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ABSTRACT

Although generative models have made remarkable progress in recent years, their
use in critical applications has been hindered by an inability to reliably evaluate
the quality of their generated samples. Quality refers to at least two complemen-
tary concepts: fidelity and coverage. Current quality metrics often lack reliable,
interpretable values due to an absence of calibration or insufficient robustness to
outliers. To address these shortcomings, we introduce two novel metrics: Clipped
Density and Clipped Coverage. By clipping individual sample contributions, as
well as the radii of nearest neighbor balls for fidelity, our metrics prevent out-
of-distribution samples from biasing the aggregated values. Through analytical
and empirical calibration, these metrics demonstrate linear score degradation as
the proportion of bad samples increases. Thus, they can be straightforwardly in-
terpreted as equivalent proportions of good samples. Extensive experiments on
synthetic and real-world datasets demonstrate that Clipped Density and Clipped
Coverage outperform existing methods in terms of robustness, sensitivity, and in-
terpretability when evaluating generative models.
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Figure 1: Measuring the coverage of a mixture of good and bad samples (CIFAR-10): Various
coverage metrics are evaluated relative to their maximum value as the proportion of bad synthetic
samples increases. Only Clipped Coverage displays the desired linear degradation.

1 INTRODUCTION

In recent years, remarkable progress has been achieved in generative models, which are being ac-
tively explored in various fields, such as healthcare (Pinaya et al., 2022; |[Fernandez et al., 2024} [Tu-
dosiu et al.| |2024; |Zhu et al.,[2024; |Bluethgen et al.l|2024). However, deploying them in high-stakes
applications depends on reliably evaluating the quality of synthetic data to ensure its trustworthiness.
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This evaluation is inherently challenging, especially for high-dimensional data. The true underly-
ing distributions of this data are often unknown and complex. They also do not conform to known
parametric families. These factors make computing the support or density infeasible in practice.
Current model evaluation often relies on metrics such as Fréchet Inception Distance (FID) (Heusel
et al., 2017) and FD-DINOV2 (Stein et al., [2023)) for images. These metrics provide a single, com-
pound score representing overall sample quality. Thus, it is impossible to determine whether poor
performance stems from a lack of realism or variety (Sajjadi et al.| 2018)).

To address this issue, the quality of synthetic data can be broken down into at least two core con-
cepts, fidelity and coverage, and measured separately with a pair of metrics. Fidelity metrics assess
how similar each synthetic sample is to the input data (Naeem et al., 2020)). Conversely, coverage
metrics measure the extent to which synthetic samples represent the distribution of real data, taking
into consideration how the rarity or commonness of real data is reflected in the synthetic samples.
However, a recent position paper by [Raisa et al.| (2025) argues that all existing fidelity and diversity
metrics are flawed, highlighting an urgent need for new metrics that address these shortcomings.

To determine whether generative models can be truly dependable, particularly in sensitive applica-
tions, the metrics used to evaluate them must be trustworthy. This means that they must be robust,
sensitive to genuine deficiencies, and provide interpretable scores. A key challenge is robustness to
outliers. Real-world datasets often contain out-of-distribution samples such as corruptions, anoma-
lies, or simply samples very different from the rest (see Figure [7]for examples in CIFAR-10). Simi-
larly, generative models can produce ’bad” samples that are far from the real data distribution. These
outliers can disproportionately influence evaluation scores, masking true performance issues.

Beyond robustness, interpretability is crucial. Metrics should offer more than just relative compar-
isons (i.e., knowing that one model is better than another). As emphasized by Riisi et al.| (2025),
for a metric to be truly useful in practice, its absolute value must be meaningful, since even the
best-performing model in a comparison might still be of poor quality. Critically, Raisa et al.| (2025)
notes that, currently, no fidelity or coverage metric offers this property. Ideally, for straightforward
interpretability, a score of x would indicate performance equivalent to having a proportion of z
good samples and (1 — z) bad ones. However, as shown in Figure |1} current coverage metrics fail
to achieve this. We show in Figure ] that current fidelity metrics are similarly untrustworthy.

In this paper, we introduce Clipped Density and Clipped Coverage, two novel metrics designed to
overcome these limitations. Our contributions are:

* Trustworthy Evaluation: Our metrics achieve robustness to outliers by clipping individual
sample contributions to the aggregate score and, for Clipped Density, by limiting the radii
of nearest-neighbor spheres used to measure the density. This prevents out-of-distribution
samples from skewing the evaluation while preserving sensitivity to genuine issues.

¢ Interpretable Absolute Scores: Through empirical calibration for Clipped Density and
theoretical analysis for Clipped Coverage, we ensure that scores degrade linearly with the
proportion of bad samples, providing absolute interpretability.

The paper is structured as follows: Section 2 provides background on existing metrics. Section
3 reviews related work. Section 4 introduces our Clipped Density and Clipped Coverage metrics.
Section 5 details our experiments and results, and Section 6 discusses implications and limitations.

2 BACKGROUND

We consider a setting in which we are given N i.i.d. samples {z7} , from an unknown data (ref-
erence, or real) distribution p,- and M i.i.d. samples {x; ;‘4: 1 generated from an unknown synthetic
data distribution p,. In this section, we review relevant metrics for evaluating generative models that
aim to disentangle two aspects of synthetic data: fidelity (how realistic each synthetic sample is)
and coverage (how well the synthetic samples populate the real density distribution). These metrics
serve as the basis for our proposed improvements.

Assuming given supports S” for the real distribution and S*® for the synthetic distribution, Preci-
sion measures the proportion of synthetic samples that fall within S”, while Recall measures the
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proportion of i.i.d. real samples that fall in S* (Sajjadi et al., 2018} [Simon et al.,[2019).
Precision = P,,_[S"] =P, [S" N 57 Recall =P, [S°] =P, .[S" N S? (D

However, the underlying densities d” and d* and their supports S™ and S® are unknown, making such
computation infeasible. In practice, improved Precision and Recall (Kynkdanniemi et al.|[2019) ap-
proximate these supports by the union of balls centered at each observed sample, with a radius equal
to the distance NNDjy, from its center to its k-th Nearest Neighbor (Burman & Nolan, [1992)). We
denote by NND; and NND;, the distance to the k-th nearest real and synthetic sample, respectively.

iPrecision = P, [S™ N S°] = Z Lo:cul | B(ar NNDY (27)) @)

iRecall =P, [S" N 5] Z 1,r TEUM, B(x5,NNDf (%)) 3)

Yet, iPrecision and iRecall are strongly biased by out-of—dlstrlbutlon samples. Real outliers, being
far from their nearest neighbors, create large balls and bias the estimation of S”. Similarly, bad
synthetic samples compromise the approximation of the synthetic support (Naeem et al., [2020).

Density and Coverage (Naeem et al., 2020) aim to alleviate this issue by going beyond a binary
in/out decision. Density counts, for each synthetic sample, how many real k-NN balls it falls within,
normalized by k. Thus, outliers with large balls contribute only % to the fidelity of a given synthetic
sample, instead of 1 for iPrecision (Naeem et al.l 2020). As approximating density is impractical in
high-dimensional spaces, the Density metric instead uses distances through k-NN balls. It represents
the average relative density d°®/d", providing a relative measure of how many synthetic points fall
within real balls, normalized by their mass k. To avoid estimation bias when approximating the
synthetic distribution, which may contain many bad samples, additional considerations are needed.
Coverage flips the perspective (Naeem et al., [2020): instead of computing the proportion of real
samples within at least one synthetic ball, Coverage calculates the proportion of real samples that
are covered, by having at least one synthetic sample within their ball: Coverage = P, [gT N .S#].

N

1
Density = —— Z Z laseB(ar NNDy (27))  Coverage = v Z 13j00eB(@r NNDy (7)) (4)
j 1i=1 i=1

Although Density is less affected by outliers in the target distribution, it remains influenced by
them (Park & Kim| 2023). Additionally, Density is not bounded by 1 (Naeem et al., 2020), making
interpretation challenging when empirical estimates exceed this value (Cheema & Urner, [2023; |[Kim
et al.,|2023). Similar to iPrecision and iRecall, Coverage is limited to analyzing supports and misses
density mismatches: a few synthetic samples can cover high-density regions by lying within many
real balls, and adding more synthetic samples there might not increase the score (Park & Kim,[2023).

3 RELATED WORK

Recent works have aimed to improve these metrics. Precision Cover and Recall Cover, analogous
to Precision and Recall, were introduced by |Cheema & Urner| (2023)). They count a ball as covered
only if it contains at least k¥’ > 1 samples. A probabilistic approach was introduced by [Park & Kim
(2023): P-precision and P-recall. These measure the probability that a synthetic (resp., real) sample
lies within a random sub-support of the real (resp., synthetic) distribution.

To address the problem of large-radius balls, Khayatkhoei & AbdAlmageed|(2023) have employed a
dual-perspective approach with symPrecision and symRecall: symRecall is defined as the minimum
of Recall and Coverage, while symPrecision is the minimum of Precision and the complementary
Precision metric computed from the reversed perspective. Some alternative approaches do not rely
on nearest-neighbor approximations. «-Precision and -Recall (Alaa et al.| [2022) employ a one-
class approach to estimate supports containing a fraction « (resp. (3) of a dataset. They measure the
proportion of the other dataset found within supports of varying levels. Topological Precision and
Recall (Kim et al.| 2023) estimate support via topologically conditioned density kernels.

Recently, Riisi et al.| (2025) developed a benchmark of sanity checks for generative model metrics
using synthetic data, finding that all existing fidelity and coverage metrics are flawed. Our own tests
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based on real-world data (Figures[T] f]and [5) confirm this conclusion. That work further emphasizes
that no current metric is suitable for absolute evaluations, calling for more research in this area. Our
work addresses these concerns directly by introducing new metrics that overcome these limitations.
We show in Appendix [H] that our proposed metrics also perform well on their synthetic benchmark.

In the following section, we introduce metrics designed to resolve these issues by being i) robust to
outliers, and by ii) providing clearly interpretable values.

4 METHOD

Our proposed metrics are designed to satisfy several key properties. Firstly, they should be robust
to outliers (Desideratum 1). Secondly, the metrics should exhibit linear score degradation: if a
proportion x of samples are bad, the score should decrease by x (Desideratum 2a). The metrics
should be normalized between 0 and 1 (Desideratum 2b), allowing their values to be interpreted on
their own.

These properties enable a straightforward interpretation: a score of x indicates that the synthetic
dataset achieves the same fidelity or coverage as a dataset composed of a proportion x of real samples
and (1 — x) bad samples. This does not imply that the synthetic dataset is a mixture of good and
bad samples, but rather that its fidelity or coverage is equivalent to that of such a mixture. A score
difference of y between two datasets corresponds to y more bad samples in the equivalent scoring
scenario.

4.1 CLIPPED DENSITY
4.1.1 A ROBUST FIDELITY METRIC

To measure fidelity, the Density metric counts the number of real balls each synthetic sample falls
within. This approach can exceed 1 and is vulnerable to outliers, as it relies on adaptive ball radii.

Figure [2|illustrates a failure case of the Density metric on a synthetic dataset containing a single bad
sample (bottom left), with £ = 2. In this configuration, the two centered points each receive a fidelity
score of %, while the bad sample obtains a fidelity of 0. So, the overall dataset fidelity is computed
as 3 (2 x 3 4+ 0) = 1: an ideal score. While this is an example in dimension 2, the problem worsens
in higher dimensions as the number of balls a sample can belong to increases (Radovanovic et al.,
2010), allowing one over-occurring sample to mask an increasing number of bad synthetic samples.

To prevent over-occurring samples from masking defects, we modify the aggregation approach. The
intuitive idea is to limit the contribution of each sample to the metric: the fidelity of any synthetic
sample should not exceed 1. Applying this modification to Figure 2} the fidelity score becomes
(2 x min(2,1) + 0) = 2, which effectively detects the presence of the bad sample.

On the other hand, real outliers can have extremely large distances to their nearest neighbors, re-
sulting in balls with significantly larger radii. In dimension d, the volume of a ball of radius 7 is
proportional to 7¢. Not only do outliers create much larger balls, but any point in a low-density
region does so as well, which dramatically skews the metrics. These balls have a fixed mass k, but
their volume varies. Balls of large volume can contribute disproportionately more than the others.
To ensure balanced contributions that limit outlier influence, we clip the radius of each ball to the
median of the distances to the k-th nearest neighbor.

Ry (x}) = min (NNDj,(z}), median({NND}, (z;) };L.,)) (5)

This results in the following metric that satisfies Desideratum 1, robustness to outliers:

M N
. . 1 (1
ChppedDenSItyunnorm = M E :mln (k E 1xj€B(x{,Rk(w7;)) a1> (6)
=1 i=1

#{clipped real balls = is within}
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Figure 2: Clipped Density corrects Density’s Figure 3: Correcting Clipped Coverage lin-
failure: In a simple setup with a single bad ear decay: The unnormalized Clipped Coverage

synthetic sample, Density yields a value of 1. (blue) does not decrease linearly with the propor-
By clipping the fidelity of individual samples tion of bad samples. We theoretically compute its
to 1, we obtain an adjusted score of % expected behavior (orange) and correct it (green).

4.1.2 NORMALIZING FOR INTERPRETABILITY

Since ClippedDensity,. .. is an average over synthetic samples, a proportion x of bad samples
directly reduces the score by z, satisfying Desideratum 2a. To achieve normalization between 0
and 1 (Desideratum 2b), we require an ideal value of 1. We achieve this ideal value empirically by
evaluating the fidelity score of the real data using a leave-one-out strategy. For each sample z}, we
count the number of clipped real balls j (with j # 7) that contain it. This computation is efficient, as
we have already obtained the indices of real samples inside each ball during the radius computation.

We normalize ClippedDensity,,...m by the value computed for real data, ClippedDensity,,;, and clip
the result to 1, since scores exceeding 1 would lack meaningful interpretation. The final normalized
metric is:

)

ClippedDensit
ClippedDensity = min( IPPECICNSIY unnorm 1)

ClippedDensity .,

4.2 CLIPPED COVERAGE
4.2.1 A ROBUST COVERAGE METRIC

To measure coverage, the Coverage metric considers the proportion of real samples whose balls
contain at least one synthetic sample. To reflect the real data distribution and not just its support, we
adopt an approach similar to Clipped Density. Instead of only checking for the presence of synthetic
samples inside a real ball, we count how many there are. Then, to bound the contribution of each
real sample, individual coverage scores are capped at 1. This results in the following formulation:

N M
. 1 . 1
ClippedCoverage ,orm = N E min % E 1m_§€ B(27 NND (27)) 51 &)
i=1 j=1

# {synthetic samples within z s ball }

For each real sample, we compare the mass of synthetic samples in its ball to the mass of real
samples. To balance real points’ contributions, the mass of each ball is fixed: no radius clipping is
applied. ClippedCoverage, ... satisfies Desideratum 1 of robustness to outliers.

4.2.2 CALIBRATING FOR INTERPRETABILITY

The blue curve in Figure [3| shows ClippedCoverage, .., When the real and synthetic distributions
are identical (far left) and as bad samples are progressively introduced into the synthetic distribution.
To satisfy Desideratum 2, the score should follow 1 — x for z, the proportion of bad samples. To
correct the metric’s behavior, we start by deriving its expected value as a function of x.
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Lemma 1. [fthe real and synthetic distributions are identical, i.e., {x7 }N | and {3 ?L are N+ M

i.i.d. samples from the same distribution, then the expected value of ClippedCoverage,,,, ., iS:

M)ﬁ(k;+j,M—j+N—k)

M .
E [Clippea’coverageunnorm] = ;min (?{a 1) ( ] B(k; N — ]f)

©))

where [3 is the beta function.

The proof of Lemmal [I]is provided in Appendix[A] To parameterize the curve, we now consider the
case with a proportion z of bad synthetic samples. Since such samples always lie outside any real
ball, the expected score becomes equivalent to the ideal case in Lemmal|l]but with M, = | M (1—z)]
synthetic samples instead of M. We denote this as fexpec[ed(x), shown in orange in Figure

To satisfy Desideratum 2, the expected value of the metric should be 1 — = when the proportion of
bad samples is x. This calibration ensures both a linear degradation of the score (Desideratum 2a)
and normalization to a consistent [0, 1] range regardless of the dataset or choice of k& (Desideratum
2b). We seek a function g such that g o fexpected () = 1 — x. Since M, can only take integers values
m between 0 and M, it suffices to find g for fexpeciea(Mz = m) where m € {0,..., M}.

We can efficiently compute fexpected(Mx = m) for all m (see Appendix . Given these values,
the function ¢ is computed numerically. Since fexpeciea decreases with , we reverse it to form a
sorted list of fexpectea Values. For a given ClippedCoverage, . m score s, we find the index i(s) €

{0, ..., M} such that inserting the value s at index 4(s) keeps the list sorted. Then, g(s) =1 — %

The final normalized metric, which recovers the desired behavior shown in green in Figure 3] is:

ClippedCoverage = g o ClippedCoverage (10)

unnorm

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We compared our metrics against multiple baselines, using the original code for a-Precision, (3-
Recall, and TopP&R, and reimplementing Precision, Recall, Density, Coverage, symPrecision,
symRecall, P-precision, P-recall, and Precision Recall Cover for performance reasons (see Ap-
pendix [B.2] for comparisons). For consistency with previous works, we set & = 5 where applicable;
k' = 3 and C = 3, as recommended for Precision Recall Cover, and used default parameters
everywhere else.

Experiments were conducted on a single NVIDIA H100 GPU with 80GB of RAM. When images
are evaluated, metrics are computed on image data in the embedding space of the "Large” DINOv2
model (DINOv2-ViT-L/14 (Oquab et al.,[2023))), as recommended by |Stein et al.| (2023)).

5.2 METRIC EVALUATION TESTS

To ensure proper behavior, we evaluated metrics in various scenarios by controlling dataset compo-
sition and hence the expected scores. Most tests were performed on CIFAR-10 (Krizhevsky et al.,
2009), with 2500 samples from each of the 10 classes for the real set and the other 2500 for the
synthetic set. We report mean + std over 10 splits. Results are summarized in Figures [de]and [5¢|

CIFAR-10 Simultaneous mode dropping: To verify that fidelity metrics do not capture coverage,
we performed a simultaneous mode dropping test on CIFAR-10 (Figure from [Naeem et al.
(2020)). In this test, the synthetic set progressively replaced samples from all but one class with
samples from the remaining class, while the real set remained unchanged. To maintain a constant
number of samples per set, only 2500 samples were used in this test, with results reported as mean
+ std over 100 splits. Since the synthetic set is always a subset of CIFAR-10, fidelity scores should
remain stable and close to their maximum. However, Precision Cover (yellow) and symPrecision
(green) appear to capture coverage, as they deviate from their maximum value.

CIFAR-10 matched real and synthetic out-of-distribution sample proportion: To evaluate ro-
bustness to out-of-distribution samples, we conducted a test on CIFAR-10 (Figures [4c| and @ in-
spired by Figure 5 of [Naeem et al.| (2020)), where we progressively replaced both real and synthetic
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Figure 4: Testing fidelity metrics (legend/summary in (e)). Scenarios: (a) increasing bad synthetic
sample proportion; (b) simultaneous mode dropping: progressively replacing all but one class with
the last class; (c) matched real & synthetic out-of-distribution samples at equal rates; (d) synthetic
distribution translation with one real outlier and one bad synthetic sample. Only Clipped Density
consistently behaves as expected: linearity (a), stability (b, c), and symmetry with sensitivity (d).

CIFAR-10 samples with out-of-distribution samples (noise images) at the same rate. Since the syn-
thetic set is constructed identically to the real set in all cases, scores should remain stable and close
to their maximum value. However, a-Precision (purple), TopP and TopR (brown), and P-precision
and P-Recall (gray) show instability and deviate from the expected value.

Synthetic data translation: Since real-world datasets like CIFAR-10 contain outliers, we use a test
based on synthetic data (Figures[4d|and[5b] adapted from Naeem et al.|(2020)) to evaluate robustness
to the first out-of-distribution sample. We use 25000 standard Gaussian samples (dim 32, 5 splits).
The synthetic set is translated by p € [—1, 1] in all dimensions and includes a bad sample at —3. The
real set includes an outlier at 3. Ideally, scores should form symmetric bell-shaped curves, dropping
rapidly as £ moves away from 0 to detect distribution shifts. For fidelity (Figure [dd), Precision
(blue) and Density (orange) are non-symmetric due to the real outlier’s large ball, which in turn
affects symPrecision (green). a-Precision (purple) and P-precision (gray) show low sensitivity (flat
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Figure 5: Testing coverage metrics (legend/result summary in (c)). Metrics are evaluated under
different scenarios: (a) matched real & synthetic out-of-distribution samples; (b) distribution trans-
lation with a real outlier at 3 and a bad synthetic sample at -3. Clipped Coverage exhibits all desired
properties: linearity (Figure |I|), stability (a), symmetry and sensitivity (b), unlike other metrics.

curves around 0). For coverage (Figure[5b), Recall (blue) is non-symmetric due to the bad synthetic
sample, which also affects symRecall (green). This happens because the bad sample’s ball grows as
the rest of the synthetic data moves away, covering the real set when p is near 1. 3-recall (purple)
and TopR (brown) are also non-symmetric, indicating instability or insufficient robustness.

CIFAR-10 Progressive bad sample introduction: To test sensitivity and interpretability, we pro-
gressively introduced bad samples (noise images) into a synthetic set of CIFAR-10 images (Figures|I]
and[a). Scores should decrease linearly with the proportion of bad samples (see Sectionfd)). For cov-
erage metrics, only Clipped Coverage (red) exhibited this linear degradation. Most fidelity metrics,
being averages of individual sample fidelities, decreased linearly. However, TopP (brown) deviated
significantly, while Precision Cover (yellow) and a-Precision (purple) showed slight deviations.

Summary: Across all results (see also Figures [e|and [5c), only Clipped Density and Clipped Cov-
erage show the desired behavior in all tests. Other fidelity metrics either inappropriately capture
coverage (e.g., symPrecision, Precision Cover), lack sensitivity (e.g., a-Precision, P-precision), or
lack robustness to outliers (e.g., Precision, Density, TopP). For coverage metrics, only Clipped Cov-
erage shows a linear decrease in score with increasing bad sample fraction, while some metrics are
also insufficiently robust to outliers (e.g., Recall, symRecall, 3-Recall, TopR, P-recall).

5.3 EVALUATION ON REAL DATASETS

We evaluated various generative models on CIFAR-10 (Krizhevsky et al [2009), ImageNet (Deng
et al., [2009), LSUN Bedroom (Yu et al., 2015), and FFHQ (Kazemi & Sullivan, 2014)), using cat-
egories and 50000 samples from the data publicly shared by [Stein et al.| (2023) (see Figure [6] and
Appendix[I). When possible, for conditional models, we kept an equal number of samples from each
class (see Appendix [C]or Appendix A of [Stein et al] (2023) for more details). A comparison with
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Figure 6: Fidelity vs Coverage on various datasets

human evaluations in Appendix [G|confirms that Clipped Density and Clipped Coverage align well
with human judgment.

As shown in Figure [6} on CIFAR-10 and ImageNet, the Density values exceed 1, while the Clipped
Density values remain stable. In Appendix |D] we analyze RESFLOW-generated CIFAR-10 data,
demonstrating that its inflated Density score of 2.47 is driven by real out-of-distribution samples.
Additionally, Appendix [E] provides a step-by-step evaluation of Clipped Density on the generated
datasets, quantifying the impact of each modification to the original Density metric.

Across all datasets, our results consistently show diffusion models outperforming GANs. The range
of values observed for our metrics appears to reflect the training dataset size: CIFAR-10 (50k sam-
ples, max score ~ 0.4), FFHQ (70k, max =~ 0.4), LSUN Bedroom (1.5M, max ~ 0.7), and ImageNet
(14M, max 1.0). Interpreting the absolute scores, a value of 0.4 for CIFAR-10 and FFHQ suggests
that, on these datasets, top generative models achieve results equivalent to only 40% of good samples
and 60% bad samples. This highlights substantial room for improvement, an insight only possible
because the absolute values of Clipped Density and Clipped Coverage are interpretable.

This absolute interpretability also allows us to assess models without requiring a reference model
for comparison, as demonstrated on Chest X-Rays in Appendix

Furthermore, using GAN-generated data with varying truncation parameters, we show in Appendix[J]
that Clipped Density and Clipped Coverage effectively capture the expected trade-off between fi-
delity and coverage. We found Clipped Density and Clipped Coverage to be robust to the choice
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of k (Appendix [[J) and empirically studied their stability as a function of the sample size, showing
a standard deviation proportional to 1/ V'N (Appendix . Additionally, we tested the metrics in
diverse contexts, including imputed distortions (Appendix [N)), failure scenarios such as missing rare
modes (Appendix [O)), and other modalities like music data (Appendix [P). Finally, samples from the
datasets can be visually inspected in Appendix

6 DISCUSSION AND CONCLUSION

Clipped Density and Clipped Coverage offer significant improvements in robustness, sensitivity, and
interpretability. These improvements result from several key design choices. To enhance robustness,
we cap individual sample contributions at 1. For Clipped Density, we further mitigate outlier impact
by clipping the volumes of real nearest-neighbor balls to prevent them from dominating the score.
In contrast, for Clipped Coverage, we maintain balls of constant mass to ensure balanced contribu-
tions. Capping the contribution prevents high-performing samples from disproportionately hiding
low-performing ones. This careful handling of sample contributions and ball properties enhances
robustness while preserving sensitivity.

For interpretability, both metrics are calibrated to degrade linearly as the proportion of bad samples
increases. Clipped Density achieves this through normalization by the real data’s score. For Clipped
Coverage, whose uncalibrated behavior is non-linear (as shown in Figure E]), we theoretically de-
rived its expected behavior and applied a correction to ensure linearity. This combination of robust
aggregation and principled calibration allows Clipped Density and Clipped Coverage to provide not
only trustworthy relative comparisons between models but also meaningful absolute scores. This is
crucial in practice for assessing whether a model meets a required quality threshold.

Despite these improvements, limitations remain. Clipped Density and Clipped Coverage build on
an accepted benchmark of progressively passed tests, but it is not exhaustive, and there might be
missing cases. Furthermore, we did not provide a theoretical analysis of the metrics in the infinite
sample limit. Additionally, while we evaluate fidelity and coverage, other aspects matter, such as
memorization: are generated samples reproductions of training data? Memorization metrics include
GAN-test (Shmelkov et al., 2018), identifiability (Yoon et al., 2020)), authenticity (Alaa et al.,|2022),
and the calibrated [5 distance (Carlini et al., 2023). We used DINOv2 as recommended (Stein et al.}
2023)), but comparing embedding models for generative model evaluation remains an open question.

In conclusion, Clipped Density and Clipped Coverage provide a trustworthy framework for genera-
tive model evaluation, offering robust, sensitive, and interpretable assessments.

Code to reproduce the experiments and use Clipped Density and Clipped Coverage is available at
https://github.com/nicolassalvy/ClippedDensityCoveragel
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A  PROOF OF LEMMA

Proof.
1 1M M
E N Z min % Z 11§€B(I{,NND£(%))7 1 = min Z 11 s€ B(x7 NNDJ (7)) 1
i=1 j=1 j=1
1 i M
= EE min Z:l 1zjeB(z;,NND;(x;)) ok
j=

# {synthetic samples in ] ’s ball}

1
- %E Z INN:, (27)€B (27 NND (7))
L k=1

how many of the k-nearest synthetic samples
of ] are within its ball

:r\H

k
Z (NN;, (1) € B(«},NNDj (x})))

We apply the linearity of expectation in lines 1, 2, and 4, and use the i.i.d. hypothesis for the ] in
line 1. For line 3, we use the fact that the number of synthetic samples within the ball of 27, when
limited to k, is equal to the number of synthetic samples among the k-nearest synthetic neighbors
of i that fall within that ball. Here, NNj, denotes the k-th nearest real data sample, while NNj,
denotes the k’-th nearest synthetic data sample.

Let S” = {||a7 —a7||}}¥, be the set of real distances to 7, and let S}, be the k-th order statistic of S”
(i.e., the k-th smallest element): Sy, = [[NNj (z7) — x7||. Similarly, let 5° = {||z} —ac1||} 7, be the
set of synthetic distances to 7, and let S} be the k-th order statistic of S°: S}, = |[NNj, (xl) 7.
Let C} be the number of synthetic samples contained in the k-ball of 7.

P (NN, (27) € B(x1, NNDj,(27))) = P (NN (21) — 27| < [[NNj (27) — a1]])
=P (Sp < 55)
=P (K <C})

S}, divides the population into two parts: k elements < .S} and NV — 1 — & elements > .S}.. Since the
real and synthetic distributions are the same, for a fixed Sr, C} follows a binomial d1str1but10n with
parameters: number of trials A/ and probability of success equal to F'(S};), where F' is the CDF of
the random variable | X — z7||, with X ~ p,.. Thus, C}|S? ~ Binomial(M, F(S})).

Since S}, is random, so is F'(S},). For any continuous distribution Y, F'(Y") is uniform (Embrechts
& Hofen 2013). Because the CDF is monotonically increasing, (S k) the CDF of the k-th order
statistic of S”, is the k-th smallest element of the set F'(S™): F(S}) = F(S")g. The k-th order
statistic of a uniform distribution follows a Beta distribution (Gentle, 2009), so we have: F' (S,:) ~
Beta(k, (N —1) —k+1) ~Beta(k, N — k).

When the success probability of a binomial distribution is itself a random variable follow-
ing a Beta distribution, the resulting distribution is a Beta-Binomial distribution: C} ~
Beta-Binomial(M, k, N — k).

Let 3 be the beta function:

Mo/ MN\ Bk + i, M —j+N—k
pe <o = Y () L
j=k' ’
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R - e oo LS e (M Bk +j,M — j+ N — k)
z ;P(NN;@’(M) € B(z},NNDj,(z))) = 7 k/z::l];/ (j ) Bk, N — k)
:1 M min(j,k) <M>B(k+j,Mj+Nk)
kj:1 k=1 J ﬁ(kaN_k)
M .
B (7 M\ B(k+j,M —j+ N —k)
_;mln(k‘)(j) 6N — )
]

B IMPLEMENTATION DETAILS

B.1 CLIiPPED COVERAGE

To compute fexpeciea efficiently for all m, we begin by precomputing log-gamma values for all
integers [ between 1 and M + N + 1. Then, all required beta values and binomial coeffi-
cients can be computed as differences of three precomputed log-gamma values: log -Beta(a,b) =
log -Gamma(a) + log -Gamma(b) — log -Gamma(a + b) and log-(}) = log-Gamma(n + 1) —
log -Gamma(k + 1) — log-Gamma(n — k + 1).

For the computation of Clipped Coverage, we take an approach similar to that used in the proof of
Lemma |I} we count how many of the k-closest synthetic samples to a real sample are contained
within its ball. This can be computed using only nearest neighbor searches, which is more efficient
than searching for all synthetic samples within the ball of each real sample.

B.2 COMPARISON WITH EXISTING METRIC IMPLEMENTATIONS
We compare our implementation with the implementations of:

* Precision, Recall, Density, and Coverage by [Naeem et al| (2020) (https:
//github.com/clovaai/generative—evaluation-prdc/blob/master/
prdc/prdc.py)

e symPrecision and symRecall by Khayatkhoei & AbdAlmageed (2023) (https:
//github.com/mahyarkoy/emergent_asymmetry_pr/blob/main/
manifmetric/manifmetric.py)

* P-precision and P-recall by |[Park & Kim|(2023)) using GPU (https://github.com/
kdst-team/Probablistic_precision_recall/blob/master/metric/
PP_pPr.py)

* Our own implementation of Precision Recall Cover, following the pseudocode in Appendix
A3 of the original paper (Cheema & Urner, [2023)

Our implementation simultaneously computes Precision, Recall, Density, and Coverage, with op-
tional computation of symPrecision, symRecall, P-precision, and P-recall. Since some intermediary
computations are shared between these metrics, we compute them once and reuse them. We compute
Precision Recall Cover separately because the k value used differs from the other metrics (k' =
instead of k = 5, see Section [3).

In the original implementations, the number of parallel threads is sometimes hardcoded to 8, so for a
fair comparison, we use only 8 of the 24 threads available on our hardware, which is an HI00 GPU
with 80GB of RAM (as stated in Section 5).

We run the implementations on sets of 10000 standard Gaussians in dimension 32 and on the DI-
NOvV2 embedding of FFHQ with the synthetic set generated by the Latent Diffusion Model (LDM),
hereafter "DINOv2-FFHQ-LDM”, for a total of 50000 samples in both the real and synthetic sets.
The results are shown in Table[Il
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Table 1: Implementation comparison

10000 standard Gaussians, d = 32 DINOvV2-FFHQ-LDM
Values Time (s) Values Time (min)

Metric name Initial  Ours Initial Ours Initial  Ours Initial Ours
Precision 0.7706 0.7706 0.7352 0.7352
Recall 0.7764 0.7764 3.93 0.3969 0.3969 205
Density 0.9591 0.9591 : 0.6475 0.6475 )
Coverage 0.9645 0.9645 8.43 0.5817 0.5817 252
symPrecision 0.7706  0.7706 173 0.3267 0.3267 157
symRecall 0.7764 0.7764 ) 0.3969 0.3969
P-precision 0.9251 0.9251 DNF 0.7229
P-recall 0.9249 0.9249 1.66 DNF 0.6896 DNF

Precision Cover 0.9553 0.9553 55.7 223 0.1785 0.1785 88.2 2.90
Recall Cover 0.9357 0.9357 61.0 225 04637 04637 679 2.99

When both the original and our implementations finish, we obtain the exact same values. The
original implementation of P-precision and P-recall does not finish (DNF) on the FFHQ test due to
memory issues.

The main difference between our implementation and the existing ones is the use of Scikit-
learn’s (Pedregosa et al.| 2011) NearestNeighbors method for the nearest neighbor search.
We also use it for ball tree radius queries, which find all samples within a given radius of a specific
point.

For simplicity, we assume here that the number of real and synthetic samples is the same: N = M.
Ball trees are built in O(dN log N) time and O(Nd) space (Omohundro, [1989; Huang & Tung,
2023)) for N samples in dimension d, while queries take O(dlog N) operations in low dimensions
and up to O(dN) time in high dimensions (Liu et al., [2006) (note that this query is performed N
times).

In contrast, initial implementations usually compute the distances between all pairs of samples and
search through these distances instead. The construction complexity is then O(dN?) time and
O(N?) space. Finding all points within a given radius of a specific point can then be done in
O(N) time because the distances are already computed.

Our method therefore has at most the same time complexity as the initial implementation, but with
memory usage of O(Nd) instead of O(N?).

For DINOvV2-FFHQ-LDM, where N = 50000 and d = 1024, the original P-precision and P-recall
implementation fails due to out-of-memory errors, as it attempts to allocate an additional 24GB
of RAM on top of the 73GB already in use (73 = 24 x 3 + 1). This implementation stores four
pairwise distance matrices, whereas prdc . py (for Precision, Recall, Density, and Coverage) stores
only one.

B.3 COMPUTATIONAL REQUIREMENTS
The approximate computation times for the experiments were as follows:
* Extracting DINOv2 embeddings took 3.7 minutes per dataset. With 46 datasets in total
(14 4 12 4 10 4 10), this amounted to 2.8 hours.

* For synthetic data tests (25000 samples, dimension d = 32), each evaluation of all metrics
took 8 minutes. The total computation time for these tests, encompassing various scenarios
and repetitions (21 x 5 + (11 4+ 11/2 4+ 4) x 10), was 41 hours.

* For real tests using DINOv2 embeddings of CIFAR-10 (25000 samples, dimension d =
1024), each evaluation of all metrics took 13.7 minutes. The total computation time for
these tests ((11 + 11/2 + 4) x 10) was 47 hours.
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* The evaluation of generative models on real datasets took 40 minutes per generated set.
With 42 generated sets evaluated (13 + 11 + 9 + 9), this totaled 28 hours.

Overall, reproducing all the experimental results presented in this paper would require approxi-
mately 120 hours of computation time. The complete research project, including preliminary ex-
periments and explorations not detailed in the final paper, required an estimated 200-300 hours of
computation time.

C DATASETS

C.1 REAL DATA FOR METRIC EVALUATION TESTS

For tests conducted on real data, the samples are DINOv2 embeddings derived from the CIFAR-10
dataset (Krizhevsky et al.,|2009). When a test requires out-of-distribution (or bad’’) samples, these
are DINOv2 embeddings of Gaussian noise images.

C.2 GENERATED DATASETS

This section details the generated datasets evaluated in Figures[6] [[2]and[I3] All data were publicly
shared by [Stein et al.| (2023)) through the link provided in their GitHub repository: https://
github.com/layer6ai-labs/dgm—evall For more information on the generation process,
see Appendix A of |Stein et al.| (2023).

We used 50000 samples for each evaluation. For conditional models, an equal number of samples
per class was taken, except when only 50000 unbalanced images were available.

C.2.1 CIFAR-10
For CIFAR-10 (Krizhevsky et al.,|2009), data were generated using the following models:

¢ LSGM-ODE (Vahdat et al., 2021)

¢ PFGM++ (PFGMPP) (Xu et al.,[2023])

¢ iDDPM-DDIM (Nichol & Dhariwall, [2021])

* StudioGAN models (Kang et al., 2023a))
— ACGAN-Mod (Odena et al., 2017

BigGAN (Brock et al.,|2019)

LOGAN (Wu et al.} 2019)

MHGAN (Turner et al., 2019)

ReACGAN (Kang et al.| 2021)

WGAN-GP (Gulrajani et al., 2017)

* StyleGAN-XL (Sauer et al., 2022)

* StyleGAN2-ada (Karras et al., [2020)

e RESFLOW (Chen et al., 2019)

¢ NVAE (Vahdat & Kautz, 2020)

C.2.2 IMAGENET

For ImageNet (Deng et al., 2009), images were rescaled to 256 x 256 using center cropping followed
by bicubic interpolation downsampling before being shared by |Stein et al.|(2023). The synthetic data
were generated using the following models:

* Models for which datasets of 50000 unbalanced samples were initially shared by [Dhariwal
& Nichol| (2021):

— ADM (Dhariwal & Nichol, 2021)
— ADMG (Dhariwal & Nichol, 2021)
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— ADMG-ADMU (Dhariwal & Nicholl, [202T)
- BigGAN (Brock et all 2019)

* DiT-XL-2 (Peebles & Xiel [2023)

* DiT-XL-2-guided (Peebles & Xiel [2023)

* LDM (Rombach et al., [2022)

* GigaGAN (Kang et al| [2023Db)

« StyleGAN-XL

* Mask-GIT (Chang et all,[2022)

* RQ-Transformer 2022)

C.2.3 LSUN BEDROOM

For LSUN Bedroom (Yu et al., 2015)), data were generated using the following models:
* Consistency (Song et al, 2023). We used the two sets provided by [Stein et al) (2023,

referred to as Consistency-setl and Consistency-set2.

* Four models for which datasets of 50000 unbalanced samples were originally shared by

[Dhariwal & Nichol| (2021):
— ADM-dropout (Dhariwal & Nichol, 2021)
- DDPM 2020)

— iDDPM (Nichol & Dhariwall 2021
— StyleGAN (Karras et al., 2019)
* Diff-ProjGAN: Diffusion-Projected GAN (Wang et al.,[2023)

+ Projected GAN 2o021)
¢ Unleash-Trans: Unleashing Transformers (Bond-Taylor et al.} [2022)

C.2.4 FFHQ

For FFHQ (Kazemi & Sullivan, 2014), images were downsampled to 256 x 256 using Lanczos
interpolation before being shared by |Stein et al|(2023)). The data were generated using the following
models:

* LDM (Rombach et al}[2022)

+ InsGen

* Projected-GAN

* StyleGAN-XL 2022)

* StyleGAN2-ada (Karras et al.,[2020)

* StyleNAT (Walton et all,[2022)

* StyleSwin (Zhang et al.} [2022)

¢ Unleash-Trans: Unleashing Transformers (Bond-Taylor et al.} [2022)

« Efficient-vdVAE (Hazami et al.| [2022)
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D EXAMPLE OF REAL OUT-OF-DISTRIBUTION SAMPLES INFLATING Density

The RESFLOW-generated CIFAR-10 dataset achieves a Density of 2.47, a value inflated by real out-
of-distribution samples. To investigate this, we categorized real samples by counting the number of
synthetic samples within their 5-ball (Table[2).

Table 2: Synthetic points per real £-ball (RESFLOW CIFAR-10).

Synthetic points in a real ball ~ Real balls (no clipping) Real balls (with clipping)

0 48373 49981
1-5 680 15
6-100 513 3
101-1000 282 1
1001-10000 148 0
10001+ 4 0

Without radii clipping, 48373 real balls contain no synthetic points, whereas just 4 contain over
10000. The 4 corresponding real images appear out-of-distribution (see Figure[7).

(a) Very gray ship image. (b) Camouflaged cat. (c) 2-legged horse. (d) Toy ship on a stand.

Figure 7: Real CIFAR-10 samples containing more than 10000 synthetic points in their 5-ball.
These images are atypical for their classes. (a) A ship viewed from above, maybe at night, resulting
in a mostly gray image. (b) A cat on top of a similarly colored object. (c) An unusually shaped horse
that appears to have only two legs. (d) A toy ship on a stand instead of in water.

A real point having many synthetic points in its ball is not inherently problematic, as generative
models might generate many similar images. However, in this case, these 4 images are outliers that
artificially increase the measured fidelity by being very far from other points. Here, clipping the real
balls is enough to make the measured fidelity drop to 0.00.
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E FROM Density TO Clipped Density: OVER-OCCURRING SAMPLE
PROPORTION AND RADII CLIPPING

This section measures the effects of the successive modifications that transform Density into Clipped
Density. Below, we detail their impact on the evaluation of real generated datasets, along with the
proportion of over-occurring samples (i.e., samples with a fidelity score greater than 1) at each step.

The columns, in order, present: the original Density score, the initial proportion of over-occurring
samples (OOP), the Density score after radii clipping, the OOP after radii clipping, the scores after
individual sample contributions are also clipped (resulting in ClippedDensity ,pom)> and finally, the
fully normalized ClippedDensity.

Table 3: From Density to Clipped Density on CIFAR-10.

S
& e
o) N W
OOQK o \\QQ& 606‘\%\ o
SR o e

Model o @ e R e e
LSGM-ODE 0.66 184 022 6.0 0.14 038
PFGMPP 0.65 18.3 0.22 6.3 0.15 0.39

iDDPM-DDIM 0.64 174 0.19 5.6 0.13 0.34
ACGAN-Mod 2.28 43.0  0.00 0.0 0.00  0.01

BigGAN 0.55 144 0.10 2.6 0.07 0.19
LOGAN 1.01 224 0.00 0.0 0.00  0.01
MHGAN 0.57 14.9 0.06 1.6 0.05 0.13
ReACGAN 0.57 14.2 0.07 1.6 0.05 0.14

StyleGAN-XL 0.58 153 0.15 4.0 0.10 0.27
StyleGAN2-ada  0.60 16.4 0.13 34 0.09 0.24

WGAN-GP 1.74 372 0.00 0.0 0.00  0.01
RESFLOW 2.47 474  0.00 0.0 0.00  0.00
NVAE 1.59 31.9 0.00 0.0 0.00  0.00

Table 4: From Density to Clipped Density on ImageNet.

RN
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Model DCUIROS SR L SO oA
ADM 0.38 8.3 0.08 2.2 0.07 0.17
ADMG 0.49 12.8 0.17 4.7 0.13 0.34
ADMG-ADMU 0.55 15.5 0.21 5.8 0.16 0.41
DiT-XL-2 0.83 28.2 0.43 14.6 0.29 0.74
DiT-XL-2-guided 1.65 63.8 1.12 42.3 0.63 1.00
LDM 0.70 21.5 0.32 10.0 0.22 0.57
BigGAN 0.46 10.5 0.05 0.9 0.05 0.12
GigaGAN 0.41 9.2 0.07 1.5 0.06 0.15
StyleGAN-XL 0.38 8.3 0.06 1.2 0.05 0.13
Mask-GIT 0.43 10.3 0.10 2.2 0.09 0.22

RQ-Transformer 0.34 6.8 0.04 0.8 0.03 0.09
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Table 5: From Density to Clipped Density on LSUN Bedroom.
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Model o W o o o o®

Consistency-setl 0.62 18.7 0.14 34 0.11 0.32
Consistency-set2 0.64 18.9 0.13 29 0.11 0.30

ADM-dropout 0.83 259 0.41 12.6 0.26 0.73
DDPM 0.55 14.5 0.16 4.6 0.11 0.32
iDDPM 0.64 18.2 0.23 6.8 0.16 0.44
Diff-ProjGAN 0.56 15.0 0.05 1.1 0.05 0.13
Projected-GAN 0.63 16.9 0.05 0.9 0.04 0.12
StyleGAN 0.74 21.8 0.26 74 0.17 0.48
Unleash-Trans 0.51 12.5 0.06 14 0.05 0.14

Table 6: From Density to Clipped Density on FFHQ.
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Model o W o o0 T
LDM 065 184 024 66 016 041
InsGen 0.32 6.9 0.06 1.3 0.05 0.12

Projected-GAN 0.21 3.5 0.02 0.2 0.01 0.03
StyleGAN-XL 0.51 13.0 0.14 3.6 0.10 0.26
StyleGAN2-ada 0.24 4.2 0.04 0.7 0.03 0.08
StyleNAT 0.61 16.5 0.20 5.3 0.14 0.35
StyleSwin 0.53 13.8 0.13 3.1 0.10 0.25
Unleash-Trans 0.46 11.0 0.10 2.5 0.08 0.19
Efficient-vdVAE 0.80 232 0.28 7.9 0.17 0.42

F EVALUATION OF GENERATED CHEST X-RAYS

We evaluated a Progressively Growing GAN (Karras et al.,2018) from the Medigan library (Osuala
et al.l[2023), trained by Segal et al|(2021)) on the ChestX-ray8 dataset (Wang et al.l[2017) (= 110000
chest X-ray images). The model yielded a Clipped Density of 0.06 and a Clipped Coverage of 0.03.

The absolute interpretability of our metrics allows a direct assessment of these results without re-
quiring comparison to other models. A Clipped Density of 0.06 implies that the model’s output has a
fidelity equivalent to a dataset composed of only 6% good samples and 94% bad samples; similarly,
a Clipped Coverage of 0.03 is equivalent to a dataset with only 3% good samples.

This is a critical advantage over relative metrics, which can only rank models against each other
without revealing whether even the best-performing one is adequate for a given task. In high-stakes
domains like medical imaging, the ability to make an absolute judgment is essential. A low score
provides a clear, unambiguous signal that the model is not yet fit for purpose, preventing the prema-
ture adoption of a technology that fails to meet the necessary standards for safety and reliability.

25



Published as a conference paper at ICLR 2026

G COMPARISON TO HUMAN EVALUATIONS

To further validate Clipped Density and Clipped Coverage, we compared their scores against human
error rates in distinguishing real from generated images (scores shared by|Stein et al.|(2023))), where
higher error rates indicate better generative models.

We computed Pearson correlation coefficients between human error rates and both metrics across
all datasets in Figure[8] All correlations were significant and exceeded 0.8, except for FFHQ, where
no significant correlation was found. This aligns with the findings of [Stein et al.| (2023)) (Figure 4,
DINOV2 column). This strong agreement with human judgment confirms that Clipped Density and
Clipped Coverage correlate well with human perception of generation quality.

e Consistency e Diffusion e GAN e Normalizing Flow Transformer e VAE
CIFAR-10 ImageNet LSUN Bedroom FFHQ
r=0.93, p = 5.89e-06 r=0.82, p = 2.056-03 r=0.82,p = 6.21e-03 F = -0.05. b = 8.956-01
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Figure 8: Human Error Rate vs Clipped Density and Clipped Coverage: We use human error
rates from Stein et al.| (2023)), where subjects were asked to distinguish between real and generated
images. A higher error rate indicates a better generative model. The first row shows human error
rates vs. Clipped Density, and the second row vs. Clipped Coverage. Above each plot, we display
the correlation coefficients (and p-values) between human error rates and each metric. All correla-
tions are high except for the FFHQ dataset, where no significant correlation was found, consistent
with Stein et al.| (2023)) (grayed in their Figure 4, DINOv2 column).
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H COMPARISON TO A RECENT BENCHMARK

A recent position paper by |Riisi et al.[(2025) argues that “all current generative fidelity and diversity
metrics are flawed” and that "no metric is suitable for absolute evaluations.” Our work tackles these
issues directly. In this section, we evaluate Clipped Density and Clipped Coverage on the benchmark
from Raisa et al.[(2025)), using the authors’ original code. All tests in this benchmark are performed
on synthetic data, with a default sample size of 1000.

The results are summarized in Tables[/|and [§| which reproduce the tables from Raisi et al.| (2025)
with Clipped Density (Cl-Dens) and Clipped Coverage (Cl-Cov) added for comparison. Here, T
denotes a passed test, while F indicates failure. The original benchmark distinguishes between high
(H, support-based) and low (L, density-based) diversity metrics. Since we aim to measure coverage,
which assesses densities, we interpret L as a success (T) and H as a failure (F).

We observed seven discrepancies with the original results, marked with a royal blue underline (T
or F). These differences arise from the benchmark’s seed generation: the seed is based on a hash
of the metric name, test name, and repetition index, but Python’s built-in hash function changes
across different sessions unless PYTHONHASHSEED is set. As a result, seeds (and thus results)
differ between runs.

Table 7: Fidelity metrics comparison on a recent benchmark from Raisa et al.| (2025)

Vol
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Desiderata Sanity Check

Discrete Num. vs. Continuous Num.
Gaussian Mean Difference
Gaussian Mean Difference + Outlier
Gaussian Mean Difference + Pareto
Gaussian Std. Deviation Difference
Hypercube, Varying Sample Size
Hypercube, Varying Syn. Size
Purpose Hypersphere Surface
Mode Collapse
Mode Dropping + Invention
One Disjoint Dim. + Many Identical Dim.
Sequential Mode Dropping
Simultaneous Mode Dropping
Sphere vs. Torus
Hyperparam. Hypercube, Varying Syn. Size
Data Hypercube, Varying Sample Size
Discrete Num. vs. Continuous Num.
Gaussian Mean Difference
Gaussian Mean Difference + Outlier
Gaussian Mean Difference + Pareto
Gaussian Std. Deviation Difference
Hypersphere Surface
Mode Collapse
Mode Dropping + Invention
One Disjoint Dim. + Many Identical Dim.
Scaling One Dimension
Sequential Mode Dropping
Simultaneous Mode Dropping
Sphere vs. Torus
Invariance Scaling One Dimension

Bounds
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Table 8: Coverage metrics comparison on a recent benchmark from |Raisi et al.| (2025)

Desiderata Sanity Check

Discrete Num. vs. Continuous Num.
Gaussian Mean Difference
Gaussian Mean Difference + Outlier
Gaussian Mean Difference + Pareto
Gaussian Std. Deviation Difference
Hypercube, Varying Sample Size
Hypercube, Varying Syn. Size
Purpose Hypersphere Surface
Mode Collapse
Mode Dropping + Invention
One Disjoint Dim. + Many Identical Dim.
Sequential Mode Dropping
Simultaneous Mode Dropping
Sphere vs. Torus
Hyperparam. Hypercube, Varying Syn. Size
Data Hypercube, Varying Sample Size
Discrete Num. vs. Continuous Num.
Gaussian Mean Difference
Gaussian Mean Difference + Outlier
Gaussian Mean Difference + Pareto
Gaussian Std. Deviation Difference
Hypersphere Surface
Mode Collapse
Mode Dropping + Invention
One Disjoint Dim. + Many Identical Dim.
Scaling One Dimension
Sequential Mode Dropping
Simultaneous Mode Dropping
Sphere vs. Torus
Invariance Scaling One Dimension

Bounds
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Purple underlined entries (F) indicate cases where the benchmark’s criterion for success is, in our
view, overly strict (see Appendix [H.I). Italic blue entries (F) indicate cases where the original im-
plementation counts a failure, but we argue that for low diversity metrics, these should be considered
successes (see Appendix [H.2).

H.1 HARSH CRITERIA

Purple underlined entries (F) correspond to cases where, in our view, the benchmark’s threshold for
passing may be too narrow.

In the ”Gaussian Mean Difference” test (Figure [9), which is analogous to our synthetic Gaussian
translation test but without bad samples, the bounds desideratum is not satisfied by Clipped Coverage
in dimension 64 with no translation (0). In this case, the initial and synthetic distributions are the
same. Clipped Coverage has a value of 0.947, while the criterion requires a value between 0.95 and
1.05.

Similarly, in the "Mode Collapse” test (Figure [I0), where real data is a mixture of two Gaussians
spaced by p and the synthetic data is a single Gaussian, the value in dimension 64 with no translation
(0, same initial and synthetic distributions) is 0.941, just below the same required threshold.
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Figure 9: Gaussian Mean Difference: output from the original code for our metrics.
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Figure 10: Mode Collapse: output from the original code for our metrics.

H.2 INCORRECT CRITERION

Italic blue entries (F) indicate cases where we disagree with the benchmark’s failure criterion.

In the "Mode Dropping + Invention™ test (Figure [IT), the real data is a mixture of 5 Gaussians, and
the synthetic data progressively includes the 5 real modes and then 5 invented modes. Both real and
synthetic sets always have 1000 samples.

Clipped Coverage is marked as failing because it decreases when invented modes are added. How-
ever, this decrease is expected for low-diversity metrics (density-based): when invented modes are
included, real modes become under-covered as the total amount of synthetic data remains the same,
so coverage metrics should decrease. Thus, this behavior should be considered T or L, both suc-
cesses for coverage metrics.
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Figure 11: Mode Dropping + Invention: output from the original code for our metrics.
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I FIDELITY VS COVERAGE WITH OTHER METRICS

We reproduce Figure [f] with other metrics in Figures [12]and [I3}

We observe that for some metric pairs, fidelity scores vary little, while coverage metrics vary sig-
nificantly. This occurs for Precision/Recall (CIFAR-10, LSUN Bedroom), TopP/TopR (ImageNet,
FFHQ), P-precision/P-recall (FFHQ), and Precision Cover/Recall Cover (FFHQ). symPrecision and
symRecall show correlated scores. a-Precision and 3-Recall show distinct results for consistency
models on LSUN Bedroom and yield scores generally confined to the lower-right quadrant.

Howeyver, the correct behavior of metrics on real data is unknown, so we cannot draw definitive
conclusions about which metric pairs are better or worse from these plots alone.
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Figure 12: Fidelity vs Coverage on various datasets, other metrics (1/2)
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Figure 13: Fidelity vs Coverage on various datasets, other metrics (2/2)
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J FIDELITY AND COVERAGE TRADE-OFF: TRUNCATION IN GANS

There is often a trade-off between fidelity and coverage, as improving one can come at the expense
of the other for a given model (Li et all 2024). In this section, we verify that Clipped Density
and Clipped Coverage capture this trade-off by evaluating them on LSUN Bedroom StyleGAN data
(Karras et al., [2019)), shared by the original authors with varying truncation levels. For GANSs, the
truncation trick samples from a truncated latent space to improve fidelity at the expense of coverage.
A smaller truncation value v restricts sampling to a smaller, denser region. Note that ¢y = 1.0
corresponds to no truncation, matching the StyleGAN model in Figure|[6]

As shown in Figure both scores initially increase as we move from no truncation (1) = 1.0) to
moderate truncation (v = 0.7). However, further truncation to ¢ = 0.5 causes Clipped Density to
rise higher while Clipped Coverage decreases, effectively illustrating the trade-off.

We investigated the initial rise of Clipped Coverage in Figure [I5] by examining sample-wise score
histograms. From ¢ = 1.0 to ¢ = 0.7, real samples in high-density regions that were barely
covered become fully covered. Then, at ¢ = 0.5, many real samples drop to O coverage as parts of
the distribution are ignored. Thus, the initial rise in the Clipped Coverage score is caused by a more
intense coverage of dense real regions.

0.50

o
>
ey

©
>
o

Clipped Coverage

0.35

04 06 08 10 12 14 16 1.8
Clipped Density

Figure 14: Fidelity and Coverage trade-off: To verify that Clipped Density and Clipped Cover-
age capture the fidelity-coverage trade-off, we evaluated them on LSUN Bedroom StyleGAN data
(Karras et al., 2019) shared by the original authors with varying truncation levels. For GANs, the
truncation trick samples from a truncated latent space to improve fidelity at the expense of coverage.
A smaller truncation value 1 restricts sampling to a smaller, denser region. ) = 1.0 corresponds to
no truncation, matching the StyleGAN model in Figure[6} From no truncation (1) = 1.0) to moderate
truncation (¢ = 0.7), both scores increase. However, further truncation to ¢» = 0.5 causes Clipped
Density to rise higher while Clipped Coverage decreases, illustrating the trade-off. Note that here,
we display Clipped Density scores without clipping them to 1, see the next subsection for details.
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Figure 15: Sample-wise Fidelity and Coverage for different truncation levels: Sample-wise
Clipped Density (left) and Clipped Coverage (right) histograms for the StyleGAN data evaluated in
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Figure[T4] with varying truncation ¢. As truncation is strengthened, fewer synthetic samples have 0-

fidelity and more reach 1, reflecting sampling restricted to dense regions. From ¢ = 1.0 to ¢ = 0.7,
Clipped Coverage improves as high-density regions become better covered. However, at ¢ = 0.5,

many real samples drop to 0 coverage as parts of the distribution are ignored.
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K Clipped Density SCORES EXCEEDING 1

In this section, we investigate the impact of clipping Clipped Density scores to 1.

First, we reproduced previous tests where Clipped Density was limited to 1, but without this clipping
(Figure [T6). We found that the results remained stable near 1 as expected: in these test settings,
Clipped Density does not exceed 1 significantly.

In our evaluations of generative models, one instance can exceed 1: DiT-XL-2 with guidance on
ImageNet. The sample-wise histograms (Figure show that guidance increases the proportion
of synthetic samples with perfect fidelity, surpassing that of real samples. Similar to StyleGAN
truncation, which can also yield scores above 1 (see Appendix [I), Clipped Coverage improves as
covered points become fully covered while uncovered points remain stable. This reflects the similar
effects of guidance and truncation: both alter sampling to favor high-density regions while ignoring
low-density ones.

A Clipped Density score above 1 thus occurs when sampling systematically avoids low-density re-
gions, effectively targeting a filtered real distribution. This is a feature of the unclipped metric: while
using a filtered high-quality test set might be better practice in this scenario, the metric correctly re-
flects that the synthetic set achieves higher fidelity than the unfiltered real reference.

Scores above 1 indicate that the generative model does not target the full real distribution, but rather
a subset of high-density regions. Since our goal is to evaluate how well the model matches the
real set, scores exceeding 1 represent a deviation from this objective (often at the cost of coverage).
Clipping to 1 enforces the interpretation that ideal fidelity consists of matching the real data exactly,
rather than surpassing it by ignoring difficult regions.
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(a) Simultaneously dropping (CIFAR-10) (b) Introducing bad real & syn. samples (CIFAR-10)

Figure 16: Reproduced tests without limiting Clipped Density to 1. We reproduced previous tests
where Clipped Density was limited to 1. The results remain stable near 1 as expected. The standard
deviation is high in (a) because only 2500 samples are used (see Figure 20| for an analysis of the
standard deviation vs sample size). In test settings, Clipped Density does not exceed 1 significantly.
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Figure 17: Clipped Density exceeding 1 with Guidance on ImageNet. With guidance on DiT-XL-2
on ImageNet, Clipped Density significantly exceeds 1. Sample-wise histograms show that guidance
increases the proportion of synthetic samples with perfect fidelity, surpassing that of real samples.
Similar to StyleGAN truncation, Clipped Coverage improves as covered points become fully cov-
ered while uncovered points remain stable, reflecting the similar effects of guidance and truncation:
sampling favors high-density regions and ignores low-density ones. A Clipped Density above 1
occurs when sampling avoids low-density regions, effectively targeting a filtered real distribution.
While using a filtered high-quality test set might be better practice, the metric correctly reflects that
the synthetic set achieves higher quality than the unfiltered real reference.

35



Published as a conference paper at ICLR 2026

L  SENSITIVITY TO THE HYPERPARAMETER k

The number of nearest neighbors, k, is a hyperparameter for Clipped Density, Clipped Coverage,
and several other metrics. We evaluate their sensitivity to k£ on the DINOv2-FFHQ-LDM dataset
(see the Figure below).

Scores increase with k, as this results in larger k-nearest neighbor balls and thus a higher likelihood
of sample inclusion within these balls. Clipped Density and Clipped Coverage remain relatively
stable, likely due to the normalization of the balls by their volume or mass.
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Figure 18: Sensitivity to k£ on DINOv2-FFHQ-LDM.
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M CALIBRATION STABILITY

To further validate the absolute calibration of Clipped Density and Clipped Coverage, we performed
two additional experiments on the ImageNet dataset. First, we repeated the progressive bad sample
introduction test 10 times using distinct ImageNet subsets (Figure[T9), confirming that both metrics
decrease linearly with the proportion of bad samples.

Second, we assessed the stability of the metric scores as a function of the sample size N (Figure[20).

We found that the empirical standard deviation of both metrics decreases proportionally to 1/v/N,
reaching values below 0.01 for N = 50000, thereby confirming their stability.
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Figure 19: Evaluating a mixture of good and bad samples (ImageNet): Synthetic sets mix DI-
NOvV2 embeddings of real ImageNet samples with noise (bad samples), using N = 50000 balanced
samples per set. The experiment is repeated 10 times with different subsets of ImageNet. The stan-
dard deviation is shown but is smaller than the markers in all cases (at most 0.0056 for Clipped
Density and 0.0082 for Clipped Coverage). Both metrics decrease linearly with the proportion of
bad samples, confirming the absolute calibration on the high-dimensional ImageNet dataset.
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Figure 20: Calibration Stability vs sample size (N = M). Synthetic sets mix 80% real ImageNet
samples with 20% noise, targetting a score of 0.8 to avoid boundary effects at 1. We use 50 samples
per class, selecting random classes for smaller N (10 repetitions). (a) Scores vs N. (b)-(c) Empirical
standard deviation vs N. Both metrics’ std decreases as 1/ VN, reaching values below 0.01 for
N = 50000, even when adjusting by 1/0.8 to account for higher target scores.
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N FIDELITY UNDER IMPUTED DISTORTIONS

To further assess the behavior of Clipped Density, we evaluated the fidelity of PFEGMPP-generated
CIFAR-10 samples under various image distortions, replicating the setup from Figure 5 of
spong et al.| (2023). Our results for Clipped Density, shown in Figure 21] align with those reported
for the Feature Likelihood Divergence (FLD) metric in the original study, which were themselves
better than those of FID.

We applied the transformations detailed in Appendix E.1 of[Jiralerspong et al.|(2023). For the Color
Distort transformation, the default parameters produce an identity transform, so we used a non-
default hue = 0. 3. For the Center Crop transformation, two different values (28 and 30) are used
throughout the paper. We proceeded with the value 28.
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Figure 21: Fidelity of PFGMPP samples under different image distortions, measured with
Clipped Density. Horizontal lines represent the Clipped Density scores of other models for compar-
ison.
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O OTHER FAILURE MODES

In this section, we examine additional failure modes of generative models and analyze the response
of Clipped Density and Clipped Coverage.

In the first scenario, we assess the detection of a small real mode absent from the synthetic data,
following the protocol in Appendix F.2 of [Lemos et al,| (2025) (see Figure[22). The primary distri-
bution consists of eight CIFAR-10 classes, while a rare mode (trucks) is progressively introduced
solely into the real set. Clipped Coverage correctly decreases as this uncovered rare mode grows,
showing sensitivity even when the mode represents only 0.00125% of the real set. Conversely,
Clipped Density remains stable, as the synthetic samples continue to reside within valid real modes.

In the second scenario, we evaluate the impact of incorrect intra-mode structure. We sample 10000
points from centered Gaussians with distinct orientations: /-shaped for the real data and \-shaped
for the synthetic data (see Figure 23] top). These distributions correspond to the block-structured
covariance matrices detailed in Figure[23](d), where o controls the width of the shapes. Regardless
of o, both Clipped Density and Clipped Coverage correctly drop to 0 as the dimensionality increases,
reflecting the fact that the intersection volume between the two distributions becomes negligible.
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Figure 22: Rare modes in real data: Following |[Lemos et al. (2025) (Appendix F.2), we assess
the detection of a small real mode absent from synthetic data. Eight CIFAR-10 classes form the
main modes (all but trucks and ships, 20000 samples each for real/synthetic). A rare mode (trucks)
is progressively introduced into the real set only (up to 2500 samples). We introduce 0% to 0.1%
(Left) and 0.1% to 1% (Right) of truck samples, representing up to 0.0125% and 0.125% of the
total real set, respectively. Clipped Coverage correctly decreases as the uncovered rare mode grows,
while Clipped Density remains stable since synthetic samples still lie within valid real modes.
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Figure 23: Incorrect correlations: Real and synthetic sets consist of N = 10000 samples from
centered Gaussians with covariance matrices shown in (d). The first two components are shown for
varying o in (a)-(c). (e) shows Clipped Density and Clipped Coverage versus dimension for different
o. Regardless of o, both metrics drop to 0 as the dimension increases, because the intersection
volume between the distributions becomes negligible.
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P OTHER MODALITIES

P.1 TOY TIME SERIES EXAMPLE

Following Appendix F.3 of |[Lemos et al.|(2025), we evaluated Clipped Density and Clipped Cov-
erage using toy time series data. In this setup, the real signal consists solely of noise, whereas the
synthetic data includes an added hallucinated signal of varying amplitude. As the amplitude of this
hallucination increases, both metrics decrease, correctly identifying the discrepancy.
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Figure 24: Toy time series example: Following [Lemos et al.| (2025) (Appendix F.3), we evaluate
Clipped Density and Clipped Coverage on toy time series. The signal is defined as A cos(t) + n(t),
where 7(t) is unit Gaussian noise, with 100 time points per sample and 5000 samples per set. The
real set has zero amplitude (A = 0), while the synthetic set has varying amplitude. The goal is to
detect this discrepancy. Both metrics decrease as the signal amplitude increases, dropping below the
maximum slightly after an amplitude of 0.1. Some instability is observed due to the limited sample
size of 5000.
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P.2 MUSIC DATASET EXAMPLE

To evaluate music data, we used the Free Music Archive large dataset, comprising 30s clips from
106574 tracks (Defferrard et al., 2017). Following Gui et al|(2024), who compared 10 embedding
models for music, we employed the CLAP model (Elizalde et al.| |2023). Since it extracts 1024-
dimensional embeddings from 7s clips, we selected the middle 7s of each track.

An initial evaluation on balanced real and synthetic splits of 50000 samples each yielded a Clipped
Density of 0.988 and a Clipped Coverage of 0.998. When splitting by genre, scores decreased to
0.943 for Clipped Density and 0.875 for Clipped Coverage. This reduction is moderate but expected,
as music tracks span multiple genres, yet we split based on a single genre per track (a track’s other
associated genres might correspond to the other dataset).

Finally, we evaluated mixtures of good and bad samples, where bad samples consisted of noise MP3
files. The results show that both Clipped Density and Clipped Coverage decrease linearly with the
proportion of bad samples, confirming their absolute calibration on this high-dimensional music
dataset.

10 —8— ClippedDensity 1.0 —8— ClippedCoverage
== Ideal == Ideal

0.8 0 0.8
g 2
[92) —
g 0.6 % 0.6
3 3
2 0.4 00.4
s g
(@] —
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0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportion of bad synthetic samples Proportion of bad synthetic samples
(a) Clipped Density (b) Clipped Coverage

Figure 25: Evaluating a mixture of good and bad samples (Free Music Archive): Synthetic
sets mix CLAP embeddings of real music samples with embeddings of noise (bad samples), using
N = 50000 balanced samples per set. Both Clipped Density and Clipped Coverage decrease linearly
with the proportion of bad samples, confirming the absolute calibration on this high-dimensional
music dataset. Note that compared to other plots of this test, the evaluation was performed only
once per point and not repeated 10 times.
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Q METRIC TESTS ON TOY DATASETS

This section details experiments on synthetic Gaussian data (N = 25000, d = 32, 10 repetitions),
analogous to the CIFAR-10 tests in Section[5] Out-of-distribution samples are drawn from a Gaus-
sian distribution with variance max (4, (10 + Z)?), where Z ~ N(0, 1). The tests performed are:

* Simultaneous mode dropping: Progressively replacing data from all but one class with
data from the remaining class (see Figure [26b] analogous to Figure [4b).

* Matched real and synthetic out-of-distribution samples: Progressively replacing data
from both real and synthetic datasets with out-of-distribution samples (see Figures

and analogous to Figures [4c|and [5a)).

* Introducing bad synthetic samples: Progressively replacing synthetic data with out-of-
distribution samples (see Figures[26aland 27a] analogous to Figures [T]and {a).

Q.1 FIDELITY METRICS
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Figure 26: Testing fidelity metrics on toy data: this figure is the equivalent of Figure@on toy data.
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Q.2 COVERAGE METRICS
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Figure 27: Testing coverage metrics on toy data: this figure is the equivalent of Figure |5|on toy
data.
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R UNNORMALIZED RESULTS

Figures [I] [] and [5] present relative scores. This section shows the corresponding unnormalized
scores, which include the maximum values and can be easier to read.

R.1 MIXTURE OF GOOD AND BAD SAMPLES (CIFAR-10)
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Figure 28: Mixture of good and bad samples (CIFAR-10), unnormalized.
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R.2 SIMULTANEOUS MODE DROPPING (CIFAR-10)
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Figure 29: Simultaneously dropping modes (CIFAR-10), unnormalized.

R.3 MATCHED REAL & SYNTHETIC OUT-OF-DISTRIBUTION SAMPLES (CIFAR-10)
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Figure 30: Matched real & synthetic out-of-distribution samples (CIFAR-10), unnormalized.
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R.4 SYNTHETIC DISTRIBUTION TRANSLATION

1.0 0.8 1.0
08 06 08
20.6 3 20.6
g 504 g
B H i
0.2 0.2
0.2
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
W W W W
(a) Precision (b) Density (c) symPrecision (d) a-Precision
1.0
0.8 0.8 0.8
206 296 206
za . $0.4 P04
0.2 0.2
0.2
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
M M M M
(e) TopP (f) P-precision (g) Precision Cover (h) Clipped Density
1.0 0. 0.5
0.8 0.6 0.4
206 o 203
] gos g
0a § i
0.2 0.2
0.1
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
W W W W
(i) Recall (j) Coverage (k) symRecall (1) B-Recall
1.0
0.8 0.8 0.8
206 I 206
E Roa 8oa
0.2 0.2
0.2
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
N N N N

(m) TopR

(n) P-recall

(0) Recall Cover

(p) Clipped Coverage

Figure 31: Translating a synthetic Gaussian with 2 bad samples, unnormalized.
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S VISUAL INSPECTION OF SAMPLES

In this section, we display real samples from each dataset (Figures|32} |34} |37|an , alongside data
generated by the best-performing model for each case (Figures (33} [35] 38 and Addltlonally, in

Figure[36] we present manually annotated generated FFHQ samples to highlight v1sua1 artifacts and
inconsistencies that may contribute to lower scores. These LDM samples primarily exhibit issues
with background details, hands, and teeth, and occasionally with eyes and ears.

Hlﬂﬂ&!linﬁ
S W e

Figure 32: Real samples from CIFAR-10
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Figure 33: Generated CIFAR-10 samples by PEFGMPP: one class per row.
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Figure 34: Real samples from FFHQ
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Figure 35: Generated FFHQ samples by LDM
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Figure 36: Generated FFHQ samples by LDM with annotated defects. We manually highlight
visual artifacts and inconsistencies that may contribute to lower scores.
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Figure 37: Real samples from LSUN Bedroom
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Figure 38: Generated LSUN Bedroom samples by ADN-dropout
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Figure 39: Real samples from ImageNet
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Figure 40: Generated ImageNet samples by DiT-XL-2-guided
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