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Abstract

Large deep-learning based autoregressive mod-
els have shown state-of-the-art performance
in many sequence-to-sequence tasks including
neural machine translation. Deep Ensembles
of these systems yield performance gains over
individual models and enable uncertainty esti-
mates, including knowledge uncertainty, on the
predictions to be derived. The challenge with
these ensembles is that training costs, mem-
ory requirements and inference costs all scale
linearly with the number of members of the
ensemble. In this work we explore how to
train autoregressive models efficiently, while in
a single forward pass, maintaining the ability
to make robust uncertainty estimates. The ap-
proach combines efficient ensemble generation
and distribution distillation techniques. This
combination dramatically reduces the computa-
tional and memory costs compared to Deep
Ensembles. Experiments on WMT16 and
WMT20 show that single models trained using
the proposed scheme can reach or outperform
Deep Ensembles while being much cheaper
at training and inference time. Additionally,
by extending existing distribution distillation
techniques, a single model can be trained to
consistently outperform a Deep Ensemble on
out-of-distribution detection.

1 Introduction

Large autoregressive neural networks based on at-
tention have emerged in the past few years as the
most competitive approach to many (structured)
sequence tasks, especially in translation (Bahdanau
et al., 2015; Vaswani et al., 2017; Ott et al., 2018),
and are increasingly being used in practice. Ad-
ditionally, one of the most straightforward ways
to improve system performance, and allow for un-
certainty estimation which is vital for safety and
robustness of deep systems, is to train several mod-
els that ideally make independent errors in order
to form an ensemble (Perrone and Cooper, 1993;

Opitz and Maclin, 1999; Dietterich, 2000; Laksh-
minarayanan et al., 2017). However, for large-scale
tasks such as automatic speech recognition and
neural machine translation where single neural net-
works can have hundreds of millions, or billions,
of parameters, it becomes increasingly infeasible
to train and deploy the resulting ensembles.

Ensembles come with several benefits including
better predictive power by exploiting the prediction
diversity among the ensemble members (Krogh
and Vedelsby, 1994). Furthermore, any committee
of models (Krogh and Vedelsby, 1994) have the
ability to decompose total uncertainty (Depeweg
et al., 2018; Gal and Ghahramani, 2016) into a sum
of data uncertainty, representing the intrinsic noise
in the data being modelled, and knowledge uncer-
tainty, which refers to the level of ignorance about
the most optimal model parameters (Hullermeier
and Waegeman, 2021). While this is a useful prop-
erty, there has been limited use of such systems
in practice due to high computational and memory
requirements that scale linearly with the number of
members in the ensemble.

Owing to this limitation, an ensemble compres-
sion technique called Knowledge Distillation' has
become popular (Hinton et al., 2014a). It addresses
the common scenario that while a practitioner has
access to significant resources during training, effi-
ciency during inference time is crucial. The impor-
tant insight is that although the knowledge repre-
sented in the parameters of a neural network ensem-
ble can be highly cryptic and unfathomable, neural
networks can be abtractly viewed as functions, that
map "input vectors to output vectors" (Hinton et al.,
2014a; Bucilua et al., 2016). Therefore, instead of
compressing a collection of parameters directly, the
goal is to train a single efficient "student" model
to predict the average output of the "teacher” en-
semble. This approach is not only applicable to
static tasks such as image classification but also

IThis can also be used to distil large individual models.



to structured sequence tasks, where autoregressive
models are often utilised.

Summary of contributions: In this paper, we
address the computational demands of training and
deployment of large autoregressive systems with
a focus on yielding robust uncertainty estimates.
While reducing training cost and increasing infer-
ence speed will be addressed, it will be assumed
that disk space is abundant. These computational
savings will be achieved by: (1) modification of
efficient ensemble generation methods; and (2) ex-
tending recent distribution distillation approaches
to generate well performing student models able
to estimate and decompose uncertainty with a sin-
gle forward pass. Additionally, (3) the diversity of
teacher ensembles and performance of students is
empirically investigated in order to aid the design
process. Specifically, we will initially evaluate tech-
niques on the En-De WMT16 dataset. We show
that single student models have the ability to outper-
form transformer-based ensembles in both BLEU
performance out-of-distribution detection. Finally,
we investigate if similar conclusions can be drawn
by experimenting on bigger transformers and the
significantly larger En-Ru WMT?20 dataset.

2 Background and Related Work

In this section we review ensemble-based uncer-
tainty estimation for structured prediction tasks,
such as those encountered in natural language and
speech processing. We then discuss how the limi-
tations of ensemble approaches can be addressed
using recently developed distillation techniques.
Finally, we describe how such ensembles can be
generated in practice.

2.1 Uncertainty Estimation

We adopt a Bayesian perspective on ensembles
as this offers a flexible framework within which
uncertainties have an information theoretic justifi-
cation. Here the posterior p(6|D) is derived given
some observed data, D. Unfortunately, this form
Bayesian inference is often intractable and cannot
be applied to large neural networks. Alternatively
an approximation q(0) to the posterior p(6|D), is
used. Samples from this distribution can then be
drawn to generate an ensemble. Ensemble gener-
ation methods will be covered in more detail in a
following subsection.

Take an ensemble {P(y|x, 8(™))}M_, sampled
from an approximate posterior q(6) where each

model maps a variable-length input of discrete ele-
ments x € X into a sequence of discrete elements
y € Y. The predictive distribution is obtained
according to:

P(yle, D) = Eqp) [P(ylz,0)] ()
From this predictive distribution, a measure of total
uncertainty can be estimated using the entropy:

H [P(y\:z:,D)] = IEP(ykn,D) |:111 (2)

: ]
P(y|z, D)
Furthermore, a measure of disagreement between
models, also referred to as knowledge or epistemic
uncertainty, can be estimated by using mutual in-
formation Z between y and 0:

I[y,H]a:,D] =

3
Eq(e) [KL(P(yy:n,e) | P(y]ac,D)} ©)

This estimate can also be decomposed into a mea-
sure of total and and data (aleatoric) uncertainty,
as mentioned in Malinin and Gales (2021). There
are also many other options for the measure of
epistemic uncertainty such as expected pairwise
KL-divergence or reverse mutual information, how-
ever, for the sake of simplicity we restrict our focus
to the already mentioned eq. (2) and (3) since these
represent uncertainties of differing nature.

2.1.1 Approximations

The measures of uncertainty provided above im-
plicitly assume that one can enumerate all possi-
ble variable-length output sequences, and obtain
model predictions for each and every one. This
is evidently intractable; in practice, autoregressive
models are used to factorize the distribution over y
into a product of conditionals over a finite number
of classes, referred to as vocabulary:

L
P(ylz,0) = [[Puly<i,,0) (@
=1

This equation illustrates the key mechanism be-
hind autoregressive models, in which each token y;
is modelled based on conditioning on some back-
history y«; = {v1,%2,...,41—1}, and has been
proven successful in many fields such as neural ma-
chine translation (Bahdanau et al., 2015; Vaswani
et al., 2017) and end-to-end speech processing
(Mohamed et al., 2019). However, autoregressive
models come with high inference cost, and are of-
ten used in combination with n-best list decoding



schemes disallowing the direct estimation of uncer-
tainties in eq. (2) and (3).

Consider a beam of output sequences B =
{y®}P | generated by a model P(y|z, D). The
work of Malinin and Gales (2021) provides several
approximations for estimating uncertainty based on
such a beam. Since several approximations have
been provided, we choose to focus on the condi-
tional decomposition of uncertainties which have
been hypothesised to be more stable:
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where the uncertainties have both been length-
normalised and importance weighted according to:

. exp % InP(y® |z, D)
Zszl exp % InP(y®)|x, D)

Length normalisation is vital in allowing compar-
isons of entropies of variable-length outputs while
the importance weighting is needed to adjust the
uncertainty associated with y® e B according to
its probability. For an in depth review of approxi-
mations and alternative uncertainties, see Malinin
and Gales (2021).
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2.2 Knowledge Distillation

Ensembles {P(y|x,8())}M_ sampled from
some posterior can be computationally demanding.
One approach to efficiently exploit the information
of the ensemble is to use knowledge distillation
(KD) to yield a single student model (Hinton et al.,
2014a; Kim and Rush, 2016).

Given an input and reference output pair
(teacher-forcing) (x,y) ~ p(x,y), a stan-
dard model might be trained using negative log-
likelihood (NLL):

L
1
Lur(0) = 7 > —InP(yly«,z,0) (6
=1

Similarly, a student model with parameters ¢ can
be trained to emulate a teacher ensemble by addi-
tionally using the average categorical prediction
m, 7k = P(y; = wi|y<i, &, D) as 'soft’ labels:

L

Ly(¢) = %ZKL(M | Pyily<i, z, @)) ()

=1

However in practice, one normally optimises a
convex combination of NLL and KL-divergence
Lxp(@) = AliL(p)+(1—A) Lk (¢p) for added su-
pervision and stability. The probability mass func-
tions in the KL-divergence can also be temperature
scaled by some 7' to improve optimisation (Hinton
et al., 2014a). Note that this criteria is only con-
sidered for the teacher-forcing case, more sophis-
ticated distillation approaches exist, by sampling
(x,y) from alternative distributions, but are out
of scope for this work, see Kim and Rush (2016);
Wong et al. (2016); Lee et al. (2018); Malinin et al.
(2017) for details.

2.2.1 Ensemble Distribution Distillation

While knowledge distillation can be successful in
many cases, the resulting student will not be able to
estimate epistemic or knowledge uncertainty, since
it only modelled the average ensemble prediction.
To avoid this issue, Malinin et al. (2020) considers
the task of distilling the distribution of ensemble
predictions onto a single student. This allows the
student to retain both predictive performance and
information about diversity.

To explain the mechanics behind distribution
distillation, consider modelling a distribution over
ensemble predictions:

{ﬂ'l(m)}nj‘{zlv Wz(;;) =P(y = wily<s, z,00™)

An autoregressive student can be used for predic-
tion based on the parameters «; of a Dirichlet distri-
bution Dir(m;|ay) = p(7|y<i, @, ¢) (Fathullah
et al., 2021). Since the Dirichlet is a prior for cate-
gorical distributions it is an ideal candidate for this
task. The distribution distillation of such a model
is achieved by optimising:

1 . m
Lwn(®) = =477 > mDir(m"|eu)
m,l

which is a straightforward application of negative
log-likelihood. In this work we also consider gener-
alisations to alternative distributions over categori-
cal predictions.

2.3 Ensemble Generation

Up to this point, it has been assumed that an en-
semble of models is available. This section reviews
a number of methods for ensemble generation and
how the weight-space can be explored, with refer-
ence to training and inference cost.



Two established and *opposite’ approaches for
ensemble generation include Monte-Carlo Dropout
(MCD) (Gal and Ghahramani, 2016) and Deep En-
sembles (Lakshminarayanan et al., 2017). While
both ensembles are equally expensive (in terms of
inference) given the same number of draws, they
are very different in terms training cost and di-
versity. MCD ensembles are cheap to train but
have limited diversity over the ensemble members.
Deep Ensembles have higher training costs, scaling
with number of members, but yield higher ensem-
ble diversity and expressiveness. Depending on
computational and memory constraints one might
favour one over the other. A third class of ensem-
ble generation methods was proposed in Xie et al.
(2013): storing checkpoint parameters throughout
training results in a so called temporal ensemble.
Furthermore, Huang et al. (2017) utilised cyclic
learning rates to encourage the process to traverse
and explore multiple minima in the weight-space
achieving a more diverse temporal ensemble, re-
ferred to as a Snapshot Ensemble. The training
cost of this form of ensemble varies depending on
the cyclic learning rate schedule but can be set to
operate at the equivalent of training a single model.

Alternative generation methods exist such as
MIMO (Havasi et al., 2021) based on implicit sub-
network generation within a neural network. These
exploit the fact that many deep networks are over-
parametrised and have excessive capacity. How-
ever, this method not only suffers from high train-
ing cost, it has no trivial extension to handling
variable-length data. SWAG (Maddox et al., 2019)
is another method based on approximating the pa-
rameter checkpoints generated by SGD (with small
learning rate) using a low-rank Gaussian distribu-
tion. This method, however, suffers from high
memory cost, even with low-rank approximation,
and low inference speed since it requires sampling
large networks.

In this work we focus on two types of transform-
ers based ensembles: Deep and Snapshot. Standard
Deep Ensembles can be directly applied to NMT.
For Snapshot Ensembles the learning rate schedule
needs to be modified to be appropriate for trans-
formers. Snapshot Ensembles are used in this work
because they can be trained using similar resource
requirements as training a single model while main-
taining diversity and performance. Note, Snap-
shot Ensembles were critiqued in Wen et al. (2020)
for their possible incompatibility with transformer-

based models. Here we show that it is feasible to
use cyclic learning rates with transformers.

3 Efficient Exploration/Exploitation

Before examining the proposed approach, we
first touch on an interesting aspect of stochas-
tic weight averaging and its Gaussian generalisa-
tion (Izmailov et al., 2018; Maddox et al., 2019).
These approaches are based on modelling the
parameter/weight-space by traversing the weight-
space during training and generating a collection of
checkpoints {§™}M_ In general neural network
weights are not interpretable and cannot normally
be compared directly to each other. Thus at the
core of our approach will be to use checkpoints
obtained by efficiently traversing the weight-space
during training and storing the resulting predictions.
These categorical predictions are directly related
to each other. The two step approach that exploits
this observation, stochastic prediction averaging
(SPA), is described below.

Ensemble Generation: At the exploration stage
we will make use of the ideas behind temporal en-
sembles. After training an initial model to conver-
gence, we modify the learning rate (usually inverse
square root decay for transformers) to a cyclic al-
ternative and store the predictions {(z, TFYZZ)) M
made by the checkpoints. The settings associated
with this learning rate will determine the extent to
which the ensemble members will have explored
the weight space and associated local minima.

Ensemble Distillation: Once the predictions of
the temporal ensemble have been saved, we switch
to (distribution) distillation based training, the ex-
ploitation stage. Given a student able to model
the space of categoricals p(m;|y<;, €, @) it can be
trained on the stored ensemble predictions:

Ru(6) = 57 S np (7 gt . 9)
m,l

As previously mentioned in section 2.2, a combina-
tion of losses is often used in practice:

Alnis (@) + (1= M) (Lxn (@) + nlytn(@) (8)

One option for the student is to use Dirichlet dis-
tributions. Additionally we will examine students
with diagonal Gaussian and Laplace distributions
in the (pre-softmax) logit space. These distribu-
tions require an additional output head, in order
to predict both the mean and diagonal covariance



of the logits. The rationale for these more com-
plex models is that additional flexibility in the stu-
dent distribution enables more knowledge to be
exploited from the teacher for both decoding and
accurate uncertainty modelling. Note, the softmax
of the mean is used as an approximation to the pre-
dictive distribution as analytic expectations over
logits are intractable, in depth discussion of these
distributions and implementation will be covered
in Appendix B.

3.1 Computational Cost

As described above, there are multiple costs associ-
ated with stochastic prediction averaging. Firstly,
one needs to explore the weight-space by training a
converged model using cyclic learning rates (LRs)
to generate high quality temporal checkpoints. In
this paper, we focus on a case where the cyclic
regime is run for 30-50% of the cost (measured in
terms of GPU-hours) of training the original model
and we always choose to store M = 5 checkpoints
(5 cycles and checkpoint whenever the learning rate
hits its minimum value). Secondly, we distribution
distil the system utilising an additional 50-70% of
the original cost, resulting in a student that requires
similar compute to training two models. We also
initialise the parameters of the student with the fi-
nal checkpoint in order to save additional compute.
Thirdly, there is some memory cost associated
with storing the predictions, since one often has to
work with large vocabularies. In this work we will
neglect the cost of disk space, but will investigate
the case where only top-k elements of temporal
ensemble are saved, similar to Tan et al. (2019).

The resulting model should, with a single for-
ward pass, be able to estimate and decompose un-
certainty whilst maintaining good decoding per-
formance. Compared to an ensemble, this will be
a significant reduction of the number of forward
passes required.

3.2 Drawbacks and Advantages

In stochastic prediction averaging it is necessary
to determine the learning rate (LR) schedule for
both the exploration and exploitation stage once an
initial converged model has been obtained. In our
work we found that the cyclic learning schedule is
flexible (for transformers) and the hyperparameters
can be selected depending on the computational
restrictions of the user. For example, we restricted
experiments to triangular cyclic schedules with 2-3
epoch cycle length. The peak cyclic LR was set to

a value larger than the original model’s peak LR.
The minimum value was set to a value smaller than
the original model’s final LR. For the exploitation
stage, we chose a schedule that mimics the original
schedule closely.

There are many options at the exploration stage
of the proposed scheme, this is one of the strengths
of this approach. If a practitioner has no limitations
during training time, one could simply replace the
temporal generation method with the predictions
made by a, for example, Hyper Deep Ensemble
(Wenzel et al., 2020). Alternatively, one could
easily modify the number cycles and learning rate
to encourage exploration of the weight space and
generate diverse but high quality predictions. We
will also show empirically that although temporal
ensembles are less diverse than Deep Ensembles,
this drawback doesn’t have a significant impact
and in some cases is actually beneficial to the SPA
student performance.

4 Experimental Evaluation

This section reports on performance of base trans-
formers trained on the smaller En-De WMT16
dataset consisting of 4.5 million sentence pairs. We
use newstest13/14 as development and evaluation
sets. Additionally, we investigate out-of-domain
detection on the publically available Khresmoi-
Summary (Khresmoi) (Dusek et al., 2017), MTNT
(Michel and Neubig, 2018) and Kyoto Free Trans-
lation Task (KFTT) (Neubig, 2011) datasets. These
datasets relate to medical articles, Reddit based
noisy text and specialised Wikipedia articles, re-
spectively. Furthermore, we apply insights from
training these systems to "big" transformers trained
on the larger En-Ru WMT20 dataset made of about
58 million pairs post processing. In this case we
use newstest19 as development data and evaluate
on newstest20; out-of-domain detection used the
same out-of-domain datasets as above.

Text Processing: Data is cleaned and tokenized
using Moses?. For WMT16, a shared dictionary
is trained using Byte Pair Encoding (BPE) with
32,000 merge operations (Sennrich et al., 2016).
Similarly, for WMT20 we learn disjoint dictionar-
ies using BPE with 40,000 merge operations.

Metrics: System performance will be evaluated
using corpus-level BLEU (Post, 2018). Further-
more, to measure diversity of models, indepen-

*https://github.com/moses—smt/
mosesdecoder
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Table 1: BLEU and CrossBLEU on newstest14 (4 2 std). The top row of each block represents the teacher
model/ensemble that remaining models were distilled from. *Standard can be seen as a Deep Ensemble with
identical members. Table also includes number of parameters and relative training time. Inference speed for all

single models are similar.

Model Params | Training Time | | BLEU 1 CrossBLEU |
Standard* 60.9M 1.0 25.85 017 100.00 = 0.0
Self distillation 60.9M 1.8 26.48 +ois
Self-distribution dist. 60.9M 1.7 25.89 + 020

Deep Ensemble 304.5M 5.0 26.72 62.96 + o062
Distillation 60.9M 5.9 26.70 + o026

Snapshot Ensemble | 304.5M 1.5 26.54 +016  73.06 +335
SPA (Categorical) 60.9M 1.9 27.02 £o19

SPA (Dirichlet) 60.9M 2.0 26.96 1 0.06

SPA (Gaussian) 77.8M 1.9 26.90 o025

SPA (Laplace) 77.8M 1.9 27.08 020

dent of level of confidence (temperature), we use
corpus-level BLEU between outputs (referred to as
CrossBLEU). For detection, we use the ubiquitous
threshold independent AUROC metric (Manning
and Schiitze, 1999), with baseline random detec-
tion corresponding to an AUROC of 50%.

Models: The individual transformer models are
trained using an inverse square root with warmup.
A Deep Ensemble is formed by taking M = 5 such
models. The last checkpoint of standard trained
model is used in conjunction with a cyclic learning
rate to generate a temporal ensemble of M = 5
members, the Snapshot Ensemble. The level of ex-
ploration in Snapshot Ensembles is generally lower
than its Deep equivalent due to being constrained
by the same initial checkpoint. These models are
then (distribution) distilled using students with ei-
ther categorical predictions (standard ensemble dis-
tillation), or distribution distillation with Dirichlet,
(logit) Gaussian or (logit) Laplace outputs. The hy-
perparameters (A, i) in eq. (8) and level of weight
averaging of last few checkpoints, are tuned on the

development set. In addition, we evaluate three
baseline approaches: knowledge distillation (Hin-
ton et al., 2014a); self distillation® (SD) (Zhang
et al., 2019; Allen-Zhu and Li, 2021); and self-
distribution distilled systems (S2D) (Fathullah and
Gales, 2022). The latter is included because it is
cheaper to train as it avoids the need for ensembles
while able to estimate knowledge uncertainty in a
single pass. All single model experiments were run
5 times. Details of learning rates, regularisation
and various other hyperparameters are provided in
Appendix A.

4.1 En-De WMT16 Results

Table 1 shows both efficiency and performance of
a wide range of systems on newtest14 evaluation
data. As expected the diversity of the Snapshot En-
semble is less than the Deep Ensemble equivalent,
and as a consequence, the ensemble performance
gain is less. Snapshot Ensembles can be used as

3This refers to distilling a model onto a student with iden-
tical architecture.

Table 2: CrossBLEU (lower score means higher diversity) and BLEU newstest14 performance (& 2 std).

Model Teacher Student  Difference Diversity
BLEU 1 BLEU 1 BLEU 1 | CrossBLEU |
Standard 25.85 017 26.48 o5 0.63 +o14 100.00 +o0.00
Limited Ensemble 26.07 zonn  26.59 o011 0.52 +o004 83.09 +oe
Snapshot Ensemble | 26.54 o016 27.02 £019  0.48 +o025 73.06 +335
Deep Ensemble 26.72 26.70 026 -0.02 +o026 62.96 + o062




Table 3: Out-of-distribution detection using the % AUROC 1 metric (£ 2 std).

Model Khresmoi MTNT KFTT
ode TU KU TU KU TU KU

Standard 475 +08 — 63.5+13 — 306 t12 —
Self-distribution dist. | 48.7 28 54.4 +33 | 63.8 +19 589 £20 | 31.3 £25 31.4 +3.
Deep Ensemble 48.0 61.9 64.5 63.7 30.1 44.0
Snapshot Ensemble | 49.0 x06 62.6 £11 | 63.8 x12 63.1 07 | 31.7 £09 47.4 125
SPA (Categorical) 48.0 +14 — 64.6 t00 — 313 405 —

SPA (Dirichlet) 496 +13 57.1+14 | 65117 656+20 | 31.0£00 36.2 +14
SPA (Gaussian) 595+ 717 +19 | 663 +16 64.0 21 | 358 £12 44.0 +02
SPA (Laplace) 65.1 15 731 +17 | 651 +15 66815 | 37.8 +02 48.8 +14

the teacher ensemble to train SPA students, the
complete training cost is similar to training two
standard models (significantly cheaper than distilla-
tion and similar to self distillation). Notably, both
self distillation and stochastic prediction averaging
significantly outperform their teachers. However,
unlike self distillation, all SPA student models are
able to outperform the Deep Ensemble, the stan-
dard baseline, and requires both less training time
and only a single forward pass during inference.

To investigate why certain students are able out-
perform their teachers, we train an additional en-
semble on the WMT16 data specifically designed
to have restricted diversity (higher CrossBLEU),
see Table 2. There is a negative correlation between
corpus-level diversity ("Diversity CrossBLEU")
and the relative performance of the student to out-
perform its teacher ("Difference BLEU"). Higher
level of exploration of the weight space for the en-
semble, resulting in more diverse models, seems
to make the exploitation of the resulting ensemble
more challenging. Hence, if the aim is to generate
a single, distilled, model for efficient inference lim-

iting training ensemble diversity may be beneficial.

Next, we compare threshold independent out-
of-domain detection performance of the baseline
systems with SPA models. The comparison will be
made using newstest14 as in-domain data and one
of {Khresmoi, MTNT, KFTT} test datasets as out-
of-domain. From Table 3, while self-distribution
distillation can in one case (Khresmoi) produce
useful knowledge uncertainties (KU), improving
upon a standard model, it does not manage to do so
consistently. Secondly, the Snapshot Ensemble is
able to compete with the Deep equivalent while be-
ing more than 3 times cheaper to train. Thirdly, the
(logit) Laplace SPA model is able to outperform the
Deep Ensemble in all three detection splits, produc-
ing either similar or significantly better total (TU)
and knowledge uncertainty estimates. Similarly,
the (logit) Gaussian model trailing the Laplace
equivalent in performance. However, the Dirichlet
version is unable to match the quality of total or
knowledge uncertainties, possibly because the logit
based distributions have an additional head giving
them more flexibility and expressiveness.

Table 4: BLEU and CrossBLEU on newstest20 (& 2 std). The top row of each block represents the teacher
model/ensemble that remaining models were distilled from. Table also includes number of parameters and
relative training time. Inference speed for all single models are similar.

Model Params | Training Time | | BLEU 1 CrossBLEU |
Standard 271M 1.0 26.28 +03¢  100.00 =+ 0.00
Self distillation 271M 1.8 26.56 +o23

Deep Ensemble ‘ 1.35B 5.0 26.81 68.67 +076
Snapshot Ensemble 1.35B 1.5 26.42 +023  76.62 +256
SPA (Categorical) 271M 2.1 26.73 +o16

SPA (Laplace) 320M 2.2 26.71 +o1s




Table 5: Out-of-distribution detection using the % AUROC 1 metric (£ 2 std).

Model Khresmoi MTNT KFTT

ode TU KU TU KU TU KU
Standard 390.0 07 — 69.6 0o — 50.8 11 —
Deep Ensemble 39.3 53.2 70.8 69.0 51.0 60.3
Snapshot Ensemble | 40.8 05 55.0 +0s | 70.1 +05 69.3 +00 | 51.1 06 60.9 +14
SPA (Categorical) | 40.4 o5 — 709 £10 — 509 +06 —
SPA (Laplace) 51.0 oo 63.4 +12 | 72.6 08 70.2 206 | 63.2 £10 70.2 +1:

4.2 En-Ru WMT20 Results

Next we train the best performing models on the
En-Ru WMT?20 dataset. Due to the much larger
dataset and architecture (big transformer), we do
not perform extensive hyperparameter optimisation
and use instead the same training script as in Ma-
linin et al. (2021) and the best found hyperparam-
eters (A, ) from the En-De WMT16 experiments.
The averaging of the last few checkpoints will be
determined based on performance on development
set (newstest19). Again we will mainly investigate
models that can be trained in significantly less time
than a Deep Ensemble (with the ensemble as the
baseline to beat). The performance of the systems
are shown in Table 4.

Interestingly, the SPA student models were all
able to outperform their teacher Snapshot Ensem-
ble, and reach close to Deep Ensemble perfor-
mance, within approximately a standard deviation.
This is despite the fact that they have far fewer pa-
rameters and training cost. Similarly, self distilled
models were able to outperform their identically de-
signed teacher but show an insignificantly smaller
gain in performance than SPA students. Addition-
ally, when it comes to uncertainty estimation, self
distillation is inadequate due to the lacking ability
to estimate knowledge uncertainty. These results
follow very similar patterns to what was observed
on the WMT16 dataset.

Additionally, we perform out-of-distribution
detection but with newstest20 as the in-domain
dataset, see Table 5. Results using newstest14 as
the in-domain dataset is given in Appendix C.2.
Again we observe the Laplace student model is
able to outperform the Deep Ensemble in all cases,
providing both better total and knowledge uncer-
tainties. While the added flexibility of the Laplace
model (having two heads) does explain why it out-
performs the categorical equivalent, it does not
explain its ability to outperform its teacher or the

Deep Ensemble in detection. We explore this ques-
tion in Appendix C.3 by scaling both Snapshot and
Deep Ensembles to include many more members
and investigate if detection ability increases dra-
matically. Alternatively, an explanation could be
that logit based distributions are able to extract bet-
ter "dark knowledge’ (Hinton et al., 2014b) specif-
ically useful for estimating robust uncertainties.
Furthermore, unlike in Table 3 where no model
was able to beat a random detector on the KFTT
detection, the larger WMT?20 based models are
able to differentiate between newstest20 and KFTT
(using newstest14 as in-domain does not deflate
results). While uncertainties from a standard indi-
vidual model are not much different from simply
outputting random values on KFTT, knowledge un-
certainties, and especially those from Laplace SPA,
are significantly better.

5 Conclusion

We have empirically investigated the balance be-
tween exploration of the weight space in the form
of ensemble generation, and exploitation of such
ensembles in the form of (distribution) distilla-
tion. In this process its been demonstrated how
one can train single models, requiring only a single
forward pass, to outperform ensembles in estab-
lished machine translation tasks. Furthermore, it
has also been shown that such distribution distilled
models are able to consistently outperform their
teachers and Deep Ensembles in detecting out-of-
distribution inputs, vital for ensuring these models
are used in a safe way in practice.

Another interesting observation is that when en-
semble distillation approaches are used, the best
performing ensemble does not necessarily yield the
best performing distilled model. Limiting ensem-
ble diversity can be beneficial. Additional experi-
ments are required to confirm this phenomenon.



6 Limitations

In section 3.2 it was discussed how stochastic pre-
diction averaging has a large hyperparameter space
associated with it, but that the choice of param-
eters are flexible in many cases. In addition, an
experimental limitation of this work is the evalu-
ation of uncertainty quality purely based on out-
of-distribution detection. Sequence based uncer-
tainties can be used for a wide range of tasks such
as Active Learning and Adversarial Detection, and
there is no guarantee that SPA shows promise in
those other tasks (Shen et al., 2017; Radmard et al.,
2021; Ebrahimi et al., 2018). Finally, there is still
a lack of understanding in what makes a well per-
forming autoregressive out-of-distribution detector,
in understanding the effect of architecture, vocabu-
lary, beam size and calibration, discussed in slightly
more detail in section C.2.
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A Experimental Configuration

This section will provide detailed information
about the datasets used for training, development,
evaluation and detection. It will also give the exact
training and various hyperparameters used for all
models.

A.1 Datasets

We utilise two training sets WMT16/20, each with a
pair of development and evaluation datasets based
on newstest13/14 and newstest19/20. Addition-
ally, we utilise three out-of-domain datasets for
evaluating detection performance of a wide range
of transformer models, see Table 6. As stated
previously, all data is cleaned and tokenized us-
ing Moses. For WMT16, a shared dictionary is
learned using BPE with 32,000 merge operations.
On WMT20 we learn disjoint dictionaries using
BPE with 40,000 merge operations. A consequence
of the larger disjoint dictionary on WMT?20 is the
significantly lower number of unknown tokens in
the OOD datasets.

A.2 En-De WMT16 Training

We use the base transformer from Vaswani et al.
(2017) implemented in fairseq (Ottet al., 2019)
and train it using 4 NVIDIA© A100 with an up-
date frequency of 32. This is virtually equivalent
to training on 4 x 32 = 128 GPUs. A per-gpu
batch has a maximum of 3584 tokens. Models
are optimized with Adam (Kingma and Ba, 2015)

using 31 = 0.9, B2 = 0.98, and e= le-8. We use
a similar learning rate schedule to Vaswani et al.
(2017), i.e., the learning rate increases linearly for
4000 warmup steps to a learning rate dependent on
dnode1 after which it is decayed proportionally to
the inverse square root of the number of steps:

1.5

_ . ste
1 = (step - duode1) 05 m1n<1, P >
warmup

We use label smoothing with 0.1 weight for the
uniform prior distribution over the vocabulary. The
last 10 weight checkpoints were averaged. Training
was stopped after 31 epochs corresponding to ap-
proximately a total of 18 GPU-hours. At inference,
a beam of 4 with a length-penalty of 0.6 is used for
all models.

SD/KD: Self and knowledge distilled models
are first initialised by one of teacher members and
then trained using the knowledge distillation loss
Lyxp provided in section 2.2 with A = 0.50. The
student was trained with a warmup of 1026 steps (3
epochs), from 7 = 4.0x10"*ton = 7.0x 10~* af-
ter which it decays for a total of 24 epochs. A tem-
perature of 7' = 0.8 was used in the KL-divergence
loss as this was found to be mildly beneficial. All
other hyperparameters match the standard case
above.

S2D: The self-distribution distillation models are
trained using the proxy Dirichlet approach (Fathul-
lah and Gales, 2022; Ryabinin et al., 2021) to-
gether with multiplicative Gaussian noise (with

Table 6: Dataset information together with average source and target sentence sizes post tokenization and
processing. The OOD testsets Khresmoi, MTNT and KFTT have two quoted numbers for each field as they
were processed using either the En-De WMT16 or En-Ru WMT20 BPE based dictionaries. Additionally,
only source side information is provided for OOD sets as these are only used for unsupervised uncertainty

estimation.
Number of | Tokens per Sentence | Fraction of Unknown
Dataset Type ]
Sentences Source Target Tokens in Source
En-De WMT16  policy, news, web 4.5M 29.5 30.6 0.01%
En-De newstest13 news 3.0K 26.0 28.0 0.00%
En-De newstest14 3.0K 27.6 29.1 0.00%
En-Ru WMT20  policy, news, web 58.4M 27.8 27.5 0.00%
En-Ru newstest19 news 2.0K 29.9 334 0.00%
En-Ru newstest20 2.0K 30.9 32.5 0.00%
Khresmoi medical 1.0K 30.9/30.3 — 0.78%/0.00%
MTNT noisy reddit 1.4K 21.1/21.3 — 0.45%1/0.06%
KFTT encyclopedia 1.2K 35.4/35.2 — 1.46%1/0.01%
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standard deviation of o = 0.1). We use a weight
of i 2 x 107 for the proxy Dirichlet KL-
divergence loss. Similarly, all other hyperparame-
ters match the standard case above.

Snapshot: The Snapshot Ensemble was gen-
erated by first starting from the last checkpoint
of a standard trained transformer. At this point,
a cyclic triangular learning rate schedule (Smith,
2017) was employed oscillating between the values
of Nnin = 1.0 X 1074 and 7jpay = 1.0 x 1073 with
a period of 3 epochs. Note that the maximum learn-
ing rate in this cyclic phase is notably larger than
the peak learning rate (7.0 x 10~%) during stan-
dard training This setting was run for 15 epochs
generating an ensemble with 5 members.

SPA: All stochastic prediction averaging mod-
els were trained using the same parameters as the
distilled students but where however, trained for
only 12 epochs. For each distribution, Dirichlet,
Gaussian or Laplace, 1 € {1.0,2.0,3.0} x 1076
was tried and the best performing value on the de-
velopment newstest13 was chosen, see eq. (8).

A.3 En-Ru WMT20 Training

We use the big transformer from Vaswani et al.
(2017) again implemented in fairseqg and
trained using 4 NVIDIA© A100 with an update
frequency of 32. A per-gpu batch has a maximum
of 5120 tokens. Dropout was set to a value of 0.10
and weight decay to 0.0001. In this case we train
the model for 20 epochs, corresponding to 53960
update steps and approximately 230 GPU-hours.
The last 5 checkpoints were averaged leading to
improved performance. At inference, a beam of 5
with a length-penalty of 1.0 is used for all models.

SD: Similar to the previous section, the self dis-
tillation student is initialised from its teacher but is
trained using a learning rate warmup of 2698 steps
(one epoch) from 7 = 2.0x10 4 ton = 4.0x10~*
after which it decays for a total of 16 epochs. The
last 3 or 5 epochs are averaged, based on develop-
ment newstest19 performance.

Snapshot: Based on the last checkpoint of a
standard trained big transformer, a triangular cyclic
learning rate is utilised, oscillating between 1 =
5.0 x 107° and n = 5.0 x 10~* every 2 epochs
for 10 epochs. This results in an ensemble with 5
members.

SPA: Following self distillation, SPA models are
trained using the same parameters, but only for 12
epochs. The best found parameter p (different for

12

each student distribution) in the WMT16 experi-
ments is to be used here. No hyperparameter search
is performed at this stage.

B Novel Distribution Distillation

In section 3 it was described in general terms how
maximum-likelihood training can be used to train
students able to predict a distribution over cate-
goricals. This allows the student to estimate both
total and knowledge uncertainty in a single forward
pass. In this section we describe in detail how this
is achieved for both the novel Gaussian and Laplace
student distributions in the logit space.

Given a collection of logits provdided by an en-

semble {zﬁ? M_ one first has to normalise these

logits due to an invariance in the shift. While one
could subtract the minimum or maximum logit, we
choose the following:

21(7”) —

zl(m) — 1| log Z exp zl(;?)
k

using the logsumexp trick. This choice is mainly
based on its close relationship to the softmax func-
tion. Say a student then predicts a mean p; and
scale o; which describes a diagonal Gaussian in
the logit space (given some back-history y.; and
source x) the distribution distillation loss becomes:

1 ~(m
S IR CHITIEY
m,lk

where N is simply the univariate Gaussian. The
Laplace equivalent follows the same sequence of
steps. Note that at inference time, we simple use
the softmax of the mean as an approximation to
the predictive distribution. For uncertainty estima-
tion however, we sample in parallel 20 logits from
this distribution and use them for quantifying total
and knowledge uncertainty. This represents an in-
expensive operation since we restrict ourselves to
diagonal multivariate distributions.

C Ablation Studies

This section will explore a wide range of experi-
ments briefly mentioned in the main paper:

1. Distribution distillation when only the top-
k probabilities are saved reflecting the case
when limited disk space is available,

2. the impact of detection when changing the
in-domain dataset,



Table 7: BLEU newstest14 performance (& 2 std). The vocabulary size is IV = 32768.

Model kE =1V k=128 k=32
Snapshot Ensemble | 26.54 +o.6 — —
SPA (Categorical) 27.02 £o19  27.09 014 27.00 £o.
SPA (Dirichlet) 26.96 006 27.02 023 26.99 Lo
SPA (Gaussian) 26.90 028  26.99 +o32 27.02 +o26
SPA (Laplace) 27.08 +020 26.99 £o03 26.97 Lo

3. and BLEU and detection performance of en-
sembles with increasing number of members.

C.1 Saving the Top-K Predictions

While the focus of this paper has been computa-
tional efficiency in regards to training and deploy-
ing robust single models we have neglected the
memory cost of storing a large number of ensem-
ble predictions. This section therefore, investigates
the impact on performance when the practitioner
only saves the top-k probabilities similar to Tan
et al. (2019). However, a key difference is that at
distillation time, we distribute the missing proba-
bility to remaining classes instead of renormalising
the top-k probabilities. The experiments were only
run on the smaller WMT16 dataset, see Table 7.

This shows a promising pattern, that storing pre-
dictions over the whole vocabulary is not necessary.
In many cases, one can even achieve small perfor-
mance boosts when only storing top-k predictions.
The resulting conclusion is that even when there
is not an abundant level of disk space available,
SPA style approaches can still be used by simply
discarding low probability classes.

C.2 Varying In-Domain Datasets for
Detection

The detection results provided in sections 4.1 and
4.2 are not directly comparable due to a difference
in in-domain dataset. This section simply provides
the detection numbers for a WMT?20 trained sys-
tem using newstest14 as in-domain, see Table 8.
While there still are significant differences in ar-
chitecture and dictionaries used between WMT16
and WMT?20 trained systems, these results at least
provide the difference in performance when the
same original data is used.

Significantly more experiments, out of the scope
of this paper, need to be run to isolate the impact of
dictionary size, joint or disjoint dictionaries, trans-
former architecture size and beam search parame-
ters. Additionally, one might need to analyse the
impact of dataset size, target language complex-
ity on the ability to perform unsupervised out-of-
distribution detection.

C.3 Scaling Ensembles

One intriguing aspect of the detection results shown
in Table 8 is the ability of Laplace based SPA to
outperform the Deep Ensemble in all experiments.

Table 8: Out-of-distribution detection using the % AUROC 1 metric (& 2 std). The last three block columns
represent the system trained, which in-domain dataset was used and the uncertainty utilised.

WMT16 WMT20 WMT20
Dataset Model newstest14 newstest14 newstest2(
TU KU TU KU TU KU
. Deep Ensemble | 48.0 61.9 42.5 55.5 39.3 53.2
khresmoi

SPA (Laplace) 651 x1s 731 +17 | 526107 63.8 11| 51.0x00 63412

mtnt Deep Ensemble | 64.5 63.7 73.0 71.1 70.8 69.0
SPA (Laplace) | 65.1 £15 66.8 +15 | 73.8 07 70.6 £o3 | 72.6 05 70.2 £os

Kftt Deep Ensemble | 30.1 44.0 53.8 62.7 51.0 60.3
SPA (Laplace) 37.8 £02 488 +14 | 64.6 x0s 707 £12 | 632 10 702 +11
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Figure 1: BLEU performance vs number of ensemble members on newstest14.

Therefore, an interesting element would be to in-
vestigate if this pattern still holds when scaling
both Deep and Snapshot Ensembles to much larger
sizes and empirically verifying if the SPA model is
carrying out some type of interpolation of ensem-
ble predictions. Note, the cost of training a Deep
Ensemble scales with M (where M is the number
of members) while a Snapshot Ensemble only re-
quires approximately 1 + 0.097M in our WMT16
setup.

Before investigating detection, BLEU perfor-
mance on newstestl4 is reported using the the
WMT16 setup, see Figure 1. While the Deep En-
semble plateaus quickly, the Snapshot Ensemble is
able to have consistent gains in performance as it
grows. This has to do with each successive Snap-
shot Ensemble member having increasingly better
performance coupled with higher diversity from its
predecessors, leading to larger ensemble gains.

Regarding detection, there seems to be no clear
increasing pattern when scaling ensembles, see Fig-
ures 2, 3 and 4. While the Snapshot Ensemble does
show small gains in detection performance using
both total and knowledge uncertainty, it is not able
to reach the Laplace model in any case. On top of
that, the Deep Ensemble shows even more detri-
mental results, in many cases displaying worse per-
formance as the ensemble grows past a certain size.
Therefore, this points to logit based distribution dis-
tillation possibly extracting and overvaluing more
dark knowledge from low probability classes and
not just simply interpolating ensemble predictions.
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TU Deep Ensemble
—-- TU SPA Laplace

%AUROC

%AUROC
o
S

70+

o
o

551

—— KU Snapshot Ensemble
KU Deep Ensemble
=== KU SPA Laplace

504

8 9 10 11 12 13 14 15 16 17 18 19 20
Number of ensemble members M

6 7

(a) Total Uncertainty

8 9 10 11 12 13 14 15 16 17 18 19 20
Number of ensemble members M

2 3 4 5 6 7

(b) Knowledge Uncertainty

Figure 2: %AUROC detection performance on Khresmoi with increasing ensemble size.
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Figure 3: %AUROC detection performance on MTNT with increasing ensemble size.
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Figure 4: % AUROC detection performance on KFTT with increasing ensemble size.
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