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Abstract

Self-supervised learning has emerged as a promising ap-001
proach for acquiring transferable 3D representations from002
unlabeled 3D point clouds. Unlike 2D images, which are003
widely accessible, acquiring 3D assets requires specialized004
expertise or professional 3D scanning equipment, making it005
difficult to scale and raising copyright concerns. To address006
these challenges, we propose learning 3D representations007
from procedural 3D programs that automatically generate008
3D shapes using simple primitives and augmentations.009

Remarkably, despite lacking semantic content, the 3D010
representations learned from the procedurally generated 3D011
shapes perform on par with state-of-the-art representations012
learned from semantically recognizable 3D models (e.g.,013
airplanes) across various downstream 3D tasks, including014
shape classification, part segmentation, and masked point015
cloud completion. We provide a detailed analysis on fac-016
tors that make a good 3D procedural programs. Extensive017
experiments further suggest that current self-supervised018
learning methods on point clouds do not rely on semantics019
of 3D shapes, shedding light on the nature of 3D represen-020
tations learned.021

1. Introduction022

Self-supervised learning (SSL) aims at learning representa-023
tions from unlabeled data that can transfer effectively to var-024
ious downstream tasks. Inspired by the success of SSL in025
language [10] and image representation learning [14, 15],026
SSL for 3D point cloud understanding has gained consid-027
erable interest [26, 37, 55]. Recently, Point-MAE [26] and028
its follow-ups [41, 59, 61] exploit the masked autoencoding029
scheme for 3D point cloud representation learning, showing030
substantial improvements in various 3D shape understand-031
ing tasks (e.g., shape classification, part segmentation, and032
scene instance segmentation).033

However, unlike language and image data, which are034
abundantly available, 3D assets are less accessible due to035
the expertise required for creating 3D shapes using special-036
ized software (e.g., Blender) or professional 3D scanners037
(e.g. LiDAR sensors). This scarcity of 3D shapes, known as038

(b) Manually designed 3D shapes(a) Procedural generated 3D shapes

(c) Performance on downstream tasks  

Figure 1. Self-supervised learning from (a) procedurally generated
3D shapes [17, 45, 49, 50] performs comparably to learning from
(b) ShapeNet models that are semantically meaningful [4] across
various downstream 3D understanding tasks. Both outperforms
training from scratch significantly. In (c), the x-axis represents
various tasks and benchmarks: ModelNet40 [22] and three vari-
ants of ScanObjectNN [34] for shape classification, and ShapeNet-
Part [54] for part segmentation.

data desert [11], limits the scalability of existing representa- 039
tion learning methods. Recent efforts have sought to expand 040
3D point cloud datasets at both the object level [8, 9] and 041
scene level [3, 12, 53]. However, challenges unique to 3D 042
data collection — such as copyright issues, format diversity, 043
and scalability — remain unresolved. 044

To address these challenges, we explore learning point 045
cloud representations from solely synthetic data generated 046
via procedural 3D programs [17, 45, 49, 50] — examples 047
are shown in Fig. 1a. Our data generation pipeline begins 048
with sampling shapes from a set of simple 3D primitives 049
(e.g., cubes, cylinders, and spheres). These primitives un- 050
dergo affine transformations (e.g., scaling, translation, and 051
rotation) and are combined to create diverse geometries. We 052
then augment the composed shapes using predefined oper- 053
ations (e.g., Boolean operations) to further enhance topo- 054
logical diversity, and uniformly sample 3D surface points 055
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from these shapes for point cloud representation learning.056
We generate 150K synthetic 3D point clouds in 600 CPU057
hours, with a scalable pipeline capable of producing unlim-058
ited 3D shapes free of copyright concerns. Additionally, we059
generate 2K synthetic scenes, including room layouts and060
objects following the described steps, requiring 500 CPU061
hours. This leads us to two key questions:062

• Can existing self-supervised learning methods effectively063
capture rich and meaningful 3D representations from pro-064
cedurally generated shapes alone?065

• How do these representations compare to those learned066
from human-crafted, semantically rich 3D models?067

We investigate learning 3D representations exclusively068
from synthetic shapes generated via procedural programs,069
without relying on human-crafted data. To validate this070
approach, we conduct extensive benchmarks across repre-071
sentative self-supervised learning methods, including Point-072
MAE [26], Point-M2AE [59], PCP-MAE [61], and Masked073
Scene Contrast (MSC) [41]. Specifically, we evaluate 3D074
object SSL methods on tasks such as shape classification,075
part segmentation, and masked point cloud reconstruction,076
while 3D scene SSL methods are evaluated on semantic and077
instance segmentation tasks. Our main findings are:078

• Despite lacking semantics, SSLs from solely synthetic079
data achieve performance comparable to their ShapeNet-080
pretrained counterparts. We also validate the effective-081
ness of procedurally generated data in scene-level 3D un-082
derstanding tasks (Fig. 1c, Tab. 1 - Tab. 5).083

• We provide detailed insights into the factors that influ-084
ence the quality of procedurally generated 3D datasets.085
We observe that learning performance improves notably086
with greater geometric diversity and increased dataset087
size (Tab. 4 and Fig. 5).088

• Our in-depth analysis reveals structural similarities be-089
tween 3D shape representations from models pretrained090
on synthetic 3D shapes and semantically meaningful 3D091
shapes, providing insights into the nature of the learned092
representations (t-SNE visualization in Fig. 7).093

To our best knowledge, this is the first systematic large-094
scale study on SSLs from procedural 3D programs. Our095
work is inspired by and builds upon a recent study that096
successfully trained large 3D reconstruction models exclu-097
sively on procedurally generated shapes [17, 45]. Our ex-098
ploration is also closely related to prior efforts that learn im-099
age representations from procedural programs [1, 2]. Con-100
current to our work, Yu et al. [56] demonstrated that proce-101
durally generated videos can perform as effectively as natu-102
ral videos for self-supervised video representation learning.103
Furthermore, our study is orthogonal yet complementary to104
recent efforts in scaling up 3D shape datasets [8, 9, 53].105

2. Related Work 106

3D Object Datasets. Large-scale datasets are essential in 107
advancing 3D deep learning. Unlike 2D images or videos, 108
building and annotating 3D models requires expertise with 109
professional 3D software or scanning equipment, making 110
the process more costly and time-intensive. Despite these 111
challenges, significant efforts have been made to curate ex- 112
tensive 3D shape datasets [4, 6, 8, 12, 25, 30, 32, 39, 43]. 113
For example, ShapeNet provides 3 million CAD models, 114
with 51K of them being clean, high-quality models, which 115
serves as the standard benchmark for training and evalu- 116
ating models in the 3D object recognition community. A 117
more significant limitation of ShapeNet is its strong bias 118
towards rigid, man-made artifacts, reflecting the inherent 119
bias of its source 3D model repositories. More recently, 120
Objaverse-XL [9] expanded the 3D dataset to 10.2 million 121
models, though scaling up has introduced challenges, in- 122
cluding increased noise, format diversity, and unresolved 123
copyright and legal issues. In contrast, we explore procedu- 124
ral 3D programs that generate 3D shapes from simple prim- 125
itives. This synthetic approach can theoretically produce an 126
unlimited number of 3D shapes without licensing concerns. 127
Moreover, procedural 3D programs provide a principled ap- 128
proach to mitigating biases inherently present in manually 129
curated datasets [1]. 130
Supervised Learning for 3D Point Clouds. Unlike 2D 131
images, 3D point clouds are inherently unordered and have 132
an irregular structure, leading to extensive research on 133
specialized neural network architectures [19, 27, 28, 38, 134
40, 42, 48, 62]. For instance, PointNet [27] introduces 135
permutation-invariant operators and pooling layers feature 136
aggregation across 3D points. PointNet++ [28] builds on 137
this by incorporating a hierarchical spatial structure to cap- 138
ture more localized geometric information. DGCNN [38] 139
adopts a graph-based approach, constructing a graph from 140
input point clouds and applying a graph CNN to aggregate 141
features from unordered 3D points. More recent models, 142
such as the Point Transformer [40, 42, 62], utilize a mod- 143
ified transformer architecture tailored specifically for 3D 144
point cloud processing. In our work, we employ a stan- 145
dard transformer architecture, aligning with recent trends in 146
self-supervised learning [15, 26, 55]. 147
Self-supervised Learning for Point Clouds. Self- 148
supervised learning (SSL) for 3D representations aims to 149
learn features that transfer well across diverse point cloud 150
tasks, such as shape classification, object detection, and 151
part segmentation. Recent SSL approaches for point clouds 152
generally fall into two categories: contrastive learning [5, 153
14, 46] and masked autoencoding [11, 13, 26, 29, 37, 55, 154
57, 58, 60]. PointContrast [46] and DepthContrast [5] use 155
an instance discrimination task [14] to learn 3D representa- 156
tions. OcCo [37] learns point cloud representations by re- 157
constructing the original point cloud from occluded views, 158

2



CVPR
#0000

CVPR
#0000

CVPR 2025 Submission #0000. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(c) Downstream tasks
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Figure 2. Learning from procedural 3D programs. (a) Synthetic 3D point clouds are generated by sampling, compositing, and aug-
menting simple primitives using procedural 3D programs [45]. (b) We experiment with multiple state-of-the-art self-supervised learning
frameworks for learning 3D representations from synthetic data. Here, we illustrate the pretraining pipeline using Point-MAE [55], naming
this variant Point-MAE-Zero, where “Zero” emphasizes the absence of any human-made 3D shapes. (c) We evaluate the pretrained models
across various 3D shape understanding tasks.
while IAE [51] trains an autoencoder to recover implicit159
features from point cloud inputs. Inspired by the success of160
masked autoencoding in vision [15] and language represen-161
tation learning [10], Point-BERT [55] and Point-MAE [26]162
learn representations by predicting masked regions, using163
transformers as the underlying architecture. More works164
have been built upon Point-MAE: Point-M2AE [59] intro-165
duces a pyramid architecture for both the encoder and de-166
coder to incorporate multi-scale and hierarchical informa-167
tion in 3D shapes. More recently, PCP-MAE [61] high-168
lights the issue of centroid leakage, which trivializes the169
pretext task in the PointMAE framework, and proposes pre-170
dicting centroids as an additional objective to strengthen171
masked point reconstruction. 3D scene SSLs directly takes172
in scene-centric point clouds is an exciting research direc-173
tion [16, 21, 36, 41, 47]. In this work, we adopt Point-174
MAE, Point-M2AE, PCP-MAE and MSC, as our primary175
self-supervised learning framework due to its state-of-the-176
art performance across various 3D understanding tasks.177
For ablation studies, we use Point-MAE as the baseline,178
as it serves as the foundational approach in this research179
direction and provides the most representative evaluation.180
Learning from Synthetic Data Synthetic data has become181
popular in computer vision, especially in scenarios where182
ground-truth annotations are difficult to obtain or where183
privacy and copyright issues arise. State-of-the-art perfor-184
mance in mid-level or 3D vision tasks is often achieved185
through training on synthetic data, including tasks like op-186
tical flow [33], depth estimation [52], dense tracking [18],187
relighting [49], novel view synthesis [50], and material esti-188
mation [20]. Procedurally generated synthetic data has also189
been explored for self-supervised representation learning in190
images [1, 2] and videos [56], and more recently for multi-191
view feed-forward 3D reconstruction [45]. Concurrent with192
our study, Yu et al. [56] investigates self-supervised video193
representation learning from procedurally generated images194
and videos. In this work, we explore self-supervised rep-195
resentation learning for point clouds, using synthetic 3D196
shapes generated by procedural 3D programs.197

3. Learning from Procedural 3D Programs 198

We first introduce the procedural 3D programs [45, 49, 50] 199
for generating unlimited number of synthetic 3D shapes us- 200
ing composition of simple primitive shapes (e.g., cylinders) 201
and shape augmentation (Sec. 3.1). We then describe the 202
masked autoencoding scheme [26, 37, 55] for learning 3D 203
representations from synthetic 3D datasets (Sec. 3.2). 204

3.1. Procedural 3D programs 205

There is a line of work synthesizing procedural 3D shapes 206
for vision tasks such as novel view synthesis [50], relight- 207
ing [49], and material estimation [20]. Following recent 208
methods [45] that use procedural 3D shapes for sparse-view 209
reconstruction, we address self-supervised 3D representa- 210
tion learning from purely synthetic datasets. Fig. 2a illus- 211
trates our data pipeline: 212

(1) Randomly sample K primitive shapes (cubes, spheres, 213
cylinders, cones, tori) and apply affine transformations to 214
combine them; 215

(2) Apply geometric augmentations (e.g., boolean differ- 216
ences, wireframe conversions) to enrich shape diversity 217
(see [45] for details); 218

(3) Uniformly sample N surface points per synthesized 219
shape as inputs for representation learning (Fig. 2b). 220

We experiment with various shape-generation configu- 221
rations, such as changing the number of sampled primitives 222
and applying augmentations. By default, each dataset con- 223
sists of 150K shapes with N = 8192 points each. Sec. 4 224
further analyzes the effects of dataset size and shape com- 225
plexity on learned representations. 226

In order to generate procedural 3D scenes, we follow 227
MegaSynth [17] to procedurally generate 2K synthetic 3D 228
scenes. Specifically, we first generate a floor plan and gen- 229
erate procedural 3D shapes with the above pipeline and 230
place procedural 3D shapes in the scene based on the gener- 231
ated floor plan. We include details on how we generate 2K 232
procedural 3D scenes in the supplementary material. 233
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3.2. Procedural Pretraining234

Pretraining. As depicted in Fig. 2b, we adopt Point-235
MAE [15], Point-M2AE [59], PCP-MAE [61] to train on236
procedurally generated 3D shapes. These methods rely on237
a masked autoencoding scheme [10, 15, 55], where the in-238
put point cloud is split into irregular patches and a large239
portion of them (60% by default) is randomly masked. A240
Transformer-based encoder–decoder network then attempts241
to reconstruct these masked patches, thereby learning 3D242
representations. Concretely, the reconstruction loss is com-243
puted as the L2 Chamfer Distance between the predicted244
point patches Ppre and the ground-truth patches Pgt:245

L =
1

|Ppre|
∑

a∈Ppre

min
b∈Pgt

∥a − b∥2
2 +

1

|Pgt|
∑

b∈Pgt

min
a∈Ppre

∥a − b∥2
2. (1)246

For scene-level SSLs, we adopt MSC [41], which com-247
bines masked auto-encoding and contrasive learning, to248
train on procedurally generated 3D scenes. While earlier249
self-supervised approaches [37, 55] often train on human-250
crafted 3D models (e.g., ShapeNet [4]), here we focus on251
purely synthetic data. We thus call add suffix -Zero to252
emphasize that it is trained exclusively on procedural 3D253
shapes with zero human-designed content. For clarity, we254
use the suffix -SN to indicate baselines trained on ShapeNet.255

Downstream Probing. We evaluate baselines on several256
3D tasks, as summarized in Fig. 2c. For shape classifica-257
tion, we augment the pretrained Transformer encoder with258
a three-layer MLP classification head. For part segmenta-259
tion, we aggregate features from the 4th, 8th, and final lay-260
ers of the encoder, upsample them to all 2048 input points,261
and employ a segmentation head. For masked point cloud262
reconstruction, we use both the pretrained encoder and de-263
coder with no architectural modifications. For scene-level264
methods, we use both instance segmentation and semantic265
segmentation finetuned from the pretrained SSLs with a lin-266
ear prediction head. Detailed implementation settings are in267
the supplementary material.268

4. Experiments269

We present a comprehensive evaluation of 3D shape repre-270
sentations pretrained with procedural 3D programs across271
various downstream object-level and scene-level tasks, in-272
cluding object classification, part segmentation, and 3D273
scene understanding (Sec. 4.1 – 4.4). We further provide274
an in-depth analysis of model behavior and ablation studies275
(Sec. 4.5). For each downstream task, we report the perfor-276
mance of relevant existing methods as a reference and focus277
on comparisons with SSLs pretrained on manually-curated278
3D datasets, as well as models trained from scratch. Specif-279
ically, for object-level 3D understanding tasks, we evalu-280
ate the following three pretraining strategies: (1) Scratch:281

Methods ModelNet40 OBJ-BG OBJ-ONLY PB-T50-RS

PointNet [27] 89.2 73.3 79.2 68.0
SpiderCNN [48] 92.4 77.1 79.5 73.7
PointNet++ [28] 90.7 82.3 84.3 77.9
DGCNN [38] 92.9 86.1 85.5 78.5
PointCNN [19] – 86.1 85.5 78.5
PTv1 [62] 93.7 – – –
PTv2 [40] 94.2 – – –
OcCo [37] 92.1 84.9 85.5 78.8
Point-BERT [55] 93.2 87.4 88.1 83.1

Point-MAE-Scratch [55] 91.4 79.9 80.6 77.2
Point-MAE-SN [26] 93.8 90.0 88.3 85.2
Point-MAE-Zero 93.0 90.4 88.6 85.5

Point-M2AE-Scratch 92.2 90.0 87.6 85.6
Point-M2AE-SN [59] 94.0 91.2 88.8 86.4
Point-M2AE-Zero 92.9 90.4 89.8 87.0

PCP-MAE-Scratch 91.5 88.8 88.5 83.8
PCP-MAE-SN [61] 94.0 95.5 94.3 90.4
PCP-MAE-Zero 92.4 94.0 92.3 90.5

Table 1. Object Classification. We evaluate the object classifi-
cation performance on ModelNet40 and three variants of ScanOb-
jectNN. Classification accuracy (%) is reported (higher is better).
Top: Performance of existing methods with various neural net-
work architectures and pretraining strategies. Bottom: Compari-
son with our baseline methods.

All network parameters are randomly initialized, with no 282
pretraining. (2) ShapeNet Pretrained (SN): Pretrained on 283
41,952 models in the ShapeNet [4] training split, relying 284
on the officially released weights. (3) Procedural 3D Pro- 285
grams Pretrained (Zero): Pretrained on 150K procedurally 286
generated 3D models, using no human-crafted shapes. For 287
scene-level tasks, we compare SSL models pretrained on 288
ScanNet [7] and procedurally generated 3D scenes. 289

4.1. Object Classification 290

Benchmarks. We use ModelNet40 [44] and ScanOb- 291
jectNN [34] as the benchmarks for the shape classification 292
task. ModelNet40 contains 12,311 clean 3D CAD objects 293
across 40 categories, with 9,843 samples for training and 294
2,468 for testing. Following Point-MAE, we apply random 295
scaling and translation as data augmentation during train- 296
ing, and a voting strategy during testing [22]. Following 297
prior works [26, 37, 55], we also evaluate the few-shot clas- 298
sification performance on ModelNet40. ScanObjectNN is 299
a more complex real-world 3D dataset, consisting of ap- 300
proximately 15,000 objects across 15 categories, with items 301
scanned from cluttered indoor scenes. We report results on 302
three ScanObjectNN variants: OBJ-BG, OBJ-ONLY, and 303
PB-T50-RS, the latter being the most challenging due to its 304
additional noise and occlusions. 305
Transfer Learning. Table 1 summarizes object clas- 306
sification results across several settings. On Model- 307
Net40, the “-Zero” variants (e.g., Point-MAE-Zero, Point- 308
M2AE-Zero, PCP-MAE-Zero) generally fall slightly be- 309
hind their ShapeNet-pretrained counterparts (“-SN”), re- 310
flecting the larger domain gap between synthetic shapes 311
and the clean 3D models in ModelNet40. By contrast, 312
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Methods 5w/10s 5w/20s 10w/10s 10w/20s

DGCNN-rand [38] 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
DGCNN-OcCo [38] 90.6±2.8 92.5±1.9 82.9±1.3 86.5±2.2
Transformer-OcCo [37] 94.0±3.6 95.9±2.3 89.4±5.1 92.4±4.6
Point-BERT [55] 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1

Point-MAE-Scratch [55] 87.8±5.2 93.3±4.3 84.6±5.5 89.4±6.3
Point-MAE-SN [26] 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
Point-MAE-Zero 95.4±2.5 97.7±1.6 91.3±5.1 95.0±3.5

Point-M2AE-Scratch 87.5±2.6 90.0±5.5 86.4±3.2 89.6±4.3
Point-M2AE-SN∗ [26] 93.4±3.1 96.2±1.5 91.8±4.5 92.9±3.2
Point-M2AE-Zero 91.4±1.8 94.2±2.2 88.3±3.7 91.0±2.9

PCP-MAE-Scratch 86.4±2.6 85.0±6.0 88.9±4.1 90.7±4.2
PCP-MAE-SN [61] 97.4±2.3 99.1±0.8 93.5±3.7 95.9±2.7
PCP-MAE-Zero 95.3±3.4 98.4±1.4 91.5±4.4 94.7±3.0

Table 2. Few-shot classification on ModelNet40. We evaluate
performance on four n-way, m-shot configurations. For example,
5w/10s denotes a 5-way, 10-shot classification task. The table re-
ports the mean classification accuracy (%) and standard deviation
across 10 independent runs for each configuration. Top: Results
from existing methods for comparison. Bottom: Comparison with
our baseline methods. Note that results for Point-M2AE-SN are
reproduced using publicly available code with our own configura-
tion, as the original configuration was not provided.

on ScanObjectNN—which contains real-world scans with313
broader geometric variability—the “-Zero” models often314
match or exceed the performance of their “-SN” counter-315
parts. For instance, PCP-MAE-Zero outperforms PCP-316
MAE-SN on the PB-T50-RS variant, and Point-M2AE-317
Zero closely matches or exceeds Point-M2AE-SN in sev-318
eral cases. These findings indicate that the diverse ge-319
ometry in procedurally synthesized data can be advanta-320
geous for certain real-world tasks. Meanwhile, all pre-321
trained models (including both “-SN” and “-Zero”) sur-322
pass their respective from-scratch baselines and outperform323
existing self-supervised approaches (e.g., OcCo [37] and324
Point-BERT [55]).325

Few-shot Classification. We evaluate few-shot classifi-326
cation on ModelNet40 using standard n-way, m-shot pro-327
tocols, where n denotes the number of randomly selected328
classes and m the number of examples per class. Each eval-329
uation samples 20 unseen instances from each class. We330
repeat this procedure 10 times, reporting mean accuracy331
(%) and standard deviation. Table 2 presents results for332
n = {5, 10} and m = {10, 20}. Similar to transfer learn-333
ing experiments, Point-MAE-Zero performs slightly below334
Point-MAE-SN, likely due to the larger domain gap be-335
tween procedural shapes and ModelNet40 data. Neverthe-336
less, both methods significantly outperform scratch-trained337
models and previous approaches such as DGCNN [38] and338
Transformer-OcCo [37].339

4.2. Part Segmentation340

The 3D part segmentation task aims to assign a part la-341
bel to each point in a shape. We evaluate our methods342

Methods mIoUI aero bag cap car chair earphone guitar knife

PointNet [27] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9
PointNet++ [28] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9
DGCNN [38] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5
OcCo [37] 85.1 83.3 85.2 88.3 79.9 90.7 74.1 91.9 87.6
Point-BERT [55] 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9

Point-MAE-Scratch [55] 85.1 82.9 85.4 87.7 78.8 90.5 80.8 91.1 87.7
Point-MAE-SN [26] 86.1 84.3 85.0 88.3 80.5 91.3 78.5 92.1 87.4
Point-MAE-Zero 86.1 85.0 84.2 88.9 81.5 91.6 76.9 92.1 87.6

Point-M2AE-Scratch 84.7 85.1 86.8 88.6 81.1 91.5 79.9 92.1 87.8
Point-M2AE-SN [59] 85.0 84.5 87.2 89.3 81.1 91.8 80.1 92.0 89.2
Point-M2AE-Zero 84.9 85.3 87.3 88.7 81.1 91.7 79.4 91.9 88.2

PCP-MAE-Scratch 83.8 84.3 83.1 88.7 80.3 91.2 77.1 92.0 88.1
PCP-MAE-SN [61] 84.3 85.0 84.0 88.7 81.0 91.6 77.6 91.8 87.6
PCP-MAE-Zero 84.4 84.6 84.3 88.5 81.7 91.5 81.1 92.1 87.0

Methods lamp laptop motor mug pistol rocket skateboard table

PointNet [27] 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [28] 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [38] 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
OcCo [37] 84.7 95.4 75.5 94.4 84.1 63.1 75.7 80.8
Point-BERT [55] 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5

Point-MAE-Scratch [55] 85.3 95.6 73.9 94.9 83.5 61.2 74.9 80.6
Point-MAE-SN [26] 86.1 96.1 75.2 94.6 84.7 63.5 77.1 82.4
Point-MAE-Zero 86.0 96.0 77.8 94.8 85.3 64.7 77.3 81.4

Point-M2AE-Scratch 85.7 96.0 76.4 95.4 85.5 63.8 76.3 82.4
Point-M2AE-SN [59] 86.4 95.8 77.7 95.3 85.2 65.3 77.0 82.2
Point-M2AE-Zero 85.8 96.2 76.6 94.9 84.8 64.4 76.8 82.5

PCP-MAE-Scratch 84.9 95.0 76.0 95.0 85.0 63.2 75.4 81.0
PCP-MAE-SN [61] 85.8 96.4 76.1 95.2 84.8 64.0 77.4 81.4
PCP-MAE-Zero 86.0 96.1 76.6 94.6 85.1 63.6 76.8 80.4

Table 3. Part Segmentation Results. We report the mean Inter-
section over Union (IoU) across all instances (mIoUI) and the IoU
(%) for each category on the ShapeNetPart benchmark (higher val-
ues indicate better performance).

and baselines on ShapeNetPart [54], which contains 16,881 343
models across 16 object categories. Consistent with previ- 344
ous works [26, 27, 55], we sample 2,048 points from each 345
shape, resulting in 128 patches in our masked autoencoding 346
pipeline (see Sec. 3). 347

Table 3 presents the mean Intersection-over-Union 348
(mIoU) across all instances, along with per-category IoU. 349
Across various models, both Point-MAE-Zero and Point- 350
MAE-SN deliver comparable performance, indicating that 351
procedurally generated shapes can learn robust 3D rep- 352
resentations without explicit semantic content. Similarly, 353
Point-M2AE-Zero and PCP-MAE-Zero achieve results on 354
par with their ShapeNet-pretrained counterparts, further 355
highlighting the versatility of procedural data in self- 356
supervised representation learning. 357

In line with our observations in Sec. 4.1, the “-Zero” and 358
“-SN” models surpass scratch-trained baselines and earlier 359
methods that use different architectures [27, 28, 38] or al- 360
ternative pretraining strategies [37, 55]. Despite lacking 361
high-level semantic cues, these procedurally trained autoen- 362
coders still capture sufficient geometric structure to achieve 363
strong segmentation performance. 364

4.3. Masked Point Cloud Completion 365

The masked point cloud completion task aims to reconstruct 366
masked regions of input 3D point clouds, serving as a self- 367
supervised pretext for learning 3D representations [26] (see 368
Fig. 2 and Sec. 3). 369

5



CVPR
#0000

CVPR
#0000

CVPR 2025 Submission #0000. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Point-MAE-Zero

P
ro

c
e
d

u
ra

l
S

h
a
p

e
N

e
t

Point-MAE-ZeroPoint-MAE-SN Point-MAE-SNGuidance pointsGround-truth Masked input

0.00980.0083 0.01220.0118

0.0180 0.02870.03480.0197

Point-MAE-Zero

Figure 3. Masked Point Cloud Completion. This figure visualizes shape completion results with Point-MAE-SN and Point-MAE-Zero
on the ShapeNet test split and procedurally synthesized 3D shapes. Left: Ground truth point clouds and masked inputs (60% mask ratio).
Middle: Completions guided by masked input patch centers [26]. Right: Reconstructions without any guidance points. The L2 Chamfer
distance (lower is better) between the predicted 3D point clouds and the ground truth is displayed below each reconstruction.

With Guidance Without Guidance

Methods ShapeNet Synthetic ShapeNet Synthetic

Point-MAE-SN [26] 0.015 0.024 0.024 0.039
Point-MAE-Zero 0.016 0.024 0.026 0.037

Point-M2AE-SN [59] 0.002 0.005 0.007 0.011
Point-M2AE-Zero 0.003 0.005 0.010 0.009

PCP-MAE-SN [61] - - 0.016 0.028
PCP-MAE-Zero - - 0.016 0.028

Table 4. Masked Point Cloud Completion. The table reports the
L2 Chamfer distance (lower is better) between predicted masked
points and ground truth on the test set of ShapeNet and proce-
durally synthesized 3D shapes. With Guidance: center points of
masked patches are added to mask tokens in the pretrained de-
coder, guiding masked point prediction during inference. With-
out Guidance: Without Guidance: no information from masked
patches is available during inference.

During pretraining, points are grouped into patches, with370
a subset of patches (60% by default) randomly masked.371
Only visible patches are encoded, while masked patch cen-372
ters can optionally guide the decoder (“with guidance”) or373
be omitted entirely (“without guidance”). After pretrain-374
ing, models can reconstruct masked points even without375
such guidance. We quantitatively compare Point-MAE and376
Point-M2AE pretrained on ShapeNet (“-SN”) and procedu-377
ral shapes (“-Zero”) in both guidance conditions, using the378
ShapeNet test split and 2,000 unseen synthetic shapes (see379
Tab. 4). All methods perform slightly better on their in-380
domain data. Removing guidance significantly decreases381
performance across all methods, highlighting its importance382
during masked reconstruction. Notably, Point-MAE-Zero383
and Point-M2AE-Zero closely match or even surpass their384
SN counterparts in reconstructing synthetic shapes, and re-385
main competitive on ShapeNet shapes despite the lack of386
semantic training signals. PCP-MAE is a special case since387
it predicts centers before decoding point cloud and we find388
PCP-MAE-SN and PCP-MAE-Zero achieve similar perfor-389
mances both on seen and unseen domains.390

Semantic Segmentation Instance Segmentation

Methods mIoU mAcc allAcc mAP AP50 AP25

MSC-scan [41] 73.85 81.80 90.49 39.75 60.51 76.49

MSC-Zero (1k) 72.69 80.80 90.13 39.03 58.57 75.24
MSC-Zero (2k) 73.86 82.03 91.18 40.81 62.28 76.26

Table 5. Masked Scene Contrast Results. Performance compari-
son between MSC-Scan and MSC-Zero with different amounts of
pretraining data for semantic and instance segmentation tasks.

Fig. 3 further illustrates that procedural-only mod- 391
els (e.g., Point-MAE-Zero) effectively reconstruct familiar 392
ShapeNet objects (e.g., airplane wings, chair legs) without 393
semantic supervision, likely by exploiting geometric sym- 394
metries. Similarly, SN-pretrained models generalize effec- 395
tively to synthetic shapes not encountered during pretrain- 396
ing. Overall, these findings from Fig. 3 and Tab. 4 under- 397
score that masked autoencoding primarily captures geomet- 398
ric rather than semantic information, enabling robust recon- 399
struction across domains. 400

4.4. Scene-level 3D Understanding Tasks 401

Given the effectiveness of procedural 3D programs for pre- 402
training self-supervised learning (SSL) models on 3D ob- 403
jects, a natural question arises: Can procedural 3D pro- 404
grams similarly benefit SSL for 3D scenes? We adopt 405
Masked Scene Contrast (MSC) [41], a state-of-the-art SSL 406
method for 3D scenes. We pretrain MSC on ScanNet [7] 407
(1K scenes), commonly used for 3D scene SSL pretraining, 408
and compare it against MSC pretrained on our procedurally 409
generated scenes (denoted MSC-Zero). We conduct exper- 410
iments with MSC-Zero using varying amounts of data (1K 411
and 2K procedural scenes). MSC-Zero trained with 2K pro- 412
cedurally generated 3D scenes achieves outperforms MSC 413
pretrained on ScanNet in both 3D semantic and instance 414
segmentation tasks. This aligns with our observations on 415
object-level 3D understanding tasks. We discuss the exact 416
procedures of generating such data and implementation de- 417
tails in the supplementary materials. 418
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(a)

(b)

(c)

(d)

Methods Pre-train
Loss

Downstream
Accuracy

Scratch – 77.24
Point-MAE-SN 2.62 85.18

Point-MAE-Zero
(a) Single Primitive 3.17 83.93
(b) Multiple Primitives 4.10 84.52

(c) Complex Primitives 4.43 84.73
(d) Shape Augmentation 5.28 85.46

Figure 4. Impact of 3D Shape Complexity on Performance. Left: Examples of procedurally generated 3D shapes with increasing
complexity, used for pretraining. Textures are shown for illustration purposes only; in practice, only the surface points are used. Right:
Comparison of pretraining masked point reconstruction loss (Eqn. 1) [26] and downstream classification accuracy on the ScanObjectNN
dataset [34]. Each row in Point-MAE-Zero represents an incrementally compounded effect of increasing shape complexity and augmenta-
tion, with the highest accuracy achieved using shape augmentation.
4.5. Analysis419

Complexity of Synthetic 3D shapes. We examine how420
the geometric complexity of synthetic datasets impacts pre-421
training and downstream performance. We consider four422
progressively complex configurations: (a) Single Primi-423
tive: a single shape with affine transformations; (b) Mul-424
tiple Primitives (≤3): up to three combined shapes; (c)425
Complex Primitives (≤9): up to nine combined shapes; (d)426
Shape Augmentation: further modified via boolean differ-427
ences and wire-frame conversions.428

Fig. 4 displays samples from each configuration along-429
side quantitative comparisons of pretraining performance430
and downstream classification accuracy on PB-T50-RS, the431
most challenging variant of ScanObjectNN [34]. As shape432
complexity increases, the pretraining task becomes more433
difficult, leading to higher reconstruction losses at the 300th434
training epoch. However, the downstream classification per-435
formance of Point-MAE-Zero improves. This underscores436
the importance of topological diversity in shapes for effec-437
tive self-supervised point cloud representation learning.438

We observe that the reconstruction loss on our dataset439
with single primitives (i.e., 3.17) is higher than on ShapeNet440
(i.e., 2.62) which consists of more diverse 3D shapes.441
We hypothesize that this is because ShapeNet is relatively442
smaller than our dataset (50K vs. 150K) and ShapeNet mod-443
els are coordinate-aligned.444

Dataset Size. Fig. 5 illustrates the effect of dataset size (i.e.,445
the number of procedurally generated 3D shapes) on Point-446
MAE-Zero’s performance in the shape classification task on447
the PB-T50-RS benchmark.448

Our experiments show that performance improves as449
dataset size increases, despite the dataset being procedurally450
generated. However, simply enlarging the dataset appears451
to yield diminishing returns, which may be due to intrinsic452
limitations of a purely synthetic 3D dataset or the represen-453
tation learning bottleneck within Point-MAE.454
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Figure 5. Impact of pretraining dataset size. We report the
classification accuracy (%) on the PB-T50-RS subset of ScanOb-
jectNN [34] as a function of the pretraining dataset size.
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Figure 6. Learning curves in downstream tasks. We present
validation accuracy (top row) and training curves (bottom row)
in object classification tasks on ScanObjectNN (left column) and
ModelNet40 (right column).

Notably, Point-MAE-Zero and Point-MAE-SN achieve 455
comparable performance on downstream tasks when pre- 456
trained on datasets of the same size, regardless of dif- 457
ferences in their pretraining data domains (i.e., synthetic 458
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Figure 7. t-SNE visualization of 3D shape representations. (a) Shows representations from transformer encoders: Scratch, Point-MAE-
SN (ShapeNet), and Point-MAE-Zero (procedural shapes). (b) Displays fine-tuned representations for object classification on ModelNet40
(top) and ScanObjectNN (bottom). Each point represents a 3D shape while the color denotes the semantic categories.

shapes vs. ShapeNet). We include additional experiments459
in the appendix to ablate the effect of dataset size.460

Efficiency of Transfer Learning. Fig. 6 shows the learn-461
ing curves for training from scratch, Point-MAE-SN, and462
Point-MAE-Zero on shape classification tasks in the trans-463
fer learning setting. Both Point-MAE-SN and Point-MAE-464
Zero demonstrate faster training convergence and higher465
test accuracy compared to training from scratch. This trend466
is consistent across both ModelNet40 and ScanObjectNN467
benchmarks.468

t-SNE Visualization. Fig. 7 visualizes the distribution of469
3D shape representations from Point-MAE-SN and Point-470
MAE-Zero via t-SNE [35], before and after fine-tuning on471
specific downstream tasks. It also includes representations472
from a randomly initialized neural network as a reference.473

First, compared to the representations from scratch, both474
Point-MAE-SN and Point-MAE-Zero demonstrate visually475
improved separation between different categories in the la-476
tent space. For example, this is evident in the red and light477
blue clusters on ModelNet40 and the blue and light blue478
clusters on ScanObjectNN. This indicates the effectiveness479
of self-supervised 3D representation learning via masked480
auto-encoding.481

Second, when comparing representations after fine-482
tuning, both Point-MAE-SN and Point-MAE-Zero show483
much less clear separation between categories in the la-484
tent space. This raises the question of whether high-level485
semantic features are truly learned through the masked au-486
toencoding pretraining scheme.487

Finally, the t-SNE visualization reveals structural sim-488
ilarities between Point-MAE-Zero and Point-MAE-SN.489
Most categories lack clear separation in both models, ex-490
cept for the red and light blue clusters on ModelNet40 and491
the blue and light blue clusters on ScanObjectNN. This sug-492

gests that Point-MAE-Zero and Point-MAE-SN may have 493
learned similar 3D representations, despite differences in 494
the domains of their pretraining datasets. We provide more 495
in-depth analysis in the supplementary material. 496

5. Discussion 497

In this work, we propose to learn 3D representations from 498
synthetic data automatically generated using procedural 3D 499
programs. We conduct an comprehensive empirical analy- 500
sis of existing 3D SSLs and perform extensive comparisons 501
with learning from well-curated, semantically meaningful 502
3D datasets. 503

We demonstrate that learning with procedural 3D pro- 504
grams performs comparably to learning from recognizable 505
3D models, despite the lack of semantic content in synthetic 506
data. Our experiments highlights the importance of geo- 507
metric complexity and dataset size in synthetic datasets for 508
effective 3D representation learning. Our analysis further 509
reveals that existing 3D SSLs primarily learns geometric 510
structures (e.g., symmetry) rather than high-level semantics. 511

This work has several limitations. For example, due to 512
limited computational resources, we were unable to further 513
scale up our experiments, such as by increasing the dataset 514
size or conducting more detailed ablation studies on pro- 515
cedural 3D generation. Additionally, our findings may be 516
influenced by potential biases in visualization tools (e.g., t- 517
SNE) or benchmarks (e.g., data distribution and evaluation 518
protocols). Furthermore, in 3D vision, the distinction be- 519
tween geometric structures and semantics remains an open 520
question, as well-stated by Xie et al. [45]. This work also 521
does not provide any novel representation learning method. 522
Nevertheless, we hope our findings will inspire further ex- 523
ploration into self-supervised 3D representation learning. 524
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Learning 3D Representations from Procedural 3D Programs

Supplementary Material

We provide more implementation details, additional ex-805
perimental results, and visualizations in this supplemen-806
tary material. In Sec. A, we present our training-from-807
scratch baseline, which surpasses the results reported in808
Point-MAE [26]. In Sec. B, we introduce a more rigor-809
ous evaluation protocol using a dedicated validation set in-810
stead of relying on the test set for validation. Moreover, in811
Sec. C, we provide linear probing results on ModelNet40812
and three ScanObjectNN variants to compare the perfor-813
mance of Point-MAE-SN and Point-MAE-Zero. Additional814
visualizations are provided in Sec.D. Details on generating815
scene-level procedural 3D programs are in Sec.E. Lastly,816
implementation details for 3D object SSLs and 3D scene817
SSLs are presented in Sec. F.818

A. Training-from-Scratch Baseline819

For the training-from-scratch baseline, we report the re-820
sults in the supplementary material for completeness. In the821
main text, we referenced the scores reported in the original822
Point-MAE paper for this baseline. However, our experi-823
ments suggest that training from scratch in our setup pro-824
duced higher scores than those reported in Point-MAE [26]825
and Point-BERT [55]. The results from our training-from-826
scratch baseline are presented in this section, as shown in827
Tab. 6, Tab. 7, and Tab. 8.828

We follow the same evaluation protocol as Point-829
MAE [26]. While the results we obtained from the training-830
from-scratch baseline consistently surpass the previously831
reported scores, there remains a significant gap between the832
performance of the training-from-scratch baseline and the833
pre-trained methods. This underscores the effectiveness of834
pre-training in enhancing model performance. Furthermore,835
pre-trained methods demonstrate much faster convergence836
compared to the training-from-scratch baseline.837

Methods ModelNet40 OBJ-BG OBJ-ONLY PB-T50-RS

Scratch [55] 91.4 79.86 80.55 77.24
Scratch* 93.4 87.44 82.03 81.99
Point-MAE-SN [26] 93.8 90.02 88.29 85.18
Point-MAE-Zero 93.0 90.36 88.64 85.46

Table 6. Object Classification. Classification accuracy (%) on
ModelNet40 and three ScanObjectNN variants under the revised
evaluation setup (Higher is better). Note Scratch* indicates base-
line method’s results we obtained.

Methods 5w/10s 5w/20s 10w/10s 10w/20s

Scratch [55] 87.8±5.2 93.3±4.3 84.6±5.5 89.4±6.3
Scratch* 92.7±3.5 95.5±3.1 88.5±5.1 92.0±4.5
Point-MAE-SN [26] 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
Point-MAE-Zero 95.4±2.5 97.7±1.6 91.3±5.1 95.0±3.5

Table 7. Few-shot classification on ModelNet40. We evaluate
performance on four n-way, m-shot configurations. For example,
5w/10s denotes a 5-way, 10-shot classification task. The table re-
ports the mean classification accuracy (%) and standard deviation
across 10 independent runs for each configuration. Top: Results
from existing methods for comparison. Bottom: Comparison with
our baseline methods. Note Scratch* indicates baseline method’s
results we obtained.

Methods mIoUI aero bag cap car chair earphone guitar knife

Scratch [55] 85.1 82.9 85.4 87.7 78.8 90.5 80.8 91.1 87.7
Scratch* 84.0 84.3 83.1 89.1 80.6 91.2 74.5 92.1 87.3
Point-MAE-SN [26] 86.1 84.3 85.0 88.3 80.5 91.3 78.5 92.1 87.4
Point-MAE-Zero 86.1 85.0 84.2 88.9 81.5 91.6 76.9 92.1 87.6

Methods lamp laptop motor mug pistol rocket skateboard table

Scratch [55] 85.3 95.6 73.9 94.9 83.5 61.2 74.9 80.6
Scratch* 85.1 95.9 74.3 94.8 84.3 61.1 76.2 80.9
Point-MAE-SN [26] 86.1 96.1 75.2 94.6 84.7 63.5 77.1 82.4
Point-MAE-Zero 86.0 96.0 77.8 94.8 85.3 64.7 77.3 81.4

Table 8. Part Segmentation Results. We report the mean Inter-
section over Union (IoU) across all instances (mIoUI) and the IoU
(%) for each category on the ShapeNetPart benchmark (higher val-
ues indicate better performance). Note Scratch* indicates baseline
method’s results we obtained.

B. More Rigorous Evaluation 838

In prior works [26, 55], the validation set was identical to 839
the test set. The model was evaluated on the test set after 840
every epoch, with the best-performing result selected. Such 841
practices can artificially inflate performance metrics and fail 842
to accurately reflect the model’s ability to generalize to un- 843
seen data. While we followed this setup in the main text for 844
fair comparisons, we also performed more rigorous evalua- 845
tions using a dedicated validation set, which has no overlap 846
with either the training set or the test sets. Specifically, we 847
set aside 20% of the original test set as our validation set, 848
leaving the remaining 80% as the new test set. We then re- 849
port the test performance with checkpoints selected based 850
on the validation accuracy. 851

As presented in Tab. 9, our new evaluation results 852
are consistent with these reported in the main text — 853
both Point-MAE-SN and Point-MAE-Zero outperform the 854
training-from-scratch baseline across all four object clas- 855
sification tasks, while Point-MAE-Zero performs on par 856
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with Point-MAE-SN. The performance gap between mod-857
els with pretraining and models trained from scratch is858
particularly pronounced in the most challenging experi-859
ment, PB-T50-RS, compared to the other three classifica-860
tion tasks.861

On ModelNet40, we observe that training-from-scratch862
and pre-trained methods achieve similar performance,863
though the results may vary across different runs. For ex-864
ample, in another run with a different random seed, training-865
from-scratch achieve 92.1% accuracy, which is lower than866
both Point-MAE-SN and Point-MAE-Zero. However, in all867
our experiments, pre-trained methods consistently converge868
significantly faster than training-from-scratch as shown in869
Fig. 6 in the main text.870

Methods ModelNet40 OBJ-BG OBJ-ONLY PB-T50-RS

Scratch* [55] 92.95 84.19 86.94 80.92
Point-MAE-SN [26] 92.22 88.32 87.97 83.83
Point-MAE-Zero 92.87 88.32 88.31 84.73

Table 9. Object Classification. Classification accuracy (%) on
ModelNet40 and three ScanObjectNN variants under the revised
evaluation setup. The original test set was split to create a new test
set and validation set, and all models were re-evaluated using the
updated splits. (Higher is better). Note Scratch* indicates baseline
method’s results we obtained and we do not apply voting in these
experiments.

C. Linear Probing871

In line with Point-BERT [55] and Point-MAE [26], we872
primarily report the performance of pre-trained methods873
in a transfer learning and few-shot learning setting in the874
main text, where the pre-trained model is fine-tuned with875
task-specific supervision. However, a common practice for876
benchmarking self-supervised learning methods is the lin-877
ear probing, which trains a single linear layer while keeping878
the pretrained network backbone frozen. Below we provide879
details of our experimental setup and results.880

Experimental Setup. Instead of fully fine-tuning the pre-881
trained model, we freeze the model’s weights and train a882
single linear layer for the target task.883

We include a training-from-scratch baseline, where we884
freeze the randomly initialized weights and train only a sin-885
gle linear layer, providing a point of comparison for the pre-886
trained models.887

Methods ModelNet40 OBJ-BG OBJ-ONLY PB-T50-RS

Scratch* 84.16 62.65 66.09 56.80
Point-MAE-SN [26] 90.56 78.83 81.41 68.22
Point-MAE-Zero 89.30 76.24 78.83 67.87

Table 10. Object Classification. Classification accuracy (%) on
ModelNet40 and three ScanObjectNN variants under the revised
evaluation setup (Higher is better). Note Scratch* indicates base-
line method’s results we obtained.

Results. We present linear probing results for object clas- 888
sification in Tab. 10. The gap between pre-trained models 889
and the training-from-scratch baseline is noticeably larger 890
in this setting. Interestingly, Point-MAE-SN outperforms 891
Point-MAE-Zero in object classification under the linear 892
probing setup, suggesting that semantically meaningful data 893
may enable models to achieve a better understanding of 3D 894
structures. However, the performance gap between Point- 895
MAE-SN and Point-MAE-Zero remains relatively small. 896
Based on the results in Tab. 1 in the main text, Point-MAE- 897
SN appears to be a more effective choice for transfer learn- 898
ing tasks. We encourage future research to explore im- 899
proved learning algorithms to take full advantage of data 900
generated from procedure 3D programs. 901

D. Additional Visualization 902

In this section, we present additional qualitative compar- 903
isons between Point-MAE-SN and Point-MAE-Zero for 904
Masked Point Cloud Completion under both guided and 905
unguided settings. Additionally, we provide t-SNE visu- 906
alizations for Point-MAE-Zero and Point-MAE-SN to fur- 907
ther investigate its representational capabilities, focusing 908
on whether it can effectively distinguish between different 909
primitives. 910

D.1. Masked Point Cloud Completion 911

Additional qualitative results for masked point cloud com- 912
pletion, both guided and unguided, are shown in Figure 9. 913

D.2. More t-SNE Visualizations 914

Point-MAE-Zero with Primitives Point-MAE-SN with Primitives

Ellipsoid Cube Cylinder

Figure 8. t-SNE Visualization. We visualize features extracted by
Point-MAE-Zero (left) and Point-MAE-SN (right) for three prim-
itive shapes — Ellipsoid, Cube, and Cylinder.

Point-MAE on Primitives Fig. 8 presents t-SNE visu- 915
alizations of features extracted by Point-MAE-Zero and 916
Point-MAE-SN for three primitives: ellipsoid, cube, and 917
cylinder. Interestingly, the notable structural differences 918
among these primitives are not reflected in the latent space 919
of either Point-MAE-SN or Point-MAE-Zero. We hypothe- 920
size that this occurs because the learned 3D representations 921
from both models primarily capture local structures rather 922
than global shapes. 923
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E. Details on Generating Scene-Level Procedu-924

ral 3D Programs925

We follow MegaSynth’s [17] generation pipeline. First, the926
pipeline generates a scene floor plan. Each 3D box repre-927
sents a different shape, with distinct colors indicating var-928
ious object types. This defines the spatial structure of the929
scene. Next, we creates 3D objects by combining prim-930
itive shapes such as cubes and spheres. These objects un-931
dergo geometry augmentations, including scaling, deforma-932
tion, and boolean operations, to introduce variations. Since933
we do not need texture and lighting, we omit the rest of934
the procedurals. Instead we sample points from each shape935
and randomly sample points from the layout in order to rep-936
resent walls, ceilings and floors. We will release code to937
further assist the reproducibility of our results.938

F. Implementation details.939

We closely follow each baseline’s open-source configura-940
tion. Similar to prior work for 3D shape pretraining, we941
sample each point cloud to p = 1024 points and divide it942
into n = 64 patches, with each patch containing k = 32943
points via the KNN algorithm. The autoencoder consists of944
an encoder with 12 Transformer blocks and a decoder with945
4 Transformer blocks, each block having a 384-dimensional946
hidden size and 6 attention heads. During pretraining, we947
randomly sample 1024 points per shape and apply standard948
random scaling and translation. We train for 300 epochs us-949
ing the AdamW optimizer [24] with a cosine decay sched-950
ule [23], an initial learning rate of 0.001, weight decay of951
0.05, and a batch size of 128.952

For scene-level SSL MSC, we use SparseUNet34 as953
the backbone with a hierarchical encoder-decoder struc-954
ture. The encoder consists of depths [2, 3, 4, 6] and channels955
[32, 64, 128, 256], while the decoder follows depths [2, 2, 2]956
with channels [256, 128, 64, 64]. A kernel size of 3 is used957
in both encoding and decoding, with a pooling stride of958
[2, 2, 2, 2]. The pre-training phase employs SGD [31] with959
a cosine decay scheduler [23], an initial learning rate of 0.1,960
a weight decay of 1e−4, and a momentum of 0.8. We use961
a batch size of 32 and train on ScanNet for 600 epochs,962
with 6 warmup epochs. For fine-tuning, we use a similar963
SGD [31] with cosine decay setup [23], but with a learn-964
ing rate of 0.05, weight decay of 1e−4, and momentum of965
0.9. The batch size is 48, with 40 warmup epochs, and the966
model is trained for 600 epochs. We will release code to967
further assist the reproducibility of our results.968
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Figure 9. Masked Point Cloud Completion. This figure visualizes shape completion results with Point-MAE-SN and Point-MAE-Zero
on the test split of ShapeNet and procedurally synthesized 3D shapes. Left: Ground truth 3D point clouds and masked inputs with a
60% mask ratio. Middle: Shape completion results using the centers of masked input patches as guidance, following the training setup of
Point-MAE [26]. Right: Point cloud reconstructions without any guidance points. The L2 Chamfer distance (lower is better) between the
predicted 3D point clouds and the ground truth is displayed below each reconstruction.
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