
Efficient Hyper-parameter Search for Knowledge Graph Embedding

Anonymous ACL submission

Abstract

While hyper-parameters (HPs) are important001
for knowledge graph (KG) embedding, exist-002
ing methods fail to search them efficiently. To003
solve this problem, we first analyze the proper-004
ties of different HPs and quantize the transfer-005
ability from small subgraph to the large graph.006
Based on the analysis, we propose an efficient007
two-stage search algorithm, which efficiently008
explores HP configurations on small subgraph009
at the first stage and transfers the top configura-010
tions for fine-tuning on the large whole graph011
at the second stage. Experiments show that our012
method can consistently find better HPs than013
the baseline algorithms with the same time014
budget. We achieve 10.8% average relative im-015
provement for four embedding models on the016
large-scale KGs in open graph benchmark.017

1 Introduction018

Knowledge graph (KG) is a special kind of graph019

structured data to represent knowledge through020

entities and relations between them (Wang et al.,021

2017; Ji et al., 2021). KG embedding, which en-022

codes entities and relations as low dimensional vec-023

tors, is important for learning from KGs (Wang024

et al., 2017; Ji et al., 2021). The existing models025

range from translational distance models (Bordes026

et al., 2013), tensor factorization models (Nickel027

et al., 2011; Trouillon et al., 2017; Balažević et al.,028

2019), neural network models (Dettmers et al.,029

2017; Guo et al., 2019), to graph neural networks030

(Schlichtkrull et al., 2018; Vashishth et al., 2020).031

Hyper-parameter (HP) search (Claesen and032

De Moor, 2015) is very essential when applying033

KG embedding. As studied, the HP configurations034

greatly influence the model performance (Ruffinelli035

et al., 2019; Ali et al., 2020). An appropriate HP036

configuration can help us make a more scientific un-037

derstanding of the contributions made by existing038

works (Rossi et al., 2021; Sun et al., 2020). It is also039

important when adopting KG embedding methods040

to the real-world applications (Bordes et al., 2014; 041

Zhang et al., 2016; Saxena et al., 2020). 042

Algorithms for HP search on general machine 043

learning problems have been well-developed (Clae- 044

sen and De Moor, 2015). As in Figure 1(a), the 045

search algorithm selects a HP configuration from 046

the search space in each iteration, then the eval- 047

uation feedback obtained by full model training 048

is used to update the search algorithm. The op- 049

timal HP is the one achieving the best perfor- 050

mance on validation data in the search process. 051

Representative algorithms are within sample-based 052

methods like grid search, random search (Bergstra 053

and Bengio, 2012), and sequential model-based 054

Bayesian optimization (SMBO) methods like Hy- 055

peropt (Bergstra et al., 2013), SMAC (Hutter et al., 056

2011), Spearmint (Snoek et al., 2012), and BORE 057

(Tiao et al., 2021), etc. Recently, there rises some 058

subgraph-based methods (Tu et al., 2019; Wang 059

et al., 2021) which learn a surrogate model with 060

configurations efficiently evaluated on small sub- 061

graphs, and transfer the model to guide HP search 062

on the whole graph. However, these methods fail 063

to search a good configuration of HPs for KG em- 064

bedding models in limited time since there lacks 065

the understanding on the influence and correlation 066

of the HPs, and they do not well explore the trans- 067

ferability from small subgraph to the whole graph. 068

To address the limitations of conventional HP 069

search algorithms, we give a comprehensive under- 070

standing on the influence and correlation of HPs 071

and their transferability from small subgraph to the 072

large whole graph in KG embedding. By analyz- 073

ing the ranking distribution of each HP value, we 074

reduce the range of HP values that are not good in 075

most cases. We observe that the choices of batch 076

size and dimension size do not influence much on 077

the ranking of the other HPs. Hence, small batch 078

size and dimension size with lower time cost can 079

achieve more efficient evaluation. Besides, transfer- 080

ring evaluations on a subgraph is highly correlated 081

1

!

ℳ(# $∗, & , '-'.)

search
algorithm

evaluate on
whole graph '

updateselect

& !∗

! → #!

evaluate on
subgraph)"!

search
algorithm

update

$!
select

stage one: efficient evaluation on subgraph

→

(a) Conventional methods.

! → #!

evaluate on
subgraph) ℳ(# $∗, *& ,)-'.)"!

search
algorithm

update

top10

search
algorithm

ℳ(# $∗, +&∗ , '-'.)

#!∗

select

#!∗

$!
select

evaluate on
whole graph '

stage one: efficient evaluation on subgraph stage two: fine-tune the top configurations

transfer
update

!∗

→

$!∗

$!∗
↑ batch size

↑ dimension size

reduce

decouple

→

(b) TOSS.
Figure 1: The framework of conventional HP search algorithm and the proposed TOSS.

with the evaluations on the whole graph.082

The understanding motivates us to reduce the083

size of search space, and design a TwO-Stage084

Search algorithm, named TOSS. As in Figure 1(b),085

TOSS efficiently explores HP configurations in the086

decoupled space with the algorithm RF+BORE087

(Tiao et al., 2021) on a subgraph in the first stage.088

Then in the second stage, the top configurations are089

equipped with large batch size and dimension size090

for fine-tuning on the whole graph.091

With the same time budget, TOSS can consis-092

tently search better configurations than the baseline093

search algorithms for seven embedding models on094

WN18RR and FB15k-237. By applying TOSS to095

the large-scale benchmarks ogbl-biokg and ogbl-096

wikikg2, the performances of embedding models097

are improved compared with the reported results098

on OGB link prediction board. Besides, we use099

ablation studies to analyze the design components100

in TOSS to justify the efficiency improvement.101

2 Background: HPs in KG embedding102

We firstly revisit the important and common HPs103

in KG embedding. Following the general frame-104

works (Ruffinelli et al., 2019; Ali et al., 2020), the105

learning problem can be simplified as106

P ∗=argminP L(F (·,P), D+
tra, D

−)+r(P), (1)107

where F is the form of embedding model with pa-108

rameters P ,D+
tra is the training data,D− represents109

negative samples, and r(·) is a regularization func-110

tion. There are four groups of hyper-parameters111

(Table 1), i.e., the size of negative sampling for112

D−, the choice of loss function L, the form of reg-113

ularization r(·), and the optimization argminP .114

Embedding model. There are many embedding115

models in the literature. We follow (Ruffinelli116

et al., 2019) to focus on some representative mod-117

els. They are translational distance models TransE118

(Bordes et al., 2013) and RotatE (Sun et al., 2019),119

tensor factorization models RESCAL (Nickel et al.,120

2011), DistMult (Yang et al., 2015), ComplEx 121

(Trouillon et al., 2017) and TuckER (Balažević 122

et al., 2019), and neural network models ConvE 123

(Dettmers et al., 2017). Graph neural networks 124

for KG embedding (Schlichtkrull et al., 2018; 125

Vashishth et al., 2020) are not studied for their scal- 126

ability issues on large-scale KGs (Ji et al., 2021). 127

Negative sampling. Sampling negative triplets is 128

important as only positive triplets are contained 129

in the KGs (Wang et al., 2017). We can pick up 130

m triplets by replacing the head or tail entity with 131

uniform sampling (Bordes et al., 2013) or use a full 132

set of negative triplets. Using the full set can be de- 133

fined as the 1VsAll (Lacroix et al., 2018) or kVsAll 134

(Dettmers et al., 2017) according to the positive 135

triplets used. The methods (Cai and Wang, 2018; 136

Zhang et al., 2021) requiring additional models for 137

negative sampling are not considered here. 138

Loss function. There are three types of loss func- 139

tions. One can use margin ranking (MR) loss (Bor- 140

des et al., 2013) to rank the positive triplets higher 141

over negative triplets, or use binary cross entropy 142

(BCE) loss, with variants BCE_mean, BCE_adv 143

(Sun et al., 2019), and BCE_sum (Trouillon et al., 144

2017), to classify the positive and negative triplets 145

as binary classes, or use cross entropy (CE) loss 146

(Lacroix et al., 2018) to classify the positive triplet 147

as the true label over the negative triplets. 148

Regularization. To balance the model expressive- 149

ness and complexity, and to avoid unbounded em- 150

bedding, the regularization techniques can be con- 151

sidered, such as regularizers like Frobenius norm 152

(FRO) (Yang et al., 2015; Trouillon et al., 2017), 153

Nuclear norm (NUC) (Lacroix et al., 2018) as well 154

as DURA (Zhang et al., 2020), and dropout on the 155

embeddings (Dettmers et al., 2017). 156

Optimization. To optimize the embeddings, im- 157

portant optimization choices include the optimizer, 158

such as SGD, Adam (Kingma and Ba, 2014) and 159

Adagrad (Duchi et al., 2011), learning rate, initial- 160

izers, batch size, embedding dimension size, and 161

add inverse relation (Lacroix et al., 2018) or not. 162

2

Table 1: The ranges of HPs. Conditioned HPs are in parenthesize. “adv.” and “reg.” is short for
“adversarial” and “regularization”, respectively. Please refer to the Appendix A for more details.

component name type range

negative sampling # negative samples cat {32, 128, 512, 2048, 1VsAll, kVsAll}

loss function
loss function cat {MR, BCE_(mean, sum, adv), CE}
gamma (MR) float [1, 24]

adv. weight (BCE_adv) float [0.5, 2.0]

regularization
regularizer cat {FRO, NUC, DURA, None}

reg. weight (not None) float [10−12, 102]
dropout rate float [0, 0.5]

optimization

optimizer cat {Adam, Adagrad, SGD}
learning rate float [10−5, 100]

initializer cat {uniform, normal, xavier_uniform, xavier_norm}
batch size int {128, 256, 512, 1024}

dimension size int {100, 200, 500, 1000, 2000}
inverse relation bool {True, False}

3 The search problem163

An instance x = (x1, x2 . . . , xn) in the search164

space X is called a HP configuration. Let F (P ,x)165

be an embedding model with model parameters166

P and HPs x, we defineM(F (P ,x), Dval) as the167

performance measurement (the larger the better) on168

validation data Dval and L(F (P ,x), Dtra) as the169

loss function (the smaller the better) on training170

data Dtra. We define the problem of HP search for171

KG embedding models in Definition 1. The objec-172

tive is to search an optimal configuration x∗ ∈ X173

such that the embedding model F can achieve the174

best performance on the validation data Dval.175

Definition 1 (Hyper-parameter search for KG em-176

bedding). The problem of HP search for KG em-177

bedding model is formulated as178

x∗ = argmaxx∈XM
(
F (P ∗,x), Dval

)
, (2)179

P ∗ = argminP L
(
F (P ,x), Dtra

)
. (3)180

Definition 1 is a bilevel optimization problem181

(Colson et al., 2007), which can be solved by many182

conventional HP search algorithms. The most183

common and widely used approaches are sample184

based methods like grid search and random search185

(Bergstra and Bengio, 2012), where the HP config-186

urations are independently sampled. To guide the187

sampling of HP configurations, SMBO-based meth-188

ods (Bergstra et al., 2011; Hutter et al., 2011) learn189

a surrogate model to select configurations based on190

the predicted results. Then, the parameters P are191

optimized by minimizing the loss function L on192

Dtra in (3). The evaluation feedbackM of x on the193

validation data Dval is used to update the surrogate.194

There are three major aspects determining the ef-195

ficiency of Definition 1: (i) the size of search space196

X , (ii) the validation curvature of M(·, ·) in (2),197

and (iii) the evaluation cost in solving argminP L 198

in (3). However, the existing HP search methods 199

directly search on a huge space with commonly 200

used surrogate models and slow evaluation feed- 201

back from the whole KG. They lack the understand- 202

ing on the search problem, and fail to efficiently 203

find good HP configurations. 204

4 Understanding the search problem 205

To address the limitations, we quantize the signifi- 206

cance and correlation of each HP to determine the 207

feasibility of the search space X in Section 4.1. In 208

Section 4.2, we visualize the HPs that determine the 209

curvature of (2). To reduce the evaluation cost in 210

(3), we analyze the approximation methods in Sec- 211

tion 4.3. Following (Ruffinelli et al., 2019), the ex- 212

periments runs on the seven embedding models in 213

Section 2 and two widely used datasets WN18RR 214

(Dettmers et al., 2017) and FB15k-237 (Toutanova 215

and Chen, 2015). The experiments are are imple- 216

mented with PyTorch framework (Paszke et al., 217

2017), on a machine with two Intel Xeon 6230R 218

CPUs, 754 GB memory and eight RTX 3090 GPUs 219

with 24 GB memories each. We provide the im- 220

plementation details in the Appendix D.1 and code 221

at https://anonymous.4open.science/ 222

r/TOSS-ACL2022/. 223

4.1 Search space: x ∈ X 224

Considering the large amount of HP configurations 225

in X , we take the simple and efficient approach 226

where HPs are evaluated under control variate (Hut- 227

ter et al., 2014; You et al., 2020), which varies 228

the i-th HP while fixing the other HPs. First, we 229

discretize the continuous HPs according to their 230

ranges. Then the feasibility of the search space 231

X is analyzed by checking the ranking distribu- 232

3

https://anonymous.4open.science/r/TOSS-ACL2022/
https://anonymous.4open.science/r/TOSS-ACL2022/
https://anonymous.4open.science/r/TOSS-ACL2022/

Figure 2: Ranking distribution of selected HPs. A value with larger area in the bottom indicates the
higher ranking of this value. The four figures correspond to the four groups: fixed choice, limited range,
monotonously related, no obvious patterns. Full results are in the Appendix B.2.

tion and consistency of individual HPs. These can233

help us reduce and decouple the search space. The234

detailed setting for this part is in the Appendix B.1.235

Ranking distribution. To reduce the search space,236

we use the ranking distribution to indicate what237

HP values perform consistently. Given an anchor238

configuration x, we obtain the ranking of different239

values θ ∈ Xi, where Xi the range of the i-th HP,240

by fixing the other HPs. The ranking distribution is241

then collected over different anchor configurations242

in Xi, different models and datasets. According243

to the violin plots of ranking distribution shown in244

Figure 2, the HPs can be classified into four groups:245

(a). fixed choice, e.g., Adam is the best optimizer246

and inverse relation should not be introduced;247

(b). limited range, e.g., learning rate, reg. weight248

and dropout rate are better in certain ranges;249

(c). monotonously related: e.g., larger batch size250

and dimension size tend to be better;251

(d). no obvious patterns: e.g., the remaining HPs.252

Consistency. To decouple the search space, we253

measure the consistency of configurations’ rank-254

ings while varying only one HP. If the ranking of255

configurations’ performance is consistent with dif-256

ferent values of θ ∈ Xi, we can decouple the search257

procedure of the i-th HP with the others. We use258

spearman’s ranking correlation coefficient (SRCC)259

(Schober et al., 2018) to indicate such consistency.260

Given a set Xi of anchor configurations with two261

different values θ1, θ2 ∈ Xi, SRCC measures the262

strength of the association between configurations’263

rankings in Xi with xi = θ1 and with xi = θ2. The264

consistency of the i-th HP is measured by averaging265

the SRCC over the different pairs of θ1, θ2 ∈ Xi,266

the different models and datasets. The larger consis-267

tency (in the range [−1, 1]) indicates that changing268

the value of the i-th HP does not influence much269

on the configurations’ ranking. Please refer to Ap-270

pendix B.2 for detailed forms for consistency.271

As in Figure 3, the batch size and dimension272

size show higher consistency than the other HPs.273

Hence, the evaluation of the configurations can be274

Figure 3: Consistency of each HP.

consistent with different choices of them. This 275

indicates that we can decouple the search of batch 276

size and dimension size with the other HPs. 277

4.2 Validation curvature:M(·, ·) 278

We analyze the curvature of the validation perfor- 279

manceM(·, ·) w.r.t x ∈ X . Specifically, we follow 280

(Li et al., 2017) to visualize the validation loss 281

landscape by uniformly varying the numerical HPs 282

in two directions (20 configurations in each direc- 283

tion) on the model ComplEx and dataset WN18RR. 284

From Figure 4(a), we observe that the curvature is 285

quite complex with many local maximum areas. 286

To learn experience from the evaluated configu- 287

rations and guide the next configuration sampling, 288

we learn a surrogate model as a predictor to approx- 289

imate the validation curvature. The curvatures of 290

three common surrogates, i.e., Gaussian process 291

(GP) (Williams and Rasmussen, 1995), multi layer 292

perceptron (MLP) (Gardner and Dorling, 1998), 293

and random forest (RF) (Breiman, 2001), are in 294

Figure 4(b)-4(d). The surrogate models are trained 295

with 100 random configurations in the search space. 296

As shown, both GP and MLP fail to capture the 297

complex local surface in Figure 4(a) as they tend 298

to learn a flat and smooth distribution in the search 299

space. In comparison, RF is better in capturing the 300

local distributions. Hence, we regard RF as a better 301

choice in the search space. A more detailed com- 302

parison on the approximation ability of different 303

surrogates is in the Appendix B.3. 304

4.3 Evaluation cost: argminP L 305

The evaluation cost is the majority computation 306

cost in HP search. In this part, we firstly evalu- 307

4

(a) Ground truth (b) GP prediction (c) MLP prediction (d) RF prediction
Figure 4: Curvature of the search space and three surrogate models.

ate the HPs that have influence on the evaluation308

cost. Then, we analyze the evaluation transferabil-309

ity from small subgraph to the whole graph.310

Cost of different HPs. The cost of each HP value311

θ ∈ Xi is averaged over the different anchor con-312

figurations inXi, different models and datasets. We313

find that the evaluation cost increase significantly314

with larger batch size and dimension size, while315

the number of negative samples and choice of loss316

function and regularizer do not have much influ-317

ence on the cost. We provide two exemplar curves318

in Figure 5 and put the remaining results in the319

Appendix B.4.320

Figure 5: Computing time cost. The dots are the
average and the shades are the standard deviation.

Transferability of subgraphs. Subgraphs can ef-321

ficiently approximate the properties in the whole322

graph (Hamilton et al., 2017; Teru et al., 2020). We323

understand the impact of subgraph sampling on324

HP search by checking the evaluation consistency325

between small subgraphs and the whole graph.326

First, we study how to sample subgraphs. There327

are several approaches to sample small subgraphs328

from a large graph (Leskovec and Faloutsos, 2006).329

We compare four representative approaches in Fig-330

ure 6, i.e., Pagerank node sampling (Pagerank),331

random edge sampling (Random edge), single-start332

random walk (single-RW) and multi-start random333

walk (multi-RW). For a fair comparison, we con-334

strain the subgraphs with about 20% entities. The335

consistency between the sampled subgraph with336

the whole graph is evaluated by the SRCC in (4).337

We observe that multi-start random walk is the best338

among the different sampling methods.339

Apart from directly transferring the evaluation340

from subgraph to whole graph, we can alternatively341

train a predictor with observations on subgraphs342

Figure 6: Comparison of sampling methods.

and then transfers the model to predict the config- 343

uration performance on the whole graph. From 344

Figure 6, we find that directly transferring evalua- 345

tions from subgraphs to the whole graph is much 346

better than transferring the predictor model. 347

Figure 7: Consistency and cost of different sub-
graph sizes. The shades are the standard deviation.

In addition, we show the consistency and cost 348

in terms of different subgraph sizes (percentage 349

of entities to the whole graph) in Figure 7. As 350

shown, evaluation on subgraphs can significantly 351

improve efficiency. When the scale increases, the 352

consistency increases but the cost increases. To 353

balance the consistency and cost, the subgraphs 354

with 20% entities are the better choices. 355

5 Efficient search algorithm 356

By analyzing the ranking distribution and consis- 357

tency of HPs in Section 4.1, we observe that not all 358

the HP values are equivalently good, and some HPs 359

can be decoupled, this motivates us to revise the 360

search space in Section 5.1. Based on the analysis 361

in Section 4.2 and Section 4.3, we then propose an 362

efficient two-stage algorithm in Section 5.2 363

5.1 Reduce and decouple the search space 364

To reduce the search space, we mainly consider 365

groups (a) and (b) of HPs in Section 4.1. From 366

the full results in the Appendix B.2, we observe 367

that Adam can consistently perform better than 368

the other two optimizers, the learning rate can be 369

5

better in the range [10−4, 10−1], the regularization370

weight is better in [10−8, 10−2], dropout rate is371

better in [0, 0.3], and add inverse relation is not a372

good choice.373

To decouple the search space, we consider batch374

size and dimension that have larger consistency375

values than the others and are monotonously related376

to the performance as in group (c). However, the377

computation costs of batch size and dimension size378

increase prominently as in Figure 5. Hence, we can379

set batch size as 128 and dimension size as 100 to380

search the other HPs with low evaluation cost and381

increase their values in a fine-tuning stage.382

Given the full search space X , we denote the re-383

duced space as X̃ and the further decoupled space384

as X̂ . The changes from X to X̂ are in the Ap-385

pendix C, with hundreds times reduction in size.386

5.2 Two-stage search algorithm (TOSS)387

As discussed in Section 4.3, the evaluation cost388

can be significantly reduced with small batch size,389

dimension size and subgraph. This motivates us to390

design a two-stage search algorithm, named TOSS,391

as in Figure 1(b) and Algorithm 1.392

• In the first stage, we sample a subgraph G with393

20% entities from the whole graph Dtra by multi-394

start random walk. Based on the curvature un-395

derstanding in Section 4.2, we use the surrogate396

model random forest (RF) under the state-of-the397

art framework BORE (Tiao et al., 2021), denoted398

as RF+BORE, to explore HPs in X̂ on the sub-399

graph G in steps 3-7. The top 10 configurations400

evaluated in this stage are saved in a set X̂ ∗.401

• In the second stage, we increase batch size and402

dimension size for configurations in X̂ ∗ to gener-403

ate a new set X̃ ∗. Then, the configurations in X̃ ∗404

are searched by the RF+BORE again in steps 11-405

16 until the remaining B/2 budget exhausted.406

Finally, the configuration x∗ achieving the best407

performance on Dval is returned for testing.408

5.3 Discussion409

In this part, we summarize the main difference of410

TOSS with the existing HP search algorithms, i.e.411

Random (random search) (Bergstra and Bengio,412

2012), Hyperopt (Bergstra et al., 2013), SMAC413

(Hutter et al., 2011), RF+BORE (Tiao et al., 2021),414

and AutoNE (Tu et al., 2019). The comparison is415

on three aspects, i.e., search space, surrogate model416

and fast evaluation, in Table 2. TOSS reduces and417

decouples the search space based on the under-418

standing of HPs’ properties and uses the surrogate419

Algorithm 1 TOSS: two-stage search algorithm
Require: KG embedding model F , dataset D, and budget B;
1: reduce the search space X to X̃ and decouple X̃ to X̂ ;

state one: efficient evaluation on subgraph
2: sample a subgraph (with 20% entities) G from Dtra by

multi-start random walk;
3: repeat
4: sample a configuration x̂ from X̂ by RF+BORE;
5: evaluate x̂ on the subgraph G to get the performance;
6: update the RF with record

(
x̂,M(F (P ∗, x̂), Gval)

)
;

7: until B/2 budget exhausted;
8: save the top10 configurations in X̂ ∗;

state two: fine-tune the top configurations
9: increase the batch/dimension size in X̂ ∗ to get X̃ ∗;

10: set y∗ = 0 and initialize the RF surrogate;
11: repeat
12: select a configuration x̃∗ from X̃ ∗ by RF+BORE;
13: evaluate on whole graph G to get the performance;
14: update the RF with record

(
x̃∗,M(F (P ∗, x̃∗),Dval)

)
;

15: ifM(F (P ∗, x̃∗), Dval) > y∗ then
y∗←M(F (P ∗, x̃∗), Dval) and x∗ ← x̃∗; end if

16: until B/2 budget exhausted;
17: return x∗.

Table 2: Comparison of HP search algorithms.
search space surrogate fast

reduce decouple model evaluation

Random × × × ×
Hyperopt × × TPE ×

Ax × × GP ×
SMAC × × RF ×

RF+BORE × × RF ×
AutoNE × × GP

√

TOSS
√ √

RF
√

RF based on the understanding on validation cur- 420

vature. The fast evaluation on subgraph in TOSS 421

selects the top10 configurations to directly transfer 422

for fine-tuning, while AutoNE (Tu et al., 2019) just 423

uses fast evaluation on subgraphs to train the sur- 424

rogate model and transfers the surrogate model for 425

HP search on whole graph. However, the transfer- 426

ability of the surrogate model is shown to be much 427

worse than direct transfer as in Figure 6. 428

6 Empirical evaluation 429

6.1 Overall performance 430

In this part, we compare the proposed algorithm 431

TOSS with six HP search algorithms in Table 2. For 432

AutoNE, we allocate half budget for it to search on 433

subgraph and another half budget to search on the 434

whole graph with the transferred surrogate model. 435

The baselines search in the full search space (in 436

Table 1) with the same amount of budget (one 437

day’s clock time) as TOSS. We use mean recip- 438

rocal ranking (MRR, the larger the better) (Bordes 439

et al., 2013) to indicate the performance. 440

In Figure 8 left, we show the best performance 441

6

Figure 8: Search algorithm comparison (viewed in
color). The dots are the results collected per hour.

achieved along the clock time in one experiment on442

model ComplEx and dataset WN18RR, and in Fig-443

ure 8 right, the ranking of each algorithm averaged444

over all the models and datasets. Since AutoNE445

and TOSS run on the subgraphs in the first stage,446

the starting points of them locate after 12 hours.447

The starting point of TOSS is a bit later since it448

constrains to use large batch size and dimension449

size, which is more expensive, in the second stage.450

As shown, random search is the worst due to the451

full randomness. SMAC and RF+BORE achieve452

better performance than Hyperopt and Ax since453

RF can fit the space better than TPE and GP as454

in Section 4.2. Due to the weak transferability of455

predictor (see Figure 6) and weak approximation456

ability of GP (see Figure 4), AutoNE also performs457

bad. TOSS is much better than all the baselines.458

We show the full search process of the two-stage459

algorithms AutoNE and TOSS in Figure 9(a). By460

exploring sufficient configurations in the first stage,461

the configurations fine-tuned in the second stage462

can consistently achieve the best performance.463

We show the reproduced results on seven em-464

bedding models, i.e., TransE, RotatE, RESCAL,465

DistMult, ComplEx, TuckER, and ConvE, on466

WN18RR and FB15k-237 with HPs searched by467

TOSS are in the Appendix D.2. Overall, TOSS468

achieves better performance compared with the469

original reported results and the reproduced results470

in (Ruffinelli et al., 2019). We observe that the ten-471

sor factorization models such as RESCAL, Com-472

plEx and TuckER have better performance than the473

translational distance models TransE, RotatE and474

neural network model ConvE. This conforms with475

the theoretical analysis that tensor factorization476

models are more expressive (Wang et al., 2018).477

To further demonstrate the advantage of TOSS,478

we apply it to the Open Graph Benchmark (OGB)479

(Hu et al., 2020). OGB is a collection of realistic 480

and large-scale benchmark datasets for machine 481

learning on graphs. Many embedding models have 482

been tested there by two large-scale KG for link 483

prediction, i.e., ogbl-biokg and ogbl-wikikg2. Due 484

to their scale, the graph neural network based mod- 485

els cannot be applied. 486

We use TOSS to search HPs for embedding mod- 487

els, i.e., TransE, RotatE, ComplEx and DistMult, 488

on OGB. Since the computation costs of the two 489

datasets are much higher, we set the time budget 490

as 5 days. All the compared embedding models in 491

TOSS are constrained to have the same (or lower) 492

number of model parameters1 compared with the 493

reported models in (Hu et al., 2020). More details 494

on model parameters, standard derivation, and val- 495

idation performance are in the Appendix D.3. As 496

shown in Table 3, TOSS consistently improves the 497

performance of the four embedding models with 498

the same or fewer parameters compared with the 499

results on the OGB board. 500

Table 3: Performance in MRR in OGB link
prediction board https://ogb.stanford.edu/

docs/leader_linkprop/ and those reproduced
by TOSS on ogbl-biokg and ogbl-wikikg2. Rela-
tive improvements are in parenthesize.

models ogbl-biokg ogbl-wikikg2

TransE 0.7452 0.4256
OGB RotatE 0.7989 0.2530
board DistMult 0.8043 0.3729

ComplEx 0.8095 0.4027

TOSS

TransE 0.7771 (4.28%↑) 0.4745 (11.48%↑)
RotatE 0.8018 (0.36%↑) 0.2845 (12.45%↑)

DistMult 0.8254 (2.62%↑) 0.4866 (30.49%↑)
ComplEx 0.8383 (3.55%↑) 0.4898 (21.62%↑)

average improvement 2.70% 19.01%

6.2 Ablation study 501

In this section, we probe into how important and 502

sensitive the various components of TOSS are. 503

Space comparison. To demonstrate the effec- 504

tiveness gained by reducing and decoupling the 505

search space, we compare the following variants: 506

(i) RF+BORE on the full space X ; (ii) RF+BORE 507

on the reduced space X̃ ; (iii) RF+BORE on the 508

decoupled space X̂ , which differs from TOSS by 509

searching on the whole graph in the first stage; and 510

(iv) TOSS in Algorithm 1. All the variants have 511

one day’s budget. As in Figure 9(b), the size of 512

1 We run all models on ogbl-wikikg2 with 100 dimension
size to avoid out-of-memory, instead of 500 on OGB board.

7

https://ogb.stanford.edu/docs/leader_linkprop/
https://ogb.stanford.edu/docs/leader_linkprop/

(a) Full search processes (b) Search space (c) Subgraph size (d) First-stage budget

Figure 9: (a): full search processes of the two-stage algorithms. (b-d): ablation studies on TOSS. Model
ComplEx and dataset WN18RR are used in these experiments.

search space matters for the search efficiency. The513

three components, i.e., space reduction, space de-514

coupling, and fast evaluation on subgraph, are all515

important to the success of TOSS.516

Size of subgraphs. We show the influence of sub-517

graph sizes with different ratios of entities (10%,518

20%, 30%, 40%, 50%) in Figure 9(c). Using sub-519

graphs with too large or too small size is not guar-520

anteed to find good configurations. Based on the521

understanding in Figure 7, the subgraphs with small522

size have poor transferability and those with large523

size are expensive to evaluate. Hence, we should524

balance the transferability and evaluation cost by525

sampling subgraphs with 20% ∼ 30% entities.526

Budget allocation. In Algorithm 1, we allocate527
B/2 budget for both the first and second stage. Here,528

we show the performance of different allocation529

ratios, i.e., B/4, B/2, and 3B/4 in the first stage and530

the remaining budget in the second stage. As in531

Figure 9(d), allocating too many or too few budgets532

to the first stage is not good. It either fails to explore533

sufficient configurations in the first stage or only534

fine-tunes a few configurations in the second stage.535

Allocating the same budget to the two stages is in536

a better trade-off.537

7 Related works538

Our work is not the first in analyzing the KG em-539

bedding models. Ruffinelli et al. (2019) pointed540

out that the earlier works in KG embedding only541

search HPs in small grids. By searching hundreds542

of HPs in a unified framework, the reproduced543

performance can be significantly improved. Sim-544

ilarly, Ali et al. (2020) proposed another unified545

framework to evaluate different models. Rossi et al.546

(2021) evaluated 16 different models and analyzed547

their properties on different datasets. All of these548

works emphasize the importance of HP search, but549

none of them provide efficient algorithms to search550

HPs for KG embedding models.551

Understanding the HPs in a large search space552

is non-trivial since many HPs only have moderate553

impact on the model performance (Ruffinelli et al., 554

2019) and jointly evaluate them requires a large 555

number of experiments (Fawcett and Hoos, 2016; 556

Probst et al., 2019). Considering the huge amount 557

of HP configurations (with 105 categorical choices 558

and 5 continuous values), it is extremely expensive 559

to exhaustively evaluate most of them. Hence, we 560

adopt control variate experiments to efficiently eval- 561

uate HPs’ properties instead of the quasi-random 562

search in (Ruffinelli et al., 2019; Ali et al., 2020). 563

Technically, AutoNE (Tu et al., 2019) and e- 564

AutoGR (Wang et al., 2021) are similar to ours by 565

leveraging subgraphs to improve search efficiency 566

on graph learning. Since they do not target at KG 567

embedding methods, directly adopt them here is 568

not a good choice. Based on the understanding 569

in this paper, we demonstrate that transferring the 570

surrogate model from subgraph evaluation to the 571

whole graph is inferior to directly transferring the 572

top configurations for KG embedding models. 573

8 Conclusion 574

In this paper, we analyze the HPs’ properties in KG 575

embedding models with search space size, valida- 576

tion curvature and evaluation cost. We observe that 577

some HP values in the search space are not equiva- 578

lently good, the batch size and dimension size can 579

be decoupled with the other HPs, the curvature can 580

be better approximated by random forest, and that 581

subgraphs can help improve evaluation efficiency 582

with high consistency. Based on the observations, 583

we propose an efficient search algorithm TOSS 584

that efficiently explores configurations in a decou- 585

pled space on small subgraphs and then fine-tunes 586

the top configurations. Empirical evaluations show 587

that TOSS is robuster and more efficient than the 588

conventional HP search algorithms and achieves 589

competing performance on large-scale KGs in open 590

graph benchmarks. In the future work, we will un- 591

derstand the graph neural network based models 592

and apply TOSS on them to solve the scaling limi- 593

tations in HP search. 594

8

References595

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-596
rent Vermue, Mikhail Galkin, Sahand Sharifzadeh,597
Asja Fischer, Volker Tresp, and Jens Lehmann.598
2020. Bringing light into the dark: A large-scale599
evaluation of knowledge graph embedding mod-600
els under a unified framework. Technical report,601
arXiv:2006.13365.602

Ivana Balažević, Carl Allen, and Timothy M603
Hospedales. 2019. Tucker: Tensor factorization for604
knowledge graph completion. In EMNLP.605

James Bergstra, Rémi Bardenet, Yoshua Bengio, and606
Balázs Kégl. 2011. Algorithms for hyper-parameter607
optimization. In NIPS, pages 2546–2554.608

James Bergstra and Yoshua Bengio. 2012. Random609
search for hyper-parameter optimization. JMLR,610
13(2).611

James Bergstra, Dan Yamins, David D Cox, et al. 2013.612
Hyperopt: A python library for optimizing the hyper-613
parameters of machine learning algorithms. In Pro-614
ceedings of the 12th Python in science conference,615
volume 13, page 20. Citeseer.616

Antoine Bordes, Sumit Chopra, and Jason Weston.617
2014. Question answering with subgraph embed-618
dings. In EMNLP.619

Antoine Bordes, Nicolas Usunier, Alberto Garcia-620
Duran, Jason Weston, and Oksana Yakhnenko.621
2013. Translating embeddings for modeling multi-622
relational data. In NeurIPS, pages 2787–2795.623

Leo Breiman. 2001. Random forests. ML, 45(1):5–32.624

Liwei Cai and William Yang Wang. 2018. Kbgan: Ad-625
versarial learning for knowledge graph embeddings.626
In NAACL, pages 1470–1480.627

Marc Claesen and Bart De Moor. 2015. Hyperparam-628
eter search in machine learning. Technical report,629
arXiv:1502.02127.630

Benoît Colson, Patrice Marcotte, and Gilles Savard.631
2007. An overview of bilevel optimization. Ann.632
Oper. Res., 153(1):235–256.633

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,634
and Sebastian Riedel. 2017. Convolutional 2D635
knowledge graph embeddings. In AAAI.636

John Duchi, Elad Hazan, and Yoram Singer. 2011.637
Adaptive subgradient methods for online learning638
and stochastic optimization. JMLR, 12(7).639

Chris Fawcett and Holger H Hoos. 2016. Analysing640
differences between algorithm configurations641
through ablation. Journal of Heuristics, 22(4):431–642
458.643

Matt W Gardner and SR Dorling. 1998. Artificial neu-644
ral networks (the multilayer perceptron) – a review645
of applications in the atmospheric sciences. Atmo-646
spheric environment, 32(14-15):2627–2636.647

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 648
2016. Deep learning. MIT press. 649

Lingbing Guo, Zequn Sun, and Wei Hu. 2019. Learn- 650
ing to exploit long-term relational dependencies in 651
knowledge graphs. In ICML, pages 2505–2514. 652

William L Hamilton, Rex Ying, and Jure Leskovec. 653
2017. Inductive representation learning on large 654
graphs. In NIPS, pages 1025–1035. 655

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao 656
Dong, Hongyu Ren, Bowen Liu, Michele Catasta, 657
and Jure Leskovec. 2020. Open graph benchmark: 658
Datasets for machine learning on graphs. NeurIPS. 659

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. 660
2014. An efficient approach for assessing hyper- 661
parameter importance. In ICML, pages 754–762. 662
PMLR. 663

Frank Hutter, Holger H Hoos, and Kevin Leyton- 664
Brown. 2011. Sequential model-based optimiza- 665
tion for general algorithm configuration. In ICLIO, 666
pages 507–523. Springer. 667

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti- 668
nen, and S Yu Philip. 2021. A survey on knowledge 669
graphs: Representation, acquisition and applications. 670
TNNLS. 671

Seyed Mehran Kazemi and David Poole. 2018. SimplE 672
embedding for link prediction in knowledge graphs. 673
In NeurIPS. 674

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 675
method for stochastic optimization. In ICLR. 676

Timothée Lacroix, Nicolas Usunier, and Guillaume 677
Obozinski. 2018. Canonical tensor decomposition 678
for knowledge base completion. In ICML, pages 679
2863–2872. PMLR. 680

Jure Leskovec and Christos Faloutsos. 2006. Sampling 681
from large graphs. In SIGKDD, pages 631–636. 682

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and 683
Tom Goldstein. 2017. Visualizing the loss landscape 684
of neural nets. In NIPS. 685

Maximilian Nickel, Volker Tresp, and Hans-Peter 686
Kriegel. 2011. A three-way model for collective 687
learning on multi-relational data. In ICML, vol- 688
ume 11, pages 809–816. 689

Adam Paszke, Sam Gross, Soumith Chintala, Gregory 690
Chanan, Edward Yang, Zachary DeVito, Zeming 691
Lin, Alban Desmaison, Luca Antiga, and Adam 692
Lerer. 2017. Automatic differentiation in pytorch. 693

Philipp Probst, Anne-Laure Boulesteix, and Bernd 694
Bischl. 2019. Tunability: importance of hyperpa- 695
rameters of machine learning algorithms. JMLR, 696
20(1):1934–1965. 697

9

Carl Edward Rasmussen. 2003. Gaussian processes in698
machine learning. In Summer school on machine699
learning, pages 63–71. Springer.700

Andrea Rossi, Denilson Barbosa, Donatella Fir-701
mani, Antonio Matinata, and Paolo Merialdo. 2021.702
Knowledge graph embedding for link prediction: A703
comparative analysis. TKDD.704

Daniel Ruffinelli, Samuel Broscheit, and Rainer705
Gemulla. 2019. You can teach an old dog new706
tricks! on training knowledge graph embeddings. In707
ICLR.708

Apoorv Saxena, Aditay Tripathi, and Partha Taluk-709
dar. 2020. Improving multi-hop question answering710
over knowledge graphs using knowledge base em-711
beddings. In ACL, pages 4498–4507.712

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,713
Rianne Van Den Berg, Ivan Titov, and Max Welling.714
2018. Modeling relational data with graph con-715
volutional networks. In ESWC, pages 593–607.716
Springer.717

Patrick Schober, Christa Boer, and Lothar A Schwarte.718
2018. Correlation coefficients: appropriate use719
and interpretation. Anesthesia & Analgesia,720
126(5):1763–1768.721

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.722
2012. Practical bayesian optimization of machine723
learning algorithms. NIPS, 25.724

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian725
Tang. 2019. Rotate: Knowledge graph embedding726
by relational rotation in complex space. In ICLR.727

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal,728
Partha Talukdar, and Yiming Yang. 2020. A re-729
evaluation of knowledge graph completion methods.730
In ACL, pages 5516–5522.731

Komal Teru, Etienne Denis, and Will Hamilton. 2020.732
Inductive relation prediction by subgraph reasoning.733
In ICML, pages 9448–9457. PMLR.734

Louis C Tiao, Aaron Klein, Matthias Seeger, Edwin V735
Bonilla, Cedric Archambeau, and Fabio Ramos.736
2021. Bore: Bayesian optimization by density-ratio737
estimation. In ICML.738

Kristina Toutanova and Danqi Chen. 2015. Observed739
versus latent features for knowledge base and text740
inference. In ACL Workshop, pages 57–66.741

Théo Trouillon, Christopher R Dance, Johannes Welbl,742
Sebastian Riedel, Éric Gaussier, and Guillaume743
Bouchard. 2017. Knowledge graph completion via744
complex tensor factorization. JMLR, 18(1):4735–745
4772.746

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu747
Zhu. 2019. Autone: Hyperparameter optimization748
for massive network embedding. In SIGKDD, pages749
216–225.750

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and 751
Partha Talukdar. 2020. Composition-based multi- 752
relational graph convolutional networks. ICLR. 753

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 754
2017. Knowledge graph embedding: A survey of 755
approaches and applications. TKDE, 29(12):2724– 756
2743. 757

Xin Wang, Shuyi Fan, Kun Kuang, and Wenwu Zhu. 758
2021. Explainable automated graph representation 759
learning with hyperparameter importance. In ICML, 760
pages 10727–10737. PMLR. 761

Yanjie Wang, Rainer Gemulla, and Hui Li. 2018. On 762
multi-relational link prediction with bilinear models. 763
In AAAI. 764

Christopher KI Williams and Carl Edward Rasmussen. 765
1995. Gaussian processes for regression. In NIPS, 766
pages 514–520. 767

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng 768
Gao, and Li Deng. 2015. Embedding entities and 769
relations for learning and inference in knowledge 770
bases. In ICLR. 771

Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. 772
Design space for graph neural networks. NeurIPS, 773
33. 774

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing 775
Xie, and Wei-Ying Ma. 2016. Collaborative knowl- 776
edge base embedding for recommender systems. In 777
SIGKDD, pages 353–362. 778

Yongqi Zhang, Quanming Yao, and Lei Chen. 2021. 779
Simple and automated negative sampling for knowl- 780
edge graph embedding. VLDB-J, 30(2):259–285. 781

Zhanqiu Zhang, Jianyu Cai, and Jie Wang. 2020. 782
Duality-induced regularizer for tensor factorization 783
based knowledge graph completion. NeurIPS, 33. 784

10

A Details of the search space 785

Denote a knowledge graph as G = {E,R,D}, where E is the set of entities, R is the set of relations, and 786

D is the set of triplets with training/validation/test splits D = Dtra ∪Dval ∪Dtst. 787

Basically, the KG embedding models use a scoring function f and the model parameters P to measure 788

the plausibility of triplets. We learn the embeddings such that the positive and negative triplets can be 789

separated by f and P . In Table 4, we provide the forms f of the embedding model we used to evaluate 790

the search space X in Section 3. 791

Table 4: Definitions of the embedding models. ◦ is a rotation operation in the complex value space; ⊗
is the Hermitian dot product in the complex value space; Re(·) returns the real part of a complex value;
Wi,j,k is the ijk-th element in a core tensorW ∈ Rd×d×d; and conv is a convolution operator on the
head and relation embeddings. For more details, please refer to the corresponding references.

model type model f(h, r, t) embeddings

translational distance TransE (Bordes et al., 2013) −‖h+ r − t‖1 h, r, t ∈ Rd

RotatE (Sun et al., 2019) −‖h ◦ r − t‖c1 h, r, t ∈ Cd

tensor factorization

RESCAL (Nickel et al., 2011) h> ·Rr · t h, t ∈ Rd,Rr ∈ Rd×d

DistMult (Yang et al., 2015) h> · diag(r) · t h, t, r ∈ Rd

ComplEx (Trouillon et al., 2017) h> ⊗ diag(r)⊗ t h, t, r ∈ Cd

TuckER (Balažević et al., 2019)
∑d

i

∑d
j

∑d
kWi,j,khi · rj · tk h, t, r ∈ Rd

neural network ConvE (Dettmers et al., 2017) ReLU(conv(h, r))> · t h, t, r ∈ Rd

A.1 Negative sampling 792

Since KG only contains positive triplets in Dtra (Wang et al., 2017), we should rely on the negative 793

sampling to avoid trivial solutions of the embeddings. Given a positive triplet (h, r, t) ∈ Dtra, the 794

corresponding set of negative triplets is represented as 795

D−(h,r,t) =
{
(h̃, r, t) /∈ Dtra : (h, r, t) ∈ Dtra, h̃ ∈ E

}
∪
{
(h, r, t̃) /∈ Dtra : (h, r, t) ∈ Dtra, t̃ ∈ E

}
. 796

A common practice is to sample m negative triplets from D−(h,r,t). The value of m can be any integer 797

smaller than the number of entities. We follow (Sun et al., 2019) to sample from the range of m in 798

{32, 128, 512, 2048} for simplicity. 799

An alternative choice is to use all the negative triplets in D−(h,r,t), leading to the 1VsAll (Lacroix et al., 800

2018) and kVsAll (Dettmers et al., 2017) settings. 801

• In 1VsAll, (h, r, t) is in the positive part and all the triplets in the set {(h̃, r, t) /∈ Dtra : (h, r, t) ∈ 802

Dtra, h̃ ∈ E} or {(h, r, t̃) /∈ Dtra : (h, r, t) ∈ Dtra, t̃ ∈ E} are in the negative part; 803

• In kVsAll, the positive part contains all the triplets sharing the same head-relation pair or tail-relation 804

part, i.e. {(h, r, t′) ∈ Dtra} or {(h′, r, t) ∈ Dtra}, with the corresponding negative part {(h, r, t̃) /∈ 805

Dtra : (h, r, t) ∈ Dtra, t̃ ∈ E} or {(h̃, r, t) /∈ Dtra : (h, r, t) ∈ Dtra, h̃ ∈ E}. 806

Hence, the choice of negative sampling can be set in the range {32, 128, 512, 2048, 1VsAll, kVsAll}. 807

A.2 Loss function 808

For simplicity, we denote D+ and D− as the sets of positive and negative triplets, respectively. Then, we 809

summarize the commonly used loss functions as follows: 810

• Margin ranking (MR) loss. This loss ranks the positive triplets to have larger score than the negative 811

triplets. Hence, the ranking loss is defined as 812

L =
∑

(h,r,t)∈D+

∑
(h̃,r,t̃)∈D−

−
∣∣γ − f(h, r, t) + f(h̃, r, t̃)

∣∣
+
, 813

11

where γ > 0 is the margin value and |a|+ = max(a, 0). The MR loss is widely used in early developed814

models, like TransE (Bordes et al., 2013) and DistMult (Yang et al., 2015). The value of γ, conditioned815

on MR loss, is another HP to search.816

• Binary cross entropy (BCE) loss. It is typical to set the positive and negative triplets as a binary817

classification problem. Let the labels for the positive and negative triplets as +1 and −1 respectively,818

the BCE loss is defined as819

L =
∑

(h,r,t)∈D+
log
(
σ(f(h, r, t))

)
+
∑

(h̃,r,t̃)∈D−
w(h̃,r,t̃) log

(
1− σ(f(h̃, r, t̃))

)
,820

where σ(x) = 1
1+exp(−x) is the sigmoid function. The choice of w(h̃,r,t̃) leads to three different loss821

functions822

– BCE_mean (Sun et al., 2019), with w(h̃,r,t̃) =
1/|D−

(h,r,t)
|.823

– BCE_sum (Dettmers et al., 2017), with w(h̃,r,t̃) = 1.824

– BCE_adv (Sun et al., 2019), with825

w(h̃,r,t̃) =
exp(α · f(h̃, r, t̃))∑

(h′,r,t′)∈D− exp(α · f(h′, r, t′))
,826

where α > 0 is the adversarial weight conditioned on BCE_adv loss.827

• Cross entropy (CE) loss. Since the number of negative triplets is fixed, we can also regard the (h, r, t)828

as the true label over the negative ones. The loss can be written as829

L =
∑

(h,r,t)∈D+
−f(h, r, t) + log

(∑
(h′,r,t′)∈{(h,r,t)∪D−}

exp(f(h′, r, t′))

)
,830

where the left part is the score of positive triplet and the right is the log sum scores of the joint set of831

positive and negative triplets.832

A.3 Regularization833

To avoid the embeddings increasing to unlimited values and reduce the model complexity, regularization834

techniques are often used. Denote P ′ as the embeddings participated in one iteration,835

• the Frobenius norm is defined as the sum of L2 norms rFRO = ‖P ′‖22 =
∑

ij P
′2
ij (Yang et al., 2015);836

• the NUC norm is defined as sum of L3 norms rFRO = ‖P ′‖33 =
∑

ij |Pij |3 (Lacroix et al., 2018);837

• DURA operates on triplets (Zhang et al., 2020). Denote h, r, t as the embeddings for the triplet (h, r, t),838

DURA constrains the composition of h and r to approximate t with rDURA = ‖c(h, r)− t‖22, where839

the composition function c(h, r) depends on corresponding scoring functions.840

The regularization functions are then weighted by the regularization weight in the range [10−12, 102].841

Apart from using explicit forms of regularization, we can also add dropout on the embeddings (Dettmers842

et al., 2017). Specifically, each dimension in the embeddings h, r, t will have a probability to be843

deactivated as 0 in each iteration. The probability is controlled by the dropout rate in the range [0, 0.5]. In844

some cases, working without regularization can also achieve good performance (Ali et al., 2020).845

A.4 Optimization846

To solve the learning problem, we should setup an appropriate optimization procedure. First, we can847

directly use the training set or add inverse relations to augment the data (Kazemi and Poole, 2018; Lacroix848

et al., 2018). This will not influence the training data, but will introduce additional parameters for the849

inverse relations. Second, we should choose the dimension of embeddings in small sizes [100, 200] or850

large sizes [500, 1000, 2000]. Then, the embeddings are initialized by the initialization methods such851

as uniform, normal, xavier_norm, and xavier_uniform (Goodfellow et al., 2016). The optimization is852

conducted with optimizers like standard SGD, Adam (Kingma and Ba, 2014) and Adagrad (Duchi et al.,853

2011) with learning rate in the range [10−5, 0] Since the training is conducted on mini-batch, a batch size854

is determined in the range {128, 256, 512, 1024}.855

12

B Details of HP understanding 856

In this part, we provide the details of configuration generation and the full results related to the HP 857

understanding. 858

B.1 Configure generation 859

Since there are infinite numbers of values for a continuous HP, it is intractable to fully evaluate their 860

ranges. To better analyze the continuous HPs, we discretize them in Table 5 according to their ranges. 861

Then, for each HP i = 1 . . . n with range Xi, we sample a set Xi ⊂ X of s anchor configurations through 862

quasi random search (Bergstra and Bengio, 2012) and uniformly dispute them to evaluate the different 863

embedding models and datasets. 864

Table 5: Discretized HP values.

name original range discretized range

gamma [1, 24] {1, 6, 12, 24}
adv. weight [0.5, 2.0] {0.5, 1, 2}
reg. weight [10−12, 102] 102 in log scale
dropout rate [0, 0.5] 0.1 in linear scale
learning rate [10−5, 100] 101 in log scale

We use the control variate experiments to evaluate each HP. For the i-th HP, we enumerate the values 865

θ ∈ Xi for each anchor configuration x ∈ Xi, while fix the other HPs. In this way, we can observe the 866

influence of xi without the influence of the other HPs. For example, when evaluating the optimizers, we 867

enumerate the optimizers Adam, Adagrad and SGD for the anchor configurations in Xi. This generates a 868

set of |Xi| · |Xi| configurations. In this paper, the number of anchor configurations |Xi| is 175 for each HP. 869

B.2 Details for search space understanding 870

In this part, we add the ranking distribution of all the HPs. In addition, we also show the normalized MRR 871

of each HP as a complementary. The normalization is conducted on each dataset with y−ymin
ymax−ymin

such that 872

the results of the HPs can be evaluated in the same value range. 873

The full results for the four types of HPs in Section 4.1 are provided in Figures 10-13. The larger area 874

in the bottom in the voilin plots and the top area in the box plots indicate better performance. The HPs 875

can be classified into four types: 876

(a). fixed choices: Adam is the fixed optimizer, and inverse relation is not preferred. See Figure 10. 877

(b). limited range: Learning rate, regularization weight and dropout rate should be limited in the ranges 878

[10−4, 10−1], [10−12, 10−2] and [0, 0.3], respectively. See Figure 11 879

(c). monotonously related: Batch size and dimension size have monotonic performance. The larger value 880

tends to lead better results. See Figure 12. 881

(d). no obvious patterns: The choice of loss function, value of gamma, adversarial weight, number of 882

negative samples, regularizer, initializer do not have obvious patterns. See Figure 13. 883

In addition, we provide the details of Spearman’s ranking correlation coefficient (SRCC). Given a set of 884

anchor configurations Xi to analyze the i-th HP, we denote r(x, θ) as the rank of different x ∈ Xi with 885

fixed xi = θ. Then, the SRCC between two HP values θ1, θ2 ∈ Xi is 886

SRCC(θ1, θ2) = 1−
∑

x∈Xi
|r(x, θ1)− r(x, θ2)|
|Xi| · (|Xi|2 − 1)

, (4) 887

where |Xi| means the number of anchor configurations in Xi. We evaluate the consistency of the i-th HP 888

by averaging the SRCC over the different pairs of (θ1, θ2) ∈ Xi ×Xi, the different models and datasets. 889

13

(a) optimizer (b) add inverse relation

Figure 10: HPs that have fixed choice since one configure has significant advantage.

(a) learning rate (b) reg. weight

(c) dropout rate

Figure 11: HPs that have limited ranges since they only perform well in certain ranges.

(a) batch_size (b) dimension

Figure 12: HPs that is monotonic with different choices of values.

14

(a) loss (b) gamma (MR)

(c) adv weight (BCE_adv) (d) # negative sample

(e) regularizer (f) initializer

Figure 13: HPs that do not have obvious patterns. All of the values should be searched.

B.3 Approximation ability of surrogate models 890

In Section 4.2, we have shown that the curvature of a learned random forest (RF) model is more similar 891

with the real curvature of the ground truth. Here, we further demonstrate this point through a synthetic 892

experiment. 893

Specifically, 100 random configurations with evaluated performance are sampled. We use 10/20/30 894

random samples from them to train the surrogates since only a small number of HP configurations are 895

available for the surrogate during searching. The remaining configurations are used for testing. Then, we 896

evaluate the fitting ability of each model by the mean square error (MSE) of the estimated prediction to 897

the target prediction. For GP (Rasmussen, 2003), we show the prediction with the Matern kernel used 898

in AutoNE (Tu et al., 2019). For RF (Breiman, 2001), we build 200 tree estimators to fit the training 899

samples. The MLP here (Gardner and Dorling, 1998) is designed as a three-layer feed-forward network 900

with 100 hidden units and ReLU activation function in each layer. The average value and std of MSE 901

over five different groups of configurations are shown in Table 6. As can been seen, random forest show 902

much lower prediction error than GP and MLP with different number of training samples. This further 903

demonstrates that RF can better fit such a complex HP search space. 904

Table 6: Comparison of different surrogate models in MSE.

train configurations 10 20 30

GP 0.0693±0.02 0.029±0.01 0.019±0.01
MLP 2.121±0.4 2.052±0.3 0.584±0.1
RF 0.003±0.002 0.002±0.001 0.001±0.001

B.4 Results of cost evaluation 905

We show the average cost and standard derivation of five HPs, i.e. batch size, dimension size, number of 906

negative samples, loss functions, and regularizer, in Figure 14. As can be seen, the cost of batch size and 907

15

dimension size increase much when the size increases. But for the number of negative samples, choices of908

loss functions and regularizers, the influence on cost is not strong as indicated by the average cost.909

Figure 14: Computing time cost. The dots are the average and the shades are the standard deviation.

C Detail for the search algorithm910

We show the reduced and decoupled search space compared with the full space in Table 7. Since the911

continuous values are not To quantize the ratio of space change after reduction and decoupling, we912

measure the learning rate and regularization weight in log scale. The size of the whole space X compared913

with the decoupled X̂ is914

3× 14

6
× 5

3
× 5

3
× 2× 4× 5 = 777.8.915

Hence, the reduced and decoupled space is hundreds times smaller than the full space.916

Table 7: The revised HP values in the reduced and decoupled search space compared with the full space.

name ranges in the whole space revised ranges

optimizer {Adam, Adagrad, SGD} Adam
learning rate [10−5, 100] [10−4, 10−1]
reg. weight [10−12, 102] [10−8, 10−2]
dropout rate [0, 0.5] [0, 0.3]

inverse relation {True, False} {False}

batch size {128, 256, 512, 1024} 128
dimension size {100, 200, 500, 1000, 2000} 100

In addition, we show the details for the search procedure by RF+BORE in Algorithm 2.917

Algorithm 2 Full procedure of HP search with RF+BORE (in stage one)

Require: KG embedding F , dataset G, search space X̂ , budget B/2, RF model y = c(x), threshold
τ = 0.8.

1: initialize the RF model andH = ∅;
2: split triplets in G with ratio 9 : 1 into Gtra and Gval;
3: repeat
4: randomly sample a set of configurations X̂c ⊂ X̂ ;
5: select x̂ = argmaxx∈X̂c

y(x);
6: train embedding model into converge

P ∗ = argminP L
(
F (P , x̂), Gtra

)
;

7: evaluate the performance ŷx̂ =M
(
F (P ∗, x̂), Gval

)
;

8: recordH ← H∪ {(x̂, ŷx̂)};
% BORE:

9: set label 0 for configuration inH with ŷx̂ < τ , and label 1 for ŷx̂ ≥ τ ;
10: update RF model y = c(x) to classify the two labels;
11: until B/2 exhausted.

In Algorithm 1, we increase the batch size and dimension size in stage two. We set the searched range918

for batch size in stage two as [512, 1024] and dimension size as [1000, 2000]. There are some exceptions919

16

due to the memory issues, i.e., dimension size for RESCAL is in [500, 1000]; dimension size for TuckER 920

is in [200, 500]. For ogbl-wikikg2, since the used GPU only has 24GB memory, we cannot run models 921

with 500 dimensions which requires much more memory in the OGB board. Instead, we set the dimension 922

as 100 to be consistent with the smaller models in OGB board with 100 dimensions, and increase the 923

batch size in [512, 1024] in the second stage. 924

D Additional experimental results 925

D.1 Implementation details 926

Evaluation metrics. We follow (Bordes et al., 2013; Wang et al., 2017; Ruffinelli et al., 2019) to use 927

the filtered ranking-based metrics for evaluation. For each triplet (h, r, t) in the validation or testing set, 928

we take the head prediction (?, r, t) and tail prediction (h, r, ?) as the link prediction task. The filtered 929

rankings on the head and tail are computed as 930

rankh =
∣∣∣{e ∈ E :

(
f(e, r, t) ≥ f(h, r, t)

)
∧
(
(e, r, t) /∈ Dtra ∪Dval ∪Dtst)

)}∣∣∣+ 1, 931

and 932

rankt =
∣∣∣{e ∈ E :

(
f(h, r, t) ≥ f(h, r, e)

)
∧
(
(h, r, e) /∈ Dtra ∪Dval ∪Dtst)

)}∣∣∣+ 1, 933

respectively, where | · | is the number of elements in the set. The the two metrics used are: 934

• Mean reciprocal ranking (MRR): the average of reciprocal of all the obtained rankings. 935

• Hit@k: the ratio of ranks no larger than k. 936

For both the metrics, the large value indicates the better performance. 937

Dataset statistics. We summarize the statistics of different benchmark datasets in Table 8. As shown, 938

ogbl-biokg and ogbl-wikikg2 have much larger size compared with WN18RR and FB15k-237. 939

Table 8: Statistics of the KG completion datasets.

dataset #entity #relation #train #validate #test

WN18RR (Dettmers et al., 2017) 41k 11 87k 3k 3k
FB15k-237 (Toutanova and Chen, 2015) 15k 237 272k 18k 20k

ogbl-biokg (Hu et al., 2020) 94k 51 4,763k 163k 163k
ogbl-wikikg2 (Hu et al., 2020) 2,500k 535 16,109k 429k 598k

Baseline implementation. All the baselines compared in this paper are based on their own original 940

open-source implementations. Here we list the source links: 941

• Hyperopt (Bergstra et al., 2013), https://github.com/hyperopt/hyperopt; 942

• Ax, https://github.com/facebook/Ax; 943

• SMAC (Hutter et al., 2011), https://github.com/automl/SMAC3; 944

• BORE (Tiao et al., 2021), https://github.com/ltiao/bore; 945

• AutoNE (Tu et al., 2019), https://github.com/tadpole/AutoNE. 946

Searched hyperparameters. We list the searched hyperparameters for each embedding model on the 947

different datasets in Tables 9-12 for reproduction. 948

17

https://github.com/hyperopt/hyperopt
https://github.com/facebook/Ax
https://github.com/automl/SMAC3
https://github.com/ltiao/bore
https://github.com/tadpole/AutoNE

Table 9: Searched optimal hyperparameters for the WN18RR dataset.

HP/Model ComplEx DistMult RESCAL ConvE TransE RotatE TuckER

negative samples 512 128 128 1VsAll 128 2048 128

loss function BCE_adv BCE_adv BCE_mean BCE_sum CE BCE_adv CE
gamma 0.00 0.00 0.00 0.00 6.00 3.10 0.00

adv. weight 0.57 1.41 0.00 0.00 0.00 1.93 0.00

regularizer DURA NUC DURA FRO FRO FRO DURA
reg. weight 8.64 ∗ 10−3 9.58 ∗ 10−3 1.76 ∗ 10−3 1.00 ∗ 10−4 1.00 ∗ 10−4 6.51 ∗ 10−6 1.42 ∗ 10−3

dropout rate 0.25 0.29 0.00 0.00 0.20 0.00 0.00

optimizer Adam Adam Adam Adam Adam Adam Adam
learning rate 1.77 ∗ 10−3 4.58 ∗ 10−3 1.73 ∗ 10−3 1.00 ∗ 10−3 1.00 ∗ 10−3 6.43 ∗ 10−4 1.37 ∗ 10−3

initializer xavier_norm norm uniform uniform uniform norm uniform
batch size 512 1024 512 1024 512 512 512

dimension size 1000 2000 1000 2000 1000 1000 200
inverse relation False False False False False False False

Table 10: Searched optimal hyperparameters for the FB15k-237 dataset.

HP/Model ComplEx DistMult RESCAL ConvE TransE RotatE TuckER

negative samples 512 kVsAll 2048 512 512 2048 2048

loss function BCE_adv CE CE BCE_sum BCE_adv BCE_adv BCE_adv
gamma 0.00 0.00 0.00 0.00 6.76 7.58 0.00

adv. weight 1.93 0.00 0.00 0.00 1.99 1.57 1.94

regularizer DURA FRO DURA DURA FRO DURA DURA
reg. weight 9.75 ∗ 10−3 1.00 ∗ 10−4 9.01 ∗ 10−3 6.42 ∗ 10−3 2.16 ∗ 10−3 5.12 ∗ 10−3 1.47 ∗ 10−4

dropout rate 0.22 0.30 0.00 0.08 0.03 0.02 0.02

optimizer Adam Adam Adam Adam Adam Adam Adam
learning rate 9.70 ∗ 10−4 1.00 ∗ 10−3 1.19 ∗ 10−3 2.09 ∗ 10−3 2.66 ∗ 10−4 2.98 ∗ 10−4 3.19 ∗ 10−4

initializer uniform normal xavier_norm normal xavier_norm uniform normal

batch size 1024 1024 512 1024 512 512 512
dimension size 2000 2000 500 500 1000 1000 500
inverse relation False False False False False False False

18

Table 11: Searched optimal hyperparameters for the ogbl-biokg dataset.

HP/Model ComplEx DistMult TransE RotatE

negative samples 512 512 128 128

loss function CE CE CE BCE_adv
gamma 0.00 0.00 7.60 18.24

adv. weight 0.00 0.00 0.00 1.94

regularizer NUC NUC NUC DURA
reg. weight 1.38 ∗ 10−3 1.20 ∗ 10−6 6.99 ∗ 10−3 1.09 ∗ 10−8

dropout rate 0.01 0.00 0.00 0.00

optimizer Adam Adam Adam Adam
learning rate 1.89 ∗ 10−3 1.25 ∗ 10−3 1.24 ∗ 10−4 1.11 ∗ 10−4

initializer uniform xavier_norm xavier_norm normal
batch size 1024 1024 1024 1024

dimension size 2000 2000 2000 2000
inverse relation False False False False

Table 12: Searched optimal hyperparameters for the ogbl-wikikg2 dataset

HP/Model ComplEx DistMult TransE RotatE

negative samples 32 32 128 32

loss function CE CE CE BCE_mean
gamma 0.00 0.00 9.41 12.00

adv. weight 0.00 0.00 0.00 0.00

regularizer DURA DURA DURA NUC
reg. weight 9.58 ∗ 10−7 2.43 ∗ 10−8 2.29 ∗ 10−3 7.15 ∗ 10−4

dropout rate 0.00 0.00 0.01 0.25

optimizer Adam Adam Adam Adam
learning rate 1.34 ∗ 10−4 1.98 ∗ 10−4 6.44 ∗ 10−4 1.13 ∗ 10−5

initializer xavier_norm xavier_norm xavier_norm normal
batch size 1024 1024 1024 1024

dimension size 100 100 100 100
inverse relation False False False False

19

D.2 Results on general benchmarks949

We compare the types of results on WN18RR and FB15k-237 in Table 13. In the first part, we show the950

results reported in the original papers. In the second part, we show the reproduced results in (Ruffinelli951

et al., 2019). And in the third part, we show the results of the HPs searched by TOSS.952

Table 13: Performance on WN18RR and FB15k-237 dataset. The bold numbers mean the best perfor-
mances of the same model, and the underlines mean the second best.

WN18RR FB15k-237
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

Original

ComplEx 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428
DistMult 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419
RESCAL 0.420 - - 0.447 0.270 - - 0.427

ConvE 0.430 0.400 0.440 0.520 0.325 0.237 0.356 0.501
TransE 0.226 - - 0.501 0.294 - - 0.465
RotatE 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533

TuckER 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544

LibKGE
(Ruffinelli et al., 2019)

ComplEx 0.475 0.438 0.490 0.547 0.348 0.253 0.384 0.536
DistMult 0.452 0.413 0.466 0.530 0.343 0.250 0.378 0.531
RESCAL 0.467 0.439 0.480 0.517 0.356 0.263 0.393 0.541

ConvE 0.442 0.411 0.451 0.504 0.339 0.248 0.369 0.521
TransE 0.228 0.053 0.368 0.520 0.313 0.221 0.347 0.497

TOSS (ours)

ComplEx 0.483 0.439 0.501 0.564 0.355 0.266 0.389 0.533
DistMult 0.453 0.406 0.468 0.545 0.344 0.253 0.377 0.525
RESCAL 0.478 0.434 0.499 0.559 0.359 0.272 0.395 0.532

ConvE 0.435 0.405 0.444 0.500 0.330 0.237 0.362 0.522
TransE 0.232 0.033 0.394 0.540 0.328 0.229 0.369 0.523
RotatE 0.479 0.426 0.499 0.585 0.339 0.246 0.372 0.527

TuckER 0.480 0.437 0.501 0.556 0.347 0.255 0.382 0.535

D.3 Full results for OGB953

Table 14: Full results on ogbl-biokg and ogbl-wikikg2 dataset.

ogbl-biokg ogbl-wikikg2
Test MRR Val MRR #parameters Test MRR Val MRR #parameters

ComplEx 0.8095±0.0007 0.8105±0.0001 187,648,000 0.4027±0.0027 0.3759±0.0016 1,250,569,500
OGB DistMult 0.8043±0.0003 0.8055±0.0003 187,648,000 0.3729±0.0045 0.3506±0.0042 1,250,569,500
board RotatE 0.7989±0.0004 0.7997±0.0002 187,597,000 0.2530±0.0034 0.2250±0.0035 250,087,150

TransE 0.7452±0.0004 0.7456±0.0003 187,648,000 0.4256±0.0030 0.4272±0.0030 1,250,569,500

TOSS

ComplEx 0.8383±0.0006 0.8394±0.0003 187,648,000 0.4898±0.0017 0.5098±0.0023 250,113,900
DistMult 0.8254±0.0003 0.8261±0.0004 187,648,000 0.4866±0.0078 0.4921±0.0075 250,113,900
RotatE 0.8018±0.0005 0.8028±0.0003 187,597,000 0.2845±0.0026 0.2604±0.0034 250,087,150
TransE 0.7771±0.0003 0.7778±0.0003 187,648,000 0.4745±0.0021 0.4955±0.0013 250,113,900

20

