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Abstract

Large deep-learning based autoregressive mod-001
els have shown state-of-the-art performance002
in many sequence-to-sequence tasks including003
neural machine translation. Deep Ensembles004
of these systems yield performance gains over005
individual models and enable uncertainty esti-006
mates, including knowledge uncertainty, on the007
predictions to be derived. The challenge with008
these ensembles is that training costs, mem-009
ory requirements and inference costs all scale010
linearly with the number of members of the011
ensemble. In this work we explore how to012
train autoregressive models efficiently, while in013
a single forward pass, maintaining the ability014
to make robust uncertainty estimates. The ap-015
proach combines efficient ensemble generation016
and distribution distillation techniques. This017
combination dramatically reduces the computa-018
tional and memory costs compared to Deep019
Ensembles. Experiments on WMT16 and020
WMT20 show that single models trained using021
the proposed scheme can reach or outperform022
Deep Ensembles while being much cheaper023
at training and inference time. Additionally,024
by extending existing distribution distillation025
techniques, a single model can be trained to026
consistently outperform a Deep Ensemble on027
out-of-distribution detection.028

1 Introduction029

Large autoregressive neural networks based on at-030

tention have emerged in the past few years as the031

most competitive approach to many (structured)032

sequence tasks, especially in translation (Bahdanau033

et al., 2015; Vaswani et al., 2017; Ott et al., 2018),034

and are increasingly being used in practice. Ad-035

ditionally, one of the most straightforward ways036

to improve system performance, and allow for un-037

certainty estimation which is vital for safety and038

robustness of deep systems, is to train several mod-039

els that ideally make independent errors in order040

to form an ensemble (Perrone and Cooper, 1993;041

Opitz and Maclin, 1999; Dietterich, 2000; Laksh- 042

minarayanan et al., 2017). However, for large-scale 043

tasks such as automatic speech recognition and 044

neural machine translation where single neural net- 045

works can have hundreds of millions, or billions, 046

of parameters, it becomes increasingly infeasible 047

to train and deploy the resulting ensembles. 048

Ensembles come with several benefits including 049

better predictive power by exploiting the prediction 050

diversity among the ensemble members (Krogh 051

and Vedelsby, 1994). Furthermore, any committee 052

of models (Krogh and Vedelsby, 1994) have the 053

ability to decompose total uncertainty (Depeweg 054

et al., 2018; Gal and Ghahramani, 2016) into a sum 055

of data uncertainty, representing the intrinsic noise 056

in the data being modelled, and knowledge uncer- 057

tainty, which refers to the level of ignorance about 058

the most optimal model parameters (Hullermeier 059

and Waegeman, 2021). While this is a useful prop- 060

erty, there has been limited use of such systems 061

in practice due to high computational and memory 062

requirements that scale linearly with the number of 063

members in the ensemble. 064

Owing to this limitation, an ensemble compres- 065

sion technique called Knowledge Distillation1 has 066

become popular (Hinton et al., 2014a). It addresses 067

the common scenario that while a practitioner has 068

access to significant resources during training, effi- 069

ciency during inference time is crucial. The impor- 070

tant insight is that although the knowledge repre- 071

sented in the parameters of a neural network ensem- 072

ble can be highly cryptic and unfathomable, neural 073

networks can be abtractly viewed as functions, that 074

map "input vectors to output vectors" (Hinton et al., 075

2014a; Bucilua et al., 2016). Therefore, instead of 076

compressing a collection of parameters directly, the 077

goal is to train a single efficient "student" model 078

to predict the average output of the "teacher" en- 079

semble. This approach is not only applicable to 080

static tasks such as image classification but also 081

1This can also be used to distil large individual models.
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to structured sequence tasks, where autoregressive082

models are often utilised.083

Summary of contributions: In this paper, we084

address the computational demands of training and085

deployment of large autoregressive systems with086

a focus on yielding robust uncertainty estimates.087

While reducing training cost and increasing infer-088

ence speed will be addressed, it will be assumed089

that disk space is abundant. These computational090

savings will be achieved by: (1) modification of091

efficient ensemble generation methods; and (2) ex-092

tending recent distribution distillation approaches093

to generate well performing student models able094

to estimate and decompose uncertainty with a sin-095

gle forward pass. Additionally, (3) the diversity of096

teacher ensembles and performance of students is097

empirically investigated in order to aid the design098

process. Specifically, we will initially evaluate tech-099

niques on the En-De WMT16 dataset. We show100

that single student models have the ability to outper-101

form transformer-based ensembles in both BLEU102

performance out-of-distribution detection. Finally,103

we investigate if similar conclusions can be drawn104

by experimenting on bigger transformers and the105

significantly larger En-Ru WMT20 dataset.106

2 Background and Related Work107

In this section we review ensemble-based uncer-108

tainty estimation for structured prediction tasks,109

such as those encountered in natural language and110

speech processing. We then discuss how the limi-111

tations of ensemble approaches can be addressed112

using recently developed distillation techniques.113

Finally, we describe how such ensembles can be114

generated in practice.115

2.1 Uncertainty Estimation116

We adopt a Bayesian perspective on ensembles117

as this offers a flexible framework within which118

uncertainties have an information theoretic justifi-119

cation. Here the posterior p(θ|D) is derived given120

some observed data, D. Unfortunately, this form121

Bayesian inference is often intractable and cannot122

be applied to large neural networks. Alternatively123

an approximation q(θ) to the posterior p(θ|D), is124

used. Samples from this distribution can then be125

drawn to generate an ensemble. Ensemble gener-126

ation methods will be covered in more detail in a127

following subsection.128

Take an ensemble {P(y|x,θ(m))}Mm=1 sampled129

from an approximate posterior q(θ) where each130

model maps a variable-length input of discrete ele- 131

ments x ∈ X into a sequence of discrete elements 132

y ∈ Y . The predictive distribution is obtained 133

according to: 134

P(y|x,D) = Eq(θ)

[
P(y|x,θ)

]
(1) 135

From this predictive distribution, a measure of total 136

uncertainty can be estimated using the entropy: 137

H
[
P(y|x,D)

]
= EP(y|x,D)

[
ln

1

P(y|x,D)

]
(2) 138

Furthermore, a measure of disagreement between 139

models, also referred to as knowledge or epistemic 140

uncertainty, can be estimated by using mutual in- 141

formation I between y and θ: 142

I
[
y,θ|x,D

]
=

Eq(θ)

[
KL

(
P(y|x,θ)

∥∥ P(y|x,D
)] (3) 143

This estimate can also be decomposed into a mea- 144

sure of total and and data (aleatoric) uncertainty, 145

as mentioned in Malinin and Gales (2021). There 146

are also many other options for the measure of 147

epistemic uncertainty such as expected pairwise 148

KL-divergence or reverse mutual information, how- 149

ever, for the sake of simplicity we restrict our focus 150

to the already mentioned eq. (2) and (3) since these 151

represent uncertainties of differing nature. 152

2.1.1 Approximations 153

The measures of uncertainty provided above im- 154

plicitly assume that one can enumerate all possi- 155

ble variable-length output sequences, and obtain 156

model predictions for each and every one. This 157

is evidently intractable; in practice, autoregressive 158

models are used to factorize the distribution over y 159

into a product of conditionals over a finite number 160

of classes, referred to as vocabulary: 161

P(y|x,θ) =
L∏
l=1

P(yl|y<l,x,θ) (4) 162

This equation illustrates the key mechanism be- 163

hind autoregressive models, in which each token yl 164

is modelled based on conditioning on some back- 165

history y<l = {y1, y2, ..., yl−1}, and has been 166

proven successful in many fields such as neural ma- 167

chine translation (Bahdanau et al., 2015; Vaswani 168

et al., 2017) and end-to-end speech processing 169

(Mohamed et al., 2019). However, autoregressive 170

models come with high inference cost, and are of- 171

ten used in combination with n-best list decoding 172
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schemes disallowing the direct estimation of uncer-173

tainties in eq. (2) and (3).174

Consider a beam of output sequences B =175

{y(b)}Bb=1 generated by a model P(y|x,D). The176

work of Malinin and Gales (2021) provides several177

approximations for estimating uncertainty based on178

such a beam. Since several approximations have179

been provided, we choose to focus on the condi-180

tional decomposition of uncertainties which have181

been hypothesised to be more stable:182

Ĥ(B)
C

[
P(y|x,D)

]
=
∑
b,l

wb

L(b)
H

[
P(yl|y

(b)
<l ,x,D)

]
183

Î(B)
C

[
y,θ|x,D

]
=
∑
b,l

wb

L(b)
I
[
yl,θ|y

(b)
<l ,x,D

]
184

where the uncertainties have both been length-185

normalised and importance weighted according to:186

wb =
exp 1

T ln P(y(b)|x,D)∑B
k=1 exp

1
T ln P(y(k)|x,D)

(5)187

Length normalisation is vital in allowing compar-188

isons of entropies of variable-length outputs while189

the importance weighting is needed to adjust the190

uncertainty associated with y(b) ∈ B according to191

its probability. For an in depth review of approxi-192

mations and alternative uncertainties, see Malinin193

and Gales (2021).194

2.2 Knowledge Distillation195

Ensembles {P(y|x,θ(m))}Mm=1 sampled from196

some posterior can be computationally demanding.197

One approach to efficiently exploit the information198

of the ensemble is to use knowledge distillation199

(KD) to yield a single student model (Hinton et al.,200

2014a; Kim and Rush, 2016).201

Given an input and reference output pair202

(teacher-forcing) (x,y) ∼ p̃(x,y), a stan-203

dard model might be trained using negative log-204

likelihood (NLL):205

LNLL(θ) =
1

L

L∑
l=1

− ln P(yl|y<l,x,θ) (6)206

Similarly, a student model with parameters ϕ can207

be trained to emulate a teacher ensemble by addi-208

tionally using the average categorical prediction209

πl, πl,k = P(yl = ωk|y<l,x,D) as ’soft’ labels:210

LKL(ϕ) =
1

L

L∑
l=1

KL
(
πl

∥∥ P(yl|y<l,x,ϕ)
)

(7)211

However in practice, one normally optimises a 212

convex combination of NLL and KL-divergence 213

LKD(ϕ) = λLNLL(ϕ)+(1−λ)LKL(ϕ) for added su- 214

pervision and stability. The probability mass func- 215

tions in the KL-divergence can also be temperature 216

scaled by some T to improve optimisation (Hinton 217

et al., 2014a). Note that this criteria is only con- 218

sidered for the teacher-forcing case, more sophis- 219

ticated distillation approaches exist, by sampling 220

(x,y) from alternative distributions, but are out 221

of scope for this work, see Kim and Rush (2016); 222

Wong et al. (2016); Lee et al. (2018); Malinin et al. 223

(2017) for details. 224

2.2.1 Ensemble Distribution Distillation 225

While knowledge distillation can be successful in 226

many cases, the resulting student will not be able to 227

estimate epistemic or knowledge uncertainty, since 228

it only modelled the average ensemble prediction. 229

To avoid this issue, Malinin et al. (2020) considers 230

the task of distilling the distribution of ensemble 231

predictions onto a single student. This allows the 232

student to retain both predictive performance and 233

information about diversity. 234

To explain the mechanics behind distribution 235

distillation, consider modelling a distribution over 236

ensemble predictions: 237

{π(m)
l }Mm=1, π

(m)
l,k = P(yl = ωk|y<l,x,θ

(m)) 238

An autoregressive student can be used for predic- 239

tion based on the parameters αl of a Dirichlet distri- 240

bution Dir(πl|αl) = p(πl|y<l,x,ϕ) (Fathullah 241

et al., 2021). Since the Dirichlet is a prior for cate- 242

gorical distributions it is an ideal candidate for this 243

task. The distribution distillation of such a model 244

is achieved by optimising: 245

LDD
NLL(ϕ) = − 1

ML

∑
m,l

ln Dir(π
(m)
l |αl) 246

which is a straightforward application of negative 247

log-likelihood. In this work we also consider gener- 248

alisations to alternative distributions over categori- 249

cal predictions. 250

2.3 Ensemble Generation 251

Up to this point, it has been assumed that an en- 252

semble of models is available. This section reviews 253

a number of methods for ensemble generation and 254

how the weight-space can be explored, with refer- 255

ence to training and inference cost. 256
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Two established and ’opposite’ approaches for257

ensemble generation include Monte-Carlo Dropout258

(MCD) (Gal and Ghahramani, 2016) and Deep En-259

sembles (Lakshminarayanan et al., 2017). While260

both ensembles are equally expensive (in terms of261

inference) given the same number of draws, they262

are very different in terms training cost and di-263

versity. MCD ensembles are cheap to train but264

have limited diversity over the ensemble members.265

Deep Ensembles have higher training costs, scaling266

with number of members, but yield higher ensem-267

ble diversity and expressiveness. Depending on268

computational and memory constraints one might269

favour one over the other. A third class of ensem-270

ble generation methods was proposed in Xie et al.271

(2013): storing checkpoint parameters throughout272

training results in a so called temporal ensemble.273

Furthermore, Huang et al. (2017) utilised cyclic274

learning rates to encourage the process to traverse275

and explore multiple minima in the weight-space276

achieving a more diverse temporal ensemble, re-277

ferred to as a Snapshot Ensemble. The training278

cost of this form of ensemble varies depending on279

the cyclic learning rate schedule but can be set to280

operate at the equivalent of training a single model.281

Alternative generation methods exist such as282

MIMO (Havasi et al., 2021) based on implicit sub-283

network generation within a neural network. These284

exploit the fact that many deep networks are over-285

parametrised and have excessive capacity. How-286

ever, this method not only suffers from high train-287

ing cost, it has no trivial extension to handling288

variable-length data. SWAG (Maddox et al., 2019)289

is another method based on approximating the pa-290

rameter checkpoints generated by SGD (with small291

learning rate) using a low-rank Gaussian distribu-292

tion. This method, however, suffers from high293

memory cost, even with low-rank approximation,294

and low inference speed since it requires sampling295

large networks.296

In this work we focus on two types of transform-297

ers based ensembles: Deep and Snapshot. Standard298

Deep Ensembles can be directly applied to NMT.299

For Snapshot Ensembles the learning rate schedule300

needs to be modified to be appropriate for trans-301

formers. Snapshot Ensembles are used in this work302

because they can be trained using similar resource303

requirements as training a single model while main-304

taining diversity and performance. Note, Snap-305

shot Ensembles were critiqued in Wen et al. (2020)306

for their possible incompatibility with transformer-307

based models. Here we show that it is feasible to 308

use cyclic learning rates with transformers. 309

3 Efficient Exploration/Exploitation 310

Before examining the proposed approach, we 311

first touch on an interesting aspect of stochas- 312

tic weight averaging and its Gaussian generalisa- 313

tion (Izmailov et al., 2018; Maddox et al., 2019). 314

These approaches are based on modelling the 315

parameter/weight-space by traversing the weight- 316

space during training and generating a collection of 317

checkpoints {θ(m)}Mm=1. In general neural network 318

weights are not interpretable and cannot normally 319

be compared directly to each other. Thus at the 320

core of our approach will be to use checkpoints 321

obtained by efficiently traversing the weight-space 322

during training and storing the resulting predictions. 323

These categorical predictions are directly related 324

to each other. The two step approach that exploits 325

this observation, stochastic prediction averaging 326

(SPA), is described below. 327

Ensemble Generation: At the exploration stage 328

we will make use of the ideas behind temporal en- 329

sembles. After training an initial model to conver- 330

gence, we modify the learning rate (usually inverse 331

square root decay for transformers) to a cyclic al- 332

ternative and store the predictions {(x,π(m)
1:L )}Mm=1 333

made by the checkpoints. The settings associated 334

with this learning rate will determine the extent to 335

which the ensemble members will have explored 336

the weight space and associated local minima. 337

Ensemble Distillation: Once the predictions of 338

the temporal ensemble have been saved, we switch 339

to (distribution) distillation based training, the ex- 340

ploitation stage. Given a student able to model 341

the space of categoricals p(πl|y<l,x,ϕ) it can be 342

trained on the stored ensemble predictions: 343

LDD
NLL(ϕ) = − 1

ML

∑
m,l

ln p
(
π
(m)
l |y<l,x,ϕ

)
344

As previously mentioned in section 2.2, a combina- 345

tion of losses is often used in practice: 346

λLNLL(ϕ) + (1− λ)(LKL(ϕ) + µLDD
NLL(ϕ)) (8) 347

One option for the student is to use Dirichlet dis- 348

tributions. Additionally we will examine students 349

with diagonal Gaussian and Laplace distributions 350

in the (pre-softmax) logit space. These distribu- 351

tions require an additional output head, in order 352

to predict both the mean and diagonal covariance 353
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of the logits. The rationale for these more com-354

plex models is that additional flexibility in the stu-355

dent distribution enables more knowledge to be356

exploited from the teacher for both decoding and357

accurate uncertainty modelling. Note, the softmax358

of the mean is used as an approximation to the pre-359

dictive distribution as analytic expectations over360

logits are intractable, in depth discussion of these361

distributions and implementation will be covered362

in Appendix B.363

3.1 Computational Cost364

As described above, there are multiple costs associ-365

ated with stochastic prediction averaging. Firstly,366

one needs to explore the weight-space by training a367

converged model using cyclic learning rates (LRs)368

to generate high quality temporal checkpoints. In369

this paper, we focus on a case where the cyclic370

regime is run for 30-50% of the cost (measured in371

terms of GPU-hours) of training the original model372

and we always choose to store M = 5 checkpoints373

(5 cycles and checkpoint whenever the learning rate374

hits its minimum value). Secondly, we distribution375

distil the system utilising an additional 50-70% of376

the original cost, resulting in a student that requires377

similar compute to training two models. We also378

initialise the parameters of the student with the fi-379

nal checkpoint in order to save additional compute.380

Thirdly, there is some memory cost associated381

with storing the predictions, since one often has to382

work with large vocabularies. In this work we will383

neglect the cost of disk space, but will investigate384

the case where only top-k elements of temporal385

ensemble are saved, similar to Tan et al. (2019).386

The resulting model should, with a single for-387

ward pass, be able to estimate and decompose un-388

certainty whilst maintaining good decoding per-389

formance. Compared to an ensemble, this will be390

a significant reduction of the number of forward391

passes required.392

3.2 Drawbacks and Advantages393

In stochastic prediction averaging it is necessary394

to determine the learning rate (LR) schedule for395

both the exploration and exploitation stage once an396

initial converged model has been obtained. In our397

work we found that the cyclic learning schedule is398

flexible (for transformers) and the hyperparameters399

can be selected depending on the computational400

restrictions of the user. For example, we restricted401

experiments to triangular cyclic schedules with 2-3402

epoch cycle length. The peak cyclic LR was set to403

a value larger than the original model’s peak LR. 404

The minimum value was set to a value smaller than 405

the original model’s final LR. For the exploitation 406

stage, we chose a schedule that mimics the original 407

schedule closely. 408

There are many options at the exploration stage 409

of the proposed scheme, this is one of the strengths 410

of this approach. If a practitioner has no limitations 411

during training time, one could simply replace the 412

temporal generation method with the predictions 413

made by a, for example, Hyper Deep Ensemble 414

(Wenzel et al., 2020). Alternatively, one could 415

easily modify the number cycles and learning rate 416

to encourage exploration of the weight space and 417

generate diverse but high quality predictions. We 418

will also show empirically that although temporal 419

ensembles are less diverse than Deep Ensembles, 420

this drawback doesn’t have a significant impact 421

and in some cases is actually beneficial to the SPA 422

student performance. 423

4 Experimental Evaluation 424

This section reports on performance of base trans- 425

formers trained on the smaller En-De WMT16 426

dataset consisting of 4.5 million sentence pairs. We 427

use newstest13/14 as development and evaluation 428

sets. Additionally, we investigate out-of-domain 429

detection on the publically available Khresmoi- 430

Summary (Khresmoi) (Dušek et al., 2017), MTNT 431

(Michel and Neubig, 2018) and Kyoto Free Trans- 432

lation Task (KFTT) (Neubig, 2011) datasets. These 433

datasets relate to medical articles, Reddit based 434

noisy text and specialised Wikipedia articles, re- 435

spectively. Furthermore, we apply insights from 436

training these systems to "big" transformers trained 437

on the larger En-Ru WMT20 dataset made of about 438

58 million pairs post processing. In this case we 439

use newstest19 as development data and evaluate 440

on newstest20; out-of-domain detection used the 441

same out-of-domain datasets as above. 442

Text Processing: Data is cleaned and tokenized 443

using Moses2. For WMT16, a shared dictionary 444

is trained using Byte Pair Encoding (BPE) with 445

32,000 merge operations (Sennrich et al., 2016). 446

Similarly, for WMT20 we learn disjoint dictionar- 447

ies using BPE with 40,000 merge operations. 448

Metrics: System performance will be evaluated 449

using corpus-level BLEU (Post, 2018). Further- 450

more, to measure diversity of models, indepen- 451

2https://github.com/moses-smt/
mosesdecoder
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Table 1: BLEU and CrossBLEU on newstest14 (± 2 std). The top row of each block represents the teacher
model/ensemble that remaining models were distilled from. *Standard can be seen as a Deep Ensemble with
identical members. Table also includes number of parameters and relative training time. Inference speed for all
single models are similar.

Model Params ↓ Training Time ↓ BLEU ↑ CrossBLEU ↓

Standard* 60.9M 1.0 25.85 ± 0.17 100.00 ± 0.00

Self distillation 60.9M 1.8 26.48 ± 0.15

Self-distribution dist. 60.9M 1.7 25.89 ± 0.20

Deep Ensemble 304.5M 5.0 26.72 62.96 ± 0.62

Distillation 60.9M 5.9 26.70 ± 0.26

Snapshot Ensemble 304.5M 1.5 26.54 ± 0.16 73.06 ± 3.35

SPA (Categorical) 60.9M 1.9 27.02 ± 0.19

SPA (Dirichlet) 60.9M 2.0 26.96 ± 0.06

SPA (Gaussian) 77.8M 1.9 26.90 ± 0.28

SPA (Laplace) 77.8M 1.9 27.08 ± 0.20

dent of level of confidence (temperature), we use452

corpus-level BLEU between outputs (referred to as453

CrossBLEU). For detection, we use the ubiquitous454

threshold independent AUROC metric (Manning455

and Schütze, 1999), with baseline random detec-456

tion corresponding to an AUROC of 50%.457

Models: The individual transformer models are458

trained using an inverse square root with warmup.459

A Deep Ensemble is formed by taking M = 5 such460

models. The last checkpoint of standard trained461

model is used in conjunction with a cyclic learning462

rate to generate a temporal ensemble of M = 5463

members, the Snapshot Ensemble. The level of ex-464

ploration in Snapshot Ensembles is generally lower465

than its Deep equivalent due to being constrained466

by the same initial checkpoint. These models are467

then (distribution) distilled using students with ei-468

ther categorical predictions (standard ensemble dis-469

tillation), or distribution distillation with Dirichlet,470

(logit) Gaussian or (logit) Laplace outputs. The hy-471

perparameters (λ, µ) in eq. (8) and level of weight472

averaging of last few checkpoints, are tuned on the473

development set. In addition, we evaluate three 474

baseline approaches: knowledge distillation (Hin- 475

ton et al., 2014a); self distillation3 (SD) (Zhang 476

et al., 2019; Allen-Zhu and Li, 2021); and self- 477

distribution distilled systems (S2D) (Fathullah and 478

Gales, 2022). The latter is included because it is 479

cheaper to train as it avoids the need for ensembles 480

while able to estimate knowledge uncertainty in a 481

single pass. All single model experiments were run 482

5 times. Details of learning rates, regularisation 483

and various other hyperparameters are provided in 484

Appendix A. 485

4.1 En-De WMT16 Results 486

Table 1 shows both efficiency and performance of 487

a wide range of systems on newtest14 evaluation 488

data. As expected the diversity of the Snapshot En- 489

semble is less than the Deep Ensemble equivalent, 490

and as a consequence, the ensemble performance 491

gain is less. Snapshot Ensembles can be used as 492

3This refers to distilling a model onto a student with iden-
tical architecture.

Table 2: CrossBLEU (lower score means higher diversity) and BLEU newstest14 performance (± 2 std).

Model Teacher Student Difference Diversity
BLEU ↑ BLEU ↑ BLEU ↑ CrossBLEU ↓

Standard 25.85 ± 0.17 26.48 ± 0.15 0.63 ± 0.14 100.00 ± 0.00

Limited Ensemble 26.07 ± 0.11 26.59 ± 0.11 0.52 ± 0.04 83.09 ± 0.61

Snapshot Ensemble 26.54 ± 0.16 27.02 ± 0.19 0.48 ± 0.25 73.06 ± 3.35

Deep Ensemble 26.72 26.70 ± 0.26 -0.02 ± 0.26 62.96 ± 0.62
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Table 3: Out-of-distribution detection using the %AUROC ↑ metric (± 2 std).

Model Khresmoi MTNT KFTT
TU KU TU KU TU KU

Standard 47.5 ± 0.8 — 63.5 ± 1.3 — 30.6 ± 1.2 —
Self-distribution dist. 48.7 ± 2.8 54.4 ± 3.3 63.8 ± 1.9 58.9 ± 2.0 31.3 ± 2.3 31.4 ± 3.1

Deep Ensemble 48.0 61.9 64.5 63.7 30.1 44.0

Snapshot Ensemble 49.0 ± 0.6 62.6 ± 1.1 63.8 ± 1.2 63.1 ± 0.7 31.7 ± 0.9 47.4 ± 2.5

SPA (Categorical) 48.0 ± 1.4 — 64.6 ± 0.9 — 31.3 ± 0.5 —
SPA (Dirichlet) 49.6 ± 1.3 57.1 ± 1.4 65.1 ± 1.7 65.6 ± 2.0 31.0 ± 0.9 36.2 ± 1.4

SPA (Gaussian) 59.5 ± 1.1 71.7 ± 1.9 66.3 ± 1.6 64.0 ± 2.1 35.8 ± 1.2 44.0 ± 0.2

SPA (Laplace) 65.1 ± 1.8 73.1 ± 1.7 65.1 ± 1.5 66.8 ± 1.8 37.8 ± 0.2 48.8 ± 1.4

the teacher ensemble to train SPA students, the493

complete training cost is similar to training two494

standard models (significantly cheaper than distilla-495

tion and similar to self distillation). Notably, both496

self distillation and stochastic prediction averaging497

significantly outperform their teachers. However,498

unlike self distillation, all SPA student models are499

able to outperform the Deep Ensemble, the stan-500

dard baseline, and requires both less training time501

and only a single forward pass during inference.502

To investigate why certain students are able out-503

perform their teachers, we train an additional en-504

semble on the WMT16 data specifically designed505

to have restricted diversity (higher CrossBLEU),506

see Table 2. There is a negative correlation between507

corpus-level diversity ("Diversity CrossBLEU")508

and the relative performance of the student to out-509

perform its teacher ("Difference BLEU"). Higher510

level of exploration of the weight space for the en-511

semble, resulting in more diverse models, seems512

to make the exploitation of the resulting ensemble513

more challenging. Hence, if the aim is to generate514

a single, distilled, model for efficient inference lim-515

iting training ensemble diversity may be beneficial. 516

Next, we compare threshold independent out- 517

of-domain detection performance of the baseline 518

systems with SPA models. The comparison will be 519

made using newstest14 as in-domain data and one 520

of {Khresmoi, MTNT, KFTT} test datasets as out- 521

of-domain. From Table 3, while self-distribution 522

distillation can in one case (Khresmoi) produce 523

useful knowledge uncertainties (KU), improving 524

upon a standard model, it does not manage to do so 525

consistently. Secondly, the Snapshot Ensemble is 526

able to compete with the Deep equivalent while be- 527

ing more than 3 times cheaper to train. Thirdly, the 528

(logit) Laplace SPA model is able to outperform the 529

Deep Ensemble in all three detection splits, produc- 530

ing either similar or significantly better total (TU) 531

and knowledge uncertainty estimates. Similarly, 532

the (logit) Gaussian model trailing the Laplace 533

equivalent in performance. However, the Dirichlet 534

version is unable to match the quality of total or 535

knowledge uncertainties, possibly because the logit 536

based distributions have an additional head giving 537

them more flexibility and expressiveness. 538

Table 4: BLEU and CrossBLEU on newstest20 (± 2 std). The top row of each block represents the teacher
model/ensemble that remaining models were distilled from. Table also includes number of parameters and
relative training time. Inference speed for all single models are similar.

Model Params ↓ Training Time ↓ BLEU ↑ CrossBLEU ↓

Standard 271M 1.0 26.28 ± 0.34 100.00 ± 0.00

Self distillation 271M 1.8 26.56 ± 0.23

Deep Ensemble 1.35B 5.0 26.81 68.67 ± 0.76

Snapshot Ensemble 1.35B 1.5 26.42 ± 0.23 76.62 ± 2.56

SPA (Categorical) 271M 2.1 26.73 ± 0.16

SPA (Laplace) 320M 2.2 26.71 ± 0.18

7



Table 5: Out-of-distribution detection using the %AUROC ↑ metric (± 2 std).

Model Khresmoi MTNT KFTT
TU KU TU KU TU KU

Standard 39.0 ± 0.7 — 69.6 ± 0.9 — 50.8 ± 1.1 —
Deep Ensemble 39.3 53.2 70.8 69.0 51.0 60.3

Snapshot Ensemble 40.8 ± 0.5 55.0 ± 0.8 70.1 ± 0.5 69.3 ± 0.9 51.1 ± 0.6 60.9 ± 1.4

SPA (Categorical) 40.4 ± 0.8 — 70.9 ± 1.0 — 50.9 ± 0.6 —
SPA (Laplace) 51.0 ± 0.9 63.4 ± 1.2 72.6 ± 0.8 70.2 ± 0.6 63.2 ± 1.0 70.2 ± 1.1

4.2 En-Ru WMT20 Results539

Next we train the best performing models on the540

En-Ru WMT20 dataset. Due to the much larger541

dataset and architecture (big transformer), we do542

not perform extensive hyperparameter optimisation543

and use instead the same training script as in Ma-544

linin et al. (2021) and the best found hyperparam-545

eters (λ, µ) from the En-De WMT16 experiments.546

The averaging of the last few checkpoints will be547

determined based on performance on development548

set (newstest19). Again we will mainly investigate549

models that can be trained in significantly less time550

than a Deep Ensemble (with the ensemble as the551

baseline to beat). The performance of the systems552

are shown in Table 4.553

Interestingly, the SPA student models were all554

able to outperform their teacher Snapshot Ensem-555

ble, and reach close to Deep Ensemble perfor-556

mance, within approximately a standard deviation.557

This is despite the fact that they have far fewer pa-558

rameters and training cost. Similarly, self distilled559

models were able to outperform their identically de-560

signed teacher but show an insignificantly smaller561

gain in performance than SPA students. Addition-562

ally, when it comes to uncertainty estimation, self563

distillation is inadequate due to the lacking ability564

to estimate knowledge uncertainty. These results565

follow very similar patterns to what was observed566

on the WMT16 dataset.567

Additionally, we perform out-of-distribution568

detection but with newstest20 as the in-domain569

dataset, see Table 5. Results using newstest14 as570

the in-domain dataset is given in Appendix C.2.571

Again we observe the Laplace student model is572

able to outperform the Deep Ensemble in all cases,573

providing both better total and knowledge uncer-574

tainties. While the added flexibility of the Laplace575

model (having two heads) does explain why it out-576

performs the categorical equivalent, it does not577

explain its ability to outperform its teacher or the578

Deep Ensemble in detection. We explore this ques- 579

tion in Appendix C.3 by scaling both Snapshot and 580

Deep Ensembles to include many more members 581

and investigate if detection ability increases dra- 582

matically. Alternatively, an explanation could be 583

that logit based distributions are able to extract bet- 584

ter ’dark knowledge’ (Hinton et al., 2014b) specif- 585

ically useful for estimating robust uncertainties. 586

Furthermore, unlike in Table 3 where no model 587

was able to beat a random detector on the KFTT 588

detection, the larger WMT20 based models are 589

able to differentiate between newstest20 and KFTT 590

(using newstest14 as in-domain does not deflate 591

results). While uncertainties from a standard indi- 592

vidual model are not much different from simply 593

outputting random values on KFTT, knowledge un- 594

certainties, and especially those from Laplace SPA, 595

are significantly better. 596

5 Conclusion 597

We have empirically investigated the balance be- 598

tween exploration of the weight space in the form 599

of ensemble generation, and exploitation of such 600

ensembles in the form of (distribution) distilla- 601

tion. In this process its been demonstrated how 602

one can train single models, requiring only a single 603

forward pass, to outperform ensembles in estab- 604

lished machine translation tasks. Furthermore, it 605

has also been shown that such distribution distilled 606

models are able to consistently outperform their 607

teachers and Deep Ensembles in detecting out-of- 608

distribution inputs, vital for ensuring these models 609

are used in a safe way in practice. 610

Another interesting observation is that when en- 611

semble distillation approaches are used, the best 612

performing ensemble does not necessarily yield the 613

best performing distilled model. Limiting ensem- 614

ble diversity can be beneficial. Additional experi- 615

ments are required to confirm this phenomenon. 616
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6 Limitations617

In section 3.2 it was discussed how stochastic pre-618

diction averaging has a large hyperparameter space619

associated with it, but that the choice of param-620

eters are flexible in many cases. In addition, an621

experimental limitation of this work is the evalu-622

ation of uncertainty quality purely based on out-623

of-distribution detection. Sequence based uncer-624

tainties can be used for a wide range of tasks such625

as Active Learning and Adversarial Detection, and626

there is no guarantee that SPA shows promise in627

those other tasks (Shen et al., 2017; Radmard et al.,628

2021; Ebrahimi et al., 2018). Finally, there is still629

a lack of understanding in what makes a well per-630

forming autoregressive out-of-distribution detector,631

in understanding the effect of architecture, vocabu-632

lary, beam size and calibration, discussed in slightly633

more detail in section C.2.634
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A Experimental Configuration828

This section will provide detailed information829

about the datasets used for training, development,830

evaluation and detection. It will also give the exact831

training and various hyperparameters used for all832

models.833

A.1 Datasets834

We utilise two training sets WMT16/20, each with a835

pair of development and evaluation datasets based836

on newstest13/14 and newstest19/20. Addition-837

ally, we utilise three out-of-domain datasets for838

evaluating detection performance of a wide range839

of transformer models, see Table 6. As stated840

previously, all data is cleaned and tokenized us-841

ing Moses. For WMT16, a shared dictionary is842

learned using BPE with 32,000 merge operations.843

On WMT20 we learn disjoint dictionaries using844

BPE with 40,000 merge operations. A consequence845

of the larger disjoint dictionary on WMT20 is the846

significantly lower number of unknown tokens in847

the OOD datasets.848

A.2 En-De WMT16 Training849

We use the base transformer from Vaswani et al.850

(2017) implemented in fairseq (Ott et al., 2019)851

and train it using 4 NVIDIA© A100 with an up-852

date frequency of 32. This is virtually equivalent853

to training on 4 × 32 = 128 GPUs. A per-gpu854

batch has a maximum of 3584 tokens. Models855

are optimized with Adam (Kingma and Ba, 2015)856

using β1 = 0.9, β2 = 0.98, and ϵ= 1e-8. We use 857

a similar learning rate schedule to Vaswani et al. 858

(2017), i.e., the learning rate increases linearly for 859

4000 warmup steps to a learning rate dependent on 860

dmodel after which it is decayed proportionally to 861

the inverse square root of the number of steps: 862

η = (step · dmodel)−0.5min

(
1,

step

warmup

)1.5

863

We use label smoothing with 0.1 weight for the 864

uniform prior distribution over the vocabulary. The 865

last 10 weight checkpoints were averaged. Training 866

was stopped after 31 epochs corresponding to ap- 867

proximately a total of 18 GPU-hours. At inference, 868

a beam of 4 with a length-penalty of 0.6 is used for 869

all models. 870

SD/KD: Self and knowledge distilled models 871

are first initialised by one of teacher members and 872

then trained using the knowledge distillation loss 873

LKD provided in section 2.2 with λ = 0.50. The 874

student was trained with a warmup of 1026 steps (3 875

epochs), from η = 4.0×10−4 to η = 7.0×10−4 af- 876

ter which it decays for a total of 24 epochs. A tem- 877

perature of T = 0.8 was used in the KL-divergence 878

loss as this was found to be mildly beneficial. All 879

other hyperparameters match the standard case 880

above. 881

S2D: The self-distribution distillation models are 882

trained using the proxy Dirichlet approach (Fathul- 883

lah and Gales, 2022; Ryabinin et al., 2021) to- 884

gether with multiplicative Gaussian noise (with 885

Table 6: Dataset information together with average source and target sentence sizes post tokenization and
processing. The OOD testsets Khresmoi, MTNT and KFTT have two quoted numbers for each field as they
were processed using either the En-De WMT16 or En-Ru WMT20 BPE based dictionaries. Additionally,
only source side information is provided for OOD sets as these are only used for unsupervised uncertainty
estimation.

Dataset Type
Number of Tokens per Sentence Fraction of Unknown
Sentences Source Target Tokens in Source

En-De WMT16 policy, news, web 4.5M 29.5 30.6 0.01%
En-De newstest13

news
3.0K 26.0 28.0 0.00%

En-De newstest14 3.0K 27.6 29.1 0.00%

En-Ru WMT20 policy, news, web 58.4M 27.8 27.5 0.00%
En-Ru newstest19

news
2.0K 29.9 33.4 0.00%

En-Ru newstest20 2.0K 30.9 32.5 0.00%

Khresmoi medical 1.0K 30.9/30.3 — 0.78%/0.00%
MTNT noisy reddit 1.4K 21.1/21.3 — 0.45%/0.06%
KFTT encyclopedia 1.2K 35.4/35.2 — 1.46%/0.01%
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standard deviation of σ = 0.1). We use a weight886

of µ = 2 × 10−6 for the proxy Dirichlet KL-887

divergence loss. Similarly, all other hyperparame-888

ters match the standard case above.889

Snapshot: The Snapshot Ensemble was gen-890

erated by first starting from the last checkpoint891

of a standard trained transformer. At this point,892

a cyclic triangular learning rate schedule (Smith,893

2017) was employed oscillating between the values894

of ηmin = 1.0× 10−4 and ηmax = 1.0× 10−3 with895

a period of 3 epochs. Note that the maximum learn-896

ing rate in this cyclic phase is notably larger than897

the peak learning rate (7.0 × 10−4) during stan-898

dard training This setting was run for 15 epochs899

generating an ensemble with 5 members.900

SPA: All stochastic prediction averaging mod-901

els were trained using the same parameters as the902

distilled students but where however, trained for903

only 12 epochs. For each distribution, Dirichlet,904

Gaussian or Laplace, µ ∈ {1.0, 2.0, 3.0} × 10−6905

was tried and the best performing value on the de-906

velopment newstest13 was chosen, see eq. (8).907

A.3 En-Ru WMT20 Training908

We use the big transformer from Vaswani et al.909

(2017) again implemented in fairseq and910

trained using 4 NVIDIA© A100 with an update911

frequency of 32. A per-gpu batch has a maximum912

of 5120 tokens. Dropout was set to a value of 0.10913

and weight decay to 0.0001. In this case we train914

the model for 20 epochs, corresponding to 53960915

update steps and approximately 230 GPU-hours.916

The last 5 checkpoints were averaged leading to917

improved performance. At inference, a beam of 5918

with a length-penalty of 1.0 is used for all models.919

SD: Similar to the previous section, the self dis-920

tillation student is initialised from its teacher but is921

trained using a learning rate warmup of 2698 steps922

(one epoch) from η = 2.0×10−4 to η = 4.0×10−4923

after which it decays for a total of 16 epochs. The924

last 3 or 5 epochs are averaged, based on develop-925

ment newstest19 performance.926

Snapshot: Based on the last checkpoint of a927

standard trained big transformer, a triangular cyclic928

learning rate is utilised, oscillating between η =929

5.0 × 10−5 and η = 5.0 × 10−4 every 2 epochs930

for 10 epochs. This results in an ensemble with 5931

members.932

SPA: Following self distillation, SPA models are933

trained using the same parameters, but only for 12934

epochs. The best found parameter µ (different for935

each student distribution) in the WMT16 experi- 936

ments is to be used here. No hyperparameter search 937

is performed at this stage. 938

B Novel Distribution Distillation 939

In section 3 it was described in general terms how 940

maximum-likelihood training can be used to train 941

students able to predict a distribution over cate- 942

goricals. This allows the student to estimate both 943

total and knowledge uncertainty in a single forward 944

pass. In this section we describe in detail how this 945

is achieved for both the novel Gaussian and Laplace 946

student distributions in the logit space. 947

Given a collection of logits provdided by an en- 948

semble {z(m)
1:L }Mm=1 one first has to normalise these 949

logits due to an invariance in the shift. While one 950

could subtract the minimum or maximum logit, we 951

choose the following: 952

ẑ
(m)
l = z

(m)
l − 1

log
∑
k

exp z
(m)
l,k

 953

using the logsumexp trick. This choice is mainly 954

based on its close relationship to the softmax func- 955

tion. Say a student then predicts a mean µl and 956

scale σl which describes a diagonal Gaussian in 957

the logit space (given some back-history y<l and 958

source x) the distribution distillation loss becomes: 959

LDD
NLL(ϕ) = − 1

ML

∑
m,l,k

lnN
(
ẑ
(m)
l,k |µl,k, σ

2
l,k

)
960

where N is simply the univariate Gaussian. The 961

Laplace equivalent follows the same sequence of 962

steps. Note that at inference time, we simple use 963

the softmax of the mean as an approximation to 964

the predictive distribution. For uncertainty estima- 965

tion however, we sample in parallel 20 logits from 966

this distribution and use them for quantifying total 967

and knowledge uncertainty. This represents an in- 968

expensive operation since we restrict ourselves to 969

diagonal multivariate distributions. 970

C Ablation Studies 971

This section will explore a wide range of experi- 972

ments briefly mentioned in the main paper: 973

1. Distribution distillation when only the top- 974

k probabilities are saved reflecting the case 975

when limited disk space is available, 976

2. the impact of detection when changing the 977

in-domain dataset, 978
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Table 7: BLEU newstest14 performance (± 2 std). The vocabulary size is |V | = 32768.

Model k = |V| k = 128 k = 32

Snapshot Ensemble 26.54 ± 0.16 — —
SPA (Categorical) 27.02 ± 0.19 27.09 ± 0.14 27.00 ± 0.11

SPA (Dirichlet) 26.96 ± 0.06 27.02 ± 0.23 26.99 ± 0.02

SPA (Gaussian) 26.90 ± 0.28 26.99 ± 0.32 27.02 ± 0.26

SPA (Laplace) 27.08 ± 0.20 26.99 ± 0.30 26.97 ± 0.19

3. and BLEU and detection performance of en-979

sembles with increasing number of members.980

C.1 Saving the Top-K Predictions981

While the focus of this paper has been computa-982

tional efficiency in regards to training and deploy-983

ing robust single models we have neglected the984

memory cost of storing a large number of ensem-985

ble predictions. This section therefore, investigates986

the impact on performance when the practitioner987

only saves the top-k probabilities similar to Tan988

et al. (2019). However, a key difference is that at989

distillation time, we distribute the missing proba-990

bility to remaining classes instead of renormalising991

the top-k probabilities. The experiments were only992

run on the smaller WMT16 dataset, see Table 7.993

This shows a promising pattern, that storing pre-994

dictions over the whole vocabulary is not necessary.995

In many cases, one can even achieve small perfor-996

mance boosts when only storing top-k predictions.997

The resulting conclusion is that even when there998

is not an abundant level of disk space available,999

SPA style approaches can still be used by simply1000

discarding low probability classes.1001

C.2 Varying In-Domain Datasets for 1002

Detection 1003

The detection results provided in sections 4.1 and 1004

4.2 are not directly comparable due to a difference 1005

in in-domain dataset. This section simply provides 1006

the detection numbers for a WMT20 trained sys- 1007

tem using newstest14 as in-domain, see Table 8. 1008

While there still are significant differences in ar- 1009

chitecture and dictionaries used between WMT16 1010

and WMT20 trained systems, these results at least 1011

provide the difference in performance when the 1012

same original data is used. 1013

Significantly more experiments, out of the scope 1014

of this paper, need to be run to isolate the impact of 1015

dictionary size, joint or disjoint dictionaries, trans- 1016

former architecture size and beam search parame- 1017

ters. Additionally, one might need to analyse the 1018

impact of dataset size, target language complex- 1019

ity on the ability to perform unsupervised out-of- 1020

distribution detection. 1021

C.3 Scaling Ensembles 1022

One intriguing aspect of the detection results shown 1023

in Table 8 is the ability of Laplace based SPA to 1024

outperform the Deep Ensemble in all experiments. 1025

Table 8: Out-of-distribution detection using the %AUROC ↑ metric (± 2 std). The last three block columns
represent the system trained, which in-domain dataset was used and the uncertainty utilised.

Dataset Model
WMT16 WMT20 WMT20

newstest14 newstest14 newstest20
TU KU TU KU TU KU

khresmoi
Deep Ensemble 48.0 61.9 42.5 55.5 39.3 53.2
SPA (Laplace) 65.1 ± 1.8 73.1 ± 1.7 52.6 ± 0.7 63.8 ± 1.1 51.0 ± 0.9 63.4 ± 1.2

mtnt
Deep Ensemble 64.5 63.7 73.0 71.1 70.8 69.0
SPA (Laplace) 65.1 ± 1.5 66.8 ± 1.8 73.8 ± 0.7 70.6 ± 0.3 72.6 ± 0.8 70.2 ± 0.6

kftt
Deep Ensemble 30.1 44.0 53.8 62.7 51.0 60.3
SPA (Laplace) 37.8 ± 0.2 48.8 ± 1.4 64.6 ± 0.8 70.7 ± 1.2 63.2 ± 1.0 70.2 ± 1.1
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Figure 1: BLEU performance vs number of ensemble members on newstest14.

Therefore, an interesting element would be to in-1026

vestigate if this pattern still holds when scaling1027

both Deep and Snapshot Ensembles to much larger1028

sizes and empirically verifying if the SPA model is1029

carrying out some type of interpolation of ensem-1030

ble predictions. Note, the cost of training a Deep1031

Ensemble scales with M (where M is the number1032

of members) while a Snapshot Ensemble only re-1033

quires approximately 1 + 0.097M in our WMT161034

setup.1035

Before investigating detection, BLEU perfor-1036

mance on newstest14 is reported using the the1037

WMT16 setup, see Figure 1. While the Deep En-1038

semble plateaus quickly, the Snapshot Ensemble is1039

able to have consistent gains in performance as it1040

grows. This has to do with each successive Snap-1041

shot Ensemble member having increasingly better1042

performance coupled with higher diversity from its1043

predecessors, leading to larger ensemble gains.1044

Regarding detection, there seems to be no clear 1045

increasing pattern when scaling ensembles, see Fig- 1046

ures 2, 3 and 4. While the Snapshot Ensemble does 1047

show small gains in detection performance using 1048

both total and knowledge uncertainty, it is not able 1049

to reach the Laplace model in any case. On top of 1050

that, the Deep Ensemble shows even more detri- 1051

mental results, in many cases displaying worse per- 1052

formance as the ensemble grows past a certain size. 1053

Therefore, this points to logit based distribution dis- 1054

tillation possibly extracting and overvaluing more 1055

dark knowledge from low probability classes and 1056

not just simply interpolating ensemble predictions. 1057
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Figure 2: %AUROC detection performance on Khresmoi with increasing ensemble size.
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Figure 3: %AUROC detection performance on MTNT with increasing ensemble size.
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Figure 4: %AUROC detection performance on KFTT with increasing ensemble size.
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