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ABSTRACT

Contrastive Language-Image Pre-training (CLIP) shows promise in medical im-
age analysis but requires substantial data and computational resources. Due to
these restrictions, existing CLIP applications in medical imaging focus mainly
on modalities like chest X-rays that have abundant image-report data available,
leaving many other important modalities under-explored. Here, we propose one of
the first adaptations of the full CLIP model to mammography, which presents sig-
nificant challenges due to labeled data scarcity, high-resolution images with small
regions of interest, and data imbalance. We first develop a specialized supervision
framework for mammography that leverages its multi-view nature. Furthermore,
we design a symmetric local alignment module to better focus on detailed features
in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning
approach for large language models pre-trained with medical knowledge to address
data limitations. Our multi-view and multi-scale alignment (MaMA) method out-
performs state-of-the-art baselines for three different tasks on two large real-world
mammography datasets, EMBED and RSNA-Mammo, with only 52% model size
compared with the largest baseline. The code is attached in the supplement file and
will be released on GitHub upon acceptance.

1 INTRODUCTION

Contrastive learning (Chen et al., 2020; He et al., 2019; Grill et al., 2020) has become one of the
most popular self-supervised representation learning paradigms due to its intuitive concept and
robust performance. Contrastive learning removes the reliance on a supervised signal by optimizing
the semantic distance for similar pairs in the representation space in a contrastive manner. More
recently, the introduction of natural language signals to contrastive learning (Radford et al., 2021) has
given rise to modern visual-language models (Li et al., 2022; 2023; Liu et al., 2024a). Contrastive
Language-Image Pre-training (CLIP) (Radford et al., 2021) has also been widely applied in the
medical imaging domain (Wang et al., 2022b; Huang et al., 2021; Wang et al., 2022a; Zhang et al.,
2022; Wu et al., 2023; Zhang et al., 2023; Eslami et al., 2023) and shows promising improvement
in medical image understanding when large-scale medical imaging datasets are available (Johnson
et al., 2019; Irvin et al., 2019; Eslami et al., 2023; Zhang et al., 2023). However, the CLIP model in
the natural image domain usually demands more than hundreds of millions of image-text pairs to be
properly trained (Radford et al., 2021; Sun et al., 2023a; 2024; 2023b), which is almost impossible
in the medical domain due to privacy and security concerns. Existing medical CLIP methods either
build general-purpose CLIP models with multiple anatomical sites and modalities from public online
databases (Eslami et al., 2023; Zhang et al., 2023) or focus on imaging modalities with large-scale
(less than a million) datasets, e.g., chest X-ray or pathology images (Zhang et al., 2022; Huang et al.,
2021; Wang et al., 2022a; Wu et al., 2023; Wang et al., 2022b; Zhou et al., 2023; Wang et al., 2023;
Wan et al., 2024; Lai et al., 2023). This means other imaging modalities, such as mammography,
have yet to fully benefit from such visual-language pre-trained models.

Mammography is a critical medical imaging modality for breast cancer screening and diagnosis,
as breast cancer is one of the most commonly diagnosed cancers globally and a leading cause of
cancer-related mortality in women (Sung et al., 2021). While visual-language pre-training (VLP) has

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ℒ𝑉𝑇

Image

𝑓𝑉

Text

𝑓𝑇

𝑣 𝑡

𝒯1 𝒯2

ℒ𝑉𝑇

Image Text

𝑓𝑇𝑓𝑉

𝑣2 𝑣𝑣1 𝑡

ℒ𝑉𝑉

Text

𝑓𝑇

𝑡

𝑓𝑉

Multi-view Images

𝑣 ෤𝑣

ℒ𝑉𝑇ℒ𝑉𝑉

ℒ𝑉𝑇

𝒯1 𝒯2

(a) CLIP Style (b) SLIP (c) MaMA (Ours)

Figure 1: Comparison of Three Visual-Language Contrastive Learning Frameworks. (a)
CLIP (Radford et al., 2021) style; (b) SLIP (Mu et al., 2022) style; (c) Proposed MaMA that aligns
image-image and image-text features, exploiting the multi-view nature of mammography and aligning
images from the same study.

the potential to improve mammography interpretation, there are two major obstacles: 1) Limited data
and annotation: Recent work has introduced a large-scale mammography image and tabular dataset
of more than 110,000 patients, i.e., EMBED (Jeong et al., 2023), but no corresponding clinical reports
are available. 2) Nature of mammography: Different from the single view natural image or chest X-
ray, each mammography study usually contains four high-resolution (∼2,000-by-2,000 pixels) views
of the same patient: left and right side, each with craniocaudal (CC) and mediolateral oblique (MLO)
views. Such multi-view mammography has the critical properties of bilateral asymmetry (Donnelly
et al., 2024) and ipsilateral correspondence (Liu et al., 2021). Bilateral asymmetry means images
from different sides of the same patient can contain different information, e.g., density, calcification,
and mass findings. Ipsilateral correspondence means different views of the same side share similar
information from different viewpoints. Clinicians consider both properties and all four images at once
as a cross reference when reading a study. Meanwhile, lesions of interest are often relatively small
compared with high-resolution mammograms, which further challenges a model’s ability to focus on
local details. This pixel-level imbalance compounds the problem of image-level imbalance, in which
the vast majority of mammograms will not contain cancer. While recent works (Chen et al., 2024;
Ghosh et al., 2024) attempt to address these issues by leveraging VLP, they either simply fine-tune
pre-trained CLIP with a small amount of data (Chen et al., 2024) or apply contrastive language-image
pre-training with hand-crafted prompt (Ghosh et al., 2024), rather than capitalizing on mammography
domain information.

To address these challenges, we propose a novel Multi-view and Multi-scale Alignment i.e., MaMA,
contrastive language-image pre-training framework that exploits the multi-view property of mammog-
raphy and aligns multi-scale features simultaneously. Our work offers the following contributions:

• Multi-view Design: We extend the CLIP-style method to leverage the unique multi-view
nature of mammography images, introducing 1) an inter-study image-to-image contrastive
loss, and 2) symmetric image-text loss to resolve contradictions during pre-training.

• Symmetric Local Alignment (SLA): Designed for the relatively small ROIs in mammog-
raphy, the SLA module improves model understanding of local features without needing
dense annotation.

• PEFT-LLM Text Encoder: Replacing the traditional BERT encoder with PEFT-LLM
improves the understanding of the text while addressing data scarcity. Our evaluation of
3 SOTA LLMs (Bolton et al., 2024; Chen et al., 2023; Touvron et al., 2023) creates a
benchmark for future work.

• Other Contributions: We propose two important strategies specifically for mammography
VLP: 1) a template-based method to generate structured free-text captions from tabular data
that mimics realistic clinical report format and 2) meta-information masking augmentation
to mitigate zero-shot performance loss when training with complex captions.

We validate our method on two large-scale mammography datasets, EMBED (Jeong et al., 2023) and
RNSA-Mammo ((Carr & et.al., 2022)), with multiple settings compared with state-of-the-art medical
CLIP methods. The proposed method surpasses all the baselines with a considerable gap with only
52% model size, showing promise on multiple mammography-related tasks.
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2 RELATED WORKS

Medical Visual-Language Pre-training Existing medical VLP methods can be divided into
two types depending on the training data. The first type is the general-purpose medical CLIP
model trained with a large-scale medical-image dataset with multiple anatomical sites and imaging
modalities derived from PubMed (Eslami et al., 2023; Zhang et al., 2023). This approach mainly
focuses on scaling dataset size while using a vanilla CLIP design (Radford et al., 2021). These
models show promising generalization ability on multiple sites but are often suboptimal compared
with modality-specific models due to the lack of a specific design for the individual image modality.
The other type of VLP models mainly focuses on chest X-ray (Zhang et al., 2022; Huang et al., 2021;
Wang et al., 2022a; Wu et al., 2023; Wang et al., 2022b; Zhou et al., 2023; Wang et al., 2023; Wan
et al., 2024) due to the availability of large datasets, trained on either MIMIC-CXR (Johnson et al.,
2019) or CheXpert (Irvin et al., 2019) datasets. While these methods show impressive performance
on chest-specific tasks, they are specially designed for single-view images like regular CLIP (Radford
et al., 2021). Some of the methods further require full clinical reports paired with the image (Wang
et al., 2022a; Wan et al., 2024; Zhou et al., 2023), which makes them harder to adopt. Recently, Chen
et al. (2024) proposed a first attempt to introduce CLIP to mammography. It fine-tunes a pre-trained
CLIP model with an added multi-view image aggregation module to a zero-shot classification task.
However, the method does not perform contrastive pre-training, ignores pixel-level data imbalance,
and cannot correlate the medical report with fine-grained ROIs. Furthermore, they only fine-tuned
a pre-trained CLIP model with a few thousand private cases. While Ghosh et al. (2024) proposed
a Mammography CLIP-style pre-training method called Mammo-CLIP, it ignored the multi-scale
nature of the mammograms and was trained and evaluated on a much smaller dataset with only
20, 000 images. This limits the generalizability of the method and may lead to a greater potential
domain shift in the application.

Multi-view Contrastive Learning To obtain a more robust self-supervised contrastive learning
framework, methods like SLIP (Mu et al., 2022) (Fig. 1 (b)) and DeCLIP(Li et al., 2021a) exploit
image-image contrastive learning along with image-text contrastive learning simultaneously. Such
ideas have been applied to 3D shape recognition (Delitzas et al., 2023; Song et al., 2023) by exploiting
the nature of 3D shapes from different viewpoints and also to the action recognition task in the real
world (Shah et al., 2023). These methods all exploit the multi-view nature of the specific image
modality, where images of the same object from different viewpoints share the same semantic
meaning while having different appearances. Multi-view contrastive learning has also been utilized in
mammography (Li et al., 2021b; Du et al., 2024; Sun et al., 2022), where the multi-view consistency
is leveraged to actively learn high-level shared information within the multi-view mammography.
However, to the best of our knowledge, none of the existing works combine multi-view mammography
contrastive learning with CLIP to fully utilize the supervising signal from the multimodal data.

Unsupervised Local Contrastive Learning Correlating a dense visual representation with fine-
grained semantic meaning is not only helpful for image understanding but vital to tasks like semantic
segmentation. Recent work address this problem in the challenging unsupervised scenario (Huang
et al., 2021; Wang et al., 2022a; Zheng et al., 2024; Wang et al., 2023; Liu et al., 2023; Zhang et al.,
2024; Shah et al., 2023; Liu et al., 2024b). Zhang et al. (2024) rely on a pre-trained object detector or
segmentation model to extract the region of interest. Other methods either aggregate dense similarity
scores and conduct image-level contrastive learning (Zheng et al., 2024; Wang et al., 2023; Liu et al.,
2024b), which may ignore too much visual information during training, or exhaustively conduct
token-level language-image matching and optimize patch-level contrastive loss (Huang et al., 2021;
Wang et al., 2022a; Shah et al., 2023), with the cost of additional computation.

3 METHOD

In this section, we introduce the proposed MaMA (Fig. 2). We begin with the construction of the
structured mammography report from the tabular data. We then introduce the multi-view contrastive
image-text pre-training framework, followed by the proposed symmetric local alignment (SLA).
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Figure 2: Proposed Multi-view and Multi-scale (MaMA) VLP Framework. (a) We utilize
the multi-view information of mammography to conduct symmetric image-image and image-text
contrastive learning. (b) We localize the most relevant sentence for each image patch and the most
relevant patch for each sentence and align these matched local features via symmetric local alignment.

3.1 STRUCTURED REPORT CONSTRUCTION

Different from chest X-ray datasets that provide paired images with corresponding clinical reports,
e.g., MIMIC-CXR (Johnson et al., 2019), large-scale mammography datasets with the full report
available are rare. Rather, existing datasets in this domain (Jeong et al., 2023; Carr & et.al., 2022;
Nguyen et al., 2021) mainly provide a tabular structure annotation including both the anonymized
meta information as well as the clinical findings, e.g., breast density type, calcification findings,
tumor description, and Breast Imaging Reporting and Data System (BI-RADS) assessment category
(Sickles et al., 2013). Clinical findings serve as cross-validation evidence for the final diagnosis.
Using a CLIP-style (Zhao et al., 2023) caption with only the simple class label for cancer will result
in a highly simplified caption and limit the model’s understanding of the image due to missing details.

We propose a template-based caption construction method following the standard clinical report
structure (Onken et al., 2010) (Fig. 2 (a)). We first create a report template with segments describing
study procedure, patient meta-information, image meta-information, breast composition, findings,
clinical impression and the final overall assessment in a natural language report style. Each segment
contains keywords that can be replaced with the corresponding meta-information in the tabular data.
By replacing these keywords and concatenating these segments, we can build a complete clinical
report for each specific image, and provide more details for language-image contrastive learning. We
provide the full template and a few image-caption examples in the appendix.

Meta-Info Masking The increased information from patient and image-specific meta-data may
be memorized by the model during the contrastive training and result in learning shortcuts for the
model decision. To focus more on the diagnosis and disease-related information, we propose a data
augmentation method that randomly masks each patient or image meta-information keyword with a
probability of m when constructing the caption.

3.2 MULTI-VIEW VLP

We introduce the multi-view contrastive VLP framework here. Let D = {(xi, yi), i = 0, 1, . . . , N}
be a multimodal dataset, where there are N individual images xi and corresponding text captions yi.
Our framework optimizes both image-to-image and symmetric image-to-text contrastive loss.

Multi-view Visual Contrastive Loss We first optimize the contrastive loss within the multi-view
images (Fig. 2 (a)). We define a study to include the data from the same imaging session for a patient,
including one or more image-text pairs. For a random image-text pair (xi, yi) from the dataset D, we
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uniformly sample another image x̃i from the same study that xi belongs to as the positive sample
of xi. Note that x̃i could be xi as the augmented view of the same image is naturally a positive
sample. We augment both images with random data augmentation and then feed into the vision
encoder fV and d-dimensional global embedding projection head gV followed by average pooling to
get corresponding visual embedding vi, ṽi ∈ Rd, i.e., vi = avg(gV (fV (xi))). We then compute the
cosine similarity for each pair of visual embeddings and optimize the InfoNCE (Chen et al., 2020)
loss for vi in a mini-batch of size B:

LV V (vi, ṽi) = log
exp(sim(vi, ṽi)/τ1)∑B
j=1 exp(sim(vi, vj)/τ1)

, where sim(vi, vj) =
vTi vj

∥vi∥∥vj∥
, (1)

where τ1 is the visual temperature constant and vj is the j-th visual embedding in the batch. Since
two views of the same side of a study have ipsilateral correspondence, it is natural to treat them as
positive samples of each other, as the features, like tumors, present in one view, are often present
in the other view as well. On the other hand, even if considering bilateral asymmetry for images
from different sides, they still share much high-level information such as patient-level features (e.g.,
global breast shape similarity, age) and similar breast density. Introducing multi-view mammography
contrastive learning forces the model to learn semantically similar features from images within the
same study. This also provides a stronger self-supervised signal than using random augmented
images. Our image-to-image contrastive learning framework follows the design of SimCLR (Chen
et al., 2020) for simplicity.

Symmetric Visual-Text Contrastive Loss While existing methods like SLIP (Mu et al., 2022) also
optimize both image-image and image-text contrastive loss, we note there is a potential contradiction
between image-image and image-text objectives when computed for different examples (Fig. 1 (b)),
i.e., LV V and LV T are independent and the extra image will introduce unnecessary memory cost. To
address this, we propose re-using vi when optimizing LV T and symmetrically optimizing this loss.

We feed caption yi to the tokenizer and text encoder fT and then the text global projection head gT
with average pooling to get the text embedding ti ∈ Rd. We optimize the CLIP (Radford et al., 2021)
loss (Fig. 2 (a)):

LV T (vi, ti) = −1

2
(log

exp(sim(vi, ti)/τ2)∑B
j=1 exp(sim(vi, tj)/τ2)

+ log
exp(sim(ti, vi)/τ2)∑B
j=1 exp(sim(ti, vj)/τ2)

), (2)

where τ2 is the learnable language temperature constant. We compute LV T for both vi and ṽi for the
same ti symmetrically. Namely, we minimize the semantic distance between two images from the
same view and the corresponding report simultaneously. We note that even if the information in yi is
not completely matched with x̃i, e.g., different side and view caption, they still share a large overlap
in patient-level information. This encourages the model to mine the shared patient-level features via
minimizing LV T (ṽi, ti) while focusing on diagnosis-related information by minimizing LV T (vi, ti).

3.3 SYMMETRIC LOCAL ALIGNMENT (SLA)

Mammography usually contains high-frequency details and the region of interest is usually very small.
These properties require a higher image resolution for the deep learning method to work properly. It
also challenges the model’s ability to extract important local information and filter out less meaningful
background and tissue unrelated to diagnosis. To address these challenges, we propose a symmetric
local alignment (SLA) module. Specifically, the SLA module allows the model to determine the local
correspondence relationship between each sentence and image patch (Fig. 2 (b)).

We start with extracting local features from input (xi, yi). We feed the image and caption to the
vision encoder fV and text encoder fT respectively, followed by corresponding local projection head
hV and hT without pooling to produce output feature sequence vlocali ∈ RNV ×d and tlocali ∈ RNT×d,
where NV and NT are the length of visual tokens and text tokens, respectively. We then extract
sentence-level features by selecting the embedding corresponding to the [SEP] token, which results
in a sequence of sentence embeddings si ∈ RS×d, where S is the number of sentences. We extract
the image patch-level features by removing the extra functional tokens like [CLS] tokens, resulting
in a sequence of patch embeddings pi ∈ RP×d, where P is the number of patches. We then compute
the sentence-patch correspondence matrix Ci,i ∈ RS×P in the form of cosine similarity, which
reveals the relationship between local patches and each sentence in the report. However, we cannot
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directly supervise the learning of this matrix since we have no access to the local correspondence
between the image and the report. Thus, we aggregate the patch-sentence level correspondence matrix
Ci,i to an image-report level similarity score. We start by localizing the patch that has the highest
correspondence for each sentence. Namely, we find the most relevant region in the image for each
sentence. We call this process Visual Localization. We then average the similarity score for each
sentence to obtain a correspondence score which describes the similarity of the most relevant patch
for the whole report cVi,i =

1
S

∑
j maxk Ci,i(j, k), where Ci,i(j, k) is the similarity between the j-th

sentence and the k-th patch. Similarly, we conduct Text Localization by finding the most similar
sentence feature for each patch and averaging it to get a score for the similarity of the most relevant
sentence for the whole image cTi,i =

1
P

∑
k maxj Ci,i(j, k). We compute the aggregated visual and

text local scores for all p and s in the mini-batch and optimize the InfoNCE (He et al., 2019) loss:

LV
local(i) = −1

2
(

exp(cVi,i/τlocal)∑B
j=1 exp(c

V
i,j/τlocal)

+
exp(cVi,i/τlocal)∑B
j=1 exp(c

V
j,i/τlocal)

), (3)

and LT
local is defined similarly, where τlocal is the local temperature constant. The final local loss

will then be Llocal =
1
2 (L

V
local + LT

local). We note that introducing this local loss from the beginning
of the training can lead to unstable behavior as the initial visual and language embeddings are not
aligned. Thus, we add this loss after k steps of training.

The intuition behind this design is to mimic the process of radiologic interpretation of a medical
image in the real world. On the one hand, in mammography, the clinician will look for the image
regions and local features that appear most suspicious for cancer. On the other hand, the clinician
will write the radiology report in a few sentences based on the findings across the whole image, while
matching each description with a specific feature of the image. Our proposed SLA gives the model
the ability to perceive fine-grain local image detail with sentence-level description. The derived local
similarity map could also be used as a guide of the relevance between specific image details and each
sentence in the provided report and therefore improve the interpretability of the model.

3.4 OVERALL PRE-TRAINING TARGET

The overall pre-training optimization target of the proposed method is given by Eq. (4).
L(vi, ṽi, ti) = LV V (vi, ṽi) + LV T (vi, ti) + LV T (ṽi, ti) + wLlocal. (4)

We set w = 0.0 in the first k = 8, 000 training steps and w = 1.0 afterward.

3.5 LLM WITH PEFT AS TEXT ENCODER

Lastly, we incorporate parameter-efficient fine-tuning (PEFT) of a pre-trained large language model
(LLM) as our text encoder (e.g., BioMedLM (Bolton et al., 2024)) rather than use a small pre-trained
BERT encoder (Alsentzer et al., 2019). Using a pre-trained LLM with strong domain knowledge can
help improve the model’s understanding of the text caption and provide a more robust supervised
signal for the visual-language pre-training. Moreover, PEFT (e.g., LoRA (Hu et al., 2021)) can
greatly reduce the cost of adapting LLM to scenarios with a shortage of computing resources while
maintaining a strong performance after fine-tuning. Adapting an LLM with PEFT thus has the
potential to greatly improve performance while reducing trainable parameters and GPU memory
costs compared to learning the commonly adopted BERT-style encoder.

4 EXPERIMENTS

4.1 PRE-TRAINING SETTINGS

Dataset We pre-trained our model on the Emory EMBED (Jeong et al., 2023) dataset, which is
one of the largest open mammography datasets with public access. The current release contains
72,768 multi-view mammography studies for 23,356 patients collected from 4 hospitals. We focus
on 2D mammography, which has 364,564 individual images in total. The dataset provides tabular
annotation about the patient, imaging meta-information, and corresponding image-level findings
including breast density, BI-RADS assessment, and calcification findings. We split the dataset by
patient into train/validation/test partitions, each with 70%/10%/20% images. All the images are
resized and padded to 518× 518 without changing the aspect ratio.
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Table 1: Linear classification results on EMBED (Jeong et al., 2023). We evaluate linear classifica-
tion results with different amounts of fine-tuning data for both BI-RADS and density prediction tasks.
We report both balanced accuracy (bACC) and AUC metrics. The best and second-best results are
highlighted in bold and underlined, respectively. Our method is shaded in gray.

Models
EMBED BI-RADS EMBED Density

bACC (%) AUC (%) bACC (%) AUC (%)
1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

Vision only
Random-ViT (Dosovitskiy et al., 2020) 20.84 20.68 22.10 57.15 61.54 61.76 45.81 45.11 47.01 72.83 72.62 72.92
DiNOv2-ViT (Oquab et al., 2023) 22.63 25.17 29.33 61.83 66.00 70.11 66.71 70.80 71.20 89.18 90.46 90.47

DeiT-based (Touvron et al., 2021)
CLIP (Radford et al., 2021) 19.33 21.97 22.26 55.52 61.02 61.65 48.95 50.33 50.77 75.41 76.31 76.92
ConVIRT (Zhang et al., 2022) 25.08 27.63 29.56 65.43 70.49 71.54 72.66 73.46 73.53 91.69 92.11 92.10
MGCA (Wang et al., 2022a) 24.17 27.28 28.09 65.18 71.08 71.49 74.03 74.49 74.53 91.80 92.25 92.21

DiNOv2-based (Oquab et al., 2023)
CLIP (Radford et al., 2021) 26.66 31.65 34.35 70.35 74.98 74.11 74.64 75.00 75.97 91.50 90.62 92.39
SLIP (Mu et al., 2022) 22.94 27.86 30.93 64.43 69.48 71.95 73.24 74.79 75.23 91.56 92.37 92.46
MM-MIL (Wang et al., 2023) 25.85 30.94 35.11 67.16 71.99 76.12 74.23 76.69 75.77 91.96 93.34 91.65
ConVIRT (Zhang et al., 2022) 24.62 30.38 31.27 65.09 73.33 74.03 74.34 74.95 74.74 92.21 92.56 92.58
MGCA (Wang et al., 2022a) 23.66 30.11 30.27 64.19 72.24 72.54 71.43 72.25 72.20 90.83 91.21 91.24
MaMA 28.46 35.12 39.75 70.63 75.98 77.50 76.26 78.11 78.09 93.11 93.62 93.65

Implementation Details We choose to use DiNOv2-ViT-B (Oquab et al., 2023) and
BioMedLM (Bolton et al., 2024) as our image and text encoder respectively. We adapt LoRA (Hu
et al., 2021) to the text encoder to fine-tune it efficiently. We choose DiNOv2 (Oquab et al., 2023)
ViT as it is pre-trained with a larger image size which is suitable for mammography. Note that our
method does not depend on a specific text encoder design. We also report the performance of our
model with a more common BioClincialBERT (Alsentzer et al., 2019) encoder. The meta masking
ratio m is 0.8 during training. We train our model with the AdamW optimizer (Loshchilov & Hutter,
2017) using a learning rate of 4E-5, weight-decay of 0.1, and cosine annealing scheduler for 40k
steps. We also adapt warm-up from 1E-8 for 4k steps. The SLA loss is added after k = 8k steps.
We use a batch size of 144 and train the model on 4 RTX A5000 GPUs with BFloat-16 precision.
We set d = 512 and τ1 = τ2 = τlocal = 0.07. We provide more details for hyper-parameters in the
appendix Appendix A.5.

4.2 DOWNSTREAM EVALUATION SETTINGS

Tasks and Datasets We primarily evaluate our method on the EMBED (Jeong et al., 2023) dataset
for both BI-RADS assessment category (7 classes) and breast density (4 classes) prediction tasks.
Note that the real-world distribution of labels for both tasks is extremely imbalanced. To demonstrate
the behavior of each model in a more realistic scenario, we further sub-sample 7,666 images for
BI-RADS prediction and 7,301 images for breast density prediction from the test split following
the dataset distribution. To avoid insufficient test data and possible bias, we use all the images with
BIRADS 5 and 6 in the BIRADS prediction test set. Detailed class distribution is provided in the
appendix. We also use the RSNA-Mammo (Carr & et.al., 2022) dataset for out-of-domain evaluation
for binary cancer detection, which only released a training set with 54k images. We split it into a
training set of 85% data and used the remaining as the evaluation. Given the extremely imbalanced
distribution of both datasets, we choose to report balanced accuracy and AUC as our primary metrics.
We also report the sensitivity and specificity of the RSNA-Mammo cancer detection task. We do not
assess zero-shot classification on this dataset since only a binary cancer label is available.

Evaluation Settings We evaluate all methods under zero-shot, linear classification, and full fine-
tuning settings. For zero-shot classification, we provide patient and imaging meta-information
along with the class-wise captions, as this meta-information is readily available without a clinician’s
diagnosis. For linear classification, we attach a linear classifier and fine-tune it using 1%, 10%, or
100% of the training data. Following Zhang et al. (2022); Huang et al. (2021); Wang et al. (2022a;b);
Wu et al. (2023); Wan et al. (2024), we perform this full data efficiency study with linear classification
and present as our primary results since this experiment mainly focuses on the quality of the pre-
trained embedding and it can best demonstrate the difference between each VLP method. For full
fine-tuning, we again attach a linear classifier and fine-tune the whole model using 100% of the
training data. Our learning rate is set to 5E-4 and weight decay to 1E-3 using the SGD optimizer with
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Table 2: Zero-shot and full Fine-tuning results on EMBED (Jeong et al., 2023). We evaluate
zero-shot and fully fine-tuned classification results for both BI-RADS and density prediction tasks.
We report balanced accuracy (bACC) and AUC. The best and second-best results are highlighted in
bold and underlined, respectively. Our method is shaded in gray.

Models
EMBED BI-RADS EMBED Density

Zero-shot Full Fine-tune Zero-shot Full Fine-tune
bACC (%) AUC (%) bACC (%) AUC (%) bACC (%) AUC (%) bACC (%) AUC (%)

DeiT-based (Touvron et al., 2021)
CLIP (Radford et al., 2021) 23.86 67.08 25.05 63.43 71.72 91.52 71.90 89.74
ConVIRT (Zhang et al., 2022) 23.72 62.85 31.80 72.82 64.61 86.62 77.07 93.34
MGCA (Wang et al., 2022a) 22.73 62.24 33.05 74.20 68.47 87.86 77.29 93.47

DiNOv2-based
CLIP (Radford et al., 2021) 23.05 59.81 34.25 71.61 73.56 92.37 77.47 93.69
SLIP (Mu et al., 2022) 24.14 67.47 21.75 61.96 75.45 92.17 64.72 86.37
MM-MIL (Wang et al., 2023) 21.78 62.41 33.05 71.26 69.73 89.07 75.92 92.59
ConVIRT (Zhang et al., 2022) 25.27 65.13 34.54 74.05 64.85 87.66 77.93 93.60
MGCA (Wang et al., 2022a) 26.55 63.76 34.15 73.89 69.00 88.36 77.74 93.64
MaMA 31.04 74.83 40.31 77.36 75.40 93.46 78.02 93.65

cosine annealing scheduler for 8k steps with batch size 36. A warm-up of 100 steps with a minimum
learning rate of 1E-5 is applied. The fine-tuning uses 2 RTX A5000 GPUs.

Baselines As the very first attempt at full contrastive language-image pre-training for mammogra-
phy, we choose to compare with the following baselines: 1) ViT (Dosovitskiy et al., 2020; Oquab et al.,
2023): we compare with vision-only baselines with both random initialization and DiNOv2 (Oquab
et al., 2023) pre-training. 2) CLIP (Radford et al., 2019): the vanilla CLIP model without other
additional design; 3) SLIP (Mu et al., 2022): a contrastive learning framework that optimizes both
image-image and image-text loss; 4) MM-MIL (Wang et al., 2023): a CLIP model that learns local
image-language relationship via a multiple instance learning paradigm; 5) ConVIRT (Zhang et al.,
2022): one of the first Chest X-ray specific CLIP models; 6) MGCA (Wang et al., 2022a): one of the
SoTA CLIP models for Chest X-ray that applies multi-granularity feature alignment. We pre-train
and fine-tune all these baselines with the same settings as our model. We also replaced the original
DeiT (Touvron et al., 2021) ViT with DiNOv2 (Oquab et al., 2023) for a fair comparison since
DeiT-ViT (Touvron et al., 2021) is only trained with a smaller image size. All the baseline methods
use fully fine-tuned BioClinicalBERT (Alsentzer et al., 2019) as text encoder. While we acknowledge
that there are other recent medical VLP methods (Huang et al., 2021; Wu et al., 2023; Wan et al.,
2024; Wang et al., 2022b), they either adapt domain-specific design and require annotations not
presented in our dataset (Wang et al., 2022b; Wan et al., 2024; Wu et al., 2023) or were shown to
perform worse in other studies than the chosen baselines (Huang et al., 2021; Zhou et al., 2023). We
also do not compare to related work that has no official implementation released (Liu et al., 2024b;
Chen et al., 2024) or pre-trained with different dataset (Ghosh et al., 2024).

4.3 RESULTS

Linear Classification We report the performance of both EMBED BI-RADS and density classifi-
cation tasks for each baseline in Tab. 1. We note MaMA achieves the best performance overall under
different amounts of training data. Our method shows a non-trivial improvement of more than 4%
of balanced accuracy on the BI-RADS prediction task when fine-tuned with full training data. We
note that reducing the amount of training data has a greater influence on the BI-RADS prediction
task than the density prediction task, as the BI-RADS distribution is more imbalanced, e.g., there are
only 6 training images for BI-RADS category 5 and 2 images for category 6 when using 1% training
data. However, our method still maintains the best overall performance even when trained with only
1% data on the BI-RADS prediction task. This demonstrates the strong generalization ability and
robustness of MaMA. Even if comparing with baselines also with local awareness (Wang et al., 2023;
2022a), our method is still the best. We also notice that the DiNOv2 (Oquab et al., 2023)-based
models tend to outperform the DeiT (Touvron et al., 2021)-based models even if using the same VLP
model design. This is not only because DiNOv2 ViT (Oquab et al., 2023) was trained on more data,
but also due to the use of a larger image size, which is critical for high-resolution mammography.
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Table 3: Classification results on RSNA-Mammo (Carr & et.al., 2022). We evaluate linear clas-
sification and fully fine-tuned settings for the cancer prediction task. We report balanced accuracy
(bACC), AUC, sensitivity (SEN), and specificity (SPE). The best and second-best results are high-
lighted in bold and underlined, respectively. Our method is shaded in gray.

Models
RSNA-Mammo

Linear Classification Full Fine-tune
bACC (%) AUC (%) SEN (%) SPE (%) bACC (%) AUC (%) SEN (%) SPE (%)

Vision only
Random-ViT (Dosovitskiy et al., 2020) 51.90 56.34 72.60 31.21 56.71 57.62 77.88 35.53
DiNOv2-ViT (Oquab et al., 2023) 63.23 68.59 59.62 66.84 55.12 58.18 70.19 40.06

DeiT-based (Touvron et al., 2021)
CLIP (Radford et al., 2021) 53.97 58.20 85.58 22.37 56.83 61.00 64.42 49.24
ConVIRT (Zhang et al., 2022) 65.96 69.81 66.83 65.10 53.31 69.16 8.65 97.96
MGCA (Wang et al., 2022a) 63.01 69.16 62.50 63.52 53.88 73.04 12.02 95.74

DiNOv2-based
CLIP (Radford et al., 2021) 63.89 70.28 58.17 69.61 56.86 61.20 69.23 44.49
SLIP (Mu et al., 2022) 62.48 67.51 78.37 46.60 56.74 60.05 63.94 49.53
MM-MIL (Wang et al., 2023) 64.02 70.67 58.17 69.86 59.97 65.04 57.21 62.73
ConVIRT (Zhang et al., 2022) 65.89 70.70 66.83 64.96 54.53 69.85 11.06 98.01
MGCA (Wang et al., 2022a) 60.79 67.45 71.15 50.43 55.99 68.67 14.90 97.07
MaMA 67.50 73.99 72.60 62.40 65.20 73.01 67.31 63.10

Zero-shot Classification We report the zero-shot classification performance for each of the methods
on both EMBED (Jeong et al., 2023) tasks in Tab. 2. While our method still outperforms all the
baselines, we highlight the zero-shot performance of the BI-RADS score prediction task, where our
model outperforms the best baseline by ∼5% in terms of balanced accuracy and more than 7% in
AUC score. Compared with baselines using the fully fine-tuned small BioClinicalBERT (Alsentzer
et al., 2019), our method with pre-trained LLM with PEFT shows much better zero-shot performance
as the LLM can provide a text-supervised signal with higher quality. Meanwhile, the PEFT helps
to prevent the LLM from collapsing during fine-tuning. As a result, our LLM text encoder with
PEFT can provide better zero-shot text embedding and improve the zero-shot performance greatly.
Meanwhile, we note that the adopted LLM with PEFT encoder only has 2.6 M trainable parameters,
which is only 3% of the BioClinicalBERT (Alsentzer et al., 2019) in terms of size.

Full Fine-tuning Classification We also report the classification results after full-fine-tuning for
EMBED (Jeong et al., 2023) tasks in Tab. 2. We note that while the gap between each method is
somewhat reduced due to full fine-tuning, our model still beats all other baselines on both tasks.

Out-of-Domain Data Analysis We report performance of each method on the out-of-domain
RSNA-Mammo dataset in Tab. 3. Since RSNA-Mammo (Carr & et.al., 2022) is an extremely
imbalanced dataset (48:1 negative to positive ratio), we report the sensitivity and specificity as well.
We note our model performs best in terms of balanced accuracy and AUC with a notable gap. While
some of the baselines outperform our model on either the sensitivity or specificity metric, we note
these models are not informative, i.e., they tend to collapse and predict the majority of images to one
of the classes. This will lead to a high score in one of the sensitivity or specificity metrics while result
in a low performance in the other. In contrast, our approach shows reasonable results for both metrics
and is the only method with both sensitivity and specificity greater than 60% under both the linear
and full fine-tuning settings. Furthermore, the other few methods that demonstrated higher sensitivity
than ours all resulted in a specificity of ∼45% or worse.

4.4 ABLATION EXPERIMENTS

Model Design We ablate the influence of each component in Tab. 4. Compared with these baselines,
we note each component has an important contribution to the overall model performance, as removing
any one resulted in inferior performance. We note that the baseline without PEFT-LLM instead
employs BioClinicalBERT (Alsentzer et al., 2019) and shows a clear drop in zero-shot performance,
which validates the importance of using a PEFT-LLM. However, this model still performs well on
the linear classification and full fine-tuning tasks, which demonstrates the effectiveness of our other
design choices.
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Table 4: Ablation of model design. We ablate different model designs on the EMBED (Jeong et al.,
2023) BI-RADS prediction and report balanced accuracy (bACC) and AUC. The best and second-best
results are highlighted in bold and underlined, respectively. Our full method is shaded in gray.

Methods EMBED BI-RADS

SLA Symm. LV T LV V PEFT-LLM Zero-shot Linear Classification Full Fine-tune
bACC (%) AUC (%) bACC (%) AUC (%) bACC (%) AUC (%)

✓ ✓ ✓ 29.28 71.16 38.71 77.50 30.55 70.69
✓ ✓ ✓ 31.03 72.79 39.57 77.39 39.47 76.23
✓ ✓ ✓ 27.32 70.18 37.21 77.95 23.78 63.97
✓ ✓ ✓ 23.88 62.84 38.96 77.43 22.29 63.77
✓ ✓ ✓ ✓ 31.04 74.83 39.75 77.50 40.31 77.36

Table 5: Multi-view ablation. We ablate different
multi-view contrastive learning strategies.

Methods
EMBED BI-RADS

Zero-shot Linear Classification Full Fine-tune
bACC(%) AUC(%) bACC(%) AUC(%) bACC(%) AUC(%)

Same Image 30.48 73.95 39.70 77.73 39.35 76.44
Intra-side 30.71 74.21 39.93 77.41 35.17 76.09
Intra-study 31.04 74.83 39.75 77.50 40.31 77.36

Table 6: Caption ablation. We ablate different
text caption construction strategies.

Methods
EMBED BI-RADS

Zero-shot Linear Classification Full Fine-tune
bACC(%) AUC(%) bACC(%) AUC(%) bACC(%) AUC(%)

CLIP-style 35.99 77.66 37.74 77.25 24.00 65.35
No Meta Mask 27.19 68.20 36.94 76.33 24.06 64.85
Struct. Cap. 31.04 74.83 39.75 77.50 40.31 77.36

Multi-view Ablation We ablate the multi-view sampling strategy here by using: 1) the same image,
2) an intra-side image, and 3) the complete intra-study image (Tab. 5). We can see that the model
trained with only one image loses the multi-view understanding. The model using only intra-side
images only considers ipsilateral correspondence and also results in a worse performance.

Caption Ablation We evaluate the influence of using different caption construction strategies
in Tab. 6. We note that a CLIP style caption that only focuses on class labels shows a better
zero-shot performance, but degenerates greatly in the linear classification and full fine-tuning tasks.
Meanwhile, if simply using the full meta-information during training, the model will fail with
zero-shot classification since it may mainly rely on the meta-information during the training and
ignore more important clinical information. Our full design of using a structural caption with
meta-information masking shows the best performance.

5 DISCUSSION AND CONCLUSION

In this work, we presented a complete and novel multi-view and multi-scale alignment contrastive
language-image pre-training method for mammography. We proposed utilizing the multi-view nature
of mammography and providing local image-sentence correspondence to help address the challenges
of small ROIs and high image resolution and provide fine-grained visual clues for decisions. The
proposed method greatly outperforms multiple existing medical CLIP baselines.

Limitation and Future Work As we mainly focus on image representation learning, we have yet to
evaluate other downstream tasks like image-text retrieval, object detection, and segmentation. While
also limited by accessible data in this domain, our method will be evaluated on more downstream tasks
in future work. Additionally, the EMBED data comes from the Atlanta, GA region. While the dataset
is highly ethnically diverse, the geographic focus could limit generalizability to other populations,
e.g., the breast density distribution may differ from data gathered in other regions of the world.
Meanwhile, the caption is created using the template-based method, which may potentially harm the
model due to limited caption diversity. Future works may consider augmenting the template-based
prompt with LLM to generate a more diverse prompt. We plan to extend this current framework to
more mammography imaging modalities including C-view and digital breast tomosynthesis to further
enhance its understanding of mammography. Meanwhile, we also plan to integrate this pre-trained
component into a multi-modal question-answering and grounding model, to further explore the
potential of medical VLP.
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A APPENDIX

In the appendix, we provide more detailed training settings, evaluation settings, model configurations,
and additional analysis.

A.1 BROADER IMPACTS

This paper proposed a promising visual language pre-training scheme for mammography that can be
used for various downstream tasks. It can also potentially speed up the real-world mammography
screening or diagnostic process by filtering out low-risk studies and highlighting high-risk images for
the clinician. While the EMBED dataset is one of the largest and most diverse public mammography
datasets available, it is notable that the data were collected from four specific hospitals and thus
the trained model may have a specific bias towards a specific group of people due to training data
composition. Any user who wants to use this model in their own research may need to carefully
analyze such bias and their own application and tasks and avoid using the model in real-world clinical
trials without further approval.

A.2 REPRODUCIBILITY STATEMENT

We provide a detailed description of the proposed method in the Sec. 3 and corresponding implemen-
tation details in the Sec. 4 and appendix (from Appendix A.5 to Appendix A.7). We also provide
the pseudo-code of the proposed SLA module in Algorithm 1. To ensure the full reproducibility of
the proposed method, we provide the anonymous source code of our method in the supplementary
file. We also provide the corresponding command for pre-training and fine-tuning in the source code.
Note that the split file is not provided since its size is out of the 100 MB limit. We will provide the
complete train/valid/test split file online upon acceptance.

A.3 PSEUDO-CODE FOR SLA MODULE

Algorithm 1 SLA Loss Pseudocode
1: # fp, fs: local patch, sentence projectors
2: # N, tau_local: batch size and SLA loss temperature
3: # patch_feats: patch-wise image feature. (N, num_patch, C)
4: # sent_feats: sentence-wise text feature.
5: # list of N tensors, (num_sent, C)
6: def SLA_loss(patch_feats, sent_feats):
7: t2v_scores = [] # cV: visual localization correspondence
8: v2t_scores = [] # cT: textual localization correspondence
9: patch_feats = normalize(fp(patch_feats))

10: # Each report may have different num_sent
11: for sent in sent_feats:
12: sent = normalize(fs(sent))
13: score = torch.bmm(path_feats, sent.T) # (N, num_patch, num_sent)
14: # Visual localization: Max over patches + Avg over sentences
15: t2v_scores.append(score.max(dim=1, keepdim=True).mean(dim=2))
16: # Textual localization: Max over sentences + Avg over patches
17: v2t_scores.append(score.max(dim=2, keepdim=True).mean(dim=1))
18: t2v_scores = torch.stack(t2v_scores, dim=0).squeeze() # (N, N)
19: v2t_scores = torch.stack(v2t_scores, dim=0).squeeze() # (N, N)
20: t2v_scores /= tau_local
21: v2t_scores /= tau_local
22: labels = torch.arange(N)
23: loss0 = cross_entropy(t2v_scores, labels)
24: loss1 = cross_entropy(v2t_scores, labels)
25: return 0.5 * (loss0 + loss1)

To better illustrate the design of the SLA module, we here provide the pseudo-code for our SLA
implementation in Algorithm 1.
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Table 7: Model trainable parameters. We provide the number of trainable parameters for each
model here below. Our method as described in the main paper is shaded in gray.

Models #Trainable Parameters (M)
Visual Encoder Language Encoder Total

Vision only
Random-ViT (Dosovitskiy et al., 2020) 89.6 - 86.6
DiNOv2-ViT (Oquab et al., 2023) 89.6 - 86.6

DeiT-based (Touvron et al., 2021)
CLIP (Radford et al., 2021) 86.6 84.6 172.5
ConVIRT (Zhang et al., 2022) 86.6 84.6 173.2
MGCA (Wang et al., 2022a) 86.6 84.6 174.4

DiNOv2-based (Oquab et al., 2023)
CLIP (Radford et al., 2021) 89.6 84.6 174.5
SLIP (Mu et al., 2022) 89.6 84.6 174.8
MM-MIL (Wang et al., 2023) 89.6 84.6 174.9
ConVIRT (Zhang et al., 2022) 89.6 84.6 176.2
MGCA (Wang et al., 2022a) 89.6 84.6 177.4
MaMA-BioClinicalBERT (Alsentzer et al., 2019) 89.6 84.6 177.5
MaMA-LoRA-BioMedLM (Hu et al., 2021; Bolton et al., 2024) 89.6 2.6 92.8
MaMA-LoRA-Meditron (Hu et al., 2021; Chen et al., 2023) 89.6 4.2 94.3
MaMA-LoRA-Llama3 (Hu et al., 2021; AI@Meta, 2024) 89.6 3.4 93.4

A.4 COMPARISON WITH EXISTING LOCAL CONTRASTIVE LEARNING METHODS

The proposed SLA module mainly differs from the existing local dense contrastive learning method
from the following two perspectives: 1) Bi-directional optimization: SLA optimizes localization
alignment bi-directionally (patch-to-sentence and sentence-to-patch alignment), unlike existing
methods (Huang et al., 2021; Zheng et al., 2024; Wang et al., 2023) focusing on asymmetric text-
to-image localization. This symmetric approach improves localization granularity and prevents
blurry results as shown in Fig. 5 Sentence embeddings: Using sentence embeddings instead of
word embeddings can provide better high-level semantic information, critical to clinical reports.
Word-embedding (Wang et al., 2023; 2022b) localization loss may fail in cases such as “no cancer”,
which will be tokenized into “no” and “cancer”, leading to contradicting results. This relates to our
caption construction, which correlates each sentence with one specific finding.

A.5 PRE-TRAINING IMPLEMENTATION DETAILS

Dataset and Pre-processing As mentioned in Sec. 4.1, we use the EMBED Jeong et al. (2023)
dataset for pre-training. We only use the 2D mammography and split the dataset into 70%/10%/20%
for training, validation, and testing at the patient level. We filter out the studies for males or those
that have missing BI-RADS or density labels. We provide the detailed distribution of BI-RADS score
and Breast density in Fig. 3, displaying the extremely imbalanced labels. Each of the sampled splits
shares roughly the same distribution. More details about the dataset can be found in (Jeong et al.,

EMBED Dataset Distribution

Figure 3: Data Distribution of EMBED (Jeong et al., 2023) Dataset. We visualize the data
distribution of the EMBED (Jeong et al., 2023) dataset for both BI-RADS and Density labels.
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Full Fine-tuned Model Confusion Matrix

Figure 4: Confusion Matrix of Our Full Fine-tuned Model. We visualize the class-wise confusion
matrix of our model fully fine-tuned with BI-RADS and density classification tasks, respectively.

2023). For the data pre-processing, we first convert each original DICOM image file to JPEG format
and resize the image based on its long side to 1,024 pixels without changing its aspect ratio. These
images are then used directly for training.

Pre-training Data Augmentation Different from CLIP (Radford et al., 2019), we use a strong
data augmentation during the pre-training stage for both images. We first apply the OTSU threshold
masking to cut the unnecessary background regions and only keep the breast tissue. This image is
then resized to 518 pixels on its long side and padded with zeros on the short side to have a square
shape of 518,×518. We then apply SimCLR (Chen et al., 2020) style augmentation including random
horizontal and vertical flips, color jitter, grayscale, and Gaussian blur. During test time, we only keep
the resize operation and drop all random augmentations.

Model Details As mentioned in Sec. 4.1, we use DiNOv2 pre-trained ViT-B-reg (Dosovitskiy et al.,
2020; Darcet et al., 2023) model with image size 518 and patch size 14 as our visual encoder. We use
BioMedLM (Bolton et al., 2024), a 3M level GPT-2 decoder-only transformer of 32 layers as our
language encoder. We adapt LoRA (Hu et al., 2021) to fine-tune this encoder. As for the baselines,
we choose to experiment with both a DeiT (Touvron et al., 2021)-based and a DiNOv2-based visual
encoder. The DeiT-based transformer was pre-trained with a patch size of 16 and image size of 384
on ImageNet (Deng et al., 2009). The input for the corresponding baselines is resized to 384 as well.
For the DiNOv2 (Oquab et al., 2023) visual encoder for the baselines, the setting is the same as our
model. All the baselines use BioClinicalBERT (Alsentzer et al., 2019), a BERT-style encoder-only
transformer without PEFT. We use the online implementation for ConVIRT (Zhang et al., 2022)
and MGCA (Wang et al., 2022a)1 and adjust the vision encoder part, and we re-implement the
CLIP (Radford et al., 2019), SLIP (Mu et al., 2022), and MM-MIL (Wang et al., 2023) following the
corresponding papers under our environment. We provide the model size comparison in Tab. 7. We
can easily see that our model has the smallest number of trainable parameters, only ∼52% compared
with other baselines. We choose to use the last checkpoint for all models in downstream evaluations.

PEFT Settings As for the parameter-efficient fine-tuning (PEFT) module, we use the LoRA
implemented by HuggingFace with default hyperparameters: r = 8, α = 32, dropout = 0.1. We
choose to use LoRA as it is one of the most popular PEFT methods and has been proven to be
effective in prior research.

1https://github.com/HKU-MedAI/MGCA
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Table 8: Ablation with different meta masking ratio on EMBED BI-RADS (Jeong et al., 2023).
We evaluate the influence of using different meta-masking ratios on the input text during pre-training
and test the model on zero-shot settings. Our method as described in the main paper is shaded in gray.

Model Settings bACC(%) AUC(%)

m = 0.0 27.19 68.20
m = 0.2 29.52 71.23
m = 0.5 30.37 72.44
m = 0.8 31.04 74.83

A.6 DOWNSTREAM EVALUATION DETAILS

Zero-shot Caption During zero-shot evaluation, we prepend the meta-information to the class-wise
description sentence, since this meta-information can be readily obtained with the images without
needing the clinician’s diagnosis. More specifically, we prepend the information including: Procedure
reported, Reason for procedure, Patient info, and Image info before the class description sentence
of each BI-RADS or density class. This improves the zero-shot balanced accuracy of the BI-RADS
classification from 29.65% to 31.04% and improves the corresponding AUC from 68.05% to 74.83%.

Linear Classifier We attach a linear classifier to each of the baseline models for linear classification
and full fine-tuned tasks. The linear classifier uses the average of all patch tokens as input rather
than using [CLS] token since the [CLS] token is not used during training as well. We use the
full training set and balanced weighted sampling during training for all the linear classification and
fine-tuning experiments.

BI-RADS Prediction For EMBED (Jeong et al., 2023) BI-RADS score prediction task, we sample
10% data randomly from the test set. However, we added more images for BI-RADS scores 5 and
6 to ensure these 2 classes at least have 200 images. This is to avoid bias due to limited evaluation
samples. The final distribution of this dataset is: [901, 4472, 1166, 517, 210, 200, 200] for BI-RADS
scores from 0 to 6 respectively. The pre-processing is the same as described in Appendix A.5.

Density Prediction Similar to BI-RADS prediction, we randomly sample another 10% data from
the test set stratified by density label to create the density prediction set. The distribution of this
test set is: [738, 3103, 3043, 417] for density from 1 to 4. We use the full training set and balanced
weighted sampling during training.

RSNA-Mammo (Carr & et.al., 2022) Cancer Detection Similar to EMBED pre-processing,
we convert the DICOM mammography to a JPEG image and resize its long side to 1,024 without
changing the aspect ratio. Since this dataset does not provide the corresponding meta-information, we
only evaluate the linear classification and full fine-tuning tasks. We use the full 15% test set for the
RSNA-Mammo (Carr & et.al., 2022) evaluation, where the distribution of this test set is [7979, 208]
for normal and cancerous samples, respectively. We use the full training set and balanced weighted
sampling during training.

A.7 CLASSIFICATION RESULTS ANALYSIS

We visualize the confusion matrix for classification results of the fully fine-tuned model on both
EMBED (Jeong et al., 2023) prediction tasks in Fig. 4. While the overall accuracy for the BI-RADS
prediction task still needs improvement, we note that the misclassification mainly happens for BI-
RADS categories 2, 3, and 4, which is reasonable since these classes are semantically close to
each other (“Benign”, “Probably Benign”, and “Suspicious Abnormality”). Meanwhile, we note
our model shows a high recall for BI-RADS category 6, i.e., “Known biopsy-proven malignancy”,
which indicates the potential application of the model to filter out high-risk abnormal mammography
quickly.

Misclassifications for the density predictions are also reasonable, as mammographic density increases
with the higher density class label. Notably, most errors for the middle two density classes are for
the more extreme version of that class (e.g., 3 corresponding to "heterogeneously dense" is more
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Table 9: Ablation with different visual contrastive learning style on EMBED (Jeong et al., 2023).
We evaluate the influence of using different visual contrastive pre-training schemes. We evaluate the
zero-shot and linear classification performance for each method. Our method as described in the
main paper is shaded in gray.

Model Settings
EMBED BI-RADS EMBED Density

Zero-shot Linear classification Zero-shot Linear Probing
bACC (%) AUC (%) bACC (%) AUC (%) bACC (%) AUC (%) bACC (%) AUC (%)

MoCo (He et al., 2019) style 29.04 74.67 36.74 78.16 76.18 92.58 78.03 93.49
SimCLR (Chen et al., 2020) style 31.04 74.83 39.75 77.50 75.40 93.46 78.09 93.65

Table 10: Ablation with different multi-view contrastive learning probability on EMBED (Jeong
et al., 2023). We evaluate the influence of using different multi-view contrastive learning probabilities
p on EMBED BI-RADS prediction. We evaluate the zero-shot and linear classification performance
for each pre-trained model. Our method as described in the main paper is shaded in gray.

Model Settings
EMBED BI-RADS

Zero-shot Linear Probing
bACC (%) AUC (%) bACC (%) AUC (%)

p = 0.0 30.48 73.95 39.70 77.23
p = 0.2 30.26 73.35 39.37 77.50
p = 0.5 31.04 74.83 39.75 77.50
p = 0.8 30.76 74.26 39.41 77.45
p = 1.0 29.33 73.21 38.20 77.49

often mistaken for 4 "extremely dense" compared to 2 "scattered density"); thus the binary dense
(labels 3/4) and non-dense (labels 1/2) prediction does well. This is important as women with dense
breasts are required to be notified by US regulations, and this has ramifications for potential follow-up
screening recommendations.

A.8 ADDITIONAL ABLATION EXPERIMENTS

Meta Masking Ratio To better understand the influence of masking the meta-information, we here
provide an extra zero-shot evaluation on different mask ratios m during the pre-training stage in
Tab. 8. As shown above, the zero-shot performance increases as the meta-information masking ratio
increases, which means the model tends to rely more on clinical-related information, and therefore,
does better in the zero-shot classification task.

Different Visual Contrastive Learning Scheme We here provide additional analysis of the
influence of using different visual contrastive learning schemes by comparing a variation of the
proposed model, i.e., MoCo-style image-to-image contrastive loss (He et al., 2019), where a memory
queue of size 4096 is used to store the negative samples during pre-training. This can properly address
the sensitivity of the image-to-image contrastive loss to the batch size, as there will always be a large
number of negative examples during pre-training (see Tab. 2 in He et al. (2019), where a batch size
of 256 was sufficient). Here, we provide a comparison between the proposed method (SimCLR style
image-to-image loss) and MoCo-style variation in Tab. 9.

We note that there is no clear difference between the two models. The chosen SimCLR method
is slightly better from a general perspective. This result potentially suggests that the batch size
may not be that important in our task, or that the used batch size was large enough. We provide
two possible explanations for this result: 1) Different from natural images, where the difference
between each sample is fairly large, the inter-sample difference for mammograms is much smaller.
Mammography generally has very similar global content. Thus, fewer negative samples are sufficient
to provide a robust contrastive signal during image-to-image contrastive pre-training. 2) Apart from
the image-to-image loss, the symmetric image-to-text loss between the caption and two images also
indirectly minimizes the distance between the two images, which helps alleviate the necessity of a
large batch size.
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Table 11: Comparison with medical pre-trained visual encoder on EMBED (Jeong et al.,
2023). We compare our method with SimCLR (Chen et al., 2020) pre-trained visual encoder on the
EMEBD (Jeong et al., 2023) dataset under linear classification settings. Our method as described in
the main paper is shaded in gray.

Model Settings EMBED BIRADS EMBED Density
bACC (%) AUC (%) bACC (%) AUC (%)

SimCLR (Chen et al., 2020) Pre-trained 26.19 65.06 77.06 92.64
MaMA 39.75 77.50 78.09 93.65

Table 12: Comparison with CNN-based backbone on EMBED (Jeong et al., 2023). We benchmark
different CNN-based visual backbones (He et al., 2016; Liu et al., 2022; Tan & Le, 2021) trained
with our method. Our method as described in the main paper is shaded in gray.

Model Settings
EMBED BI-RADS EMBED Density

Zero-shot Linear classification Zero-shot Linear Probing
bACC (%) AUC (%) bACC (%) AUC (%) bACC (%) AUC (%) bACC (%) AUC (%)

ResNet50 (He et al., 2016) 29.30 69.54 34.61 74.40 74.40 92.69 77.03 92.63
ConvNeXt-B (Liu et al., 2022) 24.24 65.63 29.48 71.34 71.34 93.01 74.57 92.45
EfficientNetV2-S (Tan & Le, 2021) 27.83 67.67 30.96 71.04 74.35 92.14 72.85 91.27
MaMA (Oquab et al., 2023) 31.04 74.83 39.75 77.50 75.40 93.46 78.09 93.65

Different Multi-view Probability Additionally, we here provide more analysis on the multi-view
sampling strategy. We adjust the probability of using intra-study sampling and the augmented view of
the same image as the extra image x̃i, which is p = 0.5 in the proposed method. When p = 0.0, the
model always samples the same augmented image as the other view during pre-training (equivalent
to the "Single Image" baseline in Tab. 5). In contrast, when p = 1.0, the model always samples
one of the other images from the same study as the other view. We here provide the results of the
Zero-shot and Linear classification BI-RADS prediction evaluation in Tab. 10. It is clear that either
using no inter-study sampling (p = 0.0) or using only the multi-view sampling (p = 1.0) will harm
the performance. An equal-weight mix of both sampling methods shows the best performance, as it
provides a more diverse contrastive image and reduces the potential contradictory image pairs (by
using the augmented view of the same image).

Visual Constrastive Only Baseline We here include the linear classification results in comparison
to the ViT baseline pre-trained with the SimCLR (Chen et al., 2020) method on the EMBED dataset
in Tab. 11. The vision-only pre-trained model performs worse compared with our method according
to the results.

Benchmark Different CNN-based Backbone We further benchmark using different CNN-based
visual backbone in Tab. 12. It is clear that using DiNO-ViT (Oquab et al., 2023) ensures the overall
best performance in our evaluation. While the CNN-based models can still achieve a comparable
performance under the same settings, especially in the more balanced density prediction task.

A.9 BENCHMARK DIFFERENT TEXT ENCODERS

We evaluate all methods with the same DiNOv2 (Oquab et al., 2023) vision encoders but compare the
influence of using different text encoders in Tab. 13.

Text Encoders 1) BioClinicalBERT (Alsentzer et al., 2019): The standard text encoder used for
previous medical CLIP models (Wang et al., 2023; Zhang et al., 2022; Huang et al., 2021; Wang et al.,
2022a; Wan et al., 2024) and also our baseline methods, which is a BERT (Devlin et al., 2018)-style
transformer pre-trained with MIMIC-III (Johnson et al., 2016) clinical report. 2) BioMedLM (Bolton
et al., 2024): A 2.7B level GPT-2 (Radford et al., 2019) transformer pre-trained with PubMed data,
which is also one of the best 3B LLM according to multiple benchmarks (Chen et al., 2023). 3)
Meditron-7B (Chen et al., 2023): A newly released Llama2 (Touvron et al., 2023) model fine-tuned
with PubMed papers. 4) Llama3-8B (AI@Meta, 2024): Recently released, the most robust open-
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Table 13: Linear classification results on EMBED (Jeong et al., 2023) for Different Text Encoder.
We evaluate linear classification results with different amounts of fine-tuning data for both BI-RADS
and density prediction tasks of our model with different text encoder. All methods are based on
DiNOv2 (Oquab et al., 2023) vision encoder for a fair comparison. We report both balanced accuracy
(bACC) and AUC metrics. The best and second-best results are highlighted in bold and underlined
respectively. Our method as described in the main paper is shaded in gray.

Models
EMBED BI-RADS EMBED Density

bACC (%) AUC (%) bACC (%) AUC (%)
1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

BioClinicalBERT-based (Alsentzer et al., 2019)
CLIP (Radford et al., 2021) 26.66 31.65 34.35 70.35 74.98 74.11 74.64 75.00 75.97 91.50 90.62 92.39
SLIP (Mu et al., 2022) 22.94 27.86 30.93 64.43 69.48 71.95 73.24 74.79 75.23 91.56 92.37 92.46
MM-MIL (Wang et al., 2023) 25.85 30.94 35.11 67.16 71.99 76.12 74.23 76.69 75.77 91.96 93.34 91.65
ConVIRT (Zhang et al., 2022) 24.62 30.38 31.27 65.09 73.33 74.03 74.34 74.95 74.74 92.21 92.56 92.58
MGCA (Wang et al., 2022a) 23.66 30.11 30.27 64.19 72.24 72.54 71.43 72.25 72.20 90.83 91.21 91.24
MaMA-BERT 27.81 34.25 38.96 68.99 74.61 77.43 74.77 77.50 78.15 92.90 93.50 93.68

LoRA-LLM-based (Hu et al., 2021)
MaMA-BioMedLM 28.46 35.12 39.75 70.63 75.98 77.50 76.26 78.11 78.09 93.11 93.62 93.65
MaMA-Meditron 26.94 33.28 38.68 68.93 74.45 77.51 74.48 77.77 78.30 92.65 93.54 93.66
MaMA-Llama3 28.00 34.30 39.99 70.83 75.47 77.50 74.70 77.93 78.13 93.02 93.70 93.72

souced LLM, with roughly the same architecture as Llama2 (Touvron et al., 2023) but pre-trained
with much more data. All the latter three LLMs are fine-tuned with LoRA (Hu et al., 2021)

Results We report the results on linear classification in Tab. 13. We note that even our model
with BioClinicalBERT (Alsentzer et al., 2019) text encoder outperforms all the baselines in this
evaluation; this demonstrates the effectiveness of the proposed multi-view mammography pre-training
and symmetric local alignment module. Comparing three different LLMs with LoRA (Hu et al.,
2021), we note that BioMedLM (Bolton et al., 2024) and Llama3-8B (AI@Meta, 2024) roughly
have a similar level of performance, while the BioMedLM-based model has a smaller GPU memory
cost and faster training speed due to its relative size. Meanwhile, we notice that the Meditron (Chen
et al., 2023)-based model is not as good as the other two LLMs, but all these LLM-based methods
outperform the model with smaller BERT-style (Devlin et al., 2018) encoder in general. Overall, our
choice of BioMedLM (Bolton et al., 2024)-based model has the best balance between performance
and model size.

A.10 LOCAL SIMILARITY MAP ANALYSIS

We visualize the learned local patch-sentence similarity map in Fig. 5. As described in Sec. 3.3, the
local patch-sentence similarity map indicates the relationship between each region of the image and
the corresponding input sentence. We visualize the similarity map for the “Impression” sentence in
the report (see examples in Fig. 6 to Fig. 8), which includes the most important diagnosis information.
We also visualize the same similarity map for MM-MIL (Wang et al., 2023) and a variation of our
method that optimizes local similarity with only visual localization (similar to including the MM-MIL
local branch).

We note that our methods generally have a better localization quality with more fine-grained details.
The model can accurately locate the high-density and tumor-related regions in the given maps.
We also see from the examples for patients 3 and 4 that our method has a better correspondence
between mammograms from different views or sides. Especially for column 3, our method accurately
identified the same region in both views, while the baseline method failed to locate the tissue in the
RMLO view (left image). The MM-MIL (Wang et al., 2023) model even failed to detect the tumor for
patient 4. On the other hand, the variation of our model that optimizes only visual localization loss
can only provide a vague and inaccurate similarity map. We believe this is because the asymmetric
max and average pooling operation drops too much information during training, resulting in only one
of the patches being optimized.

Quantitative Visual Grounding Analysis Similar to the analysis in MM-MIL (Wang et al., 2023),
we further conduct a zero-shot visual grounding analysis with the pre-trained model. We compare the
similarity map extracted for the image and the “Impressions” description with the provided ROIs from
a subset of the EMBED (Jeong et al., 2023) dataset, which contains 841 images from the test split, each
with one or more ROI annotations. We report the mean intersection-over-union (mIoU), mean DICE
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Figure 5: Visualization of Local Similarity Maps over Input Mammograms. We visualize
the learned local similarity map for the “Impressions” sentence on a few test mammograms from
the EMBED dataset (Jeong et al., 2023) for MM-MIL (Wang et al., 2023), our method with only
visual localization, and our full method here. All the heat maps are normalized to [0,1]. The third
column shows mammograms from the same side but a different view and the fourth column shows
mammograms from the same view but from a different side. The white box in the image represents
the ROI annotated from the dataset (Jeong et al., 2023).

Table 14: Zero-shot visual grounding analysis. We report the mean intersection-over-union (mIoU),
mean DICE score, and ROI recall with 50% coverage for methods with local sentence-region
similarity map on the EMBED (Jeong et al., 2023) dataset. Our method is shaded in gray.

Models Zero-shot EMBED Visual Grounding
mIoU (%) mDICE (%) Recall (%)

MM-MIL (Wang et al., 2023) 5.25 9.72 39.23
MaMA 6.22 11.88 47.67

(mDICE) score, and ROI recall for both the MM-MIL (Wang et al., 2023) method and ours. Different
from Wang et al. (2023), we use a set of thresholds of [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85] since
the ROI is generally smaller in the mammogram and needs a higher threshold to have better detection
results. We compute IoU and DICE scores for each threshold and then average them to get mIoU
and mDICE. For ROI recall, an ROI is considered successfully predicted when the overlap between
the binarized similarity map (with a fixed threshold of 50%) and the ROI is greater than 50%. Our
method generally shows a better performance over the MM-MIL (Wang et al., 2023) model and
achieves a recall near 50% without training. We note that the number reported here may look low
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Table 15: Linear classification bootstrap results for balanced accuracy on EMBED (Jeong et al.,
2023). We conduct the bootstrap evaluation for the linear classification predicted result of our method
on both BI-RADS and density prediction tasks. We sample N = 10, 000 bootstrapped samples and
compute the average balanced Accuracy (bACC) with the corresponding 95% confidence interval for
each setting. This illustrates the statistical stability of our method.

Task bACC (%)
1% 10% 100%

EMBED BI-RADS (Jeong et al., 2023) 28.46 [27.12, 29.84] 35.11 [33.36, 36.86] 39.75 [37.81, 41.64]
EMBED Density (Jeong et al., 2023) 76.25 [74.88, 77.60] 78.11 [73.65, 75.66] 78.10 [76.82, 79.34]

Table 16: Linear classification bootstrap results for AUC on EMBED (Jeong et al., 2023). We
conduct the bootstrap evaluation for the linear classification predicted result of our method on both
BI-RADS and density prediction tasks. We sample N = 10, 000 bootstrapped samples and compute
the average AUC with the corresponding 95% confidence interval for each setting. This illustrates
the statistical stability of our method.

Task AUC (%)
1% 10% 100%

EMBED BI-RADS (Jeong et al., 2023) 70.64 [69.56, 71.69] 75.98 [75.09, 76.87] 77.50 [76.61, 78.35]
EMBED Density (Jeong et al., 2023) 93.11 [92.70, 93.52] 93.62 [93.23, 94.00] 93.65 [93.26, 94.02]

since this is a parameter-free zero-shot evaluation, and the ROI in the mammography is generally
small compared with the whole image, which makes the task more challenging.

A.11 PERFORMANCE STATISTICAL ANALYSIS

We further evaluate the stability of the proposed method by bootstrap sampling test set results from
linear classification and report the 95% confidence interval in Tab. 15 and Tab. 16. Notably, our
method generally shows a small confidence interval, especially for AUC scores. Comparing our
results with confidence interval with the baselines in Tab. 1, we see that there is still a marked
improvement in performance.

A.12 REPORT CONSTRUCTION TEMPLATE

We provide here the template used to construct our structured image caption during training. We
describe each segment below, and the keywords wrapped with “{{” and “}}” will be replaced with
corresponding information from the tabular data.

1. Procedure reported: {{PROCEDURE}}.

2. Reason for procedure: {{SCREENING/DIAGNOSTIC}}.

3. Patient info: This patient is {{RACE}}, {{ETHNIC}}, and {{AGE}} years old.

4. Image info: This is a {{IMAGE_TYPE}} full-field digital mammogram of the {{SIDE}}
breast with {{VIEW}} view.

5. Breast composition: The breast is {{DENSITY_DESC}}.

6. Findings: The mammogram shows that {{MASS_DESC}}. The mass is {{SHAPE}} and
{{DENSITY}}. A {{DISTRI}} {{SHAPE}} calcification is present.

7. Impressions: BI-RADS Category {{BIRADS}}: {{BIRADS_DESC}}.

8. Overall Assessment: {{BIRADS_DESC}}

We provide more details and corresponding description strings in our implementation file.
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A.13 EXAMPLE MAMMOGRAPHY IMAGES WITH CAPTIONS

We provide 7 randomly sampled mammography images with corresponding captions for each of the
BI-RADS categories in Fig. 6 to Fig. 8.
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• Procedure reported: MG Screen Bilat w/Tomo/CAD Stnd
Protocol. 

• Reason for procedure: screening. 

• Patient info: This patient is African American  or Black, 
Non-Hispanic or Latino, and 56 years old.  

• Image info: This is a 2D full-field digital mammogram of 
the right breast with MLO view.  

• Breast composition: The breast is scattered fibro glandular 
densities.  

• Findings: The mammogram shows that an additional imaging is 
recommended.  

• Impressions: BI-RADS Category 0: additional imaging 
required. 

• Overall Assessment: Additional imaging is recommended.

• Procedure reported: MG Screen Bilat w/Tomo/CAD Stnd
Protocol. 

• Reason for procedure: screening. 

• Patient info: This patient is Caucasian or White, Non-
Hispanic or Latino, and 50 years old.  

• Image info: This is a 2D full-field digital mammogram of 
the right breast with CC view.  

• Breast composition: The breast is heterogeneously dense. 
This may lower the sensitivity of mammography.  

• Findings: The mammogram shows that no significant masses, 
calcification, or other abnormalities are present.  

• Impressions: BI-RADS Category 1: negative. 

• Overall Assessment: Negative.

• Procedure reported: MG Diagnostic Bilateral w/ CAD. 

• Reason for procedure: diagnostic. 

• Patient info: This patient is Caucasian or White, Non-
Hispanic or Latino, and 67 years old.  

• Image info: This is a 2D full-field digital mammogram of 
the left breast with MLO view.  

• Breast composition: The breast is scattered fibro glandular 
densities.  

• Findings: The mammogram shows that a benign finding is 
present.  

• Impressions: BI-RADS Category 2: benign finding. 

• Overall Assessment: Benign.

Figure 6: Example Multi-view Mammography BI-RADS 0-2 with Constructed Caption. We
provide random sampled multi-view mammography with the corresponding caption constructed by
us. We highlight the image match exactly with the caption in a green bounding box.
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• Procedure reported: MG Diagnostic Left w/CAD. 

• Reason for procedure: diagnostic. 

• Patient info: This patient is African American  or Black, 
Non-Hispanic or Latino, and 80 years old.  

• Image info: This is a 2D full-field digital mammogram of 
the left breast with CC view.  

• Breast composition: The breast is scattered fibro glandular 
densities.  

• Findings: The mammogram shows that a probably benign 
finding is present.  A Grouped Coarse calcification is 
present.  

• Impressions: BI-RADS Category 3: probably benign finding. 

• Overall Assessment: Probably benign.

• Procedure reported: MG Diagnostic Right w/CAD. 

• Reason for procedure: diagnostic. 

• Patient info: This patient is Caucasian or White, Non-
Hispanic or Latino, and 41 years old.  

• Image info: This is a 2D full-field digital mammogram of 
the right breast with MLO view.  

• Breast composition: The breast is scattered fibro glandular 
densities.  

• Findings: The mammogram shows that a suspicious abnormality 
is present.  

• Impressions: BI-RADS Category 4: suspicious abnormality. 

• Overall Assessment: Suspicious abnormality.

• Procedure reported: MG Diagnostic Mammo Bilateral. 

• Reason for procedure: diagnostic. 

• Patient info: This patient is African American  or Black, 
Non-Hispanic or Latino, and 59 years old.  

• Image info: This is a 2D full-field digital mammogram of 
the left breast with MLO view.  

• Breast composition: The breast is scattered fibro glandular 
densities.  

• Findings: The mammogram shows that a highly suggestive of 
malignancy is present, a biopsy is recommended.  

• Impressions: BI-RADS Category 5: highly suggestive of 
malignancy. 

• Overall Assessment: Highly suggestive of malignancy.

Figure 7: Example Multi-view Mammography BI-RADS 3-5 with Constructed Caption. We
provide random sampled multi-view mammography with the corresponding caption constructed by
us. We highlight the image match exactly with the caption in a green bounding box.
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• Procedure reported: MG Diagnostic Bilateral w/ CAD. 

• Reason for procedure: diagnostic. 

• Patient info: This patient is African American  or Black, 
Non-Hispanic or Latino, and 68 years old.  

• Image info: This is a 2D full-field digital mammogram of 
the left breast with CC view.  

• Breast composition: The breast is scattered fibro glandular 
densities.  

• Findings: The mammogram shows that a known biopsy-proven 
malignant mass is present.  

• Impressions: BI-RADS Category 6: known biopsy-proven 
malignancy. 

• Overall Assessment: Known biopsy-proven malignancy.

Figure 8: Example Multi-view Mammography BI-RADS 6 with Constructed Caption. We
provide random sampled multi-view mammography with the corresponding caption constructed by
us. We highlight the image match exactly with the caption in a green bounding box.
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