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ABSTRACT

Although generative models have made remarkable progress in recent years, their
use in critical applications has been hindered by an inability to reliably evaluate
the quality of their generated samples. Quality refers to at least two complemen-
tary concepts: fidelity and coverage. Current quality metrics often lack reliable,
interpretable values due to an absence of calibration or insufficient robustness to
outliers. To address these shortcomings, we introduce two novel metrics: Clipped
Density and Clipped Coverage. By clipping individual sample contributions, as
well as the radii of nearest neighbor balls for fidelity, our metrics prevent out-
of-distribution samples from biasing the aggregated values. Through analytical
and empirical calibration, these metrics demonstrate linear score degradation as
the proportion of bad samples increases. Thus, they can be straightforwardly in-
terpreted as equivalent proportions of good samples. Extensive experiments on
synthetic and real-world datasets demonstrate that Clipped Density and Clipped
Coverage outperform existing methods in terms of robustness, sensitivity, and in-
terpretability when evaluating generative models.
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Figure 1: Measuring the coverage of a mixture of good and bad samples (CIFAR-10): Various
coverage metrics are evaluated relative to their maximum value as the proportion of bad synthetic
samples increases. Only Clipped Coverage displays the desired linear degradation.

1 INTRODUCTION

In recent years, remarkable progress has been achieved in generative models, which are being ac-
tively explored in various fields, such as healthcare (Pinaya et al., 2022} |[Fernandez et al., 2024 [Tu-
dosiu et al., [2024} Zhu et al.,2024; Bluethgen et al.,|2024). However, deploying them in high-stakes
applications depends on reliably evaluating the quality of synthetic data to ensure its trustworthiness.
This evaluation is inherently challenging, especially for high-dimensional data. The true underly-
ing distributions of this data are often unknown and complex. They also do not conform to known
parametric families. These factors make computing the support or density infeasible in practice.
Current model evaluation often relies on metrics such as Fréchet Inception Distance (FID) (Heusel
et al., 2017) and FD-DINOV2 (Stein et al., [2023)) for images. These metrics provide a single, com-
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pound score representing overall sample quality. Thus, it is impossible to determine whether poor
performance stems from a lack of realism or variety (Sajjadi et al., 2018).

To address this issue, the quality of synthetic data can be broken down into at least two core con-
cepts: fidelity and coverage. Fidelity assesses how similar each synthetic sample is to the input
data (Naeem et al., [2020). Conversely, coverage measures the extent to which synthetic samples
represent the distribution of real data, taking into consideration how the rarity or commonness of
real data is reflected in the synthetic samples. However, a recent position paper by [Raisa et al.
(2025)) argues that all existing fidelity and diversity metrics are flawed, highlighting an urgent need
for new metrics that address these shortcomings.

To determine whether generative models can be truly dependable, particularly in sensitive applica-
tions, the metrics used to evaluate them must be trustworthy. This means that they must be robust,
sensitive to genuine deficiencies, and provide interpretable scores. A key challenge is robustness to
outliers. Real-world datasets often contain out-of-distribution samples such as corruptions, anoma-
lies, or simply samples very different from the rest (see Figure /| for examples in CIFAR-10). Simi-
larly, generative models can produce “bad” samples that are far from the real data distribution. These
outliers can disproportionately influence evaluation scores, masking true performance issues.

Beyond robustness, interpretability is crucial. Metrics should offer more than just relative compar-
isons (i.e., knowing that one model is better than another). As emphasized by Riisa et al.| (2025),
for a metric to be truly useful in practice, its absolute value must be meaningful, since even the best-
performing model in a comparison might still be of poor quality. Critically, Riisi et al.|(2025) notes
that, currently, no metric offers this property. Ideally, for straightforward interpretability, a score
of 2 would indicate performance equivalent to having a proportion of = good samples and (1 — )
bad ones. However, as shown in Figure[T] current coverage metrics fail to achieve this. We show in
Figure ] that current fidelity metrics are similarly untrustworthy.

In this paper, we introduce Clipped Density and Clipped Coverage, two novel metrics designed to
overcome these limitations. Our contributions are:

* Trustworthy Evaluation: Our metrics achieve robustness to outliers by clipping individual
sample contributions to the aggregate score and, for Clipped Density, by limiting the radii
of nearest-neighbor spheres used to measure the density. This prevents out-of-distribution
samples from skewing the evaluation while preserving sensitivity to genuine issues.

* Interpretable Absolute Scores: Through empirical calibration for Clipped Density and
theoretical analysis for Clipped Coverage, we ensure that scores degrade linearly with the
proportion of bad samples, providing absolute interpretability.

The paper is structured as follows: Section 2 provides background on existing metrics. Section
3 reviews related work. Section 4 introduces our Clipped Density and Clipped Coverage metrics.
Section 5 details our experiments and results, and Section 6 discusses implications and limitations.

2 BACKGROUND

We consider a setting in which we are given N i.i.d. samples {7 }X; from an unknown data (ref-
erence, or real) distribution p,- and M i.i.d. samples {x;’ ;”il generated from an unknown synthetic
data distribution p,. In this section, we review relevant metrics for evaluating generative models that
aim to disentangle two aspects of synthetic data: fidelity (how realistic each synthetic sample is)
and coverage (how well the synthetic samples populate the real density distribution). These metrics
serve as the basis for our proposed improvements.

Assuming given supports S” for the real distribution and S® for the synthetic distribution, Preci-
sion measures the proportion of synthetic samples that fall within S”, while Recall measures the
proportion of i.i.d. real samples that fall in S* (Sajjadi et al., 2018} Simon et al.,2019).

Precision = P, [S"] = P, [S" N S¥] Recall =P, [S°] =P, [S" N S? (1)

However, the underlying densities d” and d* and their supports S™ and S* are unknown, making such
computation infeasible. In practice, improved Precision and Recall (Kynkdanniemi et al.,[2019) ap-
proximate these supports by the union of balls centered at each observed sample, with a radius equal
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to the distance NNDjy, from its center to its k-th Nearest Neighbor (Burman & Nolan, [1992)). We
denote by NND;, and NND;, the distance to the k-th nearest real and synthetic sample, respectively.

M
L o e 1
IPI'CCISIOIl = IP)pS [ST n S ] = M Z 1Ij€U7{Vle($:,NND};(I:)) (2)
Jj=1
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iRecall =Py, [N 5] = > Lor UM, B(xs NND: (2)) 3)

i=1
Yet, iPrecision and iRecall are strongly biased by out-of-distribution samples. Real outliers, being
far from their nearest neighbors, create large balls and bias the estimation of S”. Similarly, bad
synthetic samples compromise the approximation of the synthetic support (Naeem et al., [2020).

Density and Coverage (Naecem et al., |2020) aim to alleviate this issue by going beyond a binary
in/out decision. Density counts, for each synthetic sample, how many real k-NN balls it falls within,
normalized by k. Thus, outliers with large balls contribute only % to the fidelity of a given synthetic
sample, instead of 1 for iPrecision (Naeem et al.| [2020). In high-dimensional spaces, where mea-
suring density is impractical, Density instead uses k-NN balls as a proxy. It represents the average
relative density d®/d", providing a relative measure of how many synthetic points fall within real
balls, normalized by their mass k. To avoid estimation bias when approximating the synthetic distri-
bution, which may contain many bad samples, additional considerations are needed. Coverage flips
the perspective (Naeem et al.l 2020): instead of computing the proportion of real samples within
at least one synthetic ball, Coverage calculates the proportion of real samples that are covered, by
having at least one synthetic sample within their ball: Coverage = P, [§ TN S*.
| Mo 1
Density = i Z Z laseB(ar NNDy (a7))  Coverage = v Z 15j25eB(ar NNDy (7)) ()
j=11i=1 i=1

Although Density is less affected by outliers in the target distribution, it remains influenced by
them (Park & Kiml 2023)). Additionally, Density is not bounded by 1 (Naeem et al., [2020), making
interpretation challenging when empirical estimates exceed this value (Cheema & Urner}, 2023 [ Kim
et al.,|2023). Similar to iPrecision and iRecall, Coverage is limited to analyzing supports and misses
density mismatches: a few synthetic samples can cover high-density regions by lying within many
real balls, and adding more synthetic samples there might not increase the score (Park & Kim, 2023)).

3 RELATED WORK

Recent works have aimed to improve these metrics. Precision Cover and Recall Cover, analogous
to Precision and Recall, were introduced by |Cheema & Urner| (2023)). They count a ball as covered
only if it contains at least & > 1 samples. A probabilistic approach was introduced by [Park & Kim
(2023)): P-precision and P-recall. These measure the probability that a synthetic (resp., real) sample
lies within a random sub-support of the real (resp., synthetic) distribution.

To address the problem of large-radius balls, Khayatkhoei & AbdAlmageed|(2023) have employed a
dual-perspective approach with symPrecision and symRecall: symRecall is defined as the minimum
of Recall and Coverage, while symPrecision is the minimum of Precision and the complementary
Precision metric computed from the reversed perspective. Some alternative approaches do not rely
on nearest-neighbor approximations. «-Precision and 3-Recall (Alaa et al.| [2022)) employ a one-
class approach to estimate supports containing a fraction « (resp. (3) of a dataset. They measure the
proportion of the other dataset found within supports of varying levels. Topological Precision and
Recall (Kim et al., 2023) estimate support via topologically conditioned density kernels.

Recently, Riisa et al.| (2025) developed a benchmark of sanity checks for generative model metrics
using synthetic data, finding that all existing fidelity and coverage metrics are flawed. Our own tests
based on real-world data (Figures|I] f]and [5) confirm this conclusion. That work further emphasizes
that no current metric is suitable for absolute evaluations, calling for more research in this area. Our
work addresses these concerns directly by introducing new metrics that overcome these limitations.
We show in Appendix [H] that our proposed metrics also perform well on their synthetic benchmark.

In the following section, we introduce metrics designed to resolve these issues by being i) robust to
outliers, and by ii) providing clearly interpretable values.
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4 METHOD

Our proposed metrics are designed to satisfy several key properties. Firstly, they should be robust
to outliers (Desideratum 1). Secondly, the metrics should exhibit linear score degradation: if a
proportion x of samples are bad, the score should decrease by = (Desideratum 2a). The metrics
should be normalized between 0 and 1 (Desideratum 2b), allowing their values to be interpreted on
their own.

These properties enable straightforward interpretations: a score of x indicates that the synthetic
dataset achieves the same fidelity or coverage as a dataset composed of a proportion x of real samples
and (1 — ) bad samples. A difference of y between two datasets corresponds to y more bad samples
in the equivalent scoring scenario.

4.1 CLIPPED DENSITY

4.1.1 A ROBUST FIDELITY METRIC

To measure fidelity, the Density metric counts the number of real balls each synthetic sample falls
within. This approach can exceed 1 and is vulnerable to outliers, as it relies on adaptive ball radii.

Figure [2|illustrates a failure case of the Density metric on a synthetic dataset containing a single bad
sample (bottom left), with £ = 2. In this configuration, the two centered points each receive a fidelity
score of %, while the bad sample obtains a fidelity of 0. So, the overall dataset fidelity is computed
as 3 (2 x 3 4+ 0) = 1: an ideal score. While this is an example in dimension 2, the problem worsens
in higher dimensions as the number of balls a sample can belong to increases (Radovanovic et al.,
2010), allowing one over-occurring sample to mask an increasing number of bad synthetic samples.

To prevent over-occurring samples from masking defects, we modify the aggregation approach. The
intuitive idea is to limit the contribution of each sample to the metric: the fidelity of any synthetic
sample should not exceed 1. Applying this modification to Figure 2] the fidelity score becomes
£ (2 xmin(3,1) + 0) = 2, which effectively detects the presence of the bad sample.

On the other hand, real outliers can have extremely large distances to their nearest neighbors, re-
sulting in balls with significantly larger radii. In dimension d, the volume of a ball of radius r is
proportional to 7¢. Not only do outliers create much larger balls, but any point in a low-density
region does so as well, which dramatically skews the metrics. These balls have a fixed mass k, but
their volume varies. Balls of large volume can contribute disproportionately more than the others.
To ensure balanced contributions that limit outlier influence, we clip the radius of each ball to the
median of the distances to the k-th nearest neighbor.

Ry (x}) = min (NND},(2), median({NND}, (z;) };*.,)) (5)

This results in the following metric that satisfies Desideratum 1, robustness to outliers:

M N
. . 1 . 1
ChppedDenSltyunnom = M E min (k E 1I;EB(I;,RA(:E7’)) ,1) (6)
j=1 i=1

#{clipped real balls @ is within}
4.1.2 NORMALIZING FOR INTERPRETABILITY

Since ClippedDensity,,,..m 15 an average over synthetic samples, a proportion = of bad samples
directly reduces the score by z, satisfying Desideratum 2a. To achieve normalization between 0
and 1 (Desideratum 2b), we require an ideal value of 1. We achieve this ideal value empirically by
evaluating the fidelity score of the real data using a leave-one-out strategy. For each sample ], we
count the number of clipped real balls j (with j # ) that contain it. This computation is efficient, as
we have already obtained the indices of real samples inside each ball during the radius computation.

‘We normalize ClippedDensity,,...m by the value computed for real data, ClippedDensity,,;, and clip
the result to 1, since scores exceeding 1 would lack meaningful interpretation. The final normalized

metric is: . .
ClippedDensity,,om 1
ClippedDensity, .,

ClippedDensity = min < (7
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Figure 2: Clipped Density corrects Density’s Figure 3: Correcting Clipped Coverage lin-
failure: In a simple setup with a single bad ear decay: The unnormalized Clipped Coverage

synthetic sample, Density yields a value of 1. (blue) does not decrease linearly with the propor-
By clipping the fidelity of individual samples tion of bad samples. We theoretically compute its
to 1, we obtain an adjusted score of % expected behavior (orange) and correct it (green).

4.2 CLIPPED COVERAGE
4.2.1 A ROBUST COVERAGE METRIC

To measure coverage, the Coverage metric considers the proportion of real samples whose balls
contain at least one synthetic sample. To reflect the real data distribution and not just its support, we
adopt an approach similar to Clipped Density. Instead of only checking for the presence of synthetic
samples inside a real ball, we count how many there are. Then, to bound the contribution of each
real sample, individual coverage scores are capped at 1. This results in the following formulation:

N M
. 1 .
ClippedCoverage,,,,om = i Z min | = Z LoseB(ar NNDE (7)) 51 ®)
i=1

Jj=1

# {synthetic samples within s ball }

For each real sample, we compare the mass of synthetic samples in its ball to the mass of real
samples. To balance real points’ contributions, the mass of each ball is fixed: no radius clipping is
applied. ClippedCoverage, .. satisfies Desideratum 1 of robustness to outliers.

4.2.2 CALIBRATING FOR INTERPRETABILITY

The blue curve in Figure [3| shows ClippedCoverage, .., When the real and synthetic distributions
are identical (far left) and as bad samples are progressively introduced into the synthetic distribution.
To satisfy Desideratum 2, the score should follow 1 — x for x, the proportion of bad samples. To
correct the metric’s behavior, we start by deriving its expected value as a function of x.

Lemma 1. [fthe real and synthetic distributions are identical, i.e., {7} | and {3 ?4:1 are N+M

i.i.d. samples from the same distribution, then the expected value of ClippedCoverage,,,, . iS:

M)ﬂ(k;+j,M—j+N—k) ©)

M .
E [Clippea’coverageunnorm] = ; min (ia 1) < ] B(k, N — k)

where 3 is the beta function.

The proof of Lemmal(l]is provided in Appendix [A] To parameterize the curve, we now consider the
case with a proportion z of bad synthetic samples. Since such samples always lie outside any real
ball, the expected score becomes equivalent to the ideal case in Lemmal[l|but with M, = [ M (1—z)|
synthetic samples instead of A/. We denote this as fexpected (%), shown in orange in Figure

To satisfy Desideratum 2, the expected value of the metric should be 1 — = when the proportion of
bad samples is . This calibration ensures both a linear degradation of the score (Desideratum 2a)
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and normalization to a consistent [0, 1] range regardless of the dataset or choice of k (Desideratum
2b). We seek a function g such that g o fexpecled(x) = 1—x. Since M, can only take integers values
m between 0 and M, it suffices to find g for fexpeciea(M, = m) where m € {0,..., M}.

We can efficiently compute fexpeciea(Mz = m) for all m (see Appendix [B.1). Given these values,
the function g is computed numerically. Since fexpecied decreases with , we reverse it to form a

sorted list of fexpected Values. For a given ClippedCoverage,,, . score s, we find the index i(s) €

{0, ..., M} such that inserting the value s at index i(s) keeps the list sorted. Then, g(s) = 1— %
The final normalized metric, which recovers the desired behavior shown in green in Figure (3| is:

ClippedCoverage = g o ClippedCoverage (10)

unnorm

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We compared our metrics against multiple baselines, using the original code for a-Precision, [3-
Recall, and TopP&R, and reimplementing Precision, Recall, Density, Coverage, symPrecision,
symRecall, P-precision, P-recall, and Precision Recall Cover for performance reasons (see Ap-
pendixfor comparisons). For consistency, we set k = 5 where applicable; &/ = 3 and C' = 3,
as recommended for Precision Recall Cover, and used default parameters everywhere else.

Experiments were conducted on a single NVIDIA H100 GPU with 80GB of RAM. When images
are evaluated, metrics are computed on image data in the embedding space of the “Large” DINOv2
model (DINOv2-ViT-L/14 (Oquab et al., [2023)), as recommended by |Stein et al.| (2023)).

5.2 METRIC EVALUATION TESTS

To ensure proper behavior, we evaluated metrics in various scenarios by controlling dataset compo-
sition and hence the expected scores. Most tests were performed on CIFAR-10 (Krizhevsky et al.,
2009), with 2500 samples from each of the 10 classes for the real set and the other 2500 for the
synthetic set. We report mean + std over 10 splits. Results are summarized in Figures [de]and [5¢|

CIFAR-10 Simultaneous mode dropping: To verify that fidelity metrics do not capture coverage,
we performed a simultaneous mode dropping test on CIFAR-10 (Figure @b] from Naeem et al.
(2020)). In this test, the synthetic set progressively replaced samples from all but one class with
samples from the remaining class, while the real set remained unchanged. Since the synthetic set
is always a subset of CIFAR-10, fidelity scores should remain stable and close to their maximum.
However, Precision Cover (yellow) and symPrecision (green) appear to capture coverage, as they
deviate from their maximum value, while a-Precision (purple) shows high instability (high std).

CIFAR-10 matched real and synthetic out-of-distribution sample proportion: To evaluate ro-
bustness to out-of-distribution samples, we conducted a test on CIFAR-10 (Figures [dc| and [54] in-
spired by Figure 5 of Naeem et al.|(2020)), where we progressively replaced both real and synthetic
CIFAR-10 samples with out-of-distribution samples (noise images) at the same rate. Since the syn-
thetic set is constructed identically to the real set in all cases, scores should remain stable and close
to their maximum value. However, a-Precision and 3-Recall (purple), TopP and TopR (brown), and
P-precision and P-Recall (gray) show instability and deviate from the expected value.

Synthetic data translation: Since real-world datasets like CIFAR-10 contain outliers, we use a test
based on synthetic data (Figures[fd|and[5b] adapted fromNaeem et al.|(2020)) to evaluate robustness
to the first out-of-distribution sample. We use 25000 standard Gaussian samples (dim 32, 5 splits).
The synthetic set is translated by p1 € [—1, 1] in all dimensions and includes a bad sample at —3. The
real set includes an outlier at 3. Ideally, scores should form symmetric bell-shaped curves, dropping
rapidly as 4 moves away from 0 to detect distribution shifts. For fidelity (Figure [4d), Precision
(blue) and Density (orange) are non-symmetric due to the real outlier’s large ball, which in turn
affects symPrecision (green). a-Precision (purple) and P-precision (gray) show low sensitivity (flat
curves around 0). For coverage (Figure @]), Recall (blue) is non-symmetric due to the bad synthetic
sample, which also affects symRecall (green). This happens because the bad sample’s ball grows as
the rest of the synthetic data moves away, covering the real set when  is near 1. 3-recall (purple)
and TopR (brown) are also non-symmetric, indicating instability or insufficient robustness.
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Figure 4: Testing fidelity metrics (legend/summary in (e)). Scenarios: (a) increasing bad synthetic
sample proportion; (b) simultaneous mode dropping: progressively replacing all but one class with
the last class; (c) matched real & synthetic out-of-distribution samples at equal rates; (d) synthetic
distribution translation with one real outlier and one bad synthetic sample. Only Clipped Density
consistently behaves as expected: linearity (a), stability (b, c), and symmetry with sensitivity (d).

CIFAR-10 Progressive bad sample introduction: To test sensitivity and interpretability, we pro-
gressively introduced bad samples (noise images) into a synthetic set of CIFAR-10 images (Figures|[T]
andfa). Scores should decrease linearly with the proportion of bad samples (see Section[d)). For cov-
erage metrics, only Clipped Coverage (red) exhibited this linear degradation. Most fidelity metrics,
being averages of individual sample fidelities, decreased linearly. However, TopP (brown) deviated
significantly, while Precision Cover (yellow) and a-Precision (purple) showed slight deviations.

Summary: Across all results (see also Figures de|and [5¢), only Clipped Density and Clipped Cov-
erage show the desired behavior in all tests. Other fidelity metrics either inappropriately capture
coverage (e.g., symPrecision, a-Precision, Precision Cover), lack sensitivity (e.g., P-precision), or
lack robustness to outliers (e.g., Precision, Density, TopP). For coverage metrics, only Clipped Cov-
erage shows a linear decrease in score with increasing bad sample fraction, while some metrics are
also insufficiently robust to outliers (e.g., Recall, symRecall, 3-recall, TopR, P-recall).
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Figure 5: Testing coverage metrics (legend/result summary in (c)). Metrics are evaluated under
different scenarios: (a) matched real & synthetic out-of-distribution samples; (b) distribution trans-
lation with a real outlier at 3 and a bad synthetic sample at -3. Clipped Coverage exhibits all desired
properties: linearity (Figure E[) stability (a), symmetry and sensitivity (b), unlike other metrics.

5.3 EVALUATION ON REAL DATASETS

We evaluated various generative models on CIFAR-10 (Krizhevsky et al [2009), ImageNet (Deng
et al., 2009), LSUN Bedroom (Yu et al.| [2015), and FFHQ (Kazemi & Sullivan, 2014) using cat-
egories and 50000 samples from the data publicly shared by [Stein et al. (2023) (Figure [6] and ap-
pendix [[). When possible, for conditional models, we kept an equal number of samples from each
class (see Appendix |Clor Appendix A of |Stein et al.| (2023) for more details).

As shown in Figure[6] on CIFAR-10 and ImageNet, the Density values exceed 1, while the Clipped
Density values remain stable. In Appendix [D] we analyze RESFLOW-generated CIFAR-10 data,
demonstrating that its inflated Density score of 2.47 results from real out-of-distribution sam-
ples. Additionally, Appendix [E| provides a detailed evaluation of Clipped Density on the generated
datasets, quantifying the effect of each modification to the original Density metric.

Across all datasets, our results consistently show diffusion models outperforming GANs. The range
of values that our metrics take seems to reflect the size of the training dataset: CIFAR-10 (50k
samples, max score =~ 0.4), FFHQ (70k, max ~ 0.4), LSUN Bedroom (1.5M, max = 0.7), and
ImageNet (14M, max 1.0). Interpreting the absolute scores, a value of 0.4 for CIFAR-10 and FFHQ
suggests that, on these datasets, top generative models achieve results equivalent to only 40% of good
samples and 60% bad samples. This highlights substantial room for improvement, an insight only
possible because the absolute values of Clipped Density and Clipped Coverage are interpretable.

6 DISCUSSION AND CONCLUSION

Clipped Density and Clipped Coverage offer significant improvements in robustness, sensitivity, and
interpretability. To enhance robustness, we cap individual sample contributions at 1. For Clipped
Density, we further mitigate outlier impact by clipping the volumes of real nearest-neighbor balls to
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Figure 6: Fidelity vs Coverage on various datasets

prevent them from dominating the score. In contrast, for Clipped Coverage, we maintain balls of
constant mass to ensure balanced contributions. Capping the contribution prevents high-performing
samples from disproportionately hiding low-performing ones. This careful handling of sample con-
tributions and ball properties enhances robustness while preserving sensitivity.

For interpretability, both metrics are calibrated to degrade linearly as the proportion of bad samples
increases. Clipped Density achieves this through normalization by the real data’s score. For Clipped
Coverage, whose uncalibrated behavior is non-linear (as shown in Figure [3), we theoretically de-
rived its expected behavior and applied a correction to ensure linearity. This combination of robust
aggregation and principled calibration allows Clipped Density and Clipped Coverage to provide not
only trustworthy relative comparisons between models but also meaningful absolute scores. This is
crucial in practice for assessing whether a model meets a required quality threshold.

Despite these improvements, limitations remain. Clipped Density and Clipped Coverage build on
an accepted benchmark of progressively passed tests, but it is not exhaustive, and there might be
missing cases. Additionally, while we evaluate fidelity and coverage, other aspects matter, such as
memorization: are generated samples reproductions of training data? Memorization metrics include
GAN-test (Shmelkov et al., 2018), identifiability (Yoon et al., 2020)), authenticity (Alaa et al.,|2022),
and the calibrated [5 distance (Carlini et al., 2023). We used DINOv2 as recommended (Stein et al.,
2023)), but comparing embedding models for generative model evaluation remains an open question.

In conclusion, Clipped Density and Clipped Coverage provide a trustworthy framework for genera-
tive model evaluation, offering robust, sensitive, and interpretable assessments.

'Code: https://anonymous.4open.science/r/ClippedDensityCoverage-EF8E,


https://anonymous.4open.science/r/ClippedDensityCoverage-EF8E
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A PROOF OF LEMMA

Proof.
1 M M
E N Z min % Z 11§€B(I{,NND£(%))7 1 = min Z 11 s€ B(z7 NNDJ (7)) 1
i=1 j=1 j=1
1 i M
= EE min Z:l 1zjeB(z;,NND;(x;)) ok
j=

# {synthetic samples in s ball}

1
- %E Z INN:, (27)€B (27 NND (7))
L k=1

how many of the k-nearest synthetic samples
of ] are within its ball

;r\H

k
Z (NNj, (27) € B(«},NNDj (x})))

We apply the linearity of expectation in lines 1, 2, and 4, and use the i.i.d. hypothesis for the ] in
line 1. For line 3, we use the fact that the number of synthetic samples within the ball of 27, when
limited to k, is equal to the number of synthetic samples among the k-nearest synthetic neighbors
of i that fall within that ball. Here, NNj, denotes the k-th nearest real data sample, while NNj,
denotes the k’-th nearest synthetic data sample.

Let S” = {||a7 —7||}}¥, be the set of real distances to 7, and let S}, be the k-th order statistic of S”
(i.e., the k-th smallest element): S}, = ||NNj, () — 27| Similarly, let 5% = {||z5 — z7||}}Z, be the
set of synthetic distances to 7, and let S} be the k-th order statistic of S°: S}, = |[NNj, (xl) z7||.
Let C} be the number of synthetic samples contained in the k-ball of 7.

P (NN, (27) € B(x1, NNDj,(27))) = P (NN (21) — 27| < [[NNj (27) — a1]])
=P (Sp < 55)
=P (K <C})

S}, divides the population into two parts: k elements < .S} and N — 1 — k elements > .S} Since the
real and synthetic distributions are the same, for a fixed Sr, C} follows a binomial d1str1but10n with
parameters: number of trials M/ and probability of success equal to F'(S};), where F' is the CDF of
the random variable | X — 7|, with X ~ p,.. Thus, C}|S? ~ Binomial(M, F(S})).

Since S}, is random, so is F'(S},). For any continuous distribution Y, F'(Y") is uniform (Embrechts
& Hofen 2013). Because the CDF is monotonically increasing, (S %), the CDF of the k-th order
statistic of S”, is the k-th smallest element of the set F'(S”): F(S}) = F(S")g. The k-th order
statistic of a uniform distribution follows a Beta distribution (Gentle, 2009), so we have: F' (S,’;) ~
Beta(k, (N —1) —k+1) ~Beta(k, N — k).

When the success probability of a binomial distribution is itself a random variable follow-
ing a Beta distribution, the resulting distribution is a Beta-Binomial distribution: C} ~
Beta-Binomial(M, k, N — k).

Let 3 be the beta function:

Mo/ M\ Bk +j, M —j+N—k
p <o) = Y () L
j=k' '
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k
(k+j,M—j+N—k)
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B IMPLEMENTATION DETAILS

B.1 CLIiPPED COVERAGE

To compute fexpecied efficiently for all m, we begin by precomputing log-gamma values for all
integers [ between 1 and M + N + 1. Then, all required beta values and binomial coeffi-
cients can be computed as differences of three precomputed log-gamma values: log -Beta(a,b) =
log -Gamma(a) + log -Gamma(b) — log -Gamma(a + b) and log-(}) = log-Gamma(n + 1) —
log -Gamma(k + 1) — log-Gamma(n — k + 1).

For the computation of Clipped Coverage, we take an approach similar to that used in the proof of
Lemma |I} we count how many of the k-closest synthetic samples to a real sample are contained
within its ball. This can be computed using only nearest neighbor searches, which is more efficient
than searching for all synthetic samples within the ball of each real sample.

B.2 COMPARISON WITH EXISTING METRIC IMPLEMENTATIONS
We compare our implementation with the implementations of:

* Precision, Recall, Density, and Coverage by [Naeem et al| (2020) (https:
//github.com/clovaai/generative—evaluation-prdc/blob/master/
prdc/prdc.py)

e symPrecision and symRecall by Khayatkhoei & AbdAlmageed (2023) (https:
//github.com/mahyarkoy/emergent_asymmetry_pr/blob/main/
manifmetric/manifmetric.py)

* P-precision and P-recall by |[Park & Kim|(2023)) using GPU (https://github.com/
kdst-team/Probablistic_precision_recall/blob/master/metric/
PP_pPr.py)

* Our own implementation of Precision Recall Cover, following the pseudocode in Appendix
A3 of the original paper (Cheema & Urner, [2023)

Our implementation simultaneously computes Precision, Recall, Density, and Coverage, with op-
tional computation of symPrecision, symRecall, P-precision, and P-recall. Since some intermediary
computations are shared between these metrics, we compute them once and reuse them. We compute
Precision Recall Cover separately because the k value used differs from the other metrics (k' =
instead of k = 5, see Section [3).

In the original implementations, the number of parallel threads is sometimes hardcoded to 8, so for a
fair comparison, we use only 8 of the 24 threads available on our hardware, which is an HI00 GPU
with 80GB of RAM (as stated in Section 5).

We run the implementations on sets of 10000 standard Gaussians in dimension 32 and on the DI-
NOvV2 embedding of FFHQ with the synthetic set generated by the Latent Diffusion Model (LDM),
hereafter "DINOv2-FFHQ-LDM”, for a total of 50000 samples in both the real and synthetic sets.
The results are shown in Table[dl
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Table 1: Implementation comparison

10000 standard Gaussians, d = 32 DINOvV2-FFHQ-LDM
Values Time (s) Values Time (min)

Metric name Initial  Ours Initial Ours  Initial  Ours Initial Ours
Precision 0.7706 0.7706 0.7352 0.7352
Recall 0.7764 0.7764 3.93 0.3969 0.3969 205
Density 0.9591 0.9591 : 0.6475 0.6475 )
Coverage 0.9645 0.9645 8.43 0.5817 0.5817 252
symPrecision 0.7706  0.7706 173 0.3267 0.3267 157
symRecall 0.7764 0.7764 ) 0.3969 0.3969
P-precision 0.9251 0.9251 DNF 0.7229
P-recall 0.9249 0.9249 1.66 DNF 0.6896 DNF

Precision Cover 0.9553 0.9553 55.7 223  0.1785 0.1785 88.2 2.90
Recall Cover 0.9357 0.9357 61.0 225 04637 04637 679 2.99

When both the original and our implementations finish, we obtain the exact same values. The
original implementation of P-precision and P-recall does not finish (DNF) on the FFHQ test due to
memory issues.

The main difference between our implementation and the existing ones is the use of Scikit-
learn’s (Pedregosa et al.| 2011) NearestNeighbors method for the nearest neighbor search.
We also use it for ball tree radius queries, which find all samples within a given radius of a specific
point.

For simplicity, we assume here that the number of real and synthetic samples is the same: N = M.
Ball trees are built in O(dN log N) time and O(Nd) space (Omohundro, 1989; Huang & Tung,
2023)) for N samples in dimension d, while queries take O(dlog N) operations in low dimensions
and up to O(dN) time in high dimensions (Liu et al., [2006) (note that this query is performed N
times).

In contrast, initial implementations usually compute the distances between all pairs of samples and
search through these distances instead. The construction complexity is then O(dN?) time and
O(N?) space. Finding all points within a given radius of a specific point can then be done in
O(N) time because the distances are already computed.

Our method therefore has at most the same time complexity as the initial implementation, but with
memory usage of O(Nd) instead of O(N?).

For DINOvV2-FFHQ-LDM, where N = 50000 and d = 1024, the original P-precision and P-recall
implementation fails due to out-of-memory errors, as it attempts to allocate an additional 24GB
of RAM on top of the 73GB already in use (73 = 24 x 3 + 1). This implementation stores four
pairwise distance matrices, whereas prdc . py (for Precision, Recall, Density, and Coverage) stores
only one.

B.3 COMPUTATIONAL REQUIREMENTS
The approximate computation times for the experiments were as follows:
* Extracting DINOv2 embeddings took 3.7 minutes per dataset. With 46 datasets in total
(14 4 12 4 10 + 10), this amounted to 2.8 hours.

* For synthetic data tests (25000 samples, dimension d = 32), each evaluation of all metrics
took 8 minutes. The total computation time for these tests, encompassing various scenarios
and repetitions (21 x 5 + (11 4+ 11/2 4+ 4) x 10), was 41 hours.

* For real tests using DINOv2 embeddings of CIFAR-10 (25000 samples, dimension d =
1024), each evaluation of all metrics took 13.7 minutes. The total computation time for
these tests ((11 + 11/2 + 4) x 10) was 47 hours.

19



Under review as a conference paper at ICLR 2026

* The evaluation of generative models on real datasets took 40 minutes per generated set.
With 42 generated sets evaluated (13 + 11 + 9 + 9), this totaled 28 hours.

Overall, reproducing all the experimental results presented in this paper would require approxi-
mately 120 hours of computation time. The complete research project, including preliminary ex-
periments and explorations not detailed in the final paper, required an estimated 200-300 hours of
computation time.

C DATASETS

C.1 REAL DATA FOR METRIC EVALUATION TESTS

For tests conducted on real data, the samples are DINOv2 embeddings derived from the CIFAR-10
dataset (Krizhevsky et al.,|2009). When a test requires out-of-distribution (or bad’’) samples, these
are DINOv2 embeddings of Gaussian noise images.

C.2 GENERATED DATASETS

This section details the generated datasets evaluated in Figures[6] [[2]and[I3] All data were publicly
shared by [Stein et al.| (2023)) through the link provided in their GitHub repository: https://
github.com/layer6ai-labs/dgm—evall For more information on the generation process,
see Appendix A of |Stein et al.| (2023).

We used 50000 samples for each evaluation. For conditional models, an equal number of samples
per class was taken, except when only 50000 unbalanced images were available.

C.2.1 CIFAR-10
For CIFAR-10 (Krizhevsky et al.,|2009), data were generated using the following models:

¢ LSGM-ODE (Vahdat et al., 2021)

¢ PFGM++ (PFGMPP) (Xu et al.,[2023])

¢ iDDPM-DDIM (Nichol & Dhariwall, [2021])

* StudioGAN models (Kang et al., 2023a))
— ACGAN-Mod (Odena et al., 2017

BigGAN (Brock et al.,|2019)

LOGAN (Wu et al.} 2019)

MHGAN (Turner et al., 2019)

ReACGAN (Kang et al.| 2021)

WGAN-GP (Gulrajani et al., 2017)

* StyleGAN-XL (Sauer et al., 2022)

* StyleGAN2-ada (Karras et al., [2020)

e RESFLOW (Chen et al., 2019)

¢ NVAE (Vahdat & Kautz, 2020)

C.2.2 IMAGENET

For ImageNet (Deng et al.||2009), images were rescaled to 256 x 256 using center cropping followed
by bicubic interpolation downsampling before being shared by |Stein et al.|(2023). The synthetic data
were generated using the following models:

* Models for which datasets of 50000 unbalanced samples were initially shared by [Dhariwal
& Nichol| (2021):

— ADM (Dhariwal & Nichol, 2021)
— ADMG (Dhariwal & Nichol, 2021)
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— ADMG-ADMU (Dhariwal & Nicholl, [202T)
- BigGAN (Brock et al, 2019)

DiT-XL-2 (Peebles & Xiel [2023)

DiT-XL-2-guided (Peebles & Xie| [2023))

LDM (Rombach et al.| [2022))

GigaGAN (Kang et al., [2023b)

StyleGAN-XL

Mask-GIT (Chang et al), 2022)

RQ-Transformer 2022)

C.2.3 LSUN BEDROOM

For LSUN Bedroom (Yu et al.| 2015)), data were generated using the following models:

Consistency (Song et al [2023). We used the two sets provided by [Stein et al] (2023),

referred to as Consistency-setl and Consistency-set2.

Four models for which datasets of 50000 unbalanced samples were originally shared by
[Dhariwal & Nichol| (2021):

ADM-dropout (Dhariwal & Nichol, [2021)

DDPM (Ho et al., [2020)
iDDPM (Nichol & Dhariwall 2021

StyleGAN (Karras et al} [2019)
Diff-ProjGAN: Diffusion-Projected GAN (Wang et al., [2023))

Projected GAN [2021)
Unleash-Trans: Unleashing Transformers (Bond-Taylor et al.,[2022)

C.2.4 FFHQ

For FFHQ (Kazemi & Sullivan, 2014), images were downsampled to 256 x 256 using Lanczos
interpolation before being shared by |Stein et al|(2023)). The data were generated using the following

models:

LDM (Rombach et al}[2022)

InsGen

Projected-GAN

StyleGAN-XL 2022)

StyleGAN2-ada (Karras et al.,[2020)

StyleNAT (Walton et al.,[2022)

StyleSwin (Zhang et al., 2022)

Unleash-Trans: Unleashing Transformers (Bond-Taylor et all,[2022)

Efficient-vdVAE (Hazami et al, 2022))
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D EXAMPLE OF REAL OUT-OF-DISTRIBUTION SAMPLES INFLATING Density

The RESFLOW-generated CIFAR-10 dataset achieves a Density of 2.47, a value inflated by real out-
of-distribution samples. To investigate this, we categorized real samples by counting the number of
synthetic samples within their 5-ball (Table[2).

Table 2: Synthetic points per real £-ball (RESFLOW CIFAR-10).

Synthetic points in a real ball ~ Real balls (no clipping) Real balls (with clipping)

0 48373 49981
1-5 680 15
6-100 513 3
101-1000 282 1
1001-10000 148 0
10001+ 4 0

Without radii clipping, 48373 real balls contain no synthetic points, whereas just 4 contain over
10000. The 4 corresponding real images appear out-of-distribution (see Figure[7).

(a) Very gray ship image. (b) Camouflaged cat. (c) 2-legged horse. (d) Toy ship on a stand.

Figure 7: Real CIFAR-10 samples containing more than 10000 synthetic points in their 5-ball.
These images are atypical for their classes. (a) A ship viewed from above, maybe at night, resulting
in a mostly gray image. (b) A cat on top of a similarly colored object. (c) An unusually shaped horse
that appears to have only two legs. (d) A toy ship on a stand instead of in water.

A real point having many synthetic points in its ball is not inherently problematic, as generative
models might generate many similar images. However, in this case, these 4 images are outliers that
artificially increase the measured fidelity by being very far from other points. Here, clipping the real
balls is enough to make the measured fidelity drop to 0.00.
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E FROM Density TO Clipped Density: OVER-OCCURRING SAMPLE
PROPORTION AND RADII CLIPPING

This section measures the effects of the successive modifications that transform Density into Clipped
Density. Below, we detail their impact on the evaluation of real generated datasets, along with the
proportion of over-occurring samples (i.e., samples with a fidelity score greater than 1) at each step.

The columns, in order, present: the original Density score, the initial proportion of over-occurring
samples (OOP), the Density score after radii clipping, the OOP after radii clipping, the scores after
individual sample contributions are also clipped (resulting in ClippedDensity,,,..m)> and finally, the
fully normalized ClippedDensity.

Table 3: From Density to Clipped Density on CIFAR-10.

S
& e
o) B o W
OOQK o \\QQ& 606‘\%\ o
SR o e

Model o T g (BT e
LSGM-ODE 0.66 184 022 6.0 0.14 038
PFGMPP 0.65 18.3 0.22 6.3 0.15 0.39

iDDPM-DDIM 0.64 174 0.19 5.6 0.13 0.34
ACGAN-Mod 2.28 43.0  0.00 0.0 0.00  0.01

BigGAN 0.55 144 0.10 2.6 0.07 0.19
LOGAN 1.01 224 0.00 0.0 0.00  0.01
MHGAN 0.57 14.9 0.06 1.6 0.05 0.13
ReACGAN 0.57 14.2 0.07 1.6 0.05 0.14

StyleGAN-XL 0.58 153 0.15 4.0 0.10 0.27
StyleGAN2-ada  0.60 16.4 0.13 34 0.09 0.24

WGAN-GP 1.74 372 0.00 0.0 0.00  0.01
RESFLOW 2.47 474  0.00 0.0 0.00  0.00
NVAE 1.59 31.9 0.00 0.0 0.00  0.00

Table 4: From Density to Clipped Density on ImageNet.

RN

> AV o
o @a @\'\QQ@6 \QQ@@@ 06(\%\'d 0‘\9 o
S 'i@‘\o o Q@ ' Qeé : Qeé
Model DCUROS SR L SO oA
ADM 0.38 8.3 0.08 2.2 0.07 0.17
ADMG 0.49 12.8 0.17 4.7 0.13 0.34
ADMG-ADMU 0.55 15.5 0.21 5.8 0.16 0.41
DiT-XL-2 0.83 28.2 0.43 14.6 0.29 0.74
DiT-XL-2-guided 1.65 63.8 1.12 42.3 0.63 1.00
LDM 0.70 21.5 0.32 10.0 0.22 0.57
BigGAN 0.46 10.5 0.05 0.9 0.05 0.12
GigaGAN 0.41 9.2 0.07 1.5 0.06 0.15
StyleGAN-XL 0.38 8.3 0.06 1.2 0.05 0.13
Mask-GIT 0.43 10.3 0.10 2.2 0.09 0.22

RQ-Transformer 0.34 6.8 0.04 0.8 0.03 0.09
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Table 5: From Density to Clipped Density on LSUN Bedroom.

w&\\ &.\\\‘“‘”

(4 O : o“‘\o :

e @ o oe»%‘“ o+
ETERE NSRS P s

Model o W o o o o®

Consistency-setl 0.62 18.7 0.14 34 0.11 0.32
Consistency-set2 0.64 18.9 0.13 29 0.11 0.30

ADM-dropout 0.83 25.9 0.41 12.6 0.26 0.73
DDPM 0.55 14.5 0.16 4.6 0.11 0.32
iDDPM 0.64 18.2 0.23 6.8 0.16 0.44
Diff-ProjGAN 0.56 15.0 0.05 1.1 0.05 0.13
Projected-GAN 0.63 16.9 0.05 0.9 0.04 0.12
StyleGAN 0.74 21.8 0.26 7.4 0.17 0.48
Unleash-Trans 0.51 12.5 0.06 14 0.05 0.14

Table 6: From Density to Clipped Density on FFHQ.

SN
6‘%6\\ %6\\\&
QKO@ IR SRS DS
: TS M\ L
e oD (\5@ S o° &
Model o W o o0
LDM 065 184 024 66 016 041
InsGen 0.32 6.9 0.06 1.3 0.05 0.12

Projected-GAN 0.21 3.5 0.02 0.2 0.01 0.03
StyleGAN-XL 0.51 13.0 0.14 3.6 0.10 0.26
StyleGAN2-ada 0.24 4.2 0.04 0.7 0.03 0.08
StyleNAT 0.61 16.5 0.20 5.3 0.14 0.35
StyleSwin 0.53 13.8 0.13 3.1 0.10 0.25
Unleash-Trans 0.46 11.0 0.10 2.5 0.08 0.19
Efficient-vdVAE 0.80 232 0.28 7.9 0.17 0.42

F EVALUATION OF GENERATED CHEST X-RAYS

We evaluated a Progressively Growing GAN (Karras et al.,2018) from the Medigan library (Osuala
et al.l[2023), trained by |Segal et al|(2021)) on the ChestX-ray8 dataset (Wang et al.l[2017) (= 110000
chest X-ray images). The model yielded a Clipped Density of 0.06 and a Clipped Coverage of 0.03.

The absolute interpretability of our metrics allows a direct assessment of these results without re-
quiring comparison to other models. A Clipped Density of 0.06 implies that the model’s output has a
fidelity equivalent to a dataset composed of only 6% good samples and 94% bad samples; similarly,
a Clipped Coverage of 0.03 is equivalent to a dataset with only 3% good samples.

This is a critical advantage over relative metrics, which can only rank models against each other
without revealing whether even the best-performing one is adequate for a given task. In high-stakes
domains like medical imaging, the ability to make an absolute judgment is essential. A low score
provides a clear, unambiguous signal that the model is not yet fit for purpose, preventing the prema-
ture adoption of a technology that fails to meet the necessary standards for safety and reliability.
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G FIDELITY UNDER IMPUTED DISTORTIONS

To further assess the behavior of Clipped Density, we evaluated the fidelity of PFEGMPP-generated
CIFAR-10 samples under various image distortions, replicating the setup from Figure 5 of
spong et al| (2023). Our results for Clipped Density, shown in Figure [8] align with those reported
for the Feature Likelihood Divergence (FLD) metric in the original study, which were themselves
better than those of FID.

We applied the transformations detailed in Appendix E.1 of[Jiralerspong et al.|(2023). For the Color
Distort transformation, the default parameters produce an identity transform, so we used a non-
default hue = 0. 3. For the Center Crop transformation, two different values (28 and 30) are used
throughout the paper. We proceeded with the value 28.

——- PFGMPP  =—-- StyleGAN-XL  —-- StyleGAN2-ada =--- LOGAN
N . . . . . . . .
0.41

>

‘n

o
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©
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Figure 8: Fidelity of PFGMPP samples under different image distortions, measured with
Clipped Density. Horizontal lines represent the Clipped Density scores of other models for com-
parison.
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H COMPARISON TO A RECENT BENCHMARK

A recent position paper by |Riisi et al.[(2025) argues that “all current generative fidelity and diversity
metrics are flawed” and that no metric is suitable for absolute evaluations.” Our work tackles these
issues directly. In this section, we evaluate Clipped Density and Clipped Coverage on the benchmark
from Raisa et al.[(2025)), using the authors’ original code. All tests in this benchmark are performed
on synthetic data, with a default sample size of 1000.

The results are summarized in Tables[/|and [8| which reproduce the tables from Raisi et al.| (2025))
with Clipped Density (Cl-Dens) and Clipped Coverage (Cl-Cov) added for comparison. Here, T
denotes a passed test, while F indicates failure. The original benchmark distinguishes between high
(H, support-based) and low (L, density-based) diversity metrics. Since we aim to measure coverage,
which assesses densities, we interpret L as a success (T) and H as a failure (F).

We observed seven discrepancies with the original results, marked with a royal blue underline (T
or F). These differences arise from the benchmark’s seed generation: the seed is based on a hash
of the metric name, test name, and repetition index, but Python’s built-in hash function changes
across different sessions unless PYTHONHASHSEED is set. As a result, seeds (and thus results)
differ between runs.

Table 7: Fidelity metrics comparison on a recent benchmark from Raéisa et al.| (2025)

Vol
{bO
%

,&Q)
+ Qﬁés c>’

Desiderata Sanity Check

Discrete Num. vs. Continuous Num.
Gaussian Mean Difference
Gaussian Mean Difference + Outlier
Gaussian Mean Difference + Pareto
Gaussian Std. Deviation Difference
Hypercube, Varying Sample Size
Hypercube, Varying Syn. Size
Purpose Hypersphere Surface
Mode Collapse
Mode Dropping + Invention
One Disjoint Dim. + Many Identical Dim.
Sequential Mode Dropping
Simultaneous Mode Dropping
Sphere vs. Torus
Hyperparam. Hypercube, Varying Syn. Size
Data Hypercube, Varying Sample Size
Discrete Num. vs. Continuous Num.
Gaussian Mean Difference
Gaussian Mean Difference + Outlier
Gaussian Mean Difference + Pareto
Gaussian Std. Deviation Difference
Hypersphere Surface
Mode Collapse
Mode Dropping + Invention
One Disjoint Dim. + Many Identical Dim.
Scaling One Dimension
Sequential Mode Dropping
Simultaneous Mode Dropping
Sphere vs. Torus
Invariance Scaling One Dimension

Bounds
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Table 8: Coverage metrics comparison on a recent benchmark from |Raisa et al.| (2025)

Desiderata Sanity Check

Discrete Num. vs. Continuous Num.
Gaussian Mean Difference
Gaussian Mean Difference + Outlier
Gaussian Mean Difference + Pareto
Gaussian Std. Deviation Difference
Hypercube, Varying Sample Size
Hypercube, Varying Syn. Size
Purpose Hypersphere Surface
Mode Collapse
Mode Dropping + Invention
One Disjoint Dim. + Many Identical Dim.
Sequential Mode Dropping
Simultaneous Mode Dropping
Sphere vs. Torus
Hyperparam. Hypercube, Varying Syn. Size
Data Hypercube, Varying Sample Size
Discrete Num. vs. Continuous Num.
Gaussian Mean Difference
Gaussian Mean Difference + Outlier
Gaussian Mean Difference + Pareto
Gaussian Std. Deviation Difference
Hypersphere Surface
Mode Collapse
Mode Dropping + Invention
One Disjoint Dim. + Many Identical Dim.
Scaling One Dimension
Sequential Mode Dropping
Simultaneous Mode Dropping
Sphere vs. Torus
Invariance Scaling One Dimension

Bounds

R R T e e v s R R I R e R R e R Y
R R R e R s R i e e R R R
R R e R I e e Y s R i e S i e R e R R R RS
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R L ek b R R R e T R e e R R R R e
e e L e e e Lo e s s T R e i B R R N N e,

Purple underlined entries (F) indicate cases where the benchmark’s criterion for success is, in our
view, overly strict (see Appendix [H.I). Italic blue entries (F) indicate cases where the original im-
plementation counts a failure, but we argue that for low diversity metrics, these should be considered
successes (see Appendix [H.2).

H.1 HARSH CRITERIA

Purple underlined entries (F) correspond to cases where, in our view, the benchmark’s threshold for
passing may be too narrow.

In the ”Gaussian Mean Difference” test (Figure [9), which is analogous to our synthetic Gaussian
translation test but without bad samples, the bounds desideratum is not satisfied by Clipped Coverage
in dimension 64 with no translation (0). In this case, the initial and synthetic distributions are the
same. Clipped Coverage has a value of 0.947, while the criterion requires a value between 0.95 and
1.05.

Similarly, in the "Mode Collapse” test (Figure [I0), where real data is a mixture of two Gaussians
spaced by p and the synthetic data is a single Gaussian, the value in dimension 64 with no translation
(0, same initial and synthetic distributions) is 0.941, just below the same required threshold.

27



Under review as a conference paper at ICLR 2026

0.8 1 1

0.6 1 g g

0.4 1 1

Metric Value

00 — P — { =

-6 -4 -2 0 2 4 6 -3 -2 -1 0 1 2 3 -1.0 -0.5 0.0 0.5 1.0

—— ClippedDensity ClippedCoverage

Figure 9: Gaussian Mean Difference: output from the original code for our metrics.
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Figure 10: Mode Collapse: output from the original code for our metrics.

H.2 INCORRECT CRITERION

Italic blue entries (F) indicate cases where we disagree with the benchmark’s failure criterion.

In the "Mode Dropping + Invention™ test (Figure [IT), the real data is a mixture of 5 Gaussians, and
the synthetic data progressively includes the 5 real modes and then 5 invented modes. Both real and
synthetic sets always have 1000 samples.

Clipped Coverage is marked as failing because it decreases when invented modes are added. How-
ever, this decrease is expected for low-diversity metrics (density-based): when invented modes are
included, real modes become under-covered as the total amount of synthetic data remains the same,
so coverage metrics should decrease. Thus, this behavior should be considered T or L, both suc-
cesses for coverage metrics.
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Metric Value
© ©
o o
) )

o
>
!
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Num. Synthetic Modes

—— ClippedDensity ClippedCoverage

Figure 11: Mode Dropping + Invention: output from the original code for our metrics.
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I FIDELITY VS COVERAGE WITH OTHER METRICS

We reproduce Figure [f] with other metrics in Figures [12]and [I3}

Several metric pairs show limited discrimination by the fidelity metric, with most variation captured
by the coverage metric. This occurs for Precision/Recall (CIFAR-10, LSUN Bedroom), TopP/TopR
(ImageNet, FFHQ), P-precision/P-recall (FFHQ), and Precision Cover/Recall Cover (FFHQ).

symPrecision and symRecall are highly correlated across all datasets. «-Precision and (3-Recall
show distinct results for consistency models on LSUN Bedroom, but their scores are generally con-
fined to the lower-right quadrant.

Overall, these alternative metrics often exhibit limitations, such as poor discriminative power in
fidelity scores, high correlation between fidelity and coverage, or restricted score ranges, hindering
comprehensive assessment.
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Figure 12: Fidelity vs Coverage on various datasets, other metrics (1/2)
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Figure 13: Fidelity vs Coverage on various datasets, other metrics (2/2)
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J METRIC TESTS ON TOY DATASETS

This section details experiments on synthetic Gaussian data (N = 25000, d = 32, 10 repetitions),
analogous to the CIFAR-10 tests in Section[5] Out-of-distribution samples are drawn from a Gaus-
sian distribution with variance max (4, (10 + Z)?), where Z ~ N(0, 1). The tests performed are:

* Simultaneous mode dropping: Progressively replacing data from all but one class with
data from the remaining class (see Figure[T4b] analogous to Figure 4b).

* Matched real and synthetic out-of-distribution samples: Progressively replacing data
from both real and synthetic datasets with out-of-distribution samples (see Figures

and analogous to Figures [dc|and [5a).

* Introducing bad synthetic samples: Progressively replacing synthetic data with out-of-
distribution samples (see Figures and analogous to Figures [I]and [4a).

J.1 FIDELITY METRICS
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Figure 14: Testing fidelity metrics on toy data: this figure is the equivalent of Figureon toy data.
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J.2  COVERAGE METRICS
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Figure 15: Testing coverage metrics on toy data: this figure is the equivalent of Figure [5|on toy
data.
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K  SENSITIVITY TO THE HYPERPARAMETER k

The number of nearest neighbors, k, is a hyperparameter for Clipped Density, Clipped Coverage,
and several other metrics. We evaluate their sensitivity to k£ on the DINOv2-FFHQ-LDM dataset
(see the Figure below).

Scores increase with £, as this results in larger k-nearest neighbor balls and thus a higher likelihood
of sample inclusion within these balls. Clipped Density and Clipped Coverage remain relatively
stable, likely due to the normalization of the balls by their volume or mass.
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Figure 16: Sensitivity to £ on DINOv2-FFHQ-LDM.
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L UNNORMALIZED RESULTS

Figures [I] [] and [5] present relative scores. This section shows the corresponding unnormalized
scores, which include the maximum values and can be easier to read.

L.1 MIXTURE OF GOOD AND BAD SAMPLES (CIFAR-10)
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Figure 17: Mixture of good and bad samples (CIFAR-10), unnormalized.
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L.2 SIMULTANEOUS MODE DROPPING (CIFAR-10)
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Figure 18: Simultaneously dropping modes (CIFAR-10), unnormalized.

L.3 MATCHED REAL & SYNTHETIC OUT-OF-DISTRIBUTION SAMPLES (CIFAR-10)
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Figure 19: Matched real & synthetic out-of-distribution samples (CIFAR-10), unnormalized.
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L.4 SYNTHETIC DISTRIBUTION TRANSLATION

1.0 0.8 1.0
08 06 08
20.6 4 20.6
g 504 g
B H i
0.2 0.2
0.2
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
W W W W
(a) Precision (b) Density (c) symPrecision (d) a-Precision
1.0
0.8 0.8 0.8
206 296 206
za . 3 0.4 P04
0.2 0.2
0.2
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
M M M M
(e) TopP (f) P-precision (g) Precision Cover (h) Clipped Density
1.0 0. 0.5
0.8 0.6 0.4
206 o 203
] gos g
0a § i
0.2 0.2
0.1
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
W W W W
(i) Recall (j) Coverage (k) symRecall (1) B-Recall
1.0
0.8 0.8 0.8
206 P 206
E Roa 8oa
0.2 0.2
0.2
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
N N N N

(m) TopR

(n) P-recall

(0) Recall Cover

(p) Clipped Coverage

Figure 20: Translating a synthetic Gaussian with 2 bad samples, unnormalized.
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