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Abstract
Weight binarization has emerged as a promising
strategy to drastically reduce the complexity of
large language models (LLMs). It is mainly clas-
sified into two approaches: post-training bina-
rization and finetuning with training-aware bina-
rization methods. The first approach, while hav-
ing low complexity, leads to significant loss of
information from the original LLMs, resulting
in poor performance. The second approach, on
the other hand, relies heavily on full-precision
latent weights for gradient approximation of bi-
nary weights, which not only remains suboptimal
but also introduces substantial complexity. In this
paper, we introduce a novel framework that effec-
tively transforms LLMs into multi-kernel Boolean
parameters, for the first time, finetunes them di-
rectly in the Boolean domain, eliminating the
need for expensive latent weights. This signif-
icantly reduces complexity during both finetuning
and inference. Through extensive and insight-
ful experiments across a wide range of LLMs, we
demonstrate that our method outperforms state-of-
the-art ultra low-bit quantization and binarization
methods.

1. Introduction
Large language models [53, 7, 52, 34] have demonstrated
unprecedented capabilities, largely due to the continuous
growth in both model and dataset sizes. A key area of
focus in optimizing these models is lower-precision compu-
tation, which offers substantial benefits in terms of memory
and computational efficiency. One prominent approach to
achieving this is through the quantization of weight parame-
ters, which reduces the model size by lowering the precision
of the weight values. Recent studies on scaling laws [15, 30]
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have highlighted the potential of using low-precision tech-
niques for large language models (LLMs).
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Figure 1: Finetuning OPT mod-
els [63] using our 3 Boolean ker-
nels ( ), compared to QPTQ
[18] ( ), which quantizes the
models to 3 bits, and the FP-16
baseline ( ) on the C4 dataset.

Binarization represents
one of the most extreme
forms of quantization for
LLMs. While signifi-
cant progress has been
made, challenges remain
[61, 23, 32]. Even
with advanced techniques
like Quantization-Aware
Training (QAT), which
fine-tunes the model ex-
tensively after binariza-
tion [58, 25], or trains it
from scratch [56], perfor-
mance still lags behind
that of full-precision (FP) models. This performance gap
can be attributed to the limited representation capacity of
binary weights and the heavy reliance on FP latent weights
for binarization. This reliance not only makes the approach
computationally expensive but also suboptimal, as it re-
quires gradient approximation. Meanwhile, recent advances
in 4-bit quantization have achieved remarkable compres-
sion with minimal accuracy loss, but further compression
or applying these methods to smaller models has yielded
unsatisfactory results [18, 33].

In this paper, we aim to push the boundary of low-precision
LLMs by proposing a novel method named as Multi-
ple Boolean Kernels (MBOK). We extend the work in
[43], which proposes training neural networks with native
Boolean weights directly in the Boolean domain, However,
effectively applying this approach to LLMs remains a key
challenge. In particular, our contributions are as follows:

• We propose the framework MBOK, which employs multi-
ple Boolean kernels, each using distinct Boolean weights
(§ 4.2). This allows for flexibly representing LLMs with
low bits, while approaching to FP performance with min-
imal both finetuning and inference cost. The Boolean
weights are directly trained in Boolean domain, avoiding
the need for FP latent weights and gradient approximations.

• We propose a novel successive method that effectively
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Table 1: A summary of SOTA binarization methods for LLMs compared to our method.

Method
Train

from Scratch
Post-training
Binarization

Finetune from
FP Model

Calibration
Data

Weight
Update

Multiple
Binary Bases

Higher-bit
Salient Weights

BitNet [56] ✓ ✗ ✗ NA FP latent-weights ✗ ✗
BiLLM [23] ✗ ✓ ✗ ✓ NA ✓ ✗

PB-LLM [61] ✗ ✓ ✗ ✓ NA ✗ ✓
STBLLM [16] ✗ ✓ ✗ ✓ NA ✓ ✓

ARB-LLM [32] ✗ ✓ ✗ ✓ NA ✓ ✓
QBB [8] ✗ ✓ ✓ ✓ FP latent-weights ✓ ✗

OneBit [58] ✗ ✗ ✓ ✓ FP latent-weights ✗ ✗
MoS [25] ✗ ✗ ✓ ✓ FP latent-weights ✗ ✗

MBOK [Ours] ✗ ✗ ✓ ✓ Native Boolean weights ✓ ✗

transfers knowledge from an FP LLM into the Boolean
model (§ 4.3), followed by further fine-tuning using knowl-
edge distillation (§ 4.3.2).

• We introduce a method for automatically allocating the
number of kernels for each weight (§ 5).

• We provide a comprehensive empirical analysis and bench-
marks, demonstrating our method’s superior performance
over recent binarization and quantization approaches (see
§ 6). For example, Fig. 1 shows that our method achieves
the best accuracy-compression trade-off, outperforming
FP and existing quantization techniques.

2. Related Works
LLMs quantization. Quantization techniques are com-
monly used to reduce the memory and latency of LLMs.
They fall into two categories: QAT, which involves retrain-
ing or finetuning in a quantized form, and Post-Training
Quantization (PTQ), which can be applied directly without
retraining. Due to the difficulty of retraining such large
models, most work focuses on PTQ [18, 51, 33, 31], though
recent efforts also explore QAT via data-free methods (LLM-
QAT [38]), or parameter-efficient fine-tuning like LoRA [13].
A promient PTQ method is QPTQ [18], which introduces
one-shot low-bit weight quantization using approximate
second-order information. Follow-up work refines this
by addressing outliers [27, 14], accounting for activation
effects [33, 31], and optimizing quantization parameters
(OmniQuant [50]). However, effective quantization is still
challenging [59].

Binarization. This represents the most extreme form of
quantization, typically using the sign(·) function with gra-
dients estimated via the straight-through-estimator (STE)
[5]. Early work focused on small Transformer models [55]
trained or fine-tuned on labeled data [2, 46, 37, 36]. Re-
cent efforts have extended binarization to LLMs. Methods
like BiLLM [23], PB-LLM [61], STBLLM [16], and ARB-LLM
[32] adopt hybrid PTQ approaches, binarizing non-salient
weights while using higher precision for important ones,
with calibration data used to adjust scaling factors. QBB [8]
further improves this with multiple binary bases and knowl-
edge distillation. In contrast, BitNet [56] replaces linear

layers with a custom 1-bit weight structure, BitLinear, and
trains the model from scratch. OneBit [58], which decom-
poses weights into 1-bit components and scaling vectors
for QAT, further enhanced by MoS [25] using a mixture of
scalings. Despite progress, these methods remain costly due
to their dependence on FP latent weights during training.
Table 1 summarizes the key characteristics of these methods
in comparison to ours.

3. Preliminaries
Notations. We use a standard notation for vectors (a),
matrices (A), and scalars (a). The i-th element of a vector
a is a[i], and the element at the i-th row and j-th column of
a matrix A is A[i,j]. The symbol ⊙ denotes element-wise
multiplication, with broadcasting if needed.

3.1. Neural Network Binarization and the Problems of
Full-Precision Latent Weights

Binarization is an effective technique for reducing both the
size and computation of deep learning models by converting
high-precision weight parameters into 1-bit values [24, 11,
48]. For a linear layer, Y = XW⊤

FP + b, where XFP ∈
Rb×n is the input data, and W ∈ Rm×n with the input
size n and output size m, and b ∈ Rm are the FP weights
and bias. Binarization results in Y = α · XW⊤

bin + b,
with Wbin = sign(WFP) and α as a scaling factor (e.g.,
α = ∥WFP∥1

m×n ) [48].

It is important to note that, during training, the FP weights
must be retained for learning the binarized weights. In
vanilla gradient descent, binarized weights are updated as
Wbin = sign(WFP − η ·GWFP), where η is the learning
rate and GWFP

is the gradient of the FP weights. This leads
to high memory usage, especially with optimizers like Adam
[28], which require storing two additional FP momenta for
each parameter. Moreover, the gradient approximation for
binarized weights often uses a differentiable proxy, like
the STE [5], but this introduces performance drops due to
proxy gradient noise. This noise can cause oscillations and
instability during training.

3.2. Native Boolean Framework for Neural Networks
To address the issues associated with latent-weight-based
approaches, [43, 44] recently proposed a principled frame-
work for directly training Boolean neural networks in the
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Boolean domain. Consider the l-th Boolean linear layer; in
the forward pass, the output of the next layer is defined as:

Y
(l)
[k,j] = b

(l)
[j] +

n∑
i=1

L(X
(l)
[k,i],W

(l)
[i,j]), 1 ≤ j ≤ m, (1)

where k denotes the sample index in the batch, and L is a
logic gate such as and,or,xor, or xnor; Hereafter, for
clarity, we consider L = xnor as a concrete example.
The weights W(l)

[i,j] are Boolean values {TRUE, FALSE} or
{−1,+1}, as typically used in practical implementations.

As discussed in [43], the logic gate L can be extended to
handle mixed-type data. In this paper, we focus on the
case where the input data is real-valued, and the weights are
Boolean. Specifically, for an input element x ∈ R, we define
xbool = TRUE ⇔ x ≥ 0, and xbool = FALSE ⇔ x < 0, and
|x| its magnitude. The logic operation between a real input
x ∈ R and a Boolean weight w ∈ B is defined according to
[43] as follows:

xnor(w, x) ≜ s, s.t. sbool = xnor(wbool, x), (2)
and |s| = |x|. (3)

Backward pass. This layer receives the backpropagation
signal from the downstream layer. Specifically, Z(l)

[k,j] ≜
δL

δY
(l)

[k,j]

denotes the variation of the loss function L w.r.t.

the output at layer l. To optimize the Boolean weights, we
need to compute the corresponding loss signal, denoted
as Q

(l)
[i,j] ≜ δL

δW
(l)

[i,j]

, which is aggregated over the batch

dimension k as:

Q
(l)
[i,j] =

b∑
k=1

1(Q
(l)
[k,i,j] = TRUE)|Q(l)

[k,i,j]| (4)

−
b∑

k=1

1(Q
(l)
[k,i,j] = FALSE)|Q(l)

[k,i,j]|, (5)

where Q
(l)
[i,j,k] = xnor(Z

(l)
[k,j],X

(l)
[k,i]), and 1(·) is the indi-

cator function. The backpropagation signal for the upstream
layer, P(l)

[k,j] ≜
δL

δX
(l)

[k,j]

, can be computed in a similar man-
ner.
Boolean optimizer. Given the loss signal, the rule for up-
dating the Boolean weight W(l)

[i,j] to minimize the loss func-

tion L is as W
(l)
[i,j] = ¬W

(l)
[i,j] if xnor(Q(l)

[i,j],W
(l)
[i,j]) =

TRUE. Based on this update rule, we can develop an opti-
mizer that accumulates the signal Q(l)

[i,j] over training iter-

ations. Specifically, let W(l),t
[i,j] denotes the weight at itera-

tion t, and M
(l),t
[i,j] represents its accumulator, initialized as

M
(l),0
[i,j] = 0. The update rule for the accumulator is then

defined as:

M
(l),t+1
[i,j] ← βtM

(l),t
[i,j] + ηQ

(l),t
[i,j] , (6)

where η is the accumulation factor acting as a learning rate,
and βt is an auto-regularizing factor that reflects the sys-
tem’s state at time t. In our work, we use brain plasticity
[19] and Hebbian theory [21] to adaptively set βt, as dis-
cussed in [43].

Remarks on complexity and applicability to LLMs.
This Boolean framework optimizes Boolean parameters
W

(l)
[i,j] directly in the Boolean space, eliminating the need

for FP latent weights. As shown in Eq. 6, the Boolean op-
timizer is more lightweight than common LLM optimizers
like Adam, requiring only one FP momentum per param-
eter. This reduces both training and inference complexity
and avoids gradient approximation induced from STE. As
shown in Proposition A.10 in Appendix, xnor(w, s) = ws,
mathematically enabling direct application to existing linear
algebra operations. Practically, native logic operations are
much faster than multiplication.

4. Multiple Boolean Kernels
4.1. Boolean Reformulation for Linear Layers

Figure 2: Illustration of SVID.

LLMs [7, 53, 52, 3, 34] are based on the Transformer archi-
tecture [55], in which linear layers are the core elements.
Inpsired by [58], we employ sign-value-independent de-
composition (SVID) such that an FP input matrix W ∈
Rm×n of linear layers is decomposed into one Boolean
matrix Wbool ≜ sign(W) and two FP vectors sin and
sout. Precisely, let |W| be the element-wise absolute
value of W, write |W| = UΣV⊤ its singular value de-
composition (SVD) [4]. Using rank-1 approximation of
|W|, sin and sout are given as: sin =

√
σ1V[:,1], and

sout =
√
σ1U[:,1]. Then, the input matrix is approximated

as W = Wbool ⊙ |W| ≈Wbool ⊙
(
souts

⊤
in

)
. This proce-

dure is illustrated in Fig. 2.
Proposition 4.1 (Xu et al. [58]). For W ∈ Rm×n, write

W = ŨΣ̃Ṽ
⊤

its SVD. Let a =
√
σ̃1Ũ[:,1], and b =√

σ̃1Ṽ[:,1]. With the notations as described above, we have:

∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
≤

∥∥∥W − ab⊤
∥∥∥2
F
. (7)

Remark 4.2. Proposition 4.1 re-states Proposition 2 of [58]
with its precise assumption of vectors a and b which is
necessary for its proof provided in Appendix therein.

3



Ultra-Efficient and Effective Large Language Models with Multi-Boolean Architectures

Proposition 4.1 shows that using Wbool together with value
matrix approximation is better than a direct rank-1 approxi-
mation of W in terms of Frobenius-norm. This emphasizes
the important role of Wbool in approximating the original
FP matrix. Moreover, our following Proposition 4.3 shows
that the SVID approximation as described above is optimal
for approximating the original matrix Wbool.

Proposition 4.3. For W ∈ Rm×n and the notations as
described above, we have:∥∥W −Wbool ⊙ souts

⊤
in

∥∥2
F
≤

∥∥∥W −Wbool ⊙ cd⊤
∥∥∥2
F
,

∀c ∈ Rm×1,∀d ∈ Rn×1. (8)

The proof is given in Appendix C.3. The linear layer can be
then reformulated as [58]:

XW⊤
FP ≈

[(
X⊙ s⊤in

)
Wbool

]
⊙ s⊤out. (9)

4.2. Enhanced Expressivity with Multiple Kernels

Figure 3: The computation of a linear layer approximated using
multi kernels of Boolean.

We have shown that SVID provides a good approximation
of the original weights, its expressivity can be still limited
to capture well the original FP parameters of complicated
models, which were trained on large-scale datasets over
extended periods of time. To overcome this limitation, we
propose the use of a multi-Boolean kernel structure for
the weights. Specifically, we employ K kernels, where
each kernel utilizes distinct Boolean weights and scaling
factors, to better represent the original weight parameters.
This leads to the approximation: WFP ≈ Wapprox ≜∑K

k=1 W
[k]
bool ⊙ (s

[k]
outs

[k]
in

⊤
). The computation of a linear

layer can then be approximated as follows (see Fig. 3 for an
illustration):

XW⊤
FP ≈

K∑
k=1

[(
X⊙ s

[k]
in

⊤
)
W

[k]
bool

]
⊙ s

[k]
out

⊤
. (10)

Here, the computational costs associated with the FP scaling
factors, sin and sout, are small because they only involve
element-wise multiplications. The dominant computational
cost arises from the matrix multiplication between the scaled
input data, X ⊙ sin, and the weights. However, thanks to
the use of Boolean weights, the complexity is significantly
reduced, as these multiplications can be replaced by addi-
tions. Moreover, as we will demonstrate in § 6.1.1, only a
small number of kernels are required to achieve a reason-
able result. Additionally, we find that, after the successive
extraction process from the FP model (§ 4.3.1), we only
need to train the Boolean weights for the last kernel and
the scaling factors, further significantly reducing the overall
complexity.

4.3. Effective Knowledge Transfer into Boolean Models
We have introduced our proposed multi-Boolean kernel
structure for effectively representing the linear layers of
LLMs. In this section, we outline the process for trans-
ferring knowledge from a source FP model to a Boolean
model. This process consists of two main steps: (1) an
effective data-free initialization step, which maximizes the
retention of information from the source FP model, and (2)
a data-dependent finetuning step, where the Boolean model
is further trained on a target dataset with guidance from the
FP model.
4.3.1. SUCCESSIVE EXTRACTION USING SVID
For each linear layer, to initialize the values of the Boolean
weights and scaling factors for all kernels, we successively
apply SVID to the given FP weights. The goal here is to
further proceed to SVID process to approximate the residual
error introduced by the previous step. Specifically, after
each step of decomposing the weight matrix using SVID, we
obtain a residual matrix, which is defined as:

W[k]
res = W

[k]
input −W

[k]
bool ⊙

(
s
[k]
outs

[k]
in

⊤
)
. (11)

Here, W[k]
res is the residual matrix, and W

[k]
bool, s

[k]
out and

s
[k]
in are the extracted parameters for the k-th kernel, while

W
[k]
input represents the input FP matrix for step k. For the

first step, this is the original weight matrix, and for sub-
sequent steps, it is the residual matrix obtained from the
previous step.
Fig. 4 illustrate this process. Although using multiple ker-
nels effectively captures the original weight matrix, a resid-
ual error still remains at the end of the process. While this
residual error is small, it can accumulate as it propagates
through the layers, finally leading to predictions that diverge
from those of the original FP model. To address this issue,
it is necessary to further finetune the resulting model to
compensate for these errors and make it better suited to the
target task. We will discuss this in § 6.1.2. In the following
section, we will introduce knowledge distillation to achieve
this goal.
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Figure 4: Illustration of successive extractions of Boolean kernels from a given FP weight matrix.

4.3.2. FINETUNING WITH KNOWLEDGE DISTILLATION

Knowledge distillation (KD) [22] involves training a student
network to replicate the behavior of a teacher network, typ-
ically when the student is more efficient. The student is
guided by the teacher’s output distribution and/or intermedi-
ate states as “soft targets”. In our case, the FP model serves
as the teacher or source model, and the Boolean model is
the student. More specifically, the output probability distri-
bution of an LLM for a token X[i] is computed as:

p(X[i]; τ) =
exp(X[i]/τ)∑NV

j=1 exp(X[j]/τ)
, (12)

where NV is the vocabulary size and τ is the softmax tem-
perature. The logit-based knowledge distillation (KD) loss
across the sequence of all output tokens is defined as:

Llogits =
1

L

L∑
j=1

Dlogits
(
pFP(X[j]; τ), pbool(X[j]; τ)

)
, (13)

where pFP(X[j]; τ) and pbool(X[j]; τ) denote the distru-
tions on the j-th token in the input sequence yielded from
the FP and Boolean models, respectively, and L is the se-
quence length. We empirically found that the temperature
τ = 1 works best in our experiments. There are several
possible choices for the measure Dlogits [29]. We find that
the simple forward Kullback–Leibler (KL) divergence yields
the best results. A more detailed discussion of this choice is
be provided in Appendix E.2.

Additionally, to minimize the distributional discrepancies
in the intermedate layers, we incoporate an intermediate
state-based KD loss across a squence of hidden states as:

Lis =
1

L

∑
h∈H

L∑
j=1

∥∥∥Qj,h
FP −Qj,h

bool

∥∥∥2
2
, (14)

where Qj,h
FP and Qj,h

bool represent the h-th hidden states of
the FP and Boolean models for the j-th token, repsectively;
H is the set of chosen intermediate states.

Finally, the overall loss is then computed as L = Llogits +
γLis, where γ is a weighted factor that balances the contri-
bution of the two losses. We empirically found that γ = 10
works best.

5. Kernel Allocation
Using more kernels improves the Boolean model’s repre-
sentation capacity, but it increases the model size. In this
section, we present a method for automatically selecting the
number of kernels for each weight, given a specific overall
budget. Let NW represent the number of weights in the FP
teacher model, and let Kl for l ∈ [1, NW] denote the num-
ber of target Boolean kernels for the l-th weight. Our goal
is to determine k ≜ {Kl}l∈[1,NW] while meeting specific
design objectives. Several factors must be considered:

(1) Residual error: Denote e[k]l ∈ R the approximation error
when apply our successive SVID extraction method to the
k-th kernel for the l-th weight, which can be measured using
the Frobenius norm of W[k]

res (Eq. 11).
(2) Weight importance: Denote hl the importance of the
l-th weight of the FP teacher model. The importance score
is a key factor, as a higher score indicates the need for
more Boolean kernels. In this work, we propose using
projection weighted canonical correlation analysis (PWCCA)
[42] to estimate these scores, as PWCCA is a reliable tool
for analyzing representations in deep models. The details of
the method to estimate the importance scores are available
in Appendix D.1.
(3) Weight size: The size of the l-th weight is denoted by
sl and pl ≜ sl/

∑NW

k=1 sk represents its relative size in the
model.

For a given k, the size of the target Boolean model, in terms
of the number of weights, is

∑NW

l=1 Klsl. Relative to the
source FP model, this repersents an expansion ratio, defined
as:

ρ(k) ≜

∑NW

l=1 Klsl∑NW

l=1 sl
=

NW∑
l=1

Klpl. (15)

Optimization objective. To control the model size, we
constrain the expansion ratio to a target value T ≥ 1. Addi-
tionally, we constrain the kernel size to a upper limit kmax,
such that T ≤ Kmax ≤ ∞. Thus, the optimization space
is K ≜ [1,Kmax]

NW . The optimization problem is then
formulated as:
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0 20000 40000 60000

10
3

Iteration

Llogits

0 20000 40000 60000

2

4

6

8

10

12

14

Iteration

Lis

0 20000 40000 60000

0.0

0.5

1.0

1.5

Iteration

Number of Flips (×103) Optim.
Wiki2 C4

Kernel

1st 33.90 30.70
2nd 30.29 27.55
3rd 29.00 26.36
4th 28.60 25.93
All 32.04 29.08
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k∗ = argmin
k∈K

E(k), s.t. ρ(k) ≤ T, (16)

where E(k) ≜
NW∑
l=1

hle
[Kl]
l f(pl). (17)

Here, E(k) is the objective (energy) function, and f(·) is a
certain monotonically decreasing function. Based on our
experiments, a practical choice is f(pl) = (1/pl) log(1/pl).
Intuitively, we aims to minimize residual error but also
prioritize weights with higher importance and smaller size,
balancing the trade-off between accurate knowledge transfer
and model efficiency.

Optimization algorithm. The problem’s complexity is
O(KNW

max), which can be very large for LLMs. To develop
an efficient algorithm for this NP-hard problem, we observe
that e[k]l decreases with k for all l. The energy function E(k)
is maximized when k = 1, and any increase in any com-
ponent kl reduces E(k). This suggests a heuristic iterative
approach where the algorithm increments Kl by one unit
in the most efficient direction (i.e., determining the best l)
with the greatest reduction in E(k). Our final algorithm is
presented in Algorithm 9 in Appendix.

6. Experiments
Setups. In all the experiments, we follow the experimen-
tal protocol from [25]. The training dataset consists of a
mixed set, combining the WikiText2 [41] training data and
a selected partition from the C4 [47] training data, with a
sequence length of 2048. We use a cosine decay learning
rate scheduler, preceded by a warm-up phase constituting
3% of the total training time, which spans 3 epochs with
batch size 8. For Boolean parameters, the maximum learn-

ing rate is set to 5× 103. For the remaniing FP parameters,
we employ the AdamW [39] optimizer with a maximum
learning rate of 2 × 10−5 and hyperparameters β1 = 0.9,
β2 = 0.999. As a standard evaluation [25, 58], we assess
language modeling performance by measuring perplexity
(lower is better) on the WikiText2 and C4 datasets.

6.1. Ablation Studies and Analysis
6.1.1. EFFECT OF THE NUMBER OF KERNELS

We begin by examining the effect of the number of Boolean
kernels on the OPT-125M model [63]. Fig. 5 shows the nor-
malized difference between the approximated weights using
our successive SVID and the original FP weights, both at
initialization and after finetuning. As the number of Boolean
kernels increases, the approximation error decreases, lead-
ing to better perplexity performance. This contrasts with
MoS [25], where adding more experts does not consistently
improve performance and may even degrade it. This shows
the importance role of using additional Boolean weights.
As shown in Fig. 5, using 3 or 4 kernels provides a good
approximation, with diminishing improvements beyond that.
Finally, we note that the normalized difference from the FP
weights is even higher after fine-tuning with KD. We hypoth-
esize that KD finetuning compensates the errors due to the
lower expressiveness of a small number of kernels, further
emphasizing its role in adapting the model to approximate
the FP model rather than replicating every individual weight.

6.1.2. OPTIMIZATION STRATEGY

Next, we study the effect of optimizing kernels on the OPT-
125M model. We consider four Boolean kernels and train
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Table 2: Perplexity and zero-shot accuracy results of Float16, quantized and binarized LLMs.

Model Method Wbits Perplexity (↓) Zero-shot Accuracy (↑)
Wiki2 C4 BoolQ PIQA Hella. WinoG. ARC-e ARC-c Average

OPT-1.3B [63]

FP-16 16 14.62 14.72 57.82 72.42 53.70 59.51 50.97 29.52 53.99

PB-LLM [61] 1.7 272.83 175.42 62.17 54.24 27.25 50.27 27.98 23.72 40.94
BiLLM [23] 1.11 69.45 63.92 61.92 59.52 33.81 49.32 34.38 22.35 43.55
OneBit [58] 1 20.36 20.76 57.85 66.53 39.21 54.61 42.80 23.97 47.50
MoS [25] 1 18.45 18.83 60.34 68.66 41.99 53.99 44.87 26.19 49.34

QPTQ [18] 2 9.5e3 3.8e3 39.60 52.07 25.57 49.33 26.68 23.63 35.15
LLM-QAT [38] 2 4.9e3 2.1e3 37.83 50.05 25.72 49.72 25.76 25.09 34.07
OmniQuant [50] 2 42.43 55.64 56.45 60.94 33.39 51.85 38.76 23.38 44.13

MBOK [Ours] 2×1 16.13 16.61 58.53 70.67 48.11 56.75 48.19 27.90 51.69

LLaMA-7B [53]

FP-16 16 5.68 7.08 73.21 77.42 72.99 66.85 52.53 41.38 64.06

PB-LLM [61] 1.7 198.37 157.35 60.51 53.53 27.23 49.17 27.48 26.02 40.66
BiLLM [23] 1.11 41.66 48.15 62.23 58.65 34.64 51.14 33.08 25.68 44.24
OneBit [58] 1 8.48 10.49 62.50 70.40 54.03 55.32 41.07 30.88 52.36
MoS [25] 1 7.97 9.72 64.59 71.82 58.18 58.88 42.09 31.31 54.48

QPTQ [18] 2 1.9e3 7.8e2 43.79 49.95 25.63 49.41 25.84 27.47 37.02
LLM-QAT [38] 2 7.1e2 3.0e2 37.83 50.87 24.76 51.78 26.26 25.51 36.17
OmniQuant [50] 2 15.34 26.21 58.69 62.79 43.68 52.96 41.54 29.35 48.17

MBOK [Ours] 2×1 6.83 8.53 69.20 74.32 64.80 60.30 49.05 34.90 58.76

LLaMA-13B [53]

FP-16 16 5.09 6.61 68.47 79.05 76.24 70.17 59.85 44.54 66.39

PB-LLM [61] 1.7 35.83 39.79 62.17 58.70 33.97 52.17 31.86 23.63 43.75
BiLLM [23] 1.11 14.56 16.67 62.53 68.17 52.24 59.43 41.91 29.94 52.37
OneBit [58] 1 7.65 9.56 63.30 71.98 60.61 59.43 42.85 32.42 55.10
MoS [25] 1 7.16 8.81 63.82 73.88 64.05 60.93 44.28 33.11 56.68

QPTQ [18] 2 3.2e3 9.9e2 42.39 50.00 25.27 50.67 26.14 27.39 36.98
LLM-QAT [38] 2 1.8e3 1.2e3 37.83 50.33 25.40 51.62 27.02 26.87 36.51
OmniQuant [50] 2 13.43 19.33 62.20 68.99 54.16 53.83 45.50 30.38 52.51

MBOK [Ours] 2×1 6.17 7.88 68.10 76.33 69.88 64.17 52.34 37.88 61.45

Table 3: OPT perplexity results (lower is better) on WikiText2 and C4.

OPT Model WBits
Wiki2 C4

125M 350M 1.3B 2.7B 6.7B 125M 350M 1.3B 2.7B 6.7B

FULL-PRECISION 16 27.65 22.00 14.63 12.47 10.86 26.56 22.59 16.07 14.34 12.71

RTN [60, 12] 3 37.28 25.94 48.17 16.92 12.10 33.91 26.21 24.51 18.43 14.36
QPTQ [18] 3 31.12 24.24 15.47 12.87 11.39 29.22 24.63 16.97 15.00 13.18

MBOK [Ours] 3×1 29.10 23.12 15.30 13.09 11.03 28.62 22.10 15.68 14.00 12.33

only one, freezing the others. Fig. 6 shows the conver-
gence of the losses. Training the first kernel results in the
slowest convergence, with progressively better performance
as higher-order kernels are trained. As shown in Proposi-
tion 4.1 and Proposition 4.3, the SVID effectively extracts
optimal Boolean weights and scaling factors. In our succes-
sive SVID framework, the first kernel is well extracted and
captures the most important information, while higher-order
kernels approximate the residuals. The kernels are related in
a successive manner, so modifying the lower-order kernels
affects the higher-order kernels. We observe that the number
of flips of the Boolean weights is very high when training
only the first kernel, indicating that the model struggles to
optimize. In contrast, fine-tuning only the last kernel to
compensate for final approximation errors and adapt to the

data is more efficient, as reflected by the lowest flip rates
and best performance. This is in line with the observation
in [35], where they compress “delta” induced by the finetun-
ing process by using 1-bit weights. Additionally, training
all the kernels together performs worse due to interference
between them. This further highlights the advantage of our
approach, as training complexity is significantly reduced by
only optimizing the last kernel. Thus, we apply this strategy
in all our experiments.

6.2. Main Benchmark Results
Table 2 compares our method with recent baselines in bi-
narization and 2-bit quantization, evaluating perplexity and
accuracy on zero-shot tasks including Winogrande [49], Hel-
laSwag [62], PIQA [6], BoolQ [9], and ARC [10]. For our
method, we use 2 Boolean kernels, an ultra low-bit setting.
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Due to space constraints, the results for LLaMA2-7B and
LLaMA2-13B [54] and different number of Boolean kernels
are provided in Appendix E.4 and Appendix E.3.

Our method consistently and significantly outperforms the
baselines in both perplexity and zero-shot accuracy, achiev-
ing results close to the FP-16 baseline despite using only
a budget of 2 bits for weight. As expected, QAT methods
like OneBit and MoS perform better than PTQ methods, but
this comes at the cost of extensive finetuning. In contrast,
our approach efficiently address this problem by optimizing
parameters directly in Boolean space, avoiding the need for
optimizing in FP latent sapce.

6.3. Accuracy-Compression Trade-offs

We further investigate the accuracy-compression trade-offs
of our method, quantization methods, and the FP model.
Specifically, we compare 3-bit quantization using round-
to-nearest (RTN) [60, 12] and QPTQ [18] methods against
our approach using 3 Boolean kernels. We evaluate these
methods on OPT models of varying sizes. The results, pre-
sented in Table 3 and Fig. 1, show that with 3 kernels, our
method closely approaches the performance of the FP model.
Given the same weight budget, our method clearly sits on
the Pareto frontier, delivering the best performance for the
same model size.

6.4. Kernel Allocation and Comparison to BitNet b1.58
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Figure 7: Comparison between
using optimized ( ) and fixed ( )
number of kernels for OPT-125M.

We evaluate the effec-
tiveness of our kernel
allocation algorithm on
the OPT-125M model by
comparing a fixed num-
ber of kernels (e.g., 2,
3, 4) applied to all
weights against an opti-
mized number for each
weight. As shown in
Fig. 7, the fixed approach performs slightly better for low
bit-budget and similarly at high bit-budget. We hypothesize
that in extreme cases of small bit-budget, the low-order ker-
nel is crucial for preserving knowledge from the source FP
model, as discussed in § 6.1.2. Removing any of these ker-
nels negatively impacts performance. Thus, we recommend
using a fixed number of kernels in such cases to maintain
network coherence.
Moreover, our kernel allocation method is particularly ben-
eficial when the target expansion (bit-budget) is arbitrary,
rather than an integer. Users can specify any budget for
the model depending on the context. For example, this
flexibility allows direct comparison with BitNet-b1.58 [40],
which uses ternary weights. Our optimized model with a
bit-budget of 1.58 achieves reasonable results, while the

C4 perplexity of BitNet-b1.58 is 10199.89, due to instability
during finetuning, as also noted in [58].

6.5. Discussion on Finetuning Complexity

0 10 20 30

MBOK

MoS

Memory (GB)

OPT-6.7B

Figure 8: Estimated memory for
finetuning for weights ( ) and
optimizer states ( ).

We highlight the effi-
ciency of our method
during finetuning. We
compare MoS [25] with
our method, using 3
Boolean kernels on OPT-
6.7B model. Since we
optimize directly in the
Boolean domain, each
Boolean weight requires only 1 bit, while MoS uses 16 bits
for latent weights. Additionally, we only need to finetune
the last Boolean kernel, and the Boolean optimizer stores
a single 16-bit momentum for each weight. In contrast,
the Adam optimizer [28] for latent weights requires two
16-bit momenta per weight. Fig. 8 illustrates the estimated
memory for a minibatch size of one, clearly demonstrating
the significant memory savings of our method compared
to MoS during finetuning. The memory gain can be even
more significant if we incorporate recent advancements in
compressing optimizer states, such as GaLore [64].

7. Conclusions
We introduced Multiple Boolean Kernels (MBOK), a novel
framework for low-bit finetuning LLMs. By utilizing
Boolean weights and optimizing them directly in the
Boolean domain, our framework significantly reduces both
memory and computation costs during both finetuning and
inference. The flexible multi-Boolean structure, along with
the proposed successive SVID, effectively transfers knowl-
edge from a source FP model. Through extensive experi-
ments on LLMs of various sizes, we demonstrate that our
method approaches FP performance while achieving the
best accuracy-compression trade-off compared to existing
quantization and binarization methods.

Limitations. Our method, like other binarized neural net-
works, could not be assessed on native Boolean accelerators
due to hardware being optimized for real arithmetic. How-
ever, it may inspire the development of hardware tailored
for Boolean processing. Additionally, while our kernel al-
location algorithm is effective in some cases, it does not
show significant improvement over using a fixed number of
kernels for all weights. We stress that this is an NP-hard
problem, and our algorithm only considers the initialization
stage, meaning the optimized solution can be heavily influ-
enced by the finetuning process. Future work should focus
on improving the optimization algorithm and incorporating
finetuning dynamics to better select the number of kernels.
Lastly, we did not consider activation or gradient quantiza-
tion, which could further reduce memory and computation
costs and is left for future exploration.
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Appendix

A. Primer on Boolean Neural Networks
For completeness, this section reviews the concepts and methodology of Boolean neural networks as proposed by [43].

A.1. Neuron Design

Boolean Neuron. Consider the l-th Boolean linear layer; in the forward pass, the output of the next layer is defined as
[43]:

Y
(l)
[k,j] = b

(l)
[j] +

n∑
i=1

L(X
(l),W

(l)

[i,j]

[k,i] ), 1 ≤ j ≤ m, (18)

where k denotes the sample index in the batch, and L is a logic gate such as and,or,xor, or xnor; The weights W(l)
[i,j] are

Boolean values {TRUE, FALSE} or {−1,+1}, as typically used in practical implementations. n and m are the number of
input and output neurons, respectively. As the most extreme use case, the input data are also Boolean values. The above
summation is understood as the counting of TRUE values. We emphasize that the framework is flexible, as it allows Boolean
linear layers to be connected through activation layers, layer normalization, arithmetic layers, or other types of layers.

Mixed Boolean-Real Neuron. To enable flexible integration and coexistence of Boolean designs with real-valued
components in deep models, we consider two cases of mixed-type data: (i) Boolean weights with real-valued inputs, and
(ii) real-valued weights with Boolean inputs. This paper focuses on the first case. These scenarios are addressed through
an extension of Boolean logic to accommodate mixed-type data. To proceed, we introduce the essential notations and
definitions. Specifically, we define B ≜ {TRUE, FALSE} as the Boolean domain, equipped with standard Boolean logic
operations.

Definition A.1 (Three-valued logic). We define the mixed logic domain as M ≜ B∪{0}, where 0 represents an undefined
or neutral value. The logic connectives in M are defined in alignment with standard Boolean logic, as follows. First,
the negation operator is extended as: ¬TRUE = FALSE, ¬FALSE = TRUE, and ¬0 = 0. Next, let L denote a generic
logic connective (e.g., AND, OR). We distinguish its use in M and B by writing LM and LB, respectively. The extended
connective LM is defined by:

LM(a, b) =

{
LB(a, b) for a, b ∈ B,
0 otherwise.

Notation A.2. Denote by L a logic set (e.g., B or M), R the real set, Z the set of integers, N a numeric set (e.g., R or Z), and
D a certain set of L or N.

Definition A.3. For x ∈ N, its logic value denoted by xlogic is given as xlogic = TRUE ⇔ x > 0, xlogic = FALSE ⇔
x < 0, and xlogic = 0⇔ x = 0.

Definition A.4. The magnitude of a variable x, denoted by |x|, is defined as follows. If x ∈ N, then |x| is the standard
absolute value. For x ∈ L, the magnitude is given by:

|x| =

{
0 if x = 0,

1 otherwise.

Definition A.5 (Mixed-type logic). For L a logic connective of L and variables a, b, operation c = L(a, b) is defined
such that |c| = |a||b| and clogic = L(alogic, blogic).
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A.2. Mathematical Foundations of Boolean Variation

In this section, we present the mathematical foundation of Boolean variation which is the corner stone of the method for
training Boolean weights directly within the Boolean domain, without relying on FP latent weights [43].

A.2.1. BOOLEAN VARIATION

Definition A.6. Order relations ‘<’ and ‘>’ in B are defined as follows:

FALSE < TRUE, TRUE > FALSE. (19)

Definition A.7. For a, b ∈ B, the variation from a to b, denoted δ(a→ b), is defined as:

δ(a→ b) ≜


TRUE, if b > a,

0, if b = a,

FALSE, if b < a.

(20)

Definition A.8 (Type conversion). Define:

p: N→ L

x 7→ p(x) =


TRUE, if x > 0,

0, if x = 0,

FALSE, if x < 0.

(21)

Proposition A.9 (Nguyen et al. [43]). The following properties hold:

1. ∀x, y ∈ N: p(xy) = xnor(p(x),p(y)).

2. ∀a, b ∈ L: e(xnor(a, b)) = e(a) e(b).

3. ∀x, y ∈ N: x = y ⇔ |x| = |y| and p(x) = p(y).

In particular, property Proposition A.9(2) implies that by the embedding map e(·), we have:

({TRUE, FALSE},xor) ∼= ({±1},−×), (22)
({TRUE, FALSE},xnor) ∼= ({±1},×), (23)

where ∼= and × stand for isomorphic relation, and the real multiplication, resp. A consequence is that by e(·), a computing
sequence of pointwise XOR or XNOR, counting, and majority vote is equivalent to a sequence of pointwise multiplications
and accumulation performed on the embedded data.

Proposition A.10. The following properties hold:

1. a ∈ L, x ∈ N: xnor(a, x) = e(a)x.

2. x, y ∈ N: xnor(x, y) = xy.

3. x ∈ {L,N}, y, z ∈ N: xnor(x, y + z) = xnor(x, y) + xnor(x, z).

4. x ∈ {L,N}, y, λ ∈ N: xnor(x, λy) = λxnor(x, y).

5. x ∈ {L,N}, y ∈ N: xor(x, y) = −xnor(x, y).

Proof. The proof follows definitions A.5 and A.8.
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• Following Definition A.1 we have ∀t ∈ M, xnor(TRUE, t) = t, xnor(FALSE, t) = ¬t, and xnor(0, t) = 0.
Put v = xnor(a, x). We have |v| = |x| and p(v) = xnor(a,p(x)). Hence, a = 0 ⇒ p(v) = 0 ⇒ v = 0;
a = TRUE ⇒ p(v) = p(x)⇒ v = x; a = FALSE ⇒ p(v) = ¬p(x)⇒ v = −x. Hence (1).

• The result is trivial if x = 0 or y = 0. For x, y ̸= 0, put v = xnor(x, y), we have |v| = |x||y| and p(v) =
xnor(p(x),p(y)). According to Definition A.8, if sign(x) = sign(y), we have p(v) = TRUE ⇒ v = |x||y| = xy.
Otherwise, i.e., sign(x) = − sign(y), p(v) = FALSE ⇒ v = −|x||y| = xy. Hence (2).

• (3) and (4) follow (1) for x ∈ L and follow (2) for x ∈ N.

• For (5), write u = xor(x, y) and v = xnor(x, y), we have |u| = |v| and p(u) = xor(p(x),p(y)) =
¬xnor(p(x),p(y)) = ¬p(v). Thus, sign(u) = − sign(v)⇒ u = −v.

Notation A.11. We denote F(S,T) the set of all functions from source S to image T.

Definition A.12. For f ∈ F(B,D), ∀x ∈ B, write δf(x → ¬x) := δ(f(x) → f(¬x)). The variation of f w.r.t. x,
denoted f ′(x), is defined as:

f ′(x) ≜ xnor(δ(x→ ¬x), δf(x→ ¬x)).

Remark A.13. For convenience and consistency of notation, we intentionally adopt the standard symbol for the continuous
derivative, f ′, to also denote Boolean variation The intended meaning — whether it represents a continuous derivative or a
Boolean variation — can be inferred from the context in which the function f is defined. Intuitively, the variation of f w.r.t
x is TRUE if f varies in the same direction with x.
Example A.14. Let a ∈ B, f(x) = xor(x, a) for x ∈ B, the variation of f w.r.t. x can be derived by establishing a truth
table (see Table 4) from which we obtain f ′(x) = ¬a.

Table 4: Variation truth table of f(x) = xor(a, x), a, x ∈ B.

a x ¬x δ(x→ ¬x) f(a, x) f(a,¬x) δf(x→ ¬x) f ′(x)

TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE

A.2.2. BOOLEAN VARIATION CALCULUS

Below are some rules of Boolean variation which are necessary for training Boolean neural networks.

Proposition A.15 (Nguyen et al. [43]). For f, g ∈ F(B,B), ∀x, y ∈ B the following properties hold:

1. δf(x→ y) = xnor(δ(x→ y), f ′(x)).

2. (¬f(x))′ = ¬f ′(x).

3. (g ◦ f)′(x) = xnor(g′(f(x)), f ′(x)).

Proof. The proof is by definition:

1. ∀x, y ∈ B, there are two cases. If y = x, then the result is trivial. Otherwise, i.e., y = ¬x, by definition we have:

f ′(x) = xnor(δ(x→ ¬x), δf(x→ ¬x))
⇔ δf(x→ ¬x) = xnor(δ(x→ ¬x), f ′(x)).

Hence the result.
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2. ∀x, y ∈ B, it is easy to verify by truth table that δ(¬f(x→ y)) = ¬δf(x→ y). Hence, by definition,

(¬f)′(x) = xnor(δ(x→ ¬x), δ(¬f(x→ ¬x)))
= xnor(δ(x→ ¬x),¬δf(x→ ¬x))
= ¬xnor(δ(x→ ¬x), δf(x→ ¬x))
= ¬f ′(x).

3. Using definition, property (i), and associativity of xnor, ∀x ∈ B we have:

(g ◦ f)′(x) = xnor(δ(x→ ¬x), δg(f(x)→ f(¬x)))
= xnor(δ(x→ ¬x),xnor(δf(x→ ¬x), g′(f(x))))
= xnor(g′(f(x)),xnor(δ(x→ ¬x), δf(x→ ¬x)))
= xnor(g′(f(x)), f ′(x)).

Proposition A.16 (Nguyen et al. [43]). For f ∈ F(B,N), the following properties hold:

1. x, y ∈ B: δf(x→ y) = xnor(δ(x→ y), f ′(x)).

2. α ∈ N: (αf)′(x) = αf ′(x).

3. g ∈ F(B,N): (f + g)′(x) = f ′(x) + g′(x).

Proof. The proof is as follows:

1. For x, y ∈ B. Firstly, the result is trivial if y = x. For y ̸= x, i.e., y = ¬x, by definition:

f ′(x) = xnor(δ(x→ ¬x), δf(x→ ¬x)).

Hence, |δf(x→ ¬x)| = |f ′(x)| since |δ(x→ ¬x)| = 1, and

p(f ′(x)) = xnor(δ(x→ ¬x),p(δf(x→ ¬x)))
⇔ p(δf(x→ ¬x)) = xnor(δ(x→ ¬x),p(f ′(x))),

where p(·) is the logic projector Eq. 21. Thus, δf(x→ ¬x) = xnor(δ(x→ ¬x), f ′(x)). Hence the result.

2. Firstly ∀x, y ∈ B, we have
δ(αf(x→ y)) = αf(y)− αf(x) = αδf(x→ y).

Hence, by definition,

(αf)′(x) = xnor(δ(x→ ¬x), δ(αf(x→ ¬x)))
= xnor(δ(x→ ¬x), αδf(x→ ¬x))
= αxnor(δ(x→ ¬x), δf(x→ ¬x)), due to Proposition A.10(4)
= αf ′(x).

3. For f, g ∈ F(B,N),

(f + g)′(x) = xnor(δ(x→ ¬x), δ(f + g)(x→ ¬x))
= xnor(δ(x→ ¬x), δf(x→ ¬x) + δg(x→ ¬x))
(∗)
= xnor(δ(x→ ¬x), δf(x→ ¬x)) + xnor(δ(x→ ¬x), δg(x→ ¬x)),
= f ′(x) + g′(x),

where (∗) is due to Proposition A.10(3).
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For f ∈ F(Z,N), its derivative, also known in terms of finite differences, has been defined in the literature as f ′(x) =
f(x+ 1)− f(x), see e.g. [26]. With the logic variation as introduced above, we can make this definition more generic as
follows.
Definition A.17. For f ∈ F(Z,D), the variation of f w.r.t x ∈ Z is defined as f ′(x) ≜ δf(x→ x+ 1), where δf is in the
sense of the variation defined in D.

Proposition A.18 (Nguyen et al. [43]). The following composition rules (chain rules) hold:

1. For B f→ B g→ D: (g ◦ f)′(x) = xnor(g′(f(x)), f ′(x)), ∀x ∈ B.

2. For B f→ Z g→ D, x ∈ B, if |f ′(x)| ≤ 1 and g′(f(x)) = g′(f(x)− 1), then:

(g ◦ f)′(x) = xnor(g′(f(x)), f ′(x)).

Proof. The proof is as follows.

1. The case of B f→ B g→ B is obtained from Proposition A.15(3). For B f→ B g→ N, by using Proposition A.16(1), the
proof is similar to that of Proposition A.15(3).

2. By definition, we have
(g ◦ f)′(x) = xnor(δ(x→ ¬x), δg(f(x)→ f(¬x))). (24)

Using property (1) of Proposition A.16, we have:

f(¬x) = f(x) + δf(x→ ¬x)
= f(x) + xnor(δ(x→ ¬x), f ′(x)). (25)

Applying Eq. 25 back to Eq. 24, the result is trivial if f ′(x) = 0. The remaining case is |f ′(x)| = 1 for which we have
xnor(δ(x→ ¬x), f ′(x)) = ±1. First, for xnor(δ(x→ ¬x), f ′(x)) = 1, we have:

δg(f(x)→ f(¬x)) = δg(f(x)→ f(x) + 1)

= g′(f(x))

= xnor(g′(f(x)), 1)

= xnor(g′(f(x)),xnor(δ(x→ ¬x), f ′(x))). (26)

Substitute Eq. 26 back to Eq. 24, we obtain:

(g ◦ f)′(x) = xnor(δ(x→ ¬x), δg(f(x)→ f(¬x)))
= xnor(δ(x→ ¬x),xnor(g′(f(x)),xnor(δ(x→ ¬x), f ′(x))))
= xnor(g′(f(x)), f ′(x)),

where that last equality is by the associativity of xnor and that xnor(x, x) = True for x ∈ B. Similarly, for
xnor(δ(x→ ¬x), f ′(x)) = −1, we have:

δg(f(x)→ f(¬x)) = δg(f(x)→ f(x)− 1)

= −g′(f(x)− 1)

= xnor(g′(f(x)− 1),−1)
= xnor(g′(f(x)− 1),xnor(δ(x→ ¬x), f ′(x))). (27)

Substitute Eq. 27 back to Eq. 24 and use the assumption that g′(f(x)) = g′(f(x)− 1), we have:

(g ◦ f)′(x) = xnor(δ(x→ ¬x), δg(f(x)→ f(¬x)))
= xnor(δ(x→ ¬x),xnor(g′(f(x)− 1),xnor(δ(x→ ¬x), f ′(x))))
= xnor(g′(f(x)), f ′(x)).

Hence the preposition is proved.

Example A.19. From Example A.14, we have δxor(x, a)/δx = ¬a for a, x ∈ B. Using Proposition A.15-(2) we have:
δxnor(x, a)/δx = a since xnor(x, a) = ¬xor(x, a).
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A.2.3. EXTENTION TO MULTIVARIATE CASE

The properties of Boolean variation described above can be extended to the multivariate case in a straightforward manner.
For example, in the case of multivariate Boolean functions, the extension is as follows.

Definition A.20. For x = (x1, . . . , xn) ∈ Bn, denote x¬i ≜ (x1, . . . , xi−1,¬xi, xi+1, . . . , xn) for n ≥ 1 and
1 ≤ i ≤ n. For f ∈ F(Bn,B), the (partial) variation of f w.r.t. xi, denoted f ′i(x) or δf(x)/δxi, is defined as:
f ′i(x) ≡ δf(x)/δxi ≜ xnor(δ(xi → ¬xi), δf(x→ x¬i)).

The composition rule then becomes:

Proposition A.21 (Nguyen et al. [43]). Let f ∈ F(Bn,B), n ≥ 1, and g ∈ F(B,B). For 1 ≤ i ≤ n:

(g ◦ f)′i(x) = xnor(g′(f(x)), f ′i(x)), ∀x ∈ Bn. (28)

Example A.22. Apply Proposition A.16-(3) to Y
(l)
[k,j] from Eq. 18: δY

(l)
[k,j]/δW

(l)
[i,j] = δL(X

(l)
[k,i],W

(l)
[i,j])/δW

(l)
[i,j] and

δY
(l)
[k,j]/δX

(l)
[k,i] = δL(X

(l)
[k,i],W

(l)
[i,j])/δX

(l)
[k,i]. Then, for L = xnor as an example, we have: δY(l)

[k,j]/δW
(l)
[i,j] = X

(l)
[k,i] and

δY
(l)
[k,j]/δX

(l)
[k,i] = W

(l)
[i,j].

A.3. Boolean Backpropagation

This section presents how to apply the above principles of Boolean variation to define backpropagation for Boolean neural
networks. The l-th layer (Eq. 18), receives the backpropagation signal from the downstream layer l + 1. Specifically,
Z

(l)
[k,j] ≜

δL
δY

(l)

[k,j]

denotes the variation of the loss function L w.r.t. the output at layer l. To optimize the Boolean weights, we

need to compute the corresponding loss signal, denoted as Q(l)
[i,j] ≜

δL
δW

(l)

[i,j]

. In addition, we also have to compute the loss

signal for the upstream layer, defined as P(l)
[k,i] ≜

δL
δX

(l)

[k,i]

. Hereafter, we consider the logic gate L = xnor as a concrete

example.

First, using Proposition A.15, Proposition A.16, Proposition A.18 and its extension to the multivariate case by Proposi-
tion A.21 in the same manner as shown in Example A.22, we have:

δY
(l)
[k,j]

δW
(l)
[i,j]

=
δxnor(X

(l)
[k,i],W

(l)
[i,j])

δW
(l)
[i,j]

= X
(l)
[k,i] (29)

δY
(l)
[k,j]

δX
(l)
[k,i]

=
δxnor(X

(l)
[k,i],W

(l)
[i,j])

δX
(l)
[k,i]

= W
(l)
[i,j] (30)

Using the chain rules given by Proposition A.18, we have the following atomic variations:

Q
(l)
[k,i,j] ≜

δL
δW

(l)
[i,j]

|k = xnor

 δL
δY

(l)
[k,j]

,
δY

(l)
[k,j]

δW
(l)
[i,j]

 = xnor
(
Z

(l)
[k,j],X

(l)
[k,i]

)
, (31)

P
(l)
[k,i,j] ≜

δL
δX

(l)
[k,i]

|j = xnor

 δL
δY

(l)
[k,j]

,
δY

(l)
[k,j]

δX
(l)
[k,i]

 = xnor
(
Z

(l)
[k,j],W

(l)
[i,j]

)
. (32)

The variations Q(l)
[i,j] and G

(l)
[k,i] can be then obtained by aggregating the above atomic variations over the batch dimension k

and output dimension j, respectively. More specifically, denote 1(·) the indicator function. Additionally, for b ∈ B and a
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variable x, we define 1(x = b) = 1 if xlogic = b and 1(x = b) = 0 otherwise. Then, we have:

Q
(l)
[i,j] ≜

δL
δW

(l)
[i,j]

=
∑
k

1(Q
(l)
[k,i,j] = TRUE)|Q(l)

[k,i,j]| −
∑
k

1(Q
(l)
[k,i,j] = FALSE)|Q(l)

[k,i,j]|, (33)

P
(l)
[i,j] ≜

δL
δX

(l)
[k,i]

=
∑
j

1(P
(l)
[k,i,j] = TRUE)|P(l)

[k,i,j]| −
∑
j

1(P
(l)
[k,i,j] = FALSE)|P(l)

[k,i,j]|. (34)

A.4. Boolean Optimizer

Algorithm 1: Boolean learning process for a linear layer.

Input : Learning rate η, number of iterations T ;
Initialize : M(l),0

[i,j] = 0; β0 = 1;
1 for t = 0, . . . , T − 1 do

/* 1. Forward */

2 Compute Y(l),t following Eq. 18;
/* 2. Backward */

3 Receive δL
δY

(l),t

[k,j]

from downstream layer;

/* 2.1 Backpropagation */

4 Compute and backpropagate P(l),t to the upstream following Eq. 34;
/* 2.2 Weight update process */

5 Ntotal := 0, Nunchanged := 0;
6 foreach Wl

i,j do
7 Compute Q

(l),t+1
[i,j] following Eq. 33;

8 Update M
(l),t+1
[i,j] = βtM

(l),t
[i,j] + ηtQ

(l),t+1
[i,j] ;

9 Ntotal ← Ntotal + 1;
10 if xnor(M(l),t+1

[i,j] ,W
(l),t
[i,j] ) = TRUE then

/* Flip weight */

11 W
(l),t+1
[i,j] = ¬W(l),t

[i,j] ;
/* Reset corresponding accumulator */

12 M
(l),t+1
[i,j] = 0;

13 else
/* Weight is unchanged */

14 W
(l),t+1
[i,j] = W

(l),t
[i,j] ;

/* Update statistics to update β */

15 Nunchanged ← Nunchanged + 1;
16 Update ηt+1, βt+1 = Nunchanged/Ntotal ;

Given the above variations, the rule for updating the Boolean weight W(l)
[i,j] to minimize the loss function L is as follows:

W
(l)
[i,j] = ¬W

(l)
[i,j] if xnor

(
Q

(l)
[i,j],W

(l)
[i,j]

)
= TRUE. (35)

Based on this update rule, we can develop an optimizer that accumulates the signal Q(l)
[i,j] over training iterations. Specifically,

let W(l),t
[i,j] denotes the weight at iteration t, and M

(l),t
[i,j] represents its accumulator, initialized as M(l),0

[i,j] = 0. The update rule
for the accumulator is then defined as: The update rule for the accumulator is then defined as:

M
(l),t+1
[i,j] ← βtM

(l),t
[i,j] + ηQ

(l),t
[i,j] , (36)

where η is the accumulation factor acting as a learning rate, and βt is an auto-regularizing factor that reflects the system’s
state at time t. In our work, we use brain plasticity [19] and Hebbian theory [21] to adaptively set βt, that force the weights

19



Ultra-Efficient and Effective Large Language Models with Multi-Boolean Architectures

to adapt to their neighborhood during. For the chose weight’s neighborhood, for instance, neuron, layer, or network level, βt

is set as:
βt =

Number of unchanged weights at t
Total number of weights

. (37)

It to temper the importance of weight variational according to how much neurons have changed. In our experiments, βt is
set to per-layer basis and initialized as β0 = 1 The learning process for a linear layer is described in Algorithm 1.

B. Code Samples of Core Implementation
B.1. Boolean Linear Layer and Optimizer

In this section, we provide example Python code for implementing a Boolean linear layer based on the xor logic gate. This
implementation is based on the PyTorch framework [45]. As done in [43], the class definition for the Boolean linear layer is
presented in Algorithm 2, and its backpropagation mechanism—customized via PyTorch’s autograd system—is detailed
in Algorithm 3. Each Boolean kernel is primarily implemented using this Boolean linear layer.

We consider both cases of the incoming backpropagation signal: Boolean-valued (see Algorithm 4), and real-valued (see
Algorithm 5). The latter is the main use case in this paper. An example implementation of the Boolean optimizer used to
update the layer’s parameters is provided in Algorithm 6.

Algorithm 2: Python code of XOR linear layer

1 import torch
2
3 from torch import Tensor, nn, autograd
4 from typing import Any, List, Optional, Callable
5
6
7 class XORLinear(nn.Linear):
8
9 def __init__(self, in_features: int, out_features: int, bool_bprop: bool, **kwargs):

10 super(XORLinear, self).__init__(in_features, out_features, **kwargs)
11 self.bool_bprop = bool_bprop
12
13 def reset_parameters(self):
14 self.weight = nn.Parameter(torch.randint(0, 2, self.weight.shape))
15
16 if self.bias is not None:
17 self.bias = nn.Parameter(torch.randint(0, 2, (self.out_features,)))
18
19 def forward(self, X):
20 return XORFunction.apply(X, self.weight, self.bias, self.bool_bprop)

Algorithm 3: Python code of the backpropagation logic of XOR linear layer

1 class XORFunction(autograd.Function):
2
3 @staticmethod
4 def forward(ctx, X, W, B, bool_bprop: bool):
5 ctx.save_for_backward(X,W,B)
6 ctx.bool_bprop = bool_bprop
7
8 # Elementwise XOR logic
9 S = torch.logical_xor(X[:,None,:], W[None,:,:])

10
11 # Sum over the input dimension
12 S = S.sum(dim=2) + B
13
14 # 0-centered for use with BatchNorm when preferred
15 S = S - W.shape[1]/2
16
17 return S
18
19 @staticmethod
20 def backward(ctx, Z):
21 if ctx.bool_bprop:
22 G_X, G_W, G_B = backward_bool(ctx, Z)
23 else:
24 G_X, G_W, G_B = backward_real(ctx, Z)
25
26 return G_X, G_W, G_B, None
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Algorithm 4: Backpropagation logic with Boolean received backpropagation

1 def backward_bool(ctx, Z):
2 """
3 Variation of input:
4 - delta(xor(x,w))/delta(x) = neg w
5 - delta(Loss)/delta(x) = xnor(z,neg w) = xor(z,w)
6 Variation of weights:
7 - delta(xor(x,w))/delta(w) = neg x
8 - delta(Loss)/delta(x) = xnor(z,neg x) = xor(z,x)
9 Variation of bias:

10 - bias = xnor(bias,True) ==> Variation of bias is driven in
11 the same basis as that of weight with xnor logic and input True.
12 Aggregation:
13 - Count the number of TRUEs = sum over the Boolean data
14 - Aggr = TRUEs - FALSEs = TRUEs - (TOT - TRUEs) = 2TRUES - TOT
15 where TOT is the size of the aggregated dimension
16 """
17 X, W, B = ctx.saved_tensors
18
19 # Boolean variation of input
20 G_X = torch.logical_xor(Z[:,:,None], W[None,:,:])
21
22 # Aggregate over the out_features dimension
23 G_X = 2 * G_X.sum(dim=1) - W.shape[0]
24
25 # Boolean variation of weights
26 G_W = torch.logical_xor(Z[:,:,None], X[:,None,:])
27
28 # Aggregate over the batch dimension
29 G_W = 2 * G_W.sum(dim=0) - X.shape[0]
30
31 # Boolean variation of bias
32 if B is not None:
33 # Aggregate over the batch dimension
34 G_B = 2 * Z.sum(dim=0) - Z.shape[0]
35
36 # Return
37 return G_X, G_W, G_B

Algorithm 5: Backpropagation logic with real received backpropagation

1 def backward_real(ctx, Z):
2 X, W, B = ctx.saved_tensors
3
4 """
5 Boolean variation of input processed using torch avoiding loop:
6 -> xor(Z: Real, W: Boolean) = -Z * emb(W)
7 -> emb(W): T->1, F->-1 => emb(W) = 2W-1
8 => delta(Loss)/delta(X) = Z*(1-2W) """
9 G_X = Z.mm(1-2*W)

10
11 """
12 Boolean variation of weights processed using torch avoiding loop:
13 -> xor(Z: Real, X: Boolean) = -Z * emb(X)
14 -> emb(X): T->1, F->-1 => emb(X) = 2X-1
15 => delta(Loss)/delta(W) = Z^T * (1-2X) """
16 G_W = Z.t().mm(1-2*X)
17
18 """ Boolean variation of bias """
19 if B is not None:
20 G_B = Z.sum(dim=0)
21
22 # Return
23 return G_X, G_W, G_B
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Algorithm 6: Python code of Boolean optimizer

1 class BooleanOptimizer(torch.optim.Optimizer):
2
3 def __init__(self, params, lr: float):
4 super(BooleanOptimizer, self).__init__(params, dict(lr=lr))
5 for param_group in self.param_groups:
6 param_group[’accums’] = [torch.zeros_like(p.data) for p in param_group[’params’]]
7 param_group[’ratios’] = [0 for p in param_group[’params’]]
8 self._nb_flips = 0
9

10 @property
11 def nb_flips(self):
12 n = self._nb_flips
13 self._nb_flips = 0
14 return n
15
16 def step(self):
17 for param_group in self.param_groups:
18 for idx, p in enumerate(param_group[’params’]):
19 self.update(p, param_group, idx)
20
21 def update(self, param: Tensor, param_group: dict, idx: int):
22 accum = param_group[’ratios’][idx] * param_group[’accums’][idx] + param_group[’lr’] * param.grad.

data
23 param_group[’accums’][idx] = accum
24 param_to_flip = accum * (2*param.data-1) >= 1
25 param.data[param_to_flip] = torch.logical_not(param.data[param_to_flip])
26 param_group[’accums’][idx][param_to_flip] = 0.
27 param_group[’ratios’][idx] = 1 - param_to_flip.float().mean()
28 self._nb_flips += float(param_to_flip.float().sum())

B.2. Successive SVID for Kernel Extraction

Algorithm 7 illustrate the Python code of the SVID algortithm to extract the optimal Boolean weights and scaling factors for
one kernel. Based on this, Algorithm 8 illustrates the succesive SVID algorithm to extract all kernels.

Algorithm 7: Python code of SVID approximation of a FP matrix.

1 def svid_approximation(w):
2 """
3 Approximate the input matrix ‘w‘ by a boolean matrix and a rank-1 matrix:
4 w = w_bool * (s_out * s_in.T)
5
6 Args:
7 w (torch.Tensor): Input tensor of shape (*, m, n).
8
9 Returns:

10 tuple:
11 - w_bool (torch.Tensor): Boolean matrix of the same shape as ‘w‘.
12 - w_res (torch.Tensor): Residual matrix, w - w_bool * (s_out * s_in.T).
13 - s_in (torch.Tensor): Scaled first left singular vector of ‘w‘.
14 - s_out (torch.Tensor): Scaled first right singular vector of ‘w‘.
15 """
16 U, S, Vh = torch.linalg.svd(abs(w.data.clone().float()), full_matrices=False)
17
18 w_bool = torch.sign(w)
19 s_in = torch.sqrt(S[0]) * Vh[0,:].reshape(1,-1)
20 s_out = torch.sqrt(S[0]) * U[:,0].reshape(-1,1)
21
22 w_res = w - w_bool * torch.matmul(s_out, s_in)
23
24 return w_bool, w_res, s_in, s_out
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Algorithm 8: Python code of successively extracts kernels from FP matrix using SVID.

1 def successive_svid(w_fp, n_kernels):
2 """
3 Perform successive SVID on the input matrix to extract Boolean kernels.
4
5 Args:
6 w_fp (torch.Tensor): Input weight matrix.
7 n_kernels (int): Number of iterations to extract kernels.
8
9 Returns:

10 list: List of dictionaries containing ‘n_kernels‘ kernels, each has:
11 - w_bool (torch.Tensor): Boolean matrix.
12 - s_in (torch.Tensor): Input scaling vector.
13 - s_out (torch.Tensor): Output scaling vector.
14 """
15 boolean_kernels = []
16
17 w = w_fp # The input to SVID at first iteration is the original weight
18
19 for k in range(n_kernels):
20 # Extract the Boolean weights, residual, and scaling vectors
21 w_bool, w_res, s_in, s_out = svid_approximation(w)
22
23 # Save the extracted kernel
24 boolean_kernels.append({’w_bool’: w_bool, ’s_in’: s_in, ’s_out’: s_out})
25
26 # The input to SVID for the next iteration is the current residual matrix
27 w = w_res
28
29 return boolean_kernels

C. Proof of Propositions
For completeness, we include the proofs of Propositions related to SVID approximation used in the main paper.

C.1. Proof of Boolean Linear Reformulation using SVID

Proposition C.1 (Xu et al. [58]). Given the weight matrix WFP and input X, the linear layer can be reformulated as
the following using SVID approximation, WFP ≈Wbool ⊙

(
souts

⊤
in

)
, as follows:

XW⊤
FP ≈

[(
X⊙ s⊤in

)
W⊤

bool

]
⊙ s⊤out. (38)

Proof. Due to the SVID approximation, we have WFP[i,j] ≈Wbool[i,j]sout[i]sin[j]. Then, we have:(
XW⊤

FP

)
[i,j]
≈

∑
k

X[i,k]W
⊤
FP[k,j] (39)

=
∑
k

X[i,k]WFP[j,k] (40)

=
∑
k

X[i,k]Wbool[j,k]sout[j]sin[k] (41)

=
∑
k

X[i,k]sin[k]Wbool[j,k]sout[j] (42)

=
∑
k

(
X⊙ s⊤in

)
[i,k]

W⊤
bool[k,j]sout[j] (43)

=
[(
X⊙ s⊤in

)
W⊤

bool

]
[i,j]

sout[j] (44)

=
{[(

X⊙ s⊤in
)
W⊤

bool

]
⊙ s⊤out

}
[i,j]

. (45)

Thus, the proposition is proved.
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C.2. Proof of Proposition 4.1

Lemma C.2 (Xu et al. [58]). Denote σi(W) the i-th biggest singular value of matrix W. The following inequality
holds:

σ1(|W|) ≥ σ1(W). (46)

Proof. By the definition of induced norm, we have:

σ1(W) = ∥W∥2 = max
x,∥x∥2=1

∥Wx∥2, (47)

σ1(|W|) = ∥|W∥|2 = max
y,∥y∥2=1

∥|W|y∥2. (48)

In addition, because ∀x, ∥x∥2 = 1, we have:

∥|W||x|∥22 =
∑
i

∑
j

|W[i,j]||x[j]|

2

(49)

≥
∑
i

|∑
j

W[i,j]x[j]|

2

(50)

=
∑
i

∑
j

W[i,j]x[j]

2

(51)

= ∥Wx∥22. (52)

Therefore

max
y,∥y∥2=1

∥|W|y∥2 ≥ max
x,∥x∥2=1

∥Wx∥2 (53)

⇔ σ1(|W|) ≥ σ1(W). (54)

Thus, the lemma is proved.

Proposition C.3 (Restated from Xu et al. [58]). For W ∈ Rm×n, write W = ŨΣ̃Ṽ
⊤

its SVD. Let a =
√
σ̃1Ũ[:,1],

and b =
√
σ̃1Ṽ[:,1]. Similarly, denote |W| = UΣV⊤ its SVD; sin and sout are given as: sin =

√
σ1V[:,1], and

sout =
√
σ1U[:,1]. We decompose the matrix as W = Wbool ⊙ |W| ≈Wbool ⊙

(
souts

⊤
in

)
. We then have:

∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
≤

∥∥∥W − ab⊤
∥∥∥2
F
. (55)

Proof. We denote the following error matrices:

E1 = W − ab⊤, (56)

E2 = |W| − souts
⊤
in. (57)

Multiplying Wbool with both sides of Eq. 57, we have:

Wbool ⊙ |W| −Wbool ⊙ souts
⊤
in = Wbool ⊙E2 (58)

⇔W −Wbool ⊙ souts
⊤
in = Wbool ⊙E2. (59)
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Thus, we have:

∥W −Wbool ⊙ souts
⊤
in∥2F = ∥Wbool ⊙E2∥2F (60)

=
∑
i,j

W2
bool[i,j] +E2

2[i,j] (61)

=
∑
i,j

E2
2[i,j] (62)

= ∥E2∥2F (63)

For SVD decomposition, the norm of the above error matrices in the rank-1 approximation is the um of squares of all singular
values except the largest one. In particular, we have:

∥E1∥2F =

n∑
i=2

σ2
i (W), (64)

∥E2∥2F =

n∑
i=2

σ2
i (|W|). (65)

Since ∥W∥2F = ∥|W|∥2F , we have:

n∑
i=1

σ2
i (W) =

n∑
i=1

σ2
i (|W|) (66)

⇔ ∥E1∥2F + σ2
1(W) = ∥E2∥2Fσ2

1(|W|). (67)

Thus, according to Lemma C.2 and Eq. 63, we have:

∥E2∥2F ≤ ∥E1∥2F (68)∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
≤

∥∥∥W − ab⊤
∥∥∥2
F
. (69)

Thus, the proposition is proved.

C.3. Proof of Proposition 4.3

Proposition C.4. For W ∈ Rm×n, we denote |W| = UΣV⊤ its SVD. sin and sout are given as: sin =
√
σ1V[:,1], and

sout =
√
σ1U[:,1]. We decompose the matrix as W = Wbool ⊙ |W| ≈Wbool ⊙

(
souts

⊤
in

)
. We then have:

∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
≤

∥∥∥W −Wbool ⊙ cd⊤
∥∥∥2
F
, ∀c ∈ Rm×1,∀d ∈ Rn×1. (70)

Proof. Similar to the proof of Proposition 4.3, we denote the following error matrices E1 = |W| − souts
⊤
in and E2 =

|W| − cd⊤. We have that

Wbool ⊙ |W| −Wbool ⊙ souts
⊤
in = Wbool ⊙E1 (71)

⇔W −Wbool ⊙ souts
⊤
in = Wbool ⊙E1. (72)

Therefore, ∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
= ∥Wbool ⊙E1∥2F =

∑
i,j

W2
bool[i,j]E

2
1[i,j] =

∑
i,j

E2
1[i,j] = ∥E1∥2F . (73)
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Similarly, we have that ∥∥∥W −Wbool ⊙ ab⊤
∥∥∥2
F
= ∥E2∥2F . (74)

Thus, we need to show that

∥E1∥2F ≤ ∥E2∥2F (75)

Additionally, we denote the rank-k approximation to |W| by SVD as Sk:

Sk =

k∑
i=1

σiU[:,i]V
⊤
[:,i]. (76)

With this notation, we have that S1 = souts
⊤
in is the rank-1 approximation of |W| by SVD.

From Eq. 75, we need to show that if there is an arbitrary rank-1 approximation to |W|, P1 = cd⊤, we then have∥∥|W| − souts
⊤
in

∥∥2
F
≤

∥∥∥|W| − cd⊤
∥∥∥2
F
. (77)

This can be done by using the Eckart-Young-Mirsky theorem [17]. First, we have that

∥|W| − S1∥2F =
∥∥|W| − souts

⊤
in

∥∥2
F
=

∥∥∥∥∥
n∑

i=2

σiU[:,i]V
⊤
[:,i]

∥∥∥∥∥
2

F

=

n∑
i=2

σ2
i . (78)

By the triangle inequality with the spectral norm, if |W| = C+D then σ1(|W|) ≤ σ1(C) + σ1(D). Suppose the Ck and
Dk denote the rank-k approximation to C and D by SVD method, respectively. Then, for any i, j ≥ 1 we have

σi(C) + σj(D) = σ1(C−Ci−1) + σ1(D−Dj−1) (79)
≥ σ1(|W| −Ci−1 −Dj−1) (80)
≥ σ1(|W| − Si+j−2) (since rank(Ci−1 +Dj−1) ≤ i+ j − 2) (81)
= σi+j−1(|W|). (82)

Because σ2(P1) = 0, when C = |W| −P1 and D = P1 we have that for i ≥ 1, j = 2, σi(|W| −P1) ≥ σi+1(|W|). As
a result,

∥|W| −P1∥2F =
∑

i = 1nσi(|W| −P1)
2 ≥

∑
i = 2nσi(|W|)2 = ∥|W| − S1∥2F (83)

⇔ ∥E2∥2F ≥ ∥E1∥2F (84)

⇔
∥∥∥W −Wbool ⊙ cd⊤

∥∥∥2
F
≥

∥∥W −Wbool ⊙ souts
⊤
in

∥∥2
F
. (85)

Hence the proposition is proved.

D. Details on Kernel Allocation
D.1. Weight Importance Estimation

We assess the importance of a linear weight in the original FP model by comparing the representations at its input and
output. Let X ∈ Rd×n and Y ∈ Rd×m denote the input and output matrices of a linear layer, respectively, where d is the
number of samples, and n and m are the input and output feature dimensions. We hypothesize that a weight is important if it
significantly transforms the input representations. For example, a weight matrix equivalent to the identity does not alter
the representations and thus would be considered unimportant. To quantify this transformation, we use a robust metric for
comparing neural representations.
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Various similarity measures can be used for this purpose, such as cosine similarity, as done in [20]. In this work, we adopt
PWCCA [42], which is particularly well-suited for our setting: it is invariant to linear transformations—an essential property
given that large language models (LLMs) are primarily composed of linear layers—and effectively captures shared structure
while filtering out noise [42].

Specifically, we define the importance score as:

h = 1− 1

c

c∑
i=1

ρPWCCA,i(X,Y), (86)

where c denotes the number of canonical vectors used in the comparison (typically, c = min(n,m)). The matrices X
and Y are obtained by simply forwarding a set of data samples through the network. In our experiments, we use 128
random samples from the WikiText2 training set to estimate the importance score. Here, ρPWCCA,i represents the projection-
weighted correlation along the i-th canonical direction. The following section describes in detail how this correlation is
computed.

Projection-weighted Canonical Correlation Analysis. Canonical Correlation Analysis (CCA) finds bases for two matrices
such that, when the original matrices are projected onto these bases, the resulting projections are maximally correlated.
Without loss of generality, we assume that n ≤ m. For 1 ≤ i ≤ n, the i-th canonical correlation coefficient ρi is given by:

ρi = max
wi

X,wi
Y

corr(Xwi
X,YYwi

Y) (87)

subject to Xwi
X ⊥Xwj

X ∀j < i

Ywi
Y ⊥Ywj

Y ∀j < i.

The vectors wi
X ∈ Rn and wi

Y ∈ Rm that maximize ρi are called the canonical weights. These weights transform the
original data into the canonical variables Xwi

X and Ywi
Y. The constraints in Eq. 87 enforce orthogonality among the

canonical variables, ensuring that each successive pair captures a distinct mode of correlation.

The mean CCA correlation is then computed as:

ρ̄CCA =

∑n
i=1 ρi
n

, (88)

where n is the number of canonical correlation coefficients considered.

CCA is sensitive to perturbation when the condition number of X and Y is large. To imporve robustness, [42] propose a
strategy to reduce this sensitivity, which they term “projection-weighted CCA” (PWCCA).

ρPWCCA,i =

∑c
i=1 αiρi∑c
i=1 αi

, αi =
∑
j

|⟨hi,xj⟩|, (89)

where xj is the j-th column of X, and hi = Xwi
X is the vector of canonical variables formed by projecting X to the i-th

canonical cooridate frame.

D.2. Kernel Allocation Algorithm

Algorithm 9 illustrates the details of our algorithm for kernel allocation.
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Algorithm 9: Kernel allocation.
1 Input
2 T ≥ 1 ; /* model expansion limit */

3 E = [e
[k]
l ] ∈ RNW×Kmax for k ∈ [1,Kmax], l ∈ [1, NW] ; /* residual approx error */

4 h = [hl] ∈ RNW×1 ; /* weight importance scores */

5 p = [pl] ∈ RNW×1 ; /* weight size ratios */
6 Initialize
7 k = [1, . . . , 1]T of length NW ; /* starting choice */
8 f = k < Kmax ; /* feasible indicator */

9 C =
(

1
p
log 1

p

)
⊙ h⊙E ; /* where ⊙ is broadcasted over E columns */

10 While not all f is False do
11 g := ∅, l := ∅;
12 for l = 1 : NW do
13 if f [l] = True then
14 g := C[l,k[l]]−C[l,k[l] + 1] ; /* gain by increasing kernel size by 1 */
15 Append l to l, append g to g;
16 Sort g in decreasing order, and arrange l accordingly;
17 for (g, l) in (g, l) do
18 kl := k;
19 kl[l] = kl[l] + 1;
20 if kT

l p ≤ T then
21 k[l] = k[l] + 1;
22 break ; /* escape the for loop */
23 else
24 f [l] := False;
25 f ← and(f ,k < Kmax) ; /* element-wise logical and */
26 return k

E. Additional Experiemental Results
E.1. Additional Information of Experiemental Settings

We use 12 Nvidia GPUs of Tesla V100 for our experiments. We follow exactly the experimental settings in [25]. The results
of the baselines in Table 2 are taken from [58, 25].

E.2. On the Choice of KD Loss

0 20000 40000 60000

10
3

Iteration

Llogits(Forward KL)

0 20000 40000 60000

10
−1

Iteration

Lis

Dlogits Wiki2 C4

Forward KL 31.39 28.50
Reverse KL 33.14 29.46
Symmetric KL 32.67 29.26
JS Divergence 31.78 28.69
TV Distance 33.02 29.56

Figure 9: The training convergence of Lis, and Llogits, measured by Forward KL, and the final results with respect to the
choice of Dlogits.

Fig. 9 illustrates the convergence and results of using different choices for Dlogits in Eq. 13. Despite its simplicity, forward
KL achieves the best performance. More complex measures, such as total variance (TV) distance [57] and Jensen-Shannon
(JS) divergence [1], offer no significant benefits in our case. Furthermore, we observe that the final perplexity is strongly
correlated with Llogits using forward KL, but not with Lis, as shown in Fig. 9 and Fig. 6. As a result, we employ the forward
KL in all experiments.
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E.3. Results of Different Number of Kernels on LLMs

To complement the Table 2, Table 5 shows the benchmarking results of LLMs using our MBOK method with varying numbers
of kernels per weight. Consistent with the observations made on smaller models in § 6.1.1, we observe that increasing the
number of kernels generally improves performance. However, the performance gains begin to diminish noticeably beyond
three kernels.

Table 5: Perplexity and zero-shot accuracy results of our MBOK method with different number of kernels.

Model Method Wbits
Perplexity (↓) Zero-shot Accuracy (↑)
Wiki2 C4 BoolQ PIQA Hella. WinoG. ARC-e ARC-c Average

OPT-1.3B [63]
MBOK (2 kernels) 2×1 16.13 16.61 58.53 70.67 48.11 56.75 48.19 27.90 51.69

MBOK (3 kernels) 3×1 15.30 15.68 60.64 70.78 50.71 56.83 48.82 28.49 52.71

MBOK (4 kernels) 4×1 14.83 14.92 60.95 70.85 51.02 56.85 49.13 29.24 53.01

LLaMA-7B [53]
MBOK (2 kernels) 2×1 6.83 8.53 69.20 74.32 64.80 60.30 49.05 34.90 58.76

MBOK (3 kernels) 3×1 6.20 7.76 67.89 76.15 68.91 63.30 48.94 37.62 60.47

MBOK (4 kernels) 4×1 6.01 7.53 68.16 76.71 69.85 62.09 49.24 38.14 60.70

LLaMA-13B [53]
MBOK (2 kernels) 2×1 6.17 7.88 68.10 76.33 69.88 64.17 52.34 37.88 61.45

MBOK (3 kernels) 3×1 5.58 7.15 67.39 77.74 73.37 66.61 54.04 41.21 63.39

MBOK (4 kernels) 4×1 5.38 6.91 68.69 77.63 74.23 66.53 56.14 41.38 64.10

E.4. Additional Results on LLaMA-2

Table 6 shows the results on LLaMA2-13B [54]. Similar to the Table 2, the results of the baselines are taken from [58] and
[25]. It is clear that our method consistently outperforms the baselines across different metrics and model sizes.This further
emphasizes the robustness of our approach across various types of models.

Table 6: Perplexity and zero-shot accuracy results of Float16, quantized and binarized LLaMA2 models.

Model Method Wbits Perplexity (↓) Zero-shot Accuracy (↑)
Wiki2 C4 BoolQ PIQA Hella. WinoG. ARC-e ARC-c Average

LLaMA2-7B [54]

FP-16 16 5.47 6.97 71.10 76.88 72.94 67.09 53.58 40.61 63.70

PB-LLM [61] 1.7 76.75 85.92 62.17 52.82 26.87 50.11 26.89 24.31 40.53
BiLLM [23] 1.11 27.72 36.34 62.14 59.19 35.18 53.11 34.22 26.54 45.06
OneBit [58] 1 8.60 10.74 63.06 70.40 54.24 56.67 40.82 29.35 52.42
MoS [25] 1 7.88 9.75 65.02 71.55 59.41 56.18 41.84 30.03 54.01

QPTQ [18] 2 7.7e3 NaN 42.97 49.46 26.19 50.28 26.77 28.58 37.38
LLM-QAT [38] 2 1.1e3 6.6e2 59.14 50.12 25.10 49.08 26.26 26.96 35.89
OmniQuant [50] 2 31.21 64.34 58.69 56.53 33.87 51.22 33.63 24.32 43.12

MBOK [Ours] 2×1 6.87 8.74 66.94 74.97 65.59 61.72 44.82 34.21 58.04
MBOK [Ours] 3×1 6.12 7.81 65.46 75.79 69.59 62.04 49.11 37.80 59.97

LLaMA2-13B [54]

FP-16 16 4.88 6.47 68.99 79.05 76.62 69.77 57.95 44.20 66.10

PB-LLM [61] 1.7 155.25 151.15 37.82 53.26 28.89 49.48 28.28 23.72 36.91
BiLLM [23] 1.11 20.71 27.19 62.20 62.51 38.05 56.35 40.69 27.73 47.92
OneBit [58] 1 7.56 9.67 65.66 71.60 60.07 56.91 45.76 31.74 55.29
MoS [25] 1 7.08 8.91 66.12 73.72 63.80 58.98 45.71 33.19 57.09

QPTQ [18] 2 2.1e3 3.2e2 40.61 51.74 25.67 51.85 25.46 27.30 37.11
LLM-QAT [38] 2 5.1e2 1.1e3 39.85 49.08 24.37 51.38 27.15 24.32 36.03
OmniQuant [50] 2 16.88 27.02 62.05 62.24 50.34 53.20 40.66 29.61 49.68

MBOK [Ours] 2×1 5.97 7.85 66.32 75.84 70.24 62.51 50.00 37.46 60.40
MBOK [Ours] 2×1 5.35 7.07 66.80 77.59 73.79 65.27 54.47 41.89 63.30

E.5. Generation Quality

Table 7 illustrates the generated text given zero-shot arbitrary questions from LLaMA-13B with FP-16 weights and MBOK
using three kernels. It is clearly that our model is able to produce meaningful and coherennt text compared to the original
FP-16 model.
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Table 7: Comparison of generation quality (non-curated) on LLaMA-13B models with FP-16 and MBOK using three kernels.

Prompt: What are the capitals of China, US and Russia?

FP16: The capital of China is Beijing. The capital of the
United States is Washington D.C. and the capital of
Russia is Moscow.

MKOB: The capital of China is Beijing. The capital of the US
is Washington D.C. and the capital of Russia is Moscow.

Prompt: I have a friend who lives in London and I would like to
visit him. How would I go there from Paris?

FP16: You can take the Eurostar from Gare du Nord in Paris to
St. Pancras Station in London. The trip takes about 2
hours and 15 minutes.

MKOB: The fastest way to get from Paris to London is to take
the Eurostar train. The Eurostar departs from the Gare
du Nord station in Paris and arrives at the St. Pancras
International station in London. The trip takes about 2
hours and 15 minutes.

Prompt: What is Fete du Travail?

FP16: It is an annual holiday celebrated all over the world
that resulted from the labour union movement, to
celebrate the economic and social achievements of
workers. The majority of countries celebrate Labour Day
on May Day, or May 1, and it is popularly known as May
Day and International Workers’ Day

MKOB: In France, May 1st is a public holiday. It is also
known as Labour Day, International Workers_ Day, or May
Day. It is a celebration of the social and economic
achievements of the labour movement. It originated from
the eight-hour day movement, which advocated eight hours
for work, eight for recreation, and eight for rest.

Prompt: What are the main ingredients in pho, Vietnam_s iconic
noodle soup?

FP16: Rice noodles, beef or chicken, onions, ginger, cilantro,
bean sprouts, basil, lime, hoisin sauce, Sriracha, and
fish sauce.

MKOB: Bone broth, rice noodles, fish sauce, herbs and spices,
and beef, chicken, or seafood, depending on the type
of pho you_re eating. Pho is usually served with
bean sprouts, Thai basil, lime wedges, and hoisin and
sriracha sauces.

E.6. Comparison with Latent-weight Approaches

We compare our method with latent-weight approaches on OPT models, using MoS with 3 experts and our method with
3 Boolean kernels. We also introduce a baseline using our SVID framework to construct 3 binary weights that rely on FP
latent weights for training. Results in Fig. 10 show that our method converges much faster, as it directly optimizes Boolean
parameters without the need for STE to approximate gradient signals. Both our approach and the latent-weight method
outperform MoS, demonstrating the benefit of using additional Boolean kernels and our successive SVID framework. Our
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method is also more efficient, avoiding the need for FP latent weights and extra momentum.
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125M
MoS (3 experts) [25] 38.62 34.72
3 Latent weights 29.47 27.18
MBOK (3 kernels) [Ours] 29.10 26.48

350M
MoS (3 experts) [25] 29.93 28.25
3 Latent weights 23.58 22.65
MBOK (3 kernels) [Ours] 23.12 22.10

Figure 10: Comparions between our method and latent-weight approaches.
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