in different sequences of token, e.g., clini-
cal domain-specific terms represented as a single token in
BioMedLM (Bolton et al. 2024) and are not broken down
into multiple tokens compared as in GPT2. However, the
observation shows that there is no difference in the average
length of the sequence, which indicates knowledge from the
clinical LM vocabulary was not transferred. Later, we pro-
pose to improve this problem in the next section.

Input-aware RL-based Discrete Prompt
Optimization
Querying LM with category names can generate additional
cues and knowledge of disease as used in Liu et al. (2023).
Inspired by that, we inserted an input-aware template as an
initial token replacing the default < |endoftext| > token
to trigger the policy network in generating clinical prompts.
Our template is defined as characterize ci zi where i ∈
[1, Nc] and c is a knowledge variable that could be label
name in general or any knowledge related to each class.
The policy network generates input-aware prompt repeti-
tively [z1, . . . , zNc

] so that each class has a different prompt.
We call our proposed scheme Clinic-Prompt scheme which
is illustrated in Figure 1.

Experiments
The proposed framework, Clinic-Prompt, was applied to
both PLM and LLM to ensure it works in both settings. It
was tested on three clinical tasks: mortality prediction (bi-
nary classification), ICD Coding (multilabel classification)
and medication status extraction. The first two tasks utilized
the MIMIC dataset and publicly available PLM. The third
task used the CASI-based dataset and LLM to ensure com-
pliance with the MIMIC dataset privacy rules regarding pub-
lic API.

Dataset
We use MIMIC-III-50 dataset for the multi-label classifica-
tion task. MIMIC-III-50 is a subset of the original MIMIC-
III data that contains the 50 most frequent codes. Data is
generated and split following the prior works (Mullenbach
et al. 2018; Yang et al. 2022). For task In-hospital mortal-
ity prediction, we generate the Mortality Prediction (MORT)
subset from MIMIC-III using steps used in Van Aken et al.
(2021). For the Medication Status Extraction task, we took
the subset from (Agrawal et al. 2022), which is built on top
of the CASI dataset (Moon et al. 2014).

Few-shot settings include the creation of subset MIMIC-
50-few and MORT-few, generated by down-sampling from
the original MIMIC-III-50 and MORT datasets, respectively.
In the K-shot setting, we do uniform random sampling from
the original set so that each class has at least K samples, pre-
serving the class ratio. It is worth noting that our MIMIC-50-
few is different from the MIMIC-III-few used in Yang et al.
(2023) as they sample from the bigger MIMIC-III dataset,
therefore producing larger ICD codes. We chose 5-shot and
16-shot to align with the prior works (Yang et al. 2022; Tay-
lor et al. 2023).

Models
For ICD Code and Mortality Prediction tasks, we use KEPT-
Longformer1 (Yang et al. 2022) models as the Task LM, then
apply templates shown in the previous section during infer-
ence. We chose longformer-based LMs because the MIMIC-
III dataset has long input text with an average of 3000+ to-
kens, beyond some common LMs capability (Devlin et al.
2018; Liu et al. 2019) and KEPTLongformer is one of the
state-of-the-art Longformer-based for ICD Code classifica-
tion tasks. For Medication Status Extraction, we use Ope-
nAI GPT-4o mini model2, specifically ”gpt-4o-mini-2024-
07-18” accessed via API. All evaluations are performed with
Policy and Task LMs maintained in a frozen state, solely
used for inference. This entails inputting tokens and retriev-
ing logits without accessing their internal architecture or pa-
rameters.

Pre-Processing and Knowledge Variable
For the ICD task we remove characters of the input data as in
Yang et al. (2022)3. We also chose processed code descrip-

1https://huggingface.co/whaleloops/keptlongformer
2https://openai.com/index/gpt-4o-mini-advancing-cost-

efficient-intelligence/
3https://github.com/whaleloops/KEPT



Scheme Prompt
Manual Prompt ”is”, ”it is”, ”is a”
Healthprompt
(Taylor et al. 2023;
Sivarajkumar and
Wang 2022)

”disease”, ”patient is on the path to”

Prefix-A (Agrawal
et al. 2022)

”Which medications are mentioned
and whether they are active, discon-
tinued, or neither”

CoT-S (0-shot)
(Sivarajkumar et al.
2024)

”Label any medications in the clin-
ical note as active, discontinued, or
neither. Think step by step.”

CoT-S (1-shot)
(Sivarajkumar et al.
2024)

”EXAMPLE: Label any medications
in the clinical note as active, discon-
tinued, or neither. Text: 2̈. Prior ma-
jor leg infection. 3. Penicillin allergy.
PLANS: Add Fortaz to vancomycin
and DC clindamycin. Will also give
one dose of tobramycin. If we do
another I&D or dressing change, it
would be of value to do swab cul-
ture of the wound to see what is colo-
nizing it superficially.” \n ANSWER:
1. Penicillin: Neither (doesn’t specif-
ically mention active or discontinued,
if it’s an allergy it’s labeled as nei-
ther), 2. Fortaz: Active (states it was
added to vancomycin, adding indi-
cates it’s an active medication), 3.
Vancomycin: Active (text states For-
taz was added to Vancomycin, adding
indicates it’s an active medication),
4. Clindamycin: Discontinued (DC
stands for discontinued). \n QUES-
TION: Using the stored example, la-
bel any medications in the text as ac-
tive, discontinued, or neither. Text:”

Clinic Prompt ”{GENERATED PROMPT} In the
clinical note, extract the medication
and its current status as active, dis-
continued, or neither. Clinical note:”

Table 2: Handcrafted prompts used in all experiments

tions available from the KEPT repository as the knowledge
variable. These code descriptions are shorter than the ICD 9
descriptions in Mullenbach et al. (2018)4. For the Mortality
prediction, we apply all pre-processing steps in Van Aken
et al. (2021) to the input and use deceased as the knowl-
edge variable. For medication status extraction we did not
do any pre-processing and use medication as the knowl-
edge variable.

Experiment Setup
Baseline for PLM setting The first evaluation goal is to
observe how Clinical LM and input-aware strategy affect
classification performance. As baseline, we show the perfor-
mance of non-prompt masked LM, whose design is men-
tioned in section and , excluding the optimized prompt
z part. We compare three schemes: the manually crafted

4https://github.com/jamesmullenbach/caml-mimic

prompt, the RL-base, and Clinic-Prompt. We use both gen-
eral and clinical manually crafted prompts from (Taylor et al.
2023), detailed template in Table 2. For RL-base and Clinic-
Prompt we compare the use of DistilGPT2 and BioMedLM
for Policy LM. DistilGPT2 (Sanh 2019) is chosen as a gen-
eral LM that is also used in the prior approach, RLPrompt
(Deng et al. 2022), while BioMedLM (Bolton et al. 2024)
is chosen as one of the recent generative LM that trained on
biomedical data.

In the second evaluation, we explore the robustness of RL-
based discrete optimization schemes in the few-shot setting
by training the RL model using MIMIC-50-few and MORT-
few datasets. In this evaluation, we evaluate schemes us-
ing clinical LM in both their Policy LM (BioMedLM) and
Task LM (KEPTLongformer), where it shows in the previ-
ous evaluation achieved the best performance.

We evaluate both evaluation schemes by calculating the
F1-micro result on each task. We use F1-micro as it is com-
monly used in multi-label classification tasks and to align
with prior works (Mullenbach et al. 2018; Yang et al. 2022).
Similar to Yang et al. (2022), we use a threshold from the
validation set when calculating the F1-score.

Baseline for LLM setting In our third evaluation, we aim
to demonstrate that our scheme can be effectively applied to
more recent large language model (LLM). Specifically, we
use the Medication Status Extraction task and the GPT-4o-
mini OpenAI API to replace the Task LM part of the Clinic-
Prompt framework. We compare our approach with the pre-
fix and Chain-of-Thought schemes presented by Sivarajku-
mar et al. (2024), and additionally, we incorporate a prefix
method from Agrawal et al. (2022).The evaluation is con-
ducted in both zero-shot and one-shot settings similar to
(Sivarajkumar et al. 2024) with Conditional Accuracy met-
ric as in Agrawal et al. (2022). Each evaluation is run twice
(baselines) and three times (Clinic-Prompt) to account for
the non-deterministic nature of the GPT-4o-mini API.

Results
The first evaluation result can be seen in Table 3. We can see
that RL-based discrete prompt optimization approaches, in
general, can be used to improve LM performance in the clin-
ical domain. Our proposed scheme, Clinic-Prompt, achieved
the highest F1-micro. This improvement occurs in both ICD
Code classification and Mortality prediction tasks.

For the second evaluation, the results can be seen in Ta-
ble 4. Consistent with the results in Table 3, our proposed
scheme improves the original KEPTLongformer model even
using a small amount of data. The Clinic-Prompt scheme
trained in 5-shot or 16-shot settings maintains a higher F1
score than the baseline in both tasks.

The third evaluation is shown in Table 5. The Clinic-
Prompt scheme demonstrates significant improvements in
Medication Status Extraction tasks under few-shot settings.

Adapting RL-based Discrete Prompt Optimization
in Clinical Tasks
Our first attempt to adapt RL-based discrete prompt opti-
mization is by changing the input representation and the



Scheme Policy LM Task
ICD Code Mortality

Baseline - 22.52 18.79
Manual - 21.99 16.09
Healthprompt - 23.19 18.60
RL-based DistilGPT2 21.86 (0.69) 18.88 (0.23)

w/ Clinical LM BioMedLM 22.04 (0.30) 19.00 (0.12)

w/ Input-Aware DistilGPT2 22.10 (0.69) 19.07 (0.23)

Clinic-Prompt BiomedLM 24.27 (0.57) 19.22 (0.42)

Table 3: Results of non-prompt masked LM (baseline),
manual prompt, RL-based prompt optimization, and Clinic-
Prompt on full-set data. The values represent the average
F1-micro score (%) with the standard deviation shown in
parentheses. Bold text represents the best.

Scheme Task
ICD Code Mortality

Baseline 22.52 18.79

5-shot RL-based 22.10 (0.2) 18.89 (0.0)

Clinic-Prompt 24.31 (0.5) 19.00 (0.1)

16-shot RL-based 23.18 (1.0) 18.84 (0.1)

Clinic-Prompt 24.02 (0.6) 19.14 (0.2)

Full train set Clinic-Prompt 24.27 (0.5) 19.22 (0.4)

Table 4: Comparison results of all schemes using clinical
Policy LM (BioMedLM) and Clinical Task LM (KEPT-
Longformer) in few-shot settings. Values shown are the av-
erage of the F1-micro score (%) with the value in the paren-
theses indicating its standard deviation.

reward function without changing the Policy LM (Distil-
GPT2). We can see in Table 3 in the ICD Code task this
approach does not improve the baseline. In the mortality pre-
diction, the improvement is insignificant.

After modifying to use clinical LM as Policy LM we
can gain a small improvement compared to general LM.
However, this improvement is still small considering we
use domain-specific task LM. We believe it occurred be-
cause of the limitation of the RL strategy, which is only
guided by a single reward value from the downstream task
to greedily search prompts in the LM space. With this small
amount of information, it seems that BioMedLM can not
effectively leverage the exploration of the clinical space. It
is also worth mentioning that the RL model must consider
50 codes in the ICD Code classification task, which is more
challenging than in the Mortality prediction task. Therefore,
we can see in Table 3 that searching in clinical space by us-
ing BioMedLM has more effect on the Mortality prediction
task, which is only a binary classification task. It also can be
seen in Table 3, by applying the input-aware scheme alone
to general LM, DistilGPT2, only gives a small improvement.
The overall performance improvement is not as high as using
clinical LM, because the general Policy LM can not explore
clinical space to respond to the input. Finally, by combin-
ing the input-aware scheme and clinical LM usage, in the
Clinic-Prompt scheme we can gain significant improvement.
The input-aware scheme introduces clinical information of
the dataset to the clinical Policy LM, leading to an improved

Scheme Conditional
Accuracy

0-shot

CoT-S 78.48 (0.17)

Prefix-A 79.43 (0.25)

Clinic-Prompt 80.24 (0.31)

1-shot

CoT-S 76.70 (0.33)

Prefix-A 80.01 (0.14)

Clinic-Prompt 82.33 (0.37)

Table 5: Medication Status Extraction results in few-shot
setting. All schemes used GPT-4o-mini as Task LM. Values
in the parentheses indicate standard deviation.

prompt generated by the RL model. We can see in all tasks
and different Task LM, our proposed scheme Clinic-Prompt
gains the highest performance.

Clinic-Prompt in Few-shot Setting
In Table 4 we run the Clinic-Prompt scheme in the few-
shot settings. Our proposed scheme consistently improves
the baseline. Compared to RL-based without input-aware,
Clinic-Prompt achieve more significant improvement. In the
Clinic-Prompt scheme, the result when trained with small
data is also quite close to when trained with the full data. In
the ICD Code task, in the 16-shot setting, by using only 536
of 8,066 samples, Clinic-Prompt gains 1.5% higher than the
baseline. These results highlight the Clinic-Prompt robust-
ness in conditions with only a small amount of data.

Clinic-Prompt in LLM
LLM setting result in Table 5 shows that in 0-shot scenario,
initially Prefix-A (Agrawal et al. 2022) design was better
than Chain of Thought (Sivarajkumar et al. 2024). Clinic-
Prompt, which use part of CoT-S (not the best result) as pre-
fix, eventually still achieved the best result with 80.24% ac-
curacy. Similar performance is also shown in the 1-shot set-
ting where Clinic-Prompt with improved Verbalized Reward
surpasses all carefully designed baselines for this task, with
82.33% accuracy. These results highlight the effectiveness
of Clinic-Prompt, not only in low-data scenarios but also in
enhancing other prompt optimization techniques.

Conclusion
This paper introduces Clinic-Prompt, a novel scheme that
frames non-differentiable discrete prompt optimization as
a reinforcement learning problem. Clinic-Prompt integrates
clinical knowledge into the optimization process to enhance
performance of PLM or LLM in three clinical applications:
multi-label International Classification of Diseases (ICD)
code classification, mortality prediction, and medication sta-
tus extraction under few-shot scenarios. Experimental re-
sults illustrate the effectiveness of this approach, showing
enhancements in both the performance and applicability of
pre-trained models for clinical tasks.
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