Dynamic Gradient Influencing for Viral Marketing Using
Graph Neural Networks

Saurabh Sharma Ambuj Singh
University of California, Santa Barbara University of California, Santa Barbara
saurabhsharma@ucsb.edu ambuj@ucsb.edu

Abstract

The problem of maximizing the adoption of a product through the process of
viral marketing in social networks is of extreme importance. Accordingly, we
use Graph Neural Networks (GNN) to model the adoption of products in a data-
driven way using both topological and attribute information. We propose the
novel Dynamic Viral Marketing (DVM) problem of finding the minimum budget
and minimal set of dynamic topological and attribute changes to attain a spread
goal. We show that DVM is NP-Hard and is connected to influence maximization
(IM). Motivated by this connection, we develop the Dynamic Gradient Influenc-
ing (DGI) model, which uses gradient-guided node flipping to search for the
optimal perturbations and targets low-budget and high influence non-adopters
in discrete steps. We use an efficient strategy for computing node budgets and
develop the Meta-Influence heuristic for assessing a node’s downstream influ-
ence. We evaluate our proposed DGI against multiple non-gradient and gradient
baselines to show the efficacy of our approach on real-world attributed networks.
Experiments reveal that DGI discovers realistic cascade patterns through interme-
diary low-degree nodes that are confidently classified as adopters by the GNN.

1 Introduction

Viral marketing is a highly significant strategy used to maximize the spread of adoption of products
[1, 2], which relies upon diffusion within a social network of users that is similar to the spread
of infection [3]. However, prior work [4] concentrates on linearized propagation models of viral
phenomena which focus on static topologies and ignore rich node attribute information. Further,
while finding the influential seed set has been extensively studied, the problem of making dynamic
topological and attribute perturbations to maximize spread hasn’t been addressed.

Therefore, to use attribute information, we use non-linear Graph Neural Networks (GNNs) [5, 6]
to learn a propagation model directly from attributed network data and then use it to forecast future
states of the spread after the network is perturbed. For dynamic perturbations, we consider a realistic
model that can be used to strategically accelerate spread from adopters to non-adopters. Accordingly,
at any given time, (1) new edges can be added only between adopters and non-adopters, as in referral
marketing [7], and (2) adopters can further adopt similar products or products from partnering firms
by flipping corresponding attributes from O to 1, as in joint or co-marketing [8].

Consequently, we propose the Dynamic Viral Marketing (DVM) problem, which seeks to find the
minimum budget and minimal dynamic perturbation set to attain a spread goal. We show that DVM
is a NP-Hard problem and is connected to the influence maximization (IM) problem [4]. Motivated
by this connection, we develop the Dynamic Gradient Influencing (DGI) model, which uses gradient-
guided node flipping to search for the optimal perturbations and targets low-budget and high influence
non-adopters in discrete steps. We develop an efficient node flipping budget computation approach
using bisection search to maintain node budgets at each step. To estimate a node’s downstream
influence, we develop the gradient based Meta Influence heuristic and corresponding Meta Attribute
Flips to increase the potency of outgoing edge perturbations.

S. Sharma et al., Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks (Extended
Abstract). Presented at the Third Learning on Graphs Conference (LoG 2024), Virtual Event, November 26-29,
2024.

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

Spread = 2, Budget =0 Spread = 4, Budget = 2 Spread = 6, Budget = 4

NN
e

[N}
CCED

H 8

v
2\

\
e

\/
|

EEEH
o
o

CCER

EEEH
o
o
CCER

—8:7:6-83-2-4-9 F—————————— 5-11 ——:;ng —8:7—3:2:4 ——4—————-6- 9)-6 1 —_qum —8 3.2 -————+ 7 -4 -6 95 -1 __:fmm
-1 B 1 1
Non-Adopters Adopters 1 Non-Adopters Adopters Non-Adopters Adopters
t=0 t=1 t=2
(a) Initial State (b) Referral induced flip (¢) Co-marketing induced flip

Figure 1: Overview of the Dynamic Viral Marketing (DVM) problem.

2 Dynamic Viral Marketing Problem

Formally, consider G* = (A?, X*,Y"), a series of undirected and unweighted dynamic attributed
networks, observed at discrete time steps t = 1,...,T, where A’ represents the adjacency matrix
containing node connectivity, X* represents a binary node feature matrix containing adoption labels
for related products, and Y'¢ represents the binary adoption labels for the target product. We assume
that the adoption labels are given by Y = f(A*, X* YY), where f() is a general propagation model
which diffuses the initial labels Y using the network structure and attributes at time ¢. The sets of
adopters and non-adopters at time ¢ are denoted by S* and D?, and the resulting spread by o (G?),

=Y 1yt =1], D'=> 1[yt=0], o(G")=|s"| (1)

Due to the representation learning ability of graph neural networks [5, 6, 9, 10] through the propaga-
tion of feature and label information, we use a GNN as our propagation model f(). Specifically, a
GNN fy is trained on the initial network GY and its parameters 6 are then fixed. Thereafter, we use
self-labeling at time t: the predictions from the GNN on the network G yield the adoption states Y'*.
Therefore, both our seed nodes, Y, and our propagation model, f(), are data-driven.

The dynamic transitions of the network from G;_; to G are constrained as follows:

* Referral marketing: Edge insertions can be made only between S?~! and D'~! at time t — 1
(adopters make connections to non-adopters). The total cost for structural changes is | A* — A*~1].

* Co-marketing: Features of nodes in S*~! can flip from 0 to 1 at time ¢ — 1 (adopters adopt
similar products to the target product). The total cost for attribute changes is | X* — X~1].

As all the changes are made incrementally, the total cost incurred is given by |AT — A% + | X7 — X9|.

Dynamic Viral Marketing (DVM) We now state the DVM optimization problem of finding the
minimum budget, z(), and minimal set of changes to reach a spread ¢,

arg-min J(GT) > ¢, wu(g,Go) = |AT — AO| + |XT — X0| 2)
W XT

Note that while the total budget is a function of the final adjacency and feature matrices, to solve
DVM a sequence of structural and attribute changes under the referral and co-marketing contraints
are required. Further, while we use a uniform cost model, the problem can easily be extended to
bespoke settings by using edge-specific and attribute-specific costs. Figure 1 gives an overview of the
DVM problem. We prove its NP-Hardness in the Appendix. Moreover, in Thm 1 in the Appendix,
we draw a connection with influence maximization (IM) that shows node flipping in DVM occurs
when the sum of the dynamic influence edge weights exceeds the dynamic node threshold.

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

Network State ¢ — 1 _ eta .. bute
/1/ fz /4 [A[oT0] Meta Influence o
"""""""""""""" i — | D,

- oLl (3) al.@\|
o I'Q3) >~ nf infl 9
. llm ZJ(e\ 2 kA

e TN IT,,
()Lm/l(A) ()Lr(/r/l(4) *, S .
Compute z o o - arg-min
Affected Set j=1,...4 “ o o e, [

B'(3)
Gradient Guided Node Flipping
OLp (k) OLf (k) .
- ,;< i);’ Yo /();j — m Bisection Search w/ Hashing

GNN Node Classification Node Flipping

Budget Computej [

Margin
—s—s—i———— k=345
-1

Non-Adopters Adopters

Figure 2: Overview of the DGI model. Red lines/circles indicate candidate perturbations.

3 Dynamic Gradient Influencing Model

Motivated by the criterion for node flipping in Thm. 1, we develop the Dynamic Gradient Influencing
(DGI) model to solve the DVM problem. Figure 2 provides an overview of the DGI model. DGI uses
Gradient-Guided Node Flipping, to flip a particular candidate node in each step. At each step ¢, the
candidate node to flip, v?, is given by,

arg-max I'(v), where N = arg-min B*(w) 3)
veEN weD

where B?(w) denotes the budget to flip node w, and I*(v) denotes the Meta Influence of node v.

3.1 Gradient-Guided Node Flipping

In DGI, the core functionality for flipping nodes is accomplished through gradients on the restricted
set of perturbations arising from the referral and co-marketing constraints of DVM. We consider the
negative cross-entropy loss as our flip loss for the chosen candidate node v € D. We gather gradients
from the flip loss and formulate the gradient ranking scheme for the restricted set of perturbations at
each step. More details on this formulation can be found in the Appendix.

3.2 Node Flipping Budget Computation

To compute the minimum budget B® (v) that converts node v, we use the bisection method [11, 12].
For each node, we compute the sorted gradients once and run bisection search over these gradients.
Since budgets need to be recomputed for all non-adopters at every step, we make the algorithm faster
by hashing node budgets and only recomputing budgets for nodes whose budget has changed. The
recompute set R is defined as the set of nodes whose logit scores changed in the previous time step.
More details on the budget compute algorithm can be found in the Appendix.

3.3 Meta Influence using Meta Attribute Flips

To characterize nodes that have high influence so that adoptions can sequentially cascade, we develop
the Meta Influence heuristic to model long-range effects and estimate downstream influence. Firstly,
we make Meta Attribute Flips by restricting feature perturbations to the features of node v. We
consider an influence loss which is the sum of a CW-type loss [13] on all non-adopters nodes. The
Meta Attribute Flips are the top-k ranked perturbations from the gradients on the influence loss. For
finding Meta Influence, we restrict the outgoing edge perturbations from node v to the non-adopters
D. Thereafter, conditioned on Meta Attribute Flips, we compute gradients on the edge perturbations
from the influence loss. Finally, the Meta Influence I*(v) of a node v is defined as the normalized
gradient score of the node’s edge perturbations averaged over the number of non-adopters.

During candidate selection, Meta Influence is used for tiebreaking between equal budget nodes (Eq. 3).
Further, we threshold on Meta Influence to perform Meta Attribute Flips at candidate nodes after
flipping. Using Meta Influence, we estimate which nodes will have high influence on their outgoing
edges after Meta Attribute Flips, and judiciously allocate budget for Meta Attribute Flips. More
details on the exact form of Meta Influence and the DGI algorithm can be found in the Appendix.

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

Table 1: Comparison of DGI variants to baselines. Numbers indicate x, the minimum budget to
spread to 500 nodes, and AUC of budget-spread curves. GCN and SAGE are used as the GNN
propagation backbones. Dynamic DGI consistently achieves the minimum budget and AUC.

Flixster Epinions Ciao
GCN SAGE GCN SAGE GCN SAGE
m AUC | u AUC | u AUC | AUC | u AUC | u AUC
Degree 25511 19.48 | 6573| 150.50) 22076 | 215.33| 21125 328.15| 25162 | 349.48 45291 | 631.66
Margin 8136| 173.70 7655| 177.71) 26109 | 366.43| 18550 | 284.77 20814 | 287.11| 41077 | 595.69
GradArgmax | 852 | 21.62 | 691 |22.25|2729 |50.28 | 1003 |22.54 | 6091 |91.38 | 1100 |23.67
MiBTack 843 | 21.78 | 583 | 16.77 | 2828 | 50.70 | 866 | 21.03 | 5111 | 80.95 | 1035 | 21.91
Base 797 119.44 1506 | 10.54 | 3235 | 54.01 | 831 | 15.44 {4231 |66.02 | 878 | 14.66
Fixed 831 |20.78 | 714 | 15.79 | 1985 |36.41 | 1297 | 23.75 | 2221 | 36.20 | 1094 | 19.82
Dynamic 667 | 18.27 | 494 | 10.17 | 1893 | 31.93 | 803 | 15.18 | 2096 | 33.84 | 821 |13.33

4 Experiments

Evaluation. We utilize real-world attributed datasets [14, 15] for evaluation. We consider 3 variants
of DGI: (1) Base: DGI without Meta Attribute Flips, (2) Fixed: DGI with fixed Meta Attribute Flips,
(3) Dynamic: DGI with optimally chosen threshold for Meta Attribute Flips. The efficacy of the
DGI variants and baselines is evaluated using the minimum budget for spread at ¢ = 500 target
nodes. We also report the Area Under Curve (AUC) of the budget-spread curve. For the purpose
of calculating AUC we normalize the budget by the sum of the number of edges and turned on
features. We compare DGI variants to the baselines using budget and AUC at ¢ = 500 in Table 1.
DGI variants outperform the baselines in all the scenarios. Among the variants, Dynamic does the
best by judiciously applying Meta Attribute Flips through thresholding on Meta Influence, followed
by Base and then Fixed which overspends on Meta Attribute Flips. Further, we plot the budget spread
curves on Flixster and Epinions in Fig. 4. Dynamic DGI consistently achieves the minimum budget
across all spread levels. To understand the time evolution of the spread for different variants, we plot
spread as a function of time in Fig. 3c. Due to the accelerating effect of Meta Attribute Flips, Fixed
spreads fastest, followed by the economical Dynamic and the conservative Base approach. Moreover,
to validate the effectiveness of Meta Influence and Meta Attribute Flips, we plot the histogram of
perturbations contributed by nodes with respect to their Meta Influence in Figure. 3d. We observe
the high correlation of Meta Influence to the number of contributed perturbations across all datasets.
More details and experiments can be found in the Appendix.

= 7 — = -y
74 / Ry
/ /
7 P Yyt
Y e | o yaw
7 / £ v //
//' o - = 201 %
; // / — = 1 e g
|~ _~ /
3 [100 00 300 00 00 00 300
spread spread # Steps
(a) (b) ©

Figure 3: (a)-(b) Budget spent as a function of increasing spread with GCN as the GNN propagation
model on Flixster and Epinions respectively. (c) Spread achieved with increasing number of time
steps. (d) Histogram of perturbations contributed by intermediary adopter nodes with increasing
Meta Influence, where scaling is used for mapping Meta Influence to [0,1].

5 Conclusion and Future Work

We proposed the novel Dynamic Viral Marketing (DVM) problem to find the minimum budget and
minimal dynamic perturbation set to attain a spread goal, where the propagation model is a non-linear
GNN and perturbations are restricted by referral and co-marketing constraints. We developed the
Dynamic Gradient Influencing (DGI) model, which targets non-adopters with low budget and high
influence. DGI uses gradient-guided node flipping to order perturbations and consists of an efficent
budget computation approach, a novel Meta Influence heuristic and Meta Attribute Flips to increase
a node’s influence. We comprehensively evaluated DGI on 3 real world attributed networks and
showed that it outperforms multiple gradient and non-gradient baselines. We leave the question of
competitive spreading in the DVM framework as future work.

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

References

[1] Pedro M. Domingos and Matthew Richardson. Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining, 2001. 1, 6

[2] Matthew Richardson and Pedro M. Domingos. Mining knowledge-sharing sites for viral
marketing. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2002. 1, 6

[3] Stephen Morris. Contagion. The Review of Economic Studies, 67(1), 2000. 1, 6

[4] David Kempe, Jon M. Kleinberg, and Eva Tardos. Maximizing the spread of influence through
a social network. Theory Comput., 2015. 1, 6, 8

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2016. 1,2, 6,7, 12

[6] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 2016. 1,2

[7] Francis A Buttle. Word of mouth: understanding and managing referral marketing. Journal of
strategic marketing, 6(3), 1998. 1

[8] Ironclad Journal. Joint marketing agreements. https://ironcladapp.com/journal/
contracts/joint-marketing-agreement/, 2024. Accessed: 2024-08-29. 1

[9] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In 7th International Conference on
Learning Representations, ICLR, 2019. 2

[10] Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label
propagation. 2020. 2

[11] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004. 3,9

[12] Pedro Tabacof and Eduardo Valle. Exploring the space of adversarial images. In 2016 interna-
tional joint conference on neural networks (IJCNN). IEEE, 2016. 3, 9

[13] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 ieee symposium on security and privacy (sp). leee, 2017. 3, 10

[14] Jiliang Tang, Huiji Gao, and Huan Liu. mtrust: discerning multi-faceted trust in a connected
world. In Proceedings of the Fifth International Conference on Web Search and Web Data
Mining, WSDM, 2012. 4, 12

[15] Mohsen Jamali and Martin Ester. A matrix factorization technique with trust propagation
for recommendation in social networks. In Proceedings of the 2010 ACM Conference on
Recommender Systems, RecSys, 2010. 4, 12

[16] Jon Kleinberg. Networks, Crowds, and Markets. Cambridge University Press, 2010. 6

[17] Mark Granovetter. Threshold models of collective behavior. American journal of sociology,
1978. 6, 8

[18] Mark Newman. Networks. Oxford university press, 2018. 6

[19] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. A data-based approach to social
influence maximization. Proc. VLDB Endow., 5(1):73-84, 2011. 6

[20] Ying Wang and Yanhao Wang. Opinion-aware influence maximization in online social networks.
In 6th International Conference on Data Science and Information Technology, DSIT, 2023. 6

[21] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 2017. 6,7, 12

[22] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In 6th International Conference on Learning
Representations, 2018. 6

[23] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-

berger. Simplifying graph convolutional networks. In Proceedings of the 36th International
Conference on Machine Learning,, 2019. 6

https://ironcladapp.com/journal/contracts/joint-marketing-agreement/
https://ironcladapp.com/journal/contracts/joint-marketing-agreement/

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

[24] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst.,
2021. 6

[25] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data. In International conference on machine learning, 2018. 7,9, 12

[26] Daniel Ziigner and Stephan Giinnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

[27] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue
Lin. Topology attack and defense for graph neural networks: an optimization perspective. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019. 7,9, 12

[28] Mengmei Zhang, Xiao Wang, Chuan Shi, Lingjuan Lyu, Tianchi Yang, and Junping Du.
Minimum topology attacks for graph neural networks. In Proceedings of the ACM Web
Conference 2023, 2023. 7, 12

[29] Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj K.
Singh. GCOMB: learning budget-constrained combinatorial algorithms over billion-sized
graphs. In Advances in Neural Information Processing Systems, 2020. 7

[30] Sanjay Kumar, Abhishek Mallik, Anavi Khetarpal, and Bhawani Sankar Panda. Influence
maximization in social networks using graph embedding and graph neural network. Inf. Sci.,
607:1617-1636, 2022. 7

[31] Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Ziigner, Aleksandar Bojchevski, and
Stephan Giinnemann. Robustness of graph neural networks at scale. Advances in Neural
Information Processing Systems, 34,2021. 9

[32] Felix Mujkanovic, Simon Geisler, Stephan Giinnemann, and Aleksandar Bojchevski. Are
defenses for graph neural networks robust? Advances in Neural Information Processing
Systems, 35, 2022. 9

[33] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In AAAI, 2020.
12

[34] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial
attacks and defenses. arXiv preprint arXiv:2005.06149, 2020. 12

A Related Work

Models of Spreading Network Processes. The modeling of the diffusion of innovations in a
network through the process of social contagion is a long studied topic [16]. [17] developed a
threshold based model of collective behaviour where individuals are influenced by the proportion
of others who come to a particular decision. [3] studied a coordination game of direct benefits from
aligning choices with neighbors in a social network. In epidemiology, the spread of biological disease
is studied using probabilistic transmission models of Susceptible, Infected and Recovered (SIR)
individuals [18]. The use of the network value of customers for marketing is first explored in [1, 2].
Consequently, Influence Maximization (IM), the problem of finding the most influential seed set for
viral marketing has been studied extensively [4, 19, 20]. Dynamic Viral Marketing lies within the
broad class of spreading network processes and we show how its connected to IM.

Graph Neural Networks. Graph Neural Networks (GNN) are message passing neural networks that
operate on attributed networks and have shown great success in problems such as node classification,
link prediction, recommendation systems, and community detection. Various GNN architectures
have been proposed since their first inception- Graph Convolutional Networks [5], GraphSAGE [21],
Graph Attention Networks [22], Simplifying Graph Convolutional Networks [23]. We refer the
reader to [24] for an extensive survey of graph neural networks. We use GNNs as the underlying
propagation model for Dynamic Viral Marketing.

Gradient-based Network Optimization. Gradient-based network optimization is used in many
combinatorial network optimization problems. In the context of adversarial attacks on GNNs,
perturbations are made using gradient optimization on the input network strucure to bring down the

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

accuracy of a GNN classifier [25-27]. Global attacks with dynamic budget adjustment for Topology
PGD [27] are considered by [28]. In [29], reinforcement learning policies are optimized to solve
Maximum Coverage, Vertex Cover, and Influence Maximization problems on networks. In [30],
graph neural networks are optimized to create graph embeddings and predict influence of nodes for
solving Influence Maximization. We use gradient-based network optimization to develop Dynamic
Gradient Influencing.

B Notation and Preliminaries

Consider a graph G = (A, X), with the associated adjacency matrix A € {0,1}"*™ and node
attribute matrix X € {0, 1}"*9 respectively, and node labels Y € {0, 1}". We refer to the associated
node-idsas V = {1,...,n}. We denote the node feature z,, € {0, 1}%, and the node label y,, € {0,1}.
The set of adopters and non-adopters is denoted as .S and D respectively. For convenience, we denote
the sub-matrix of A containing node connectivity from a set of nodes S to a set of nodes D as Ag p,
the sub-matrix of X containing features for a set of nodes S as Xg, the vectors of ones and zeros
as 1 and O respectively. We denote the weights on edge and feature perturbations as P4 and Py
respectively. The gradient scores on edge and feature perturbations are denoted by P, and Py
respectively. For a dynamically changing network, the superscript ¢ is used to indicate the variable at
time ¢; we drop the superscript if it is clear from the context.

We consider the large family of graph neural networks [5, 21] to construct layerwise hidden represen-
tations and finally output classifier logit scores Z € R™*2, For an L-layer GNN,

Hy=o(AW,H_1), Hy=X, Z=H,

where W refers to the learnable GNN parameters at layer 1, o is a nonlinear activation function, and
Ais the GNN propagation matrix. For Graph Convolutional Networks (GCN) [5], A=A"2AA"3,
where A = A + I and A is the associated degree matrix. For GraphSAGE [21] with mean pooling,
A = A=1A. The predicted labels v, € {0, 1} for each node v € V are given by the class with the
maximum logit score. In the typical semi-supervised learning scheme for node classification, referred
to as transductive learning, the GNN parameters W are learned by minimizing the cross-entropy
classification loss,

Lir(v) = —loga(2,)y, @

where z,, denotes the logit scores for node v and o is the softmax function.

C NP-Hardness of DVM

Consider an instance of the NP-Complete Knapsack problem, defined by a maximum value V" and a
maximum weight W, and a set of n items X = {(v1,w1), (v2, w2), ..., (vn,w,)} where v; and w;
denote the 7*" item’s value and weight respectively. We wish to know whether there exists a subset of
items Z C X with total weight Zie » w; < W and total value Zie vy > V. We show that this can
be viewed as a special case of the Dynamic Viral Marketing problem.

Given an arbitrary instance of the Knapsack problem, consider a weighted star network with target
node ¢ at the center which is connected to n source nodes. Each node has a single feature, whose
value at node ¢ is 0 and node ¢ is x; = 1 — w;. The weight on the edge between node ¢ and ¢ is set
to a; = v;. The initial label on node ¢ is 0 and the initial label on the other nodes is 1. The cost of
changing the feature at a node from a value of 1 — w; to 1 is w;. The GNN classifier parameters are
tuned such that the prediction on node ¢ flips from O to 1 when the weighted sum of its neighborhood
of n nodes with feature value x; = 1, is at least V. In other words, the Knapsack problem is solvable
if 3 e @illzs = 1] =2 Vand 32,0y willz; = 1] < W. Thus, if the DVM problem can find
feature flips costing at most W at ¢’s neighbors whose edge weights sum to at least V' then the
Knapsack must be solvable. [

D Connection of Influence Maximization to DVM

We draw an interesting connection between DVM and the related problem of influence maximization
(IM) [4]. Consider the linear threshold propagation model [17], where nodes i € [n] randomly

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

choose a threshold ; € [0, 1] and incoming influence edge weights /; ; such that Vi, >, I; j < 1.
The propagation unfolds in discrete time steps, and if the set of active nodes at any given step is .5,
then an inactive node becomes active if the following constraint is satisfied,

Zfi,j > 0; (5)

JjeS

While the objective in IM is to find a set of seed nodes for maximizing spread, we instead search for a
sequence of dynamical changes to maximize spread. Despite the difference, given the set of adopters
St=1 at step t — 1, the criterion for a node to flip in DVM has a similar form as Eq. 5. Suppose
that the L-layer GNN f, has the associated L-step random walk propagation matrix M. Then the
following theorem characterizes the dynamic node thresholds and influence edge weights,

t

Theorem 1. Let the vector 5; =z;— x;_l denote the change in the feature of node j from time t — 1

to t. Further, let the matrix £ = M* — M~ denote the change in the L-step random walk matrix M
from time t — 1 to t. Then the dynamic threshold and influence edge weights for node i to flip at time
t according to the criterion in Eq. 5 are given by,

t t—1 t—1
0 =Zio T4 6)
t _ oagt Tt t T t—1

L, =M o' e; +§ a0 @)

where « is a vector which depends on the parameters 0 of the GNN.

Proof. Consider a L-layer GNN without non-linearities. Then the criterion to flip node ¢ at time ¢
can be expressed in terms of the L-step random walk matrix M and the weights W,

Z twl Wat > Z Mw] (Wat (3)

JEN(®) JEN(i)

where wr,1 and wr, o represents the final layer classifier vectors for the two classes, and W =
Hl] ' W, is the combined feature transform of the first L — 1 layers.

The criterion can be equivalently written as,

Z [M; leVV(:U —mJ)—i—(ij—ijfl)wf’lV_Vx Mt 1wL 1Wx >

JEN()
Z [Mt wLOW(x _%)+(ij_Mitj71)wL0W5Ut 1+Mt fw 0W$t 7 ©
JEN(i)

Rearranging terms,

Z [Mt (wL 1 ng)VT/(a:E - 33;_1) + (Mzt] - Mitj_l)(w£1 - wg’O)sz_l] >
JEN(3)
> M wi WalTh = > MWl el (10)
JEN(3) JEN(i)

Denoting o« = W7 (w L1 — wr0), and observing that the right hand side is the logit margin at time
t — 1, the above simplifies to,

> MhaTel ¢l a2t T > 2 - Al (11)
JEN(i)

O

Intuitively, the dynamic node threshold depends on its logit margin, and the dynamic influence
edge weights depend on both the feature change ¢; and the random walk propagation change &; ;.
Theorem 1 suggests that budget should be spent on changes which contribute most to the incoming
influence weights and push the node just beyond its threshold.

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

E More details on Gradient-Guided Node Flipping

The only changes that can happen to the adjacency matrix A and feature matrix X are restricted to
the submatrices Ag p and X g respectively. To rank the set of restricted perturbations, we define,

Asp = Atsjrl) + Pho (11" - Afs‘?é)v A g = (Ag,D)T (12)
Xi=X5+ Pho(11” — x5 (13)

where P} and P% represent the weights on the edge and feature perturbations, S = S'~! and
D = D'7!, and o denotes the Hadamard product. We initialize P} = 007 and P% = 007

While it’s an NP-Hard combinatorial optimization problem to find the minimal perturbation set that
flip a node, given that the adjacency and feature matrices are both discrete, first-order gradients
work well enough in practice to find the required perturbations [25, 27]. We consider the negative
cross-entropy loss as our flip loss for the chosen candidate node v € D,

Li,(v) =logo(zh ™)o (14)

Note that y,, = 0 for non-adopters and y,, = 1 for adopters. We then compute non-negative gradient
scores on edge perturbations, P, and feature perturbations, Pk, with respect to the flip loss,

oL,)
L (v) ,0), P;;max< ,o) (15)

oP%
Note that we only compute the gradients once for all the perturbations. While it’s possible to
recompute gradients after every perturbation [25], we find that this is not that necessary to find the
minimal set of perturbations. Moreover, as shall be shown, by merging and sorting the perturbations
using the gradients, we can find the minimal perturbation set and minimum budget efficiently. Finally,
suppose the minimum budget required to convert v is B(v), then we find the top-B(v) indices in the
union of edge and feature perturbations,

aLj"lip (U)

I—C’z = max <
aP%

P! = sort(merge(PY, P%)) ity il = argtop-ky_p () P’ (16)
Using the index sets i%y and 7% we can make the updates to the network to convert v,

[Aspliy, <1, Abs(Asp)" [X§ly 1 (17)

F More details on Node Flipping Budget Computation

The budget needed to flip a node v depends on both the logit margin in Eq. 6 and the node’s degree
deg(v) [31, 32]. In the adversarial attack framework, the practice is to set the node budget equal to
its degree for local attacks [32], or choose a loss function which orders gradients in order of nodes
closer to the decision boundary for global attacks [31]. However, due to the budget minimizing
objective of DVM, we need to compute the budget precisely and pick candidate nodes which need
the least budget.

Therefore, to compute the minimum budget B*(v) that converts node v, we use the bisection method

[11, 12]. Algorithm 1 shows the entire pipeline. For each node, we compute the sorted gradients, P
in Eq. 16 once and run bisection search over these gradients to find the minimal set of perturbations
required to convert v. We initialize the lower and upper bound for search as 0 and deg(v), the degree
of v, respectively. Thereafter, the upper bound is doubled until it is sufficient to convert v. We set the
maximum upper bound equal to the maximum node degree of the network. After fixing the upper
bound, bisection search repeatedly halves the search interval by checking feasibility of conversion at
the midpoint of the interval and converges logarithmically.

We observe that other nodes can also flip due to the same structure or attribute changes made for
flipping a candidate node. Therefore, for the purpose of choosing the best candidate node, we update
the budget,

B'(v) + B'(v) + (1S = |Sy]) (18)

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

where S? is the set of adopters at time ¢ if node v is selected as the candidate node to flip. Thus, B*(v)
represents both the node flipping budget and the "collateral damage" to other nodes from flipping it.
Therefore, if a node requires needs more budget but causes high collateral damage it is preferable to a
node with a lesser actual budget.

Since budgets need to be recomputed for all non-adopters at every step, we make the algorithm faster
by hashing node budgets and only recomputing budgets for nodes whose budget has changed. The
recompute set ! is defined as the set of nodes whose logit scores changed in the previous time step,

R' = {v|v € D', 2t # 2171} (19)

For nodes whose logit scores are unchanged the actual budget might still change slightly, but for the
purposes of picking the best candidate node we ignore these small changes.

G More details on Meta Influence and Meta Attribute Flips

Due to the dynamic sequence of changes involved in spreading product adoption in DVM, first-order
gradients in Eq. 15 are insufficient to capture the long-range effects of a perturbation. While the
flipping budget is minimized at each step, we need to characterize nodes that have high influence
so that adoptions can sequentially cascade. Therefore, we develop the Meta Influence heuristic to
model long-range effects and estimate downstream influence. Meta Influence uses Meta Attribute
Flips which are feature perturbations that increase the potency of outgoing edge perturbations at an
adopter node. Consequently, the Meta Influence is defined as the normalized gradient score on an
adopter’s outgoing edge perturbations post Meta Attribute Flips.

For Meta Attribute Flips, we again restrict feature perturbations, this time only to the features of node
v, and define corresponding feature perturbation weights Px,

2! =2l + Pyo(1—al) (20)

v

where ¢’ indicates an auxilliary time step and we initialize Px = 0. To capture the effect of Meta
Attribute Flips, we consider the following influence loss which is the sum of a CW-type loss [13] on

all non-adopters nodes, and compute gradient scores Py,
; 0) 21

Lﬁnﬂ(“) = Z (thvl - qu,o)v P)t(= nax (
weD

Thereafter, we update the features z,, using Meta Attribute Flips, which are the top-k ranked pertur-

bations in P)t(,, for the purposes of computing Meta Influence,

8L§;zfl(v)
oPY

i =argtopk Py, [al],y <1 (22)

where k is a hyper-parameter controlling the number of Meta Attribute Flips. From Thm. 1, Meta
Attribute Flips find feature changes that align with the GNN’s classifier weights and increase the
dynamic outgoing edge influence to other nodes in Eq. 7. Further, they also help to increase the
margin from the GNN decision boundary and thus increase the node’s potency.

For finding the Meta Influence, we restrict the outgoing edge perturbations P4 from node v to the
non-adopters D, and define corresponding edge perturbation weights Py,

AV = AL+ P o (1 AL) (23)

where " indicates another auxilliary time step after ¢’ and we initialize Pj‘” = 0. We then consider
the same influence loss in Eq. 21 on all non-adopters ar time t'’, and compute non-negative gradient

scores]52”,
pj' = max < ,0> (24)

‘We note that herein the influence loss uses the perturbed feature xg, therefore Meta Influence takes
into account second order gradient effects. However, the gradients P, themselves are not second-
order since a:fj/ itself doesn’t contain any first-order gradients. Finally, we denote the Meta Influence
I*(v) of anode v as the normalized gradient score in If’}ﬁ‘” averaged over the number of non-adopters,

1"

aLtnfl (U)
opPY

10

W N =

wm

10
11
12

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

17 P
I'(v) = | D|A (25)

During candidate node selection, Meta Influence is used for tiebreaking between equal budget nodes
(Eq. 3). Further, we threshold on Meta Influence to perform Meta Attribute Flips at candidate nodes
after flipping,

v It (v) >
it {xtv if It(v) > 8

26
otherwise (26)

'IU

where [is a hyper-parameter controlling the threshold. Using Meta Influence, we can estimate which
nodes will have high influence on their outgoing edges after Meta Attribute Flips, and thus judiciously
allocate budget for Meta Attribute Flips.

H Complexity

In each step, for each target, DGI makes 1 backward pass to compute gradients and then sorts the
gradients in O(FE log E) time, followed by O(log A) forward passes in bisection search, where A
is the maximum allowed budget, which we set as the maximum degree of the graph. For the set of
minimum budget nodes, the Meta Influence makes 2 forward and 2 backward passes. Time taken
for a forward or backward pass in a 2-layer GNN on a GPU is O(1) assuming small input, hidden
and output sizes. Thus, in the first step of DGI, we make O(|D|) inner steps of gradient-guided
node flipping, budget computation, meta attribute flips and meta influence, which takes a total of
O(|D|(Elog E 4 log A)) time. In later steps, due to budget hashing, we only recompute budgets
for O(1) nodes, which takes O(FElog E + log A). Assuming that every step of DGI flips O(1)
non-adopter nodes, the total runtime complexity of DGI to achieve a spread of ¢ can be determined,

O(¢p(Elog E +log A)) + O(|D|(Elog E + log A)) 27

Algorithm 2: DGI

Input: G=(A,X), GNN fj, Adopters S,
Non-Adopters D, k, 8

Algorithm 1: Bisection search to find mini- Output: Minimum budget required s.t.
mum budget. |S| =500
Input: G = (A, X), GNN fy, P, Target 1 Init budget B = 0
node v. 2 do
Output: B(v), minimum budget to flip v. 3 forv e Ddo
Init bounds U = deg(v) and L =0 4 Compute P in Eq. 16
do 5 Call Algorithm 1 to compute B(v)
| U=2U 6 | end
while v is not flipped by top-U 7 Find N, the set of minimum budget
perturbations in]3; nodes
do 8 for v € N do
C=| %] 9 | Compute the Meta Influence I(v)
if v is not flipped by top-C 10 end
T u v* + max I(v)
perturbations in P then vEN
‘ L=C 12 Perturb the network to flip v*
else 13 if I(v*) > [then
‘ U=0C 14 Make k£ Meta Attribute Flips at v*
end 15 B(v*) < B(v*) + k
while U — L > 1; 16 end
return :U 17 B+ B+ B(v*)
8 | S,D <« {vly, =1}, {v]y, = 0}

19 while |S| < 500;
return: 3

11

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

I Experimental Details

Datasets. We utilize real-world attributed datasets to evaluate DGI and baseline approaches. Epin-
ions and Ciao [14] are datasets collected from two popular product review sites, where each user can
specify their trust relation in addition to rating products. Flixster [15] is a dataset collected from a
popular movie rating website with an associated social graph. We create new splits for these datasets
using the provided user networks and product ratings from [14, 28]. We sort the nodes using their
degrees and take the subgraph corresponding to the lowest degree nodes. To generate features for
each user, we pick a binary value for each product/movie based on whether they rated it or not. We
choose the product/movie with the least number of seeds as the optimization goal for DVM. The
dataset statistics are depicted in Table 2.

Table 2: Dataset statistics. |S| denotes seed set size.

Dataset | [V| | |£| | Avg, MaxDeg. | |S| | Feats

Flixster | 1045 | 1488 2.8,153 5 839
Epinions | 1054 | 1214 2.3,25 5 2999
Ciao 1057 | 1190 2.3,36 7 2999

Baselines: We compare to the following approaches:

* Degree selects target nodes based on the low-degree first heuristic. Until the target is flipped,
Degree repeatedly spends a unit budget by first randomly picking a seeder node, then either
adds a link from the seeder to the target if they aren’t conencted, else turns on a feature with
high-correlation to the label.

* Margin selects target nodes based on the low-margin first heuristic, i.e, nodes that have a smaller
margin to the decision boundary are picked first. Edits to the structure and features are made the
same as Degree.

* GradArgmax [25] is a gradient based white-box adversarial attack on structure. Target nodes
are selected based on the low-loss heuristic, i.e, nodes with lower losses are picked first. We
adapt GradArgmax to make edits to both structure and features.

* MiBTack [28] is another white-box adversarial attack which dynamically adjusts node budgets
for topology-based PGD [27]. We adapt MiBTack to make edits to both structure and features
while selecting target nodes the same as GradArgmax.

I.1 TImplementation details

For the propagation model, we use 2-layer GNN architectures, as stacking multiple layers can lead
to oversmoothing in GNNs [33]. We report results with both GCN [5] and GraphSAGE [21] as the
backbone propagation models. We set the hidden layer to size 64 and use ReLU as the intermediate
non-linear function. We train models using cross entropy loss for 200 epochs, a patience of 50,
learning rate le-2 with cosine annealing and weight decay regularization Se-4. We use all nodes and
edges during training to attain the best GNN decision boundary. All models achieve 100% accuracy
on the seed set along with a small number of false positives that are in the vicinity of the seeds and are
included in the initial seed set. For the spread approaches, the hyperparameter k£ for number of Meta
Attribute Flips is set to a value in [1, 2,4, 8, 16] using grid search with Fixed DGI. The threshold
hyerparameter 3 is set to a value within [0, 1] of the maximum Meta Influence in Fixed DGI using
grid search with Dynamic DGI. The maximum upper bound to convert a node is set to the maximum
degree in the graph during bisection search. If the spread approach is unable to increase the size of
the adopters for 40 steps, we halt and report failure. We use spread approaches with GCN backbones
for all our analysis, and note that the SAGE backbone yields the same insights. DGI and baselines
are implemented using the DeepRobust library in Pytorch [34] for adversarial attacks on GNNs. All
GNN models and spread approaches are trained and executed on a single NVIDIA RTX2080 GPU
with SGM RAM.

L2 Cascades created by DGI

To understand cascades created by the DGI spread, in Figure. 4a, we qualitatively visualize a subgraph
spanned by the Dynamic DGI edges on Flixster and color each node according to its cascade hop

12

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

= Flixster
=3 Epinions.
= Ciao

Source @ Hop1 Hop2 Hop3

(a) (b) (0) (@)

Figure 4: (a) Visualization of cascading dynamics of DGI. Node sizes and colors correspond to
number of perturbations and cascade hops respectively. Only edges added by DGI are depicted. (b)
Number of flipped nodes at different cascade hops. DGI creates long and staggered cascades for
viral marketing. (c) Histogram of perturbations contributed by intermediary spreader nodes with
increasing degree. (d) Histogram of perturbations contributed by intermediary spreader nodes with
increasing GCN classification margin. Higher contributions are made by spreader nodes with low
degrees and high margins.

distance from the initial seed set in this subgraph. We define the cascade hop distance of a node from
the seed set inductively:

hop(i) =1+ jmax hop(j) (28)
where hop(i) = 0 for nodes in the initial seed set, and PN (7) denotes perturbed neighbors of node 4
at the step when it flips. Further, we use node size to indicate the number of perturbations the node
contributes in the course of the multi-step spread. We clearly see a strong pattern of cascading flips,
whereby a node flipped earlier later flips many more and so on inductively. Therefore, the DGI spread
creates cascading flipping, similar to a chain of referrals in a social network, where each referral is an
entirely new edge. We also see from the node sizes that a few nodes are dominant spreaders while
others contribute very little.

To understand the cascades created by DGI quantitatively, in Figure. 4b we plot the number of
non-adopter flips with increasing hop distances for Flixster, Epinions and Ciao. Multi-hop cascade
flips account for a sizable number of the total flips, which indicates that multi-hop path flips help in
decreasing the budget required for the spread. Further, the cascade hop length can be considerably
large. Particularly, for Flixster, we see nodes with cascade hop lengths up to 30, indicating how the
added perturbations can percolate the adoption far from the seed set.

I.3 Characteristics of intermediary spreaders

To understand the characteristics of intermediary spreader nodes, we plot the histogram of perturba-
tions contributed by intermediary spreader nodes with respect to their degree and classification margin
in Figure. 4c and Figure. 4d respectively. For each dataset, we count the number of perturbations
arising from nodes with the degree and classification margin lying within the same sub-interval. The
degree and margin are considered at the moment the perturbation is made to account for dynamic
changes. Due to the degree normalization in GNN message passing, low degree nodes have a higher
influence edge weight, and we observe that nodes with low degree are highly correlated to higher
number of perturbations. On the other hand, high classification margin indicates high feature and
neighborhood alignment with the GNN classifier, therefore making outgoing edge or feature perturba-
tions more potent. Thus, we see that perturbations are made exclusively at nodes with the maximum
possible margin.

13

	1 Introduction
	2 Dynamic Viral Marketing Problem
	3 Dynamic Gradient Influencing Model
	3.1 Gradient-Guided Node Flipping
	3.2 Node Flipping Budget Computation
	3.3 Meta Influence using Meta Attribute Flips

	4 Experiments
	5 Conclusion and Future Work
	A Related Work
	B Notation and Preliminaries
	C NP-Hardness of DVM
	D Connection of Influence Maximization to DVM
	E More details on Gradient-Guided Node Flipping
	F More details on Node Flipping Budget Computation
	G More details on Meta Influence and Meta Attribute Flips
	H Complexity
	I Experimental Details
	I.1 Implementation details
	I.2 Cascades created by DGI
	I.3 Characteristics of intermediary spreaders

