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ABSTRACT

We study the problem of offline policy evaluation (OPE), where the goal is to
estimate the value of given decision-making policy without interacting with the
actual environment. In particular, we consider the interval-based OPE, where the
output is an interval rather than a point, indicating the uncertainty of the evalu-
ation. The interval-based estimation is especially important in OPE since, when
the data coverage is insufficient relative to the complexity of the environmental
model, any OPE method can be biased even with infinite sample size. In this pa-
per, we characterize such irreducible biases in terms of the discrepancy between
the target policy and the data-sampling distribution, and show that the marginal-
importance-sampling (MIS) estimator achieves the minimax bias with an appro-
priate importance-weight function. Motivated with this result, we then propose a
new interval-based MIS estimator that asymptotically achieves the minimax bias.

1 INTRODUCTION

The offline policy evaluation (OPE) is the art of estimating the value of given decision-making poli-
cies based on offline datasets without interacting with the actual environment. Since the interaction
with the environment is often infeasible or expensive in many real-world applications, it is better to
evaluate the value offline rather than online.

In the literature, it is understood from theoretical perspectives that there are two fundamental condi-
tions for OPE to be successful: sufficient exploration, the coverage of the data-sampling distribution
over the state-action space relative to the target policy, and realizability, the knowledge of correct
environmental model with bounded complexity. In particular, if neither of these two conditions are
met in a certain manner, it is known that OPE is never sample efficient, i.e., it takes prohibitively
large sample to make the estimation reasonably accurate (Wang et al., 2020; Zanette, 2021). In prac-
tice, given a problem instance of OPE, consisting of an environment and a dataset, it is difficult to
confirm that these conditions hold or to modify the problem instance so that these conditions hold,
making the existing theoretical guarantees less practical. Towards practical OPE, we set our research
objective to develop a theoretically-sound value estimator without assuming these two conditions.

Towards our objective, we first analyze the statistical performance of OPE methods when the two
assumptions do not hold (Section 4). The key quantity is the information-theoretic worst-case bias
of the value estimator (Eq. (5)) and its minimum termed the minimax bias (Eq. (6)), which is positive
when there exist multiple indistinguishable environments, given only a problem instance of OPE. In
fact, we show that the minimax bias can be non-zero if we do not assume the two conditions (Corol-
lary 4.2). It suggests that, without the two assumptions, there exists a problem instance that any
point-based value estimator is not reliable.

Given the existence of irreducible bias, we propose an alternative formulation of offline policy eval-
uation called minimax-bias offline policy interval estimation (minimax-bias OPI), where the objec-
tive is to estimate the shortest possible interval containing the true value, instead of a point esti-
mate (Section 5). Since our characterization of the minimax bias allows us to define the optimal
interval (Definition 5.1), the minimax-bias OPI is formulated as a problem to estimate the optimal
interval (Problem 5.1).

We provide a theoretical foundation to solve the minimax-bias OPI based on the marginal impor-
tance sampling estimator (Section 6). The key result is that the optimal importance weight mini-
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mizing the distributional Bellman residual (DBR) allows us to construct an approximately optimal
interval (Theorem 6.3). This illustrates that our problem setting is well-posed and can be solved
under realistic assumptions if we can solve the minimization of DBR. Accordingly, we develop a
novel algorithm in Section 7 to find the best importance weight function, which results in an interval
estimator applicable even if the two fundamental conditions do not hold (Theorem 7.7).

Before proceeding to these results, we introduce basic mathematical notation in the rest of this
section, review the related work in Section 2, and introduce the useful OPE-specific notation in
Section 3.

Mathematical notation. Let I denote the identity operator and let a∨b := max{a, b} and a∧b :=
min{a, b} denote the maximum and minimum operators for a, b ∈ R, respectively.

Let X be a metric space with Borel algebra Σ. Let B(X ) and C (X ) be the spaces of the real-valued
measurable bounded functions and the continuous functions on X , respectively, both of which is
equipped with the uniform norm ∥f∥∞ := supx∈X |f(x)|. Let M (X ) denote the space of the
finite signed measures on the same space X , equipped with the total variation (TV) norm ∥P∥TV :=
supE++E−=X {P (E+) − P (E−)}. In particular, let δx ∈ M (X ), x ∈ X , denote Dirac’s delta
measure. For any f ∈ B(X ) and any P ∈ M (X ), let ⟨f, P ⟩ :=

∫
f(x)dP (x) be a shorthand for

the (signed) expectation of f with respect to P . Let ⊙ denote the importance-weighting operation
given by d(f ⊙ P )(x) := f(x)dP (x), f ∈ B(X ), P ∈ M (X ). Let L1(P ) be the space of the
functions integrable with respect to P ∈M (X ), i.e., ∥f ⊙ P∥TV <∞.

Let L (V) denote the set of the bounded linear operator on a normed vector space V . For any
A ∈ L (M (X )), let A∗ ∈ L (B(X )) denote the conjugate operator such that ⟨A∗f, P ⟩ = ⟨f,AP ⟩
for f ∈ B(X ) and P ∈M (X ).

2 RELATED WORK

The problem of estimating the interval containing the true value has been known as offline policy
interval estimation (OPI). This section reviews the existing studies on OPI by dividing the previous
OPI methods into two categories: non-asymptotic and asymptotic methods (see Table 1 for the
summary of comparison). We also discuss our contribution to the literature.

The non-asymptotic methods typically put their emphasis on the validity of the interval with any
finite sample size, where intervals are valid if they contain the true value J(π). For instance, Feng
et al. (2020; 2021) compute intervals that contain the true policy value with high probability, under
the realizability of the policy Q-functions qπ . Jiang and Huang (2020) also proposed an interval esti-
mator with validity under more relaxed realizability condition that either the policy Q-function qπ or
the marginal density ratio function wπ is realizable. One limitation of this approach is the theoretical
understanding on the tightness of the interval is often unclear or partial. Another limitation of this
approach is that they tend to require the realizability with known complexity. This requirement is not
desirable for practical use; if we used a too complex hypothesis class such as a reproducing kernel
Hilbert space with infinite radius, the resultant interval would be trivial, and thus, non-informative.

The asymptotic methods focus on the asymptotically dominant term of the uncertainty in the large
sample limit, which typically allows us to theoretically understand their behavior, especially the
tightness, in depth. For instance, Kallus and Uehara (2020); Shi et al. (2021) gave confidence interval
estimators that achieve the efficiency lower bound. The bootstrap estimators (Hao et al., 2021) also
enable us to compute the asymptotically exact confidence intervals in a more flexible manner. One
major limitation is that they assume both the sufficient exploration and the realizability conditions
of qπ and wπ hold, which can be hardly validated in real-world applications. These assumptions
are essential to their analyses because they focus on estimation of the asymptotic variance of order
O(n−1/2), assuming that the bias is negligible. Therefore, these methods are not applicable to our
setting where the asymptotic bias of order O(1) dominates the asymptotic variance.

In this study, we take the asymptotic approach, but with a focus on the estimation of the bias rather
than the variance, because the bias is dominant in our setting where the sufficient exploration and the
realizability do not hold at all. Our contributions are threefold. First, we characterize the theoretical
lower bound of the asymptotic bias through the asymptotic analysis, which serves as a theoretical
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Table 1: Comparison of OPI methods. qπ and wπ denote the Q-function and the marginal density
ratio function, respectively, w♯

π denotes a generalization of wπ for the insufficient exploration setting.

Method Assumptions Guarantee

Asymptotic Exploration Realizability Complexity

BONDIC (Feng et al., 2021) — — qπ Known Valid

MVI (Jiang and Huang, 2020) — — qπ or wπ Known Valid

DRL (Kallus and Uehara, 2020)
D2OPE (Shi et al., 2021) Yes Yes qπ and wπ — Efficient

Ours Yes —
—
w♯

π
— Valid

Optimal

foundation of OPE without sufficient exploration or realizability assumptions. Second, without the
two assumptions, we develop an interval estimation method that outputs an asymptotically valid
interval, that is, an interval that contains the true value in the large sample limit. Third, under
the realizability condition of the generalized marginal density ratio function w♯

π , we show that the
estimated interval is optimal.

3 PRELIMINARIES

We first introduce our formulation of reinforcement learning and offline policy evaluation. Then,
we introduce two fundamental concepts in RL, a Q-function and an occupancy measure, along with
shorthand notation for them.

Offline policy evaluation. Let X := S ×A be a compact Hausdorff space representing the state-
action space of the system with |X | < ∞.1 Let M := (ι, T,R) be the Markov decision pro-
cess (MDP) of environment on X , where ι ∈M (S) is the initial state distribution, T : X →M (S)
is the transition dynamics and R : X → M ([−1, 1]) is the conditional reward distribution. Let
π : S → M (A) be the target policy. Then, the value J(π) of π with respect toM is given by the
γ-discounted expected average reward

J(π) ≡ JM(π) := EM,π

[
(1− γ)

∞∑
t=1

γt−1rt

]
,

where γ ∈ (0, 1) is a discounting factor and EM,π denotes the expectation with respect to the
Markov chain generated with at ∼ π(st), rt ∼ R(st, at), st+1 ∼ T (st, at) for all t ≥ 1 and s1 ∼ ι.

In offline policy evaluation, we are given a datasetD := (Dι,DT,R) as input, whereDι := {sι,j}nj=1

is a set of initial states and DT,R := {(xi, s
′
i, ri)}ni=1 is a set of transition records sampled from

dGM,β(D) :=
n∏

j=1

dι(sι,j) ·
n∏

i=1

dβ(xi)dT (s
′
i|xi)dR(ri|xi),

where β ∈M (X ) is an arbitrary state-action-sampling distribution.2 Then, an instance of the offline
policy evaluation (OPE) is identified by the quadruple P := (M, β, π, γ) and formalized as follows.
Problem 3.1 (Offline policy evaluation, OPE). Given (D, π, γ) where D ∼ GM,β , estimate J(π).

Q-function and occupancy measure. Let ιπ ∈M (X ) and Tπ ∈ L (M (X )) be the initial state-
action distribution and the state-action transition operator associated with π such that dιπ(s, a) :=
dι(s)dπ(a|s) and d(TπP )(s, a) :=

∫
dT (s|x)dπ(a|s)dP (x) for s ∈ S, a ∈ A and P ∈ M (X ),

1This includes the cases where S and A are finite or compact subsets of finite-dimensional Euclidean spaces.
2For simplicity, we assume the sample sizes of Dι and DT,R are the same. The generalization with different

sample sizes is possible with minor modification.
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respectively. Also let ρ ∈ B(X ) be the expected reward function such that ρ(x) :=
∫
rdR(r|x) for

x ∈ X . Then, the value J(π) is rewritten as

J(π) = ⟨ρ,Γπιπ⟩ = ⟨Γ∗
πρ, ιπ⟩ = ⟨ρ, µπ⟩ = ⟨qπ, ιπ⟩, (1)

where Γπ := (1 − γ)
∑∞

t=1(γTπ)
t−1 ∈ L (M (X )) is the accumulation operator, µπ := Γπιπ ∈

M (X ) is the normalized occupancy measure of π (henceforth the occupancy measure), and qπ :=
Γ∗
πρ ∈ B(X ) is the normalized Q-function of π (henceforth the Q-function). Note that we have
∥q∥∞ ≤ 1 and ∥µπ∥TV = 1 thanks to the normalization.

Two Bellman equations. One of the essential difficulties of OPE lies in the fact the direct estima-
tion of the accumulation operator Γπ (and hence µπ and qπ) is intractable due to the infinite sum.
The Bellman equation is useful to mitigate this problem. Here, we introduce two variants of the
Bellman equation, the functional and distributional Bellman equations, given by

ρ = ∆∗
πqπ, ιπ = ∆πµπ, (2)

where ∆π := Γ−1
π = (I − γTπ)/(1 − γ) is the difference operator. Note that, in the Bellman

equations, both qπ and µπ are uniquely characterized via more directly estimatable quantities (ρ, Tπ)
and (ιπ, Tπ), respectively.

The errors of the Bellman equations are referred to as the Bellman residuals. In particular, the
distributional Bellman residual (DBR) is given by

Rπ(w) := ιπ −∆π(w ⊙ β) ∈M (X ),

which plays an important role in our analysis.

Empirical estimates. Finally, we introduce the empirical estimates of (ιπ, Tπ, ρ, β) based on the
dataset D as follows. For all P ∈M (X ) and x ∈ X ,

ι̂π :=
1

n

n∑
j=1

δxι,j
, T̂πP :=

n∑
i=1

δx′
i

N(xi)
P ({xi}), ρ̂(x) :=

1

N(x)

∑
i:xi=x

ri, β̂ :=
1

n

n∑
i=1

δxi
,

(3)

where N(x) := 1 ∨ |{i : xi = x}| is the data-counting function (with the zero-division safeguard)
and xι,i := (sι,i, aι,i) and x′

i := (s′i, a
′
i) are the state-action pairs associated with additional samples

aι,i ∼ π(sι,i) and a′i ∼ π(s′i), respectively.

Throughout this paper, we employ the conventional marginal importance sampling (MIS) estima-
tor (Liu et al., 2018; Xie et al., 2019) to estimate the value in offline. The MIS estimator associated
with a weight function w ∈ B(X ) is given by

Ĵ(w) := ⟨ρ̂, w ⊙ β̂⟩. (4)

The MIS estimator is justified if the weight function w is equal to the marginal density wπ := dµπ

dβ

(assuming it exists) since, in that case, the MIS estimator is unbiased, E[Ĵ(wπ)] = J(π), according
to (1).

Note, however, that wπ does not exist when the exploration is insufficient, β ̸≫ µπ , and the unbi-
asedness cannot be guaranteed in general. Two natural questions thus arise: Does the MIS estimator
still enjoy any theoretical guarantee in such a general setting? If so, what is the best weight function
w? In short, the answer to the first question is affirmative and the answer to the second question is
one of the main contributions of this work.

4 IRREDUCIBLE BIAS IN OFFLINE POLICY EVALUATION

In this section, we theoretically analyze the statistical performance of OPE methods without suffi-
cient exploration or realizability assumptions. As a result, we will show that any OPE method must
incur an irreducible bias that never disapears even when the sample size goes infinity. Given such a
negative result, we instead propose a novel problem setting called the minimax-bias OPI, where the
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goal is to estimate the interval that contains the true value and is as short as possible. The proposed
problem setting is expected to be solved without sufficient exploration or realizability assumptions,
and thus, will be of practical use.

To study the statistical performance of OPE methods, we introduce the notion of the minimax bias of
the point-based estimators. Let Ĵ be any random variable representing a point-based OPE estimator.
Then, the information-theoretic worst-case bias of Ĵ is given by

ϵ[Ĵ ] ≡ ϵ[Ĵ ;P] := sup
(M′,β)∼(M,β)

∣∣∣JM′(π)− EĴ
∣∣∣ , (5)

where the equivalence ∼ is defined by the equality with respect to the corresponding distributions
of the dataset, i.e., GM′,β = GM,β . If there exist equivalent environmentsM andM′ that result in
the different policy values JM(π) ̸= JM′(π) yet indistinguishable from the dataset, the worst-case
bias ϵ[Ĵ ] is inevitable without an additional source of information, i.e., domain knowledge. The
minimax bias is then defined as the minimum possible worst-case bias of OPE,

ϵ⋆(π) ≡ ϵ⋆(π;P) := inf
Ĵ

ϵ[Ĵ ;P], (6)

which can be thought of as a characteristic of the problem P indicating its hardness in terms of the
irreducible uncertainty even with infinitely large sample. In fact, there exists the unique Ĵ achieving
the infimum and we refer to it as the optimal point estimator J⋆(π). Our main objective is to
understand the minimax bias in various settings.

To this end, we introduce a novel concept, the projection of the occupancy measure µπ with respect
to β. Let Πβ be the projection operator onto the support of β such that ΠβP = χβ⊙P , P ∈M (X )
and χβ(x) = 1{x ∈ suppβ}.
Definition 4.1 (Projected occupancy measure and its importance weight). We refer to

µ♯
π := (1− γ)Πβ

∞∑
t=0

(γTπΠβ)
tιπ (7)

as the projected occupancy measure of π. Correspondingly, we also refer to

w♯
π :=

dµ♯
π

dβ

as the projected importance weight of π with respect to β.

Note that w♯
π can be thought of as an extension of wπ in the sense it is always well-defined and

w♯
π = wπ whenever wπ exists. On the other hand, µ♯

π can be thought of as the known component of
µπ since it is always identifiable given GM,β , thanks to the projection Πβ , and µ♯

π = µπ whenever
µπ is also identifiable.

We now present our main result, which discovers close relationships between the minimax bias
ϵ⋆(π), the MIS estimator Ĵ(w), the DBRRπ(w) and the projected importance weight w♯

π .

Theorem 4.1. For all w ∈ B(X ), we have

ϵ⋆(π) ≤ ϵ
[
Ĵ(w)

]
≤ ∥Rπ(w)∥TV ≤ ϵ⋆(π) +

1 + γ

1− γ
∥w − w♯

π∥L1(β). (8)

Proof (sketch). The most nontrivial part is the last inequality, which follows from the constructive
proof of

ϵ⋆(π) ≥ ∥Rπ(w
♯
π)∥TV. (9)

In particular, we construct two worst-case environments M± under the constraint (M±, β) ∼
(M, β). Roughly speaking, the environments are constructed to have a special state ⊥ in the under-
explored region of X absorbing all the transition to that region, and have the extreme reward there,
i.e., ρ(⊥) = ±1. With this explicit construction of the environments, we can give an analytic lower
bound of ϵ⋆(π), which coincides with ∥Rπ(w

♯
π)∥TV. See Section B for the complete proof.
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An immediate consequence of Theorem 4.1 is that it tells us when and how the minimax bias is
positive. To see this, let µ̸♯

π := µπ − µ♯
π be the projection residual of µπ .

Corollary 4.2. We have ϵ⋆(π) = ∥∆πµ̸
♯
π∥TV and thus

∥µ̸♯
π∥TV ≤ ϵ⋆(π) ≤

1 + γ

1− γ
∥µ̸♯

π∥TV.

In other words, the minimax bias is zero if and only if the projection residual µ̸♯
π is zero, or equiv-

alently, if µπ is absolutely continuous with respect to the data distribution β. Moreover, the size of
the minimax bias is proportional to the size of the projection residual µ̸♯

π . It thus formally asserts
the limitation of the point-based estimators in the insufficient exploration settings.

In summary, any OPE methods must be biased in the worst case whenever the exploration is insuf-
ficient, µπ ̸≪ β, motivating the interval-based approach.

5 PROBLEM SETUP: MINIMAX-BIAS OPI

As discussed above, the point-based estimator suffers from irreducible bias, suggesting a hardness in
Problem 3.1 under realistic assumptions. Given such a limitation, we propose an alternative problem
setting called the minimax-bias OPI so that we can solve it under realistic assumptions. Since there
exists a bias, our idea is to estimate the value by an interval that contains the true value, instead of a
point.

Let us first define the target of the estimation, which we call the optimal interval. As discussed ear-
lier, since J⋆(π) and ϵ⋆(π) are the best possible point estimator and its error guarantee, respectively,
the optimal interval can be naturally formulated as follows.
Definition 5.1 (Optimal interval). The following is referred to as the optimal interval:

I⋆(π) ≡ I⋆(π;P) := [J⋆(π)− ϵ⋆(π), J⋆(π) + ϵ⋆(π)].

Then, the problem of offline policy interval estimation (OPI), an uncertainty-aware interval exten-
sion of Problem 3.1, is formalized as follows.
Problem 5.1 (Minimax-bias OPI). Estimate I⋆(π) based on (D, π, γ), where D ∼ GM,β .

Towards estimating the optimal interval, let us introduce two desirable properties of an interval.
Definition 5.2 is stronger than Definition 5.3.
Definition 5.2 (Approximate optimality). We refer to the interval I satisfying dH(I, I⋆(π)) ≤ ϵ,
where dH(·, ·) is the Hausdorff distance, as ϵ-approximately optimal. Moreover, a sequence of
intervals {In}n≥1 is said to be asymptotically (approximately) optimal if it converges to an (ap-
proximately) optimal interval.
Definition 5.3 (Validity). An interval I ⊂ R is said to be valid if I ⊃ I⋆(π). Moreover, a sequence
of intervals {In}n≥1 is said to be asymptotically valid if its lower limit limk→∞

⋂
n≥k In is valid.

6 THEORETICAL FOUNDATION OF MINIMAX-BIAS OPI

We provide a theoretical foundation to solve Problem 5.1, mainly referring to Theorem 4.1.

First, Theorem 4.1 implies that the MIS estimator Ĵ(w) with the projected importance weight w =
w♯

π is optimal in the sense it achieves the minimax bias. More generally:

Corollary 6.1. There exists w ∈ L1(β) such that ϵ[Ĵ(w)] = ϵ⋆(π).

This motivates us to seek for the best weight function w within the MIS framework. The following
corollary shows the next significant implications, that the optimal point-based and interval-based
OPE is achieved with combining the MIS estimator and the minimization of DBR.
Corollary 6.2. Let w⋆ be a minimizer of DBR in a compact hypothesis classW ⊂ B(X ),

w⋆ ∈ argmin
w∈W

∥Rπ(w)∥TV. (10)
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Then, we have ∣∣∣EĴ(w⋆)− J⋆(π)
∣∣∣ ≤ 1 + γ

1− γ
ϵW , (11)

and

|∥Rπ(w⋆)∥TV − ϵ⋆(π)| ≤
1 + γ

1− γ
ϵW , (12)

where ϵW := minw∈W ∥w − w♯
π∥L1(β) is the realizability error ofW .

In other words, given W is expressive enough to approximate w♯
π well and thus ϵW is negligible,

the optimal point estimator J⋆(π) and its uncertainty ϵ⋆(π) can be estimated with a solution w⋆ to
(10) and its objective value ∥Rπ(w⋆)∥TV, respectively. These observations naturally lead us to the
following proxy to the optimal interval

I(π;W) :=
[
EĴ(w⋆)− ∥Rπ(w⋆)∥TV, EĴ(w⋆) + ∥Rπ(w⋆)∥TV

]
. (13)

In fact, it satisfies two desirable properties: the validity and the approximate optimality.
Theorem 6.3. The interval I(π;W) is valid and 2 1+γ

1−γ ϵW -approximately optimal.

7 ESTIMATION OF OPTIMAL INTERVAL

As discussed in the previous section, the estimation of the optimal interval I⋆(π) is reduced to the
minimization of the TV norm ∥Rπ(w)∥TV. However, even the estimation of the exact TV norm is
notorious for its difficulty (e.g., see Section 5 in Sriperumbudur et al. (2012)), let alone the minimiza-
tion. This motivate us to develop new variational approximations for the TV norm. In particular,
we newly introduce two approximations of ∥Rπ(w)∥TV, each of which is suitable for the evaluation
and the optimization of the objective, respectively.

7.1 EVALUATING THE OBJECTIVE

The first approximation reduces the evaluation of the TV norm to a conventional regression problem.
To see this, let us begin with the approximation formula for the TV norm of general measures.

Let F be a universal function approximator on X , i.e., a set of functions dense in C (X ), such as the
reproducing kernel Hilbert space (RKHS) with a universal kernel (Sriperumbudur et al., 2010) or a
set of neural networks (Hornik et al., 1989).
Proposition 7.1. For all positive measures P ∈M (X ), we have

∥P∥TV = sup
f∈F
⟨JfK, P ⟩ (14)

where JtK := max{−1,min{1, t}} denotes the clipping of t ∈ R to [−1, 1].

The proof is relegated to Section C. Letting P = Rπ(w), we immediately get the following special
case useful for the evaluation of DBR.
Corollary 7.2. For all w ∈ B(X ), we have

∥Rπ(w)∥TV = sup
f∈F
⟨JfK, Rπ(w)⟩. (15)

The supremum (15) is estimated via the regularized empirical risk minimization framework, mini-
mizing the following objective

L̂(f) := −⟨JfK, R̂π(w)⟩+Ψ(f), (16)

where R̂π(w) := ι̂π − (1− γ)−1(I − γT̂π)(w⊙ β̂) is the natural empirical counterpart of the DBR,
Ψ : F → R is a penalty function that makes it easier to minimize and prevent the minimizer from
overfitting. Once the regularized empirical risk minimizer f̂ := argminf∈F L̂(f) is found, we then
evaluate ⟨Jf̂K, R̂π(w)⟩ to approximate the RHS of (15) and get the desired estimate. The resultant
procedure of the evaluation of the TV norm is summarized in Algorithm A.1.

In fact, under a reasonable choice on F and Ψ, it is shown that the output of Algorithm A.1 is
consistent. The details on the specific choice of F and Ψ and the proof is provided in Section D.
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Theorem 7.3. Let EvaluateDBR(D,F , w) be the output of Algorithm A.1, where F and Ψ are
given as in Section D.1. Then, for all w ∈ W , we have EvaluateDBR(D,F , w) → ∥Rπ(w)∥TV
in probability.

7.2 MINIMIZING THE OBJECTIVE

We now turn to the minimization of ∥Rπ(w)∥TV with respect to w ∈ W . The previous varia-
tional formula (15) is not straightforwardly usable for this purpose since it ends up with the saddle-
point problem, which we found is too unstable in practice. To mitigate this issue, we introduce a
minimization-based approximation of the TV norm.

To this end, we first introduce the convolution of the TV norm with the maximum mean discrep-
ancy (MMD) (Sriperumbudur et al., 2009). Here, the MMD of a measure P ∈ M (X ) is given by
MMDκ(P ) :=

√
⟨κ, P⊗2⟩, where κ : X 2 → R is a c0-universal kernel in the sense of Sriperum-

budur et al. (2010) and P⊗2 denotes the product measure of P on X 2.
Definition 7.1 (Convolution norm). For all P ∈M (X ) and u ≥ 1, we refer to

∥P∥u,κ := inf
Q≪P

{uMMDκ(P −Q) + ∥Q∥TV} (17)

as the u-convolution norm of P .

The following proposition shows the u-convolution norm is a reasonable approximation of the TV
norm and admits a sample-based estimation unlike the TV norm.
Proposition 7.4. For all P ∈M (X ), we have

∥P∥TV = lim
u→∞

∥P∥u,κ. (18)

Moreover, if P is a probability measure, for all δ ∈ (0, 1), we have

∥P̂n − P∥u,κ = O

(√
u2 + ln(1/δ)

n

)
(19)

with probability ≥ 1 − δ, where P̂n := 1
n

∑n
i=1 δxi is the empirical distribution of an n-sample

(x1, ..., xn) independently drawn from P , n ≥ 1.

Proof. The key of the proof is Lemma E.2, which gives the dual representation of the convolution
norm,

∥P∥u,κ = sup
f∈B(X )
∥f∥H≤u
∥f∥∞≤1

⟨f, P ⟩,

where H is the RKHS generated by κ. Then, the density of the universal RKHS in C (X ) implies
that limu→∞ ∥P∥u,κ = sup∥f∥∞≤1⟨f, P ⟩ = ∥P∥TV, which proves the first statement. The second
statement follows from the uniform law of large number, namely Theorem H.5 and Lemma H.6.

Slightly extending it for the sample approximation of the DBR Rπ(w) ≈ R̂π(w), we obtain the
following approximation formula useful for the weight optimization. The proof is given in Section F.
Corollary 7.5. For all w ∈ B(X ), we have

∥R̂π(w)∥u,κ → ∥Rπ(w)∥TV (20)

in probability as u→∞ and n/u2 →∞.

In the practical implementation, one may change the variable in the LHS of (20) from the measure
Q ∈M (X ) to the function g ∈ B(X ),

∥R̂π(w)∥u,κ = inf
Q≪R̂π(w)

{
uMMDκ(R̂π(w)−Q) + ∥Q∥TV

}
= min

g∈B(X )

{
uMMDκ(R̂π(w)− g ⊙ η̂π) + ⟨|g|, η̂π⟩

}
, (21)
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Algorithm 7.1: Minimax Optimal Interval Estimation (MOI)
Input: Dataset D, universal approximator F , hypothesis classW , kernel κ;
Output: Estimate of the optimal interval I⋆(π);

1 ŵ := OptimizeDBR(D,F ,W, κ) ; // Algorithm A.2
2 ϵ̂ := EvaluateDBR(D,F , ŵ) ; // Algorithm A.1

3 return [Ĵ(ŵ)− ϵ̂, J(ŵ) + ϵ̂];

where η̂π := (ι̂π + T̂πβ̂ + β̂)/3. Here, we have exploited the transitivity of the absolute continuity
with Q ≪ R̂π(w) ≪ η̂π . Note that the minimization with respect to g is tractable since g is only
evaluated on the support of η̂π , which is a finite set. Moreover, the convolution-based formula (21)
is stable with the minimization with respect to w ∈ W resulting in the joint minimization problem
of (w, g), unlike the regression-based formula (15) resulting in the saddle-point problem.

Since the objective of (21) is lower bounded and convex with respect to (w, g), the minimizer

ŵu := argmin
w∈W

∥R̂π(w)∥u,κ (22)

is computed with any convex optimization algorithms. The hyperparameter u is then chosen from
a predefined grid U so that the TV norm of DBR is minimized. Specifically, one may choose it as
the logarithmically-even grid U := {2k}kmax

k=0 , where the upper limit kmax := ⌊log2
√

min{n,m}⌋
is determined according to the order of empirical approximation error (19). The entire procedure of
the weight estimation is summarized in Algorithm A.2. By its derivation, we can formally show the
consistency of Algorithm A.2. The proof is relegated to Section G.
Theorem 7.6. Let OptimizeDBR(D,F ,W, κ) be the output of Algorithm A.2. Then,
OptimizeDBR(D,F ,W, κ)→ w⋆ in probability as n→∞.

Finally, we present our OPI method in Algorithm 7.1, called the minimax optimal interval estima-
tion (MOI), which is straightforwardly derived from Algorithm A.2 and the equation (13). We can
also guarantee the validity and the approximate consistency of MOI in the asymptotic sense. The
proof follows directly from Theorem 7.6.
Theorem 7.7. Let MOI(D,F ,W, κ) be the output of Algorithm 7.1. Then, MOI(D,F ,W, κ) is
asymptotically valid and 2 1+γ

1−γ ϵW -approximately optimal in probability.

8 CONCLUSION

In this paper, we have studied OPI without the sufficient exploration and the realizability conditions.
In particular, we have pointed out the existence of the irreducible bias in such a general setting, and
correspondingly, introduced a novel formulation of the interval-based OPE. We have then revealed
the connection between the conventional MIS estimator and the irreducible bias, which is eventually
utilized to construct the proposed method, the minimax optimal interval estimator (MOI), and to
prove its optimality.

One of the major limitations of the proposed method is its model agnosticity, lying at the opposite
end to the model-based approach, e.g., Yu et al. (2020), that depends on the full correctness of the
model. It is left for future work to extend and combine these methods to be applicable to partially
correct models.
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Algorithm A.1: Evaluation of DBR
Input: Dataset D, function approximator F , density-ratio estimate w;
Output: Estimate of ∥Rπ(w)∥TV;

1 f̂ ← argminf∈F L̂(f), where L̂(f) is given by (16) ; // See also Section D

2 b̂← ⟨Jf̂K, R̂π(w)⟩;
3 return b̂;

Algorithm A.2: Optimization of DBR
Input: Dataset D, universal approximator F , hypothesis classW , kernel κ;
Output: Approximate minimizer of ∥Rπ(w)∥TV;

1 for u ∈ U do
2 ŵu := argminw∈W ∥R̂π(w)∥u,κ;
3 ϵ̂u := EvaluateDBR(D,F , ŵu) ; // Algorithm A.1

4 û := argminu∈U ϵ̂u;
5 return ŵû;

Lemma B.1. For all w ∈ B(X ),

ϵ⋆(π) ≤ ϵ
[
Ĵ(w)

]
≤ ∥Rπ(w)∥TV (23)

Proof. The first inequality is trivial. To show the second one, observe∣∣∣JM(π)− EĴ(w)
∣∣∣ = |⟨ρ, Γπιπ − w ⊙ β⟩|

= |⟨qπ, ιπ −∆π(w ⊙ β)⟩|
= |⟨qπ, Rπ(w)⟩|
≤ ∥Rπ(w)∥TV,

where the last inequality is owing to ∥qπ∥∞ ≤ 1. Since the RHS is independent ofM given GM,β ,
we thus have

ϵ
[
Ĵ(w)

]
= sup

M′:GM′,β=GM,β

∣∣∣JM′(π)− EĴ(w)
∣∣∣ ≤ ∥Rπ(w)∥TV. (24)

Now, to prove the last inequality, we prepare two extreme, yet indistinguishable environments
M± := (ι, T̃ , R±).

Let T̃ be an arbitrary state-transition operator indistinguishable from T , which will be deter-
mined later. Also let T̃π be the state-action transition operator associated with T̃ and π such that
dT̃π(s, a|x) = dT̃ (s|x)dπ(a|s) for x, (s, a) ∈ X . Let µ̃π := (1 − γ)(I − γT̃π)

−1ιπ be the com-
mon occupancy measure ofM± induced with T̃ , and µ̃π |̸≪β be the singular component of µ̃π with
respect to β. Let X0 be a set separating µ̃π| ̸≪β from β and Xβ := X \ X0 be its complement.3 For
convenience, let Πβ ,Π0 : M (X ) → M (X ) denote the projections of measure onto Xβ and X0,
respectively, given by Πβ := χβ ⊙ P , and Π0P := (1 − χβ) ⊙ P where χβ being the indicator
function of Xβ such that χβ(x) = 1 if x ∈ Xβ and χ0(x) = 0 otherwise. Note that µ̃π| ̸≪β = Π0µ̃π

by construction.

Finally, put R±(x) = δ±1 for x ∈ X0 and R±(x) = R(x) otherwise, which is necessary for the
indistinguishability of R±, and denote the associated expected reward by ρ±(x) :=

∫
rdR±(r|x),

x ∈ X . Then, we have

J+(π)− J−(π) = ⟨ρ+ − ρ−, µ̃π⟩ = 2∥µ̃π |̸≪β∥TV, (25)

3That is, {X0,Xβ} is a partition of X such that µ̃π| ̸≪β(E) = 0 for all measurable E ⊂ Xβ and β(E) = 0
for all measurable E ⊂ X0.

12
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where J±(π) are the policy values with respect toM±.

Now, the following lemma connects the RHS of (25) with DBR.

Lemma B.2. There exist T̃ indistinguishable from T such that

∥µ̃π |̸≪β∥TV = ∥Rπ(w
♯
π)∥TV. (26)

Proof. The proof is constructive. Consider an expanded state space S ← S∪{⊥}, where⊥ denotes
an absorbing state of T̃ . Accordingly, let X0 ← X0 ∪ ({⊥} × A). Now, put T̃ := T̃ |≪β + T̃ |̸≪β

such that T̃ |≪β is the restriction of T onto Xβ and T̃ | ̸≪β is the absorbing transition, respectively
given by

T̃ |≪β = TΠβ , T̃ |̸≪βP = P (X0) δ⊥, P ∈M (X ).

Here, T̃ |≪β is corresponding to the known component of T̃ , which necessarily coincides with that
of T by definition, and T̃ |̸≪β is corresponding to the unknown component of T̃ . Note that T̃ is a
proper transition operator indistinguishable from T .

Let T̃π|≪β and T̃π| ̸≪β be the state-action transition operator associated with Tβ and T0, respectively,
such that dT̃π|≪β(s, a|x) := dT̃ |≪β(s|x)dπ(a|s) and dT̃π |̸≪β(s, a|x) := dT̃ | ̸≪β(s|x)dπ(a|s) for
x, (s, a) ∈ X . Then, we have

(1− γ)ιπ = (I − γT̃π)µ̃π

= (I − γT̃π|≪β − γT̃π| ̸≪β)µ̃π

= (I − γT̃π|≪β)µ̃π − γµ̃π(X0)δ⊥,π

= (I − γT̃π|≪β)µ̃π − γ∥µ̃π| ̸≪β∥TVδ⊥,π,

which implies, with P̃ := (I − γT̃π|≪β)
−1ιπ ,

µ̃π = (1− γ)P̃ + γ∥µ̃π |̸≪β∥TV(I − γT̃π|≪β)
−1δ⊥,π

= (1− γ)P̃ + γ∥µ̃π |̸≪β∥TVδ⊥,π. (∵ T̃π|≪βδ⊥,π = 0)

Measuring the volumes on X0, we further get

∥µ̃π| ̸≪β∥TV = (1− γ)P̃ (X0) + γ∥µ̃π |̸≪β∥TV,

which yields

P̃ (X0) = ∥µ̃π| ̸≪β∥TV. (27)

On the other hand, since w♯
π = (1− γ)d(ΠβP̃ )/dβ, we have

∥Rπ(w
♯
π)∥TV =

∥∥∥ιπ − (1− γ)∆πΠβP̃
∥∥∥

TV

=
∥∥∥ιπ − (Πβ − γT̃π|≪β)P̃

∥∥∥
TV

(
∵ TπΠβ = T̃π|≪β

)
=
∥∥∥ιπ −Πβιπ + γΠ0Tπ|≪βP̃

∥∥∥
TV

(
∵ T̃π|≪β = ΠβT̃π|≪β +Π0T̃π|≪β

)
=
∥∥∥Π0

(
ιπ + γTπ|≪βP̃

)∥∥∥
TV

=
∥∥∥Π0P̃

∥∥∥
TV

(
∵ (I − γT̃π|≪β)P̃ = ιπ

)
= P̃ (X0).

Combining it with (27), we get the desired result.

Plugging (26) into (25), we have

∥Rπ(w
♯
π)∥TV =

1

2
{J+(π)− J−(π)} (28)

13
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with a specific configuration of T̃ . SinceM± are indistinguishable from one another, any estima-
tors must incur the bias of at least a half of the difference J+(π) − J−(π) in the worst case, i.e.,
Rπ(w

♯
π) ≤ ϵ⋆(π). This proves the last inequality of (8) via the triangle inequality,

∥Rπ(w)∥TV ≤ ∥Rπ(w
♯
π)∥TV + ∥∆π(w − w♯

π)⊙ β∥TV

≤ ϵ⋆(π) +
1 + γ

1− γ
∥w − w♯

π∥L1(β).

and thus concludes the proof of Proposition 4.1.

C PROOF OF PROPOSITION 7.1

First, we introduce a saddle-point formulation of the TV norm. Let F1 := {f ∈ F : ∥f∥∞ ≤ 1}
be the intersection of F with the unit ball of B(X ). Lemma C.1 gives a general variational formula
of the TV norm.
Lemma C.1. For all P ∈M (X ), we have

∥P∥TV = sup
f∈F1

⟨f, P ⟩. (29)

Proof. Let us denote the unit ball of B(X ) with U1 := {f ∈ B(X ) : ∥f∥∞ ≤ 1}. As an instance
of the integral probability metrics (IPM), the TV norm is known to be written as

∥P∥TV = sup
g∈U1

⟨g, P ⟩. (30)

Now fix g ∈ U1 such that |∥P∥TV − ⟨g, P ⟩| ≤ c for a positive constant c > 0. Since F1 is
dense in C (X ) ∩ U1, it is also dense in L1(P ) ∩ U1 and therefore there exists f ∈ F1 such that
∥f − g∥L1(P ) ≤ c. Then it follows that

|∥P∥TV − ⟨f, P ⟩| ≤ |∥P∥TV − ⟨g, P ⟩|+ ∥f − g∥L1(P ) ≤ 2c. (31)

Since c > 0 can be arbitrarily small, we finally have

∥P∥TV ≤ sup
f∈F1

⟨f, P ⟩ ≤ sup
g∈U1

⟨g, P ⟩ ≤ ∥P∥TV, (32)

which proves the desired result.

Since the supremum in (29) is taken over a constrained domainF1, its computation is not necessarily
tractable in general. The following lemma is useful to make the domain unconstrained.
Lemma C.2. Let Ψ : B(X )→ R≥0 be a penalty function such that Ψ(f) = 0 if f ∈ F1. Then, for
all P ∈M (X ), we have

sup
f∈F1

⟨f, P ⟩ = sup
f∈F
{⟨JfK, P ⟩ −Ψ(f)} , (33)

where JfK(x) := max{−1,min{1, f(x)}} denotes the clipping of f(x) to [−1, 1].

Proof. Slightly extending (32), we have

∥P∥TV ≤ sup
f∈F1

⟨f, P ⟩

= sup
f∈F1

{⟨f, P ⟩ −Ψ(f)}

≤ sup
f∈F
{⟨JfK, P ⟩ −Ψ(f)} (∵ domain expansion)

≤ sup
g∈U1

⟨g, P ⟩ (∵ JfK ∈ U1, Ψ(f) ≥ 0)

≤ ∥P∥TV.

This yields the desired claim.

Finally, Proposition 7.1 is proved taking the penalty function as the trivial one, Ψ(f) = 0 for all
f ∈ F . We utilize a nontrivial penalty function in Section D.
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D DETAILS AND PROOF OF THEOREM 7.3

We first present a preferred choice of the function approximatorF and the penalty function Ψ, which
is needed to construct the objective function L̂(f) in (16). Then, we prove Theorem 7.3 to show the
consistency of the resultant algorithm (Algorithm A.1).

D.1 CHOICE OF FUNCTION APPROXIMATOR AND PENALTY FUNCTION

As for the function approximator F , we choose a universal RKHS. Let κ : X 2 → R be the cor-
responding symmetric positive-definite kernel. We assume κ is c0-universal in the sense of Sripe-
rumbudur et al. (2010). Also, without loss of generality, we assume κ is normalized, ∥κ∥∞ :=
supx,x′∈X |κ(x, x′)| ≤ 1. For instance, the Gaussian kernel κ(x, y) = exp{−∥x − y∥22/(2α2)},
x, y ∈ Rd, d ≥ 1, α > 0, is one of such choices.

As for the penalty function Ψ, we employ

Ψ̂λ(f) := ⟨(|f | − 1)+, R̂π,+(w) + R̂π,−(w)⟩+
λ

2(1− γ)
∥f∥2F , (34)

where λ > 0 is a hyperparameter, (g)+ := max{0, g} denotes the positive part of a function
g ∈ B(X ), R̂π,+(w) := ι̂π − γ

1−γ T̂π(w ⊙ β̂) and R̂π,−(w) :=
1

1−γ (w ⊙ β̂) are the positive and
the negative part of the empirical DBR, respectively, and ∥ · ∥F is the RKHS norm. Then, letting
C(P ) := 1 + 1+γ

1−γ ⟨w, P ⟩, P ∈M (X ), the penalized objective (16) is simplified as

L̂(f) = ⟨|f − 1|, R̂π,+(w)⟩+ ⟨|f + 1|, R̂π,−(w)⟩+
λ

2(1− γ)
∥f∥2F − C(β̂), (35)

which is convex with respect to f ∈ F . In other words, the minimizer

f̂ ≡ f̂λ := argmin
f∈F

L̂(f) (36)

can be found in a tractable manner with convex optimization methods. As for the choice of λ, as will
be seen in the next section, we can achieve the consistency if λ → 0 and nλ → ∞. Thus, we may
employ some fixed default λ = 1/

√
n or select the best hyperparameter within some fixed grid, e.g.,

Λn := {1, 2, ..., 2⌊log2 n⌋}, that best attains the supremum (15), possibly using the training-validation
split technique.

D.2 CONSISTENCY ANALYSIS

We first introduce some notations useful for the analysis. Let us define probability measures P, P̂n ∈
M (X 3) by

dP (x1, x2, x3) := dιπ(x1)dβ(x2)dTπ(x3|x2),

dP̂n(x1, x2, x3) := dι̂π(x1)dβ̂(x2)dT̂π(x3|x2),

loss functions ℓf , φf : X 3 → R, f ∈ F , by

ℓf (x1, x2, x3) :=

3∑
j=1

ℓf,j(x1, x2, x3), φf (x1, x2, x3) :=

3∑
j=1

φf,j(x1, x2, x3),

for x1, x2, x3 ∈ X , where

ℓf,1(x1, x2, x3) := (1− γ)|f(x1)− 1|, φf,1(x1, x2, x3) := −(1− γ)Jf(x1)K,
ℓf,2(x1, x2, x3) := |w(x2)f(x2) + |w(x2)||, φf,2(x1, x2, x3) := w(x2)Jf(x2)K,
ℓf,3(x1, x2, x3) := γ|w(x2)f(x3)− |w(x2)||, φf,3(x1, x2, x3) := −γw(x2)Jf(x3)K.

Let us also define the associated risk functions

Lλ(f ;Q) := ⟨ℓf , Q⟩+
λ

2
∥f∥2F , Φ(f ;Q) := ⟨φf , Q⟩,
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for probability measures Q ∈M (X 3). By these definitions, we have

Φ(f ;P ) = (1− γ)⟨JfK, Rπ(w)⟩,
Φ(f ; P̂n) = (1− γ)⟨JfK, R̂π(w)⟩,

and

Lλ(f ;P ) = Φ(f ;P ) + (1− γ) {Ψλ(f) + C(β)} (37)

Lλ(f ; P̂n) = Φ(f ; P̂n) + (1− γ)
{
Ψ̂λ(f) + C(β̂)

}
(38)

for all λ > 0 and f ∈ F , where Φ̂λ is given by (34) and

Ψλ(f) := ⟨(|f | − 1)+, Rπ,+(w) +Rπ,−(w)⟩+
λ

2(1− γ)
∥f∥2F , (39)

Rπ,+(w) := ιπ + γ
1−γTπ(w ⊙ β) and Rπ,−(w) :=

1
1−γ (w ⊙ β) are the positive and the negative

parts of the DBR, respectively.

Therefore, we obtain an alternative expression of the objective (16)

L̂(f) = 1

1− γ
Lλ(f ; P̂n)− C(β̂),

which implies

f̂λ = argmin
f∈F

Lλ(f ; P̂n). (40)

Moreover, by Lemma C.2, we also obtain alternative expressions of the quantity of interest

∥Rπ(w)∥TV = − 1

1− γ
inf
f∈F

Φ(f ;P ) (41)

= C(β)− 1

1− γ
inf
f∈F
L0(f ;P ). (42)

The goal of this section is to reveal the relationship of f̂λ and ∥Rπ(w)∥TV via (40), (41) and (42)

The following lemma gives a key insight on the behavior of f̂λ. Let G := 1− γ + (1 + γ)∥w∥∞ be
the Lipschitz constant of f 7→ ℓf and f 7→ φf . Let BF (0, 1) := {f ∈ F : ∥f∥F ≤ 1} be the unit
closed ball of F . Let Rn(H) is the Rademacher complexity of a function class H ⊂ B(X ) (see
Definition H.4).

Lemma D.1. Suppose the predictor attaining minf∈F Lλ(f ;P ) exists and denote it by f∗
λ ∈ F .

Also suppose ∥f∥∞ ≤ ∥f∥F for all f ∈ F . Then, for all δ ∈ (0, 1), we have

Lλ(f̂λ;P ) ≤ Lλ(f
∗
λ ;P ) +

8G2

λ

{
Rn(BF (0, 1)) +

√
ln(1/δ)

2n

}2

and

∥f̂λ − f∗
λ∥F ≤

4G

λ

{
Rn(BF (0, 1)) +

√
ln(1/δ)

2n

}
with probability 1− δ.

Proof. Define

ϵ(f ;Q) := Lλ(f ;Q)− Lλ(f
∗
λ ;Q)

for f ∈ F and Q ∈ M (X ). Let Fc := {f ∈ F : ϵ(f ;P ) ≤ c} and let ℓ̃g,j := ℓf∗
λ+g,j − ℓf∗

λ ,j

for j = 1, 2, 3. Then, since ϵ(f ;P ) ≥ λ
2 ∥f − f∗

λ∥2F ≥ λ
2 ∥f − f∗

λ∥2∞ by the strong convexity of

16
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f 7→ Lλ(f ;P ), the uniform law of large number (Theorem H.5) gives

sup
f∈Fc

{
ϵ(f ;P )− ϵ(f ; P̂n)

}
= sup

f∈Fc

3∑
j=1

⟨ℓ̃f−f∗
λ ,j

, P − P̂n⟩

≤ sup
∥g∥F≤

√
2c/λ

3∑
j=1

⟨ℓ̃g,j , P − P̂n⟩ (∵ strong convexity)

≤ 2Rn


3∑

j=1

ℓ̃g,j : ∥g∥F ≤
√

2c

λ


+ 2G

√
2c

λ

√
ln(1/δ)

2n
(∵ Theorem H.5)

≤
√

8c

λ
G

{
Rn(BF (0, 1)) +

√
ln(1/δ)

2n

}
=: ϵ̄(c, δ) (∵ see below)

with probability 1− δ for all c > 0. Here, the last inequality follows from

Rn


3∑

j=1

ℓ̃g,j : ∥g∥F ≤
√

2c

λ


 ≤ 3∑

j=1

Rn

({
ℓ̃g,j : ∥g∥F ≤

√
2c

λ

})
(∵ subadditivity)

≤
3∑

j=1

Gj

√
2c

λ
Rn(BF (0, 1)) (∵ Lemma H.4)

≤
√

2c

λ
GRn(BF (0, 1)),

where Gj is the Lipschitz constants of ℓf,j , j = 1, 2, 3. Now take f̃c ∈ F such that f̃c = f̂λ if
ϵ(f̂λ;P ) ≤ c and, otherwise, ϵ(f̃c; P̂n) ≤ 0 and ϵ(f̃c;P ) = c.4 Then, when c > ϵ̄(c, δ), we get with
probability 1− δ

ϵ(f̃c;P ) = ϵ(f̃c; P̂n) + ϵ(f̃c;P )− ϵ(f̃c; P̂n)

≤ sup
f :ϵ(f ;P )≤c

{
ϵ(f ;P )− ϵ(f ; P̂n)

}
(∵ ϵ(f̃c; P̂n) ≤ 0, ϵ(f̃c;P ) ≤ c)

< c,

which implies f̃c = f̂λ and hence ϵ(f̂λ;P ) < c with the same probability. Thus, since it holds with
any c > 0 such that c > ϵ̄(c, δ), we finally have

ϵ(f̂λ;P ) ≤ c∗

with probability 1− δ, where c∗ is the solution to c∗ = ϵ̄(c∗, δ), or more concretely

c∗ =
8G2

λ

{
Rn(BF (0, 1)) +

√
ln(1/δ)

2n

}2

.

This concludes the proof.

Now, verifying the assumptions of Lemma D.1 and evaluating the Rademacher complexity of the
unit ball Rn(BF (0, 1)), we get the following proposition.
Proposition D.2 (Generalization error bound of RERM with RKHS). For all δ ∈ (0, 1) and λ > 0,
we have

L0(f̂λ;P ) ≤ inf
f∈H
Lλ(f ;P ) +

8G2 ln(e2/δ)

λn

4Such an f̃c exists at the intersection of the line segment [f∗
λ , f̂λ] and the level set {f ∈ F : ϵ(f ;P ) ≤ c}

since f 7→ ϵ(f ;Q) is convex.

17
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and

∥f̂λ − f∗
λ∥F ≤

4G

λ

√
ln(e2/δ)

2n
(43)

with probability 1− δ.

Proof. It suffices to invoke Lemma D.1 with Lemma H.6. To this end, we need to verify the exis-
tence of minf∈H Lλ(f ;P ) and the dominance of the norm ∥ · ∥∞ ≤ ∥ · ∥H. In fact, the minimum
exists since f 7→ Lλ(f ;P ) is continuous with respect to L2(P ) and the inifimum inff∈H Lλ(f ;P )

does not change if we restrict the domain to the ball {f ∈ H : ∥f∥H ≤
√
2Lλ(0;P )}, which is

compact according to Lemma H.7. The dominance of the norm is shown by, for all f ∈ H,

∥f∥∞ = sup
x∈X
|f(x)|

= sup
x∈X
|⟨κ(·, x), f⟩H|

≤ sup
x∈X
∥κ(·, x)∥H∥f∥H

= sup
x∈X

κ(x, x)∥f∥H

≤ ∥f∥H.

We need one more lemma to connect Φ(f̂λ; P̂n) with Φ(f̂λ;P ).

Lemma D.3. For all δ ∈ (0, 1), we have, in addition to the statements of Proposition D.2,∣∣∣Φ(f̂λ; P̂n)− Φ(f̂λ;P )
∣∣∣ ≤ 8G2

λn

√
ln(e2/δ)

2
+ 2G

√
ln(2/δ)

2n

with probability 1− 2δ.

Proof. It follows from the uniform law of large number (Theorem H.5) with the high probability

range of f̂λ given by (43). Let G := {φf : f ∈ F , ∥f − f∗
λ∥F ≤ d}, where d := 4G

λ

√
ln(e2/δ)

2n .
Now, applying Theorem H.5 with δ ← δ/2, F ← ±G and D ← 2G, we get

sup
∥f−f∗

λ∥F≤d

∣∣∣⟨φf , P̂n − P ⟩
∣∣∣ ≤ 2Rn(G) + 2G

√
ln(2/δ)

2n

with probability 1− δ. Since ∥f̂λ−f∗
λ∥F ≤ d with probability 1− δ, we further get by union bound∣∣∣⟨φf̂λ

, P̂n − P ⟩
∣∣∣ ≤ 2Rn(G ∪ −G) +G

√
ln(2/δ)

2n
.

with probability 1 − 2δ. Since Φ(f̂λ;Q) := ⟨φf̂λ
, Q⟩ for all Q ∈ M (X 3) the proof is concluded

by

Rn(G) = Rn({φf : f ∈ F , ∥f − f∗
λ∥F ≤ d})

≤
3∑

j=1

Rn({φf,j : f ∈ F , ∥f − f∗
λ∥F ≤ d})

≤ GdRn(BF (0, 1))

≤ Gd√
n
.

18
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Finally, we are ready to prove Theorem 7.3. Observe

(1− γ)

∣∣∣∣− 1

1− γ
Φ(f̂λ; P̂n)− ∥Rπ(w)∥TV

∣∣∣∣
≤
{
Φ(f̂λ;P )− inf

f∈F
Φ(f ;P )

}
+ |Φ(f̂λ; P̂n)− Φ(f̂λ;P )| (∵ (41))

Due to Proposition D.2 and Lemma D.3, we have the following inequalities bounding both terms of
the RHS with probability 1− 2δ: The first term is bounded by

Φ(f̂λ;P )− inf
f∈F

Φ(f ;P )

≤ L0(f̂λ;P )− inf
f∈F
L0(f ;P ) (∵ (37) with Ψ0(f) ≥ 0, (42))

≤ inf
f∈F
Lλ(f ;P )− inf

f∈F
L0(f ;P ) +

8G2 ln(e2/δ)

λn
(∵ Proposition D.2)

≤ s(d) +
λ

2
d2 +

8G2 ln(e2/δ)

λn

for all d > 0, where s(d) := inf∥f∥F≤d L0(f ;P )− inff∈F L0(f ;P ). The second term is bounded
by

|Φ(f̂λ; P̂n)− Φ(f̂λ;P )| ≤ 8G2

λn

√
ln(e2/δ)

2
+ 2G

√
ln(2/δ)

2n
. (∵ Lemma D.3)

Combining these two inequalities, we get

(1− γ)

∣∣∣∣− 1

1− γ
Φ(f̂λ; P̂n)− ∥Rπ(w)∥TV

∣∣∣∣
≤ s(d) +

λd2

2
+

8G2

λn

{
ln(e2/δ) +

√
ln(e2/δ)

2

}
+ 2G

√
ln(2/δ)

2n

with probability 1 − 2δ. Now, since limd→∞ s(d) = 0, taking d = λ−1/3, we have just shown the
following proposition, which directly translates into Theorem 7.3.

Proposition D.4. We have

− 1

1− γ
Φ(f̂λ; P̂n)→ ∥Rπ(w)∥TV

in probability as λ→ 0 and nλ→∞.

E DUAL REPRESENTATION OF CONVOLUTION NORM (PROOF OF
PROPOSITION 7.4)

We first show the following utility lemma.

Lemma E.1. Let ∥f∥A and ∥f∥B be arbitrary norms of f ∈ B(X ). Also let ∥f∥A∨B := ∥f∥A ∨
∥f∥B be the norm defined by the maximum of these. Then, for all P ∈M (X ), we have

∥P∥(A∨B)∗ ≤ inf
Q≪P

{∥P −Q∥A∗ + ∥Q∥B∗} ,

where we denote the dual norm of ∥ · ∥X on B(X ) by ∥P∥X∗ := supf∈B(X ),∥f∥X≤1⟨f, P ⟩,
P ∈M (X ).
Moreover, if | supp(P )| is finite and ∥ · ∥A and ∥ · ∥B dominate ∥ · ∥∞, then the equality is attained.
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Proof. Observe

∥P∥(A∨B)∗ = sup
f∈B(X )
∥f∥A≤1
∥f∥B≤1

⟨f, P ⟩

= sup
f,g∈B(X )
∥f∥A≤1
∥g∥B≤1

inf
Q≪P

{⟨f, P ⟩+ ⟨g − f, Q⟩} (∵ Q as a Lagrange multiplier)

= sup
f,g∈B(X )
∥f∥A≤1
∥g∥B≤1

inf
Q≪P

{⟨f, P −Q⟩+ ⟨g, Q⟩}

≤ inf
Q≪P

 sup
f∈B(X )
∥f∥A≤1

⟨f, P −Q⟩+ sup
g∈B(X )
∥g∥B≤1

⟨g, Q⟩


= inf

Q≪P
{∥P −Q∥A∗ + ∥Q∥B∗} ,

which proves the inequality.

Now suppose d := supp(P ) is finite and ∥ · ∥A and ∥ · ∥B dominate ∥ · ∥∞. Label each element of
supp(P ) by {xj}dj=1. Then, following the same equality as above, we get

∥P∥(A∨B)∗ = sup
a∈BA
b∈BB

inf
Q≪P


d∑

j=1

aj{P (xj)−Q(xj)}+
d∑

j=1

bjQ(xj)

 ,

where

BA := {(f(xj))
d
j=1 : f ∈ B(X ), ∥f∥A ≤ 1} ⊂ Rd,

BB := {(g(xj))
d
j=1 : g ∈ B(X ), ∥g∥B ≤ 1} ⊂ Rd.

The domination of A- and B-norms over the uniform norm implies there exists c < ∞ such that
BA,BB ⊂ cUd where Ud := {z ∈ Rd : max1≤j≤d |zj | ≤ 1} denotes the unit hypercube of Rd.
Since cUd is compact and BA and BB are closed subsets thereof, they are also compact. Thus,
Sion’s minimax theorem yields

∥P∥(A∨B)∗ = sup
a∈BA
b∈BB

inf
Q≪P


d∑

j=1

aj{P (xj)−Q(xj)}+
d∑

j=1

bjQ(xj)


= inf

Q≪P

 sup
a∈BA

aj{P (xj)−Q(xj)}+ sup
b∈BB

d∑
j=1

bjQ(xj)


= inf

Q≪P
{∥P −Q∥A∗ + ∥Q∥B∗} .

This concludes the proof.

For P ∈M (X ), define

Fu(P ) := sup
f∈B(X )
∥f∥∞≤1
∥f∥H≤u

⟨f, P ⟩.

The following lemma shows that Fu(P ) is equal to the u-convolution norm. In other words, it gives
the dual representation of the u-convolution norm in Proposition 7.4.
Lemma E.2. For all P ∈M (X ), we have

∥P∥u,κ = Fu(P ),

where ∥P∥u,κ is given with respect to Definition 7.1.
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Proof. Without loss of generality, we assume ∥P∥TV = 1. Let P̂n be the empirical distribution of P
given by Definition H.3.

Let H be the RKHS associated with the kernel κ. Let ∥f∥A = ∥f∥H and ∥f∥B = ∥f∥∞ in
Lemma E.1 and observe that, for all P ∈M (X ),

Fu(P ) = ∥P∥(A∨B)∗ ,

∥P∥u,κ = inf
Q≪P

{∥P −Q∥A∗ + ∥Q∥B∗} ,

since ∥P∥H∗ = MMDκ(P ) and ∥P∥TV = ∥P∥∞∗ . Then, we have

0 ≤ ∥P∥u,κ − Fu(P ) ≤ EFu(P̂n − P )

since

Fu(P ) ≤ ∥P∥u,κ (∵ Lemma E.1)

≤ E∥P̂n∥u,κ (∵ Jensen’s ineq with Lemma H.3)

= EFu(P̂n) (∵ Lemma E.1 with | supp(P̂n)| <∞)

≤ Fu(P ) + EFu(P̂n − P ). (∵ triangle inequality of Fu(·))
The proof is concluded remembering that

0 ≤ EFu(P̂n − P )

≤ 2Rn({f ∈ B(X ) : ∥f∥H ≤ u, ∥f∥∞ ≤ 1}) (∵ Theorem H.5)
≤ 2Rn({f ∈ B(X ) : ∥f∥H ≤ u})

≤ 2u

√
supx∈X κ(x, x)

n
→ 0 (∵ Lemma H.6)

as n→∞, where Rn(F) is the maximal Rademacher complexity (Definition H.4)

F PROOF OF COROLLARY 7.5

Let w̄ := w/∥w∥∞ be the normalization of w. By Lemma E.2, we have

∥w̄ ⊙ (β̂ − β)∥u,κ = sup
f∈B(X )
∥f∥H≤u
∥f∥∞≤1

⟨w̄f, β̂ − β⟩

≤ sup
f∈B(X )

∥w̄f∥Hw≤u
∥w̄f∥∞≤1

⟨w̄f, β̂ − β⟩ (∵ ∥w̄f∥Hw
= ∥f∥H, ∥w̄f∥∞ ≤ ∥f∥∞)

≤ sup
g∈B(X )
∥g∥Hw≤u
∥g∥∞≤1

⟨g, β̂ − β⟩ (∵ w̄B(X ) ⊂ B(X ))

= ∥β̂ − β∥u,κw
,

whereHw is the RKHS associated with κw(x, y) := w̄(x)w̄(y)κ(x, y). Similarly, we have

∥T̂π(w̄ ⊙ β̂)− Tπ(w̄ ⊙ β)∥u,κ
= sup

f∈B(X )
∥f∥H≤u
∥f∥∞≤1

⟨f, T̂π(w̄ ⊙ β̂)− Tπ(w̄ ⊙ β)⟩

= sup
f∈B(X )
∥f∥H≤u
∥f∥∞≤1

⟨w̄ ⊗ f, β̂(2)
π − β(2)

π ⟩

≤ ∥β̂(2)
π − β(2)

π ∥u,κ(2)
w
,
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where β
(2)
π , β̂

(2)
π ∈ M (X 2) are given by dβ

(2)
π (x, x′) := dβ(x)dTπ(x

′|x) and dβ̂
(2)
π (x, x′) :=

dβ̂(x)dT̂π(x
′|x), and κ

(2)
w ((x, x′), (y, y′)) := w̄(x)w̄(y)κ(x′, y′). Therefore, we have

|∥R̂π(w)∥u,κ − ∥Rπ(w)∥u,κ|

≤ ∥ι̂π − ιπ∥u,κ +
γ

1− γ
∥T̂π(w ⊙ β̂)− Tπ(w ⊙ β)∥u,κ +

1

1− γ
∥w ⊙ (β̂ − β)∥u,κ

≤ ∥ι̂π − ιπ∥u,κ +
γ∥w∥∞
1− γ

∥β̂2
π − β2

π∥u,κ(2)
w

+
∥w∥∞
1− γ

∥β̂ − β∥u,κw
.

Since κ, κw and κ
(2)
w are all bounded, (19) now implies

|∥R̂π(w)∥u,κ − ∥Rπ(w)∥u,κ| = O

(
∥w∥∞
1− γ

√
u2 + ln(1/δ)

n

)
.

Combining this with (18) and take the limit with u→∞ and n/u2 →∞, we get the desired result.

G PROOF OF THEOREM 7.6

Note that Theorem 7.3 combined with the compactness ofW and the continuity of w 7→ ∥Rπ(w)∥TV
implies that EvaluateDBR(D,F , w) converges to ∥Rπ(w)∥TV uniformly on w ∈ W . Thus, it
suffice to show the following lemma.

Lemma G.1. We have

min
u∈U
∥Rπ(ŵu)∥TV → min

w∈W
∥Rπ(w)∥TV.

Proof. Note also that Corollary 7.5 combined with the compactness of W and the continuity of
w 7→ ∥Rπ(w)∥u,κ implies

∥R̂π(w)∥u,κ → ∥Rπ(w)∥TV

uniformly for all w ∈ W , under suitable asymptotics of u and n as in Corollary 7.5. In other words,
for all c > 0 and δ ∈ (0, 1), there exists u0 ≥ 1 and p0 > 0 such that, for all u ≥ u0 and n ≥ p0u

2

such that supw∈W |∥R̂π(w)∥u,κ − ∥Rπ(w)∥TV| ≤ c with probability ≥ 1 − δ. Therefore, taking
such a pair (u, n) satisfying u ∈ U (which exists by the definition of U), we have

min
w∈W

∥Rπ(w)∥TV ≤ min
u′∈U

∥Rπ(ŵu′)∥TV (∵ restriction of domain)

≤ c+ ∥R̂π(ŵu)∥u,κ
≤ c+ ∥R̂π(w⋆)∥u,κ (∵ definition of ŵu)

≤ 2c+ ∥R̂π(w⋆)∥TV

= 2c+ min
w∈W

∥Rπ(w)∥TV

with probability ≥ 1 − δ. Since c > 0 can be arbitrary small, we have just proved the desired
result.

H BASIC DEFINITIONS AND RESULTS

This section presents basic results used in the proof of our results for completeness. The main
purpose of this section is to show Proposition D.2.

H.1 SIGNED MEASURES

We first introduce the absolute value and the positive and negative parts of a signed measure. Recall
that Σ is the Borel algebra of X .
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Definition H.1 (Absolute value and positive and negative parts of signed measure). For all P ∈
M (X ), its absolute value is given by |P | ∈M (X ) such that

|P |(E) = sup
E++E−=E

{P (E+)− P (E−)}.

Moreover, its positive and negative parts are given by P± := (|P | ± P )/2 ∈M (X ).

The following properties are then immediately seen. We omit the proof since it is trivial from the
definitions.

Lemma H.1. The following statements are true.

1. P± are nonnegative measures.

2. P = P+ − P− and |P | = P+ + P−.

3. P, P± ≪ |P |.

4. ∥|P |∥TV = ∥P+∥TV + ∥P−∥TV = ∥P∥TV.

Next, the sign function of a signed measure is defined with the absolute value.

Definition H.2 (Sign of signed measure). For all P ∈M (X ), its sign is given by signP := dP
d|P | ∈

B(X ).

We note that the essential range of the sign function is bounded to [−1, 1].
Lemma H.2. We have |(signP )(x)| ≤ 1 for |P |-almost every x ∈ X .

Proof. It follows from∣∣∣∣ dPd|P |

∣∣∣∣ = ∣∣∣∣dP+

d|P |
− dP−

d|P |

∣∣∣∣ ≤ dP+

d|P |
+

dP−

d|P |
=

d|P |
d|P |

= 1. (|P |-almost everywhere)

Finally, we define the empirical distribution for signed measures.

Definition H.3 (Empirical distribution of signed measure). For all P ∈M (X ) such that ∥P∥TV =
1, we define its n-th empirical distribution by

P̂n :=
1

n

n∑
i=1

(signP )(xi)δxi ,

where {xi}ni=1 is n-i.i.d. sample drawn independently from |P |, which is a probability distribution.

Note that it coincides with the empirical distribution of probability measures if P is nonnegative.
One of its most basic properties is the unbiasedness.

Lemma H.3 (Unbiasedness). For all P ∈M (X ) such that ∥P∥TV = 1, we have

P (E) = EP̂n(E)

for all E ∈ Σ.

Proof. It follows from that, for all E ∈ Σ,

EP̂n(E) =
1

n

n∑
i=1

E[(signP )(xi)1{xi ∈ E}]

= (signP ⊙ |P |)(E) (∵ xi ∼ |P |)
= P (E). (∵ signP = dP/d|P |)
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H.2 RADEMACHER COMPLEXITY AND UNIFORM LAW OF LARGE NUMBER

The Rademacher complexity is a measure of the complexity of function class. It is mainly utilized
to establish the concentration of the empirical processes corresponding to the function classes, i.e.,
the uniform law of large number. Throughout the section, let σn := {σi}ni=1 be a sequence of
Rademacher random variables, each of which takes ±1 with probability 1/2 independently.
Definition H.4 (Rademacher complexity). For a subset of n-dimensional vectors Θ ⊂ Rn, the
Rademacher complexity of Θ is defined by

R(Θ) := Eσn

[
sup
θ∈Θ

n∑
i=1

σiθi

]
.

Moreover, for S ∈ Xn and F ⊂ B(X ), the empirical Rademacher complexity of F with respect to
S is defined by

RS(F) := R(F(S)/n),
where F(S) := {(f(x1), ..., f(xn)) ∈ R : S = {xi}ni=1, f ∈ F} denotes the set of vectors ob-
tained by applying f ∈ F on each element of S. Also, we define the n-th maximal Rademacher
complexity of F by

Rn(F) := sup
S∈Xn

RS(F).

The following lemma is useful to bound the Rademacher complexity of the composition of functions.
Lemma H.4 (Rademacher contraction lemma). For all Θ ∈ Rn and a family of 1-Lipschitz contin-
uous functions (φi)

n
i=1, φi : R→ R, we have

R(φ(Θ)) ≤ R(Θ),

where φ(Θ) := {(φ1(θ1), ..., φn(θn)) ∈ Rn : θ ∈ Θ}.

Proof. Observe that

R(φ(Θ)) = Eσn sup
θ∈Θ

n∑
i=1

σiφi(θi)

=
1

2
Eσn−1

[
sup
θ∈Θ

{
n−1∑
i=1

σiφi(θi) + φn(θn)

}
+ sup

θ′∈Θ

{
n−1∑
i=1

σiφi(θ
′
i)− φn(θ

′
n)

}]
.

Since the expression inside the expectation is bounded by

sup
θ∈Θ

{
n−1∑
i=1

σiφi(θi) + φn(θn)

}
+ sup

θ′∈Θ

{
n−1∑
i=1

σiφi(θ
′
i)− φn(θ

′
n)

}

= sup
θ,θ′∈Θ

{
n−1∑
i=1

σi{φi(θi) + φi(θ
′
i)}+ {φn(θn)− φn(θ

′
n)}

}

≤ sup
θ,θ′∈Θ

{
n−1∑
i=1

σi{φi(θi) + φi(θ
′
i)}+ |θn − θ′n|

}

= sup
θ,θ′∈Θ

{
n−1∑
i=1

σi{φi(θi) + φi(θ
′
i)}+ θn − θ′n

}
(∵ Symmetry of θ and θ′)

= sup
θ∈Θ

{
n−1∑
i=1

σiφi(θi) + θn

}
+ sup

θ′∈Θ

{
n−1∑
i=1

σiφi(θ
′
i)− θ′n

}
,

we have

R(φ(Θ)) ≤ 1

2
Eσn−1

[
sup
θ∈Θ

{
n−1∑
i=1

σiφi(θi) + θn

}
+ sup

θ′∈Θ

{
n−1∑
i=1

σiφi(θ
′
i)− θ′n

}]
= R(φ̃(Θ)),

where φ̃ = (φ1, ..., φn−1, I) and I is the identity map. Iterating the same argument to swap φj with
I for all j = 1, ..., n− 1, we get the desired result.
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The following theorem gives a sufficient condition for the concentration of the empirical process
f 7→ ⟨f, P̂n − P ⟩, f ∈ F , with respect to the Rademacher complexity Rn(F).
Theorem H.5 (Uniform law of large number). For all probability measures P ∈ M (X ) and all
F ⊂ B(X ), we have

E sup
f∈F
⟨f, P̂n − P ⟩ ≤ 2Rn(F).

Furthermore, we have

sup
f∈F
⟨f, P̂n − P ⟩ ≤ 2Rn(F) +D

√
ln(1/δ)

2n

with probability 1− δ, where D := supf∈F,x,y∈X {f(x)− f(y)}. Here, P̂n is the empirical distri-
bution of P given by Definition H.3.

Proof. Let {xi}ni=1 and {x′
i}ni=1 are two n-i.i.d. sample drawn independently from P . The first

result follows from

E sup
f∈F
⟨f, P̂n − P ⟩ = E sup

f∈F
E

[
1

n

n∑
i=1

{f(xi)− f(x′
i)}

∣∣∣∣∣ {xi}ni=1

]
(∵ Lemma H.3)

≤ E

[
sup
f∈F

1

n

n∑
i=1

{f(xi)− f(x′
i)}

]

= E

[
sup
f∈F

1

n

n∑
i=1

σi{f(xi)− f(x′
i)}

]
(∵ symmetry of xi and x′

i)

≤ 2E

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
≤ 2Rn(F).

To show the second result, define

A(S) := sup
f∈F

{
1

n

n∑
i=1

f(xi)− ⟨f, P ⟩

}
for S := {xi}ni=1 ∈ Xn and observe A(S) follows the same law as

sup
f∈F
⟨f, P̂n − P ⟩.

Thus, it suffices to establish

A(S)− EA(S) ≤ D

√
ln(1/δ)

2n
with probability 1−δ, which follows from McDiarmid’s inequality (Boucheron et al., 2003) applied
on A(S). Here, the assumption of McDiarmid’s inequality we need to verify is that A(S′)−A(S) ≤
D/n for all S′ := {x′

i}ni=1 ∈ Xn that only differs from S at the j-th element, 1 ≤ j ≤ n. This is
verified by

A(S′) = sup
f∈F

{
1

n

n∑
i=1

f(x′
i)− ⟨f, P ⟩

}

= sup
f∈F

{
1

n

n∑
i=1

f(xi)− ⟨f, P ⟩+
1

n
{f(x′

i)− f(xi)}

}

≤ A(S) +
1

n
sup
f∈F
{f(x′

i)− f(xi)}

≤ A(S) +
D

n
.

This concludes the proof.
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H.3 REPRODUCING KERNEL HILBERT SPACE

Throughout this section, we assume H is the reproducing kernel Hilbert space generated with a
continuous, symmetric, positive-definite kernel κ : X 2 → R. Also let ∥ · ∥H and ⟨·, ·⟩H be the
associated norm and inner product, and let BH(0, 1) := {f ∈ H : ∥f∥H ≤ 1} be the closed unit
ball of H. The following lemma shows the Rademacher complexity of RKHS can be explicitly
bounded. Note that c0-universal kernel is uniformly bounded and hence ∥κ∥∞ <∞.
Lemma H.6 (Rademacher complexity of RKHS). We have

Rn(BH(0, 1)) ≤
√
∥κ∥∞
n

.

Proof. It follows from that, for all S ∈ Xn,

RS(BH(0, 1)) = Eσn

[
sup

f∈BH(0,1)

1

n

n∑
i=1

σif(xi)

]

= Eσn

[
sup

f∈BH(0,1)

1

n

n∑
i=1

σi⟨κ(·, xi), f⟩H

]

= Eσn

∥∥∥∥∥ 1n
n∑

i=1

σiκ(·, xi)

∥∥∥∥∥
H

≤

√√√√Eσn

∥∥∥∥∥ 1n
n∑

i=1

σiκ(·, xi)

∥∥∥∥∥
2

H

(∵ Jensen’s ineq.)

=

√√√√Eσn

〈
1

n

n∑
i=1

σiκ(·, xi),
1

n

n∑
j=1

σjκ(·, xj)

〉
H

=

√√√√ 1

n2

n∑
i=1

⟨κ(·, xi), κ(·, xi)⟩H

=

√√√√ 1

n2

n∑
i=1

κ(xi, xi)

≤
√

supx∈X κ(x, x)

n
.

The following lemma shows the compactness of the closed RKHS balls in the L2-metrics.
Lemma H.7 (Compactness of RKHS). BH(0, 1) is compact with respect to L2(P ) for all positive
measures P ∈M (X ).

Proof. Mercer’s theorem gives an eigen decomposition of κ such that

κ(x, y) =

∞∑
k=1

λkϕk(x)ϕk(y),

where the convergence is uniform on X 2, {ϕk : X → R}∞k=1 is a continuous orthonormal basis
of L2(P ) and Λ := {λk ∈ R≥0}∞k=1 is a nonnegative decreasing sequence with limk→∞ λk = 0.
It then follows from the standard function analysis that BH,1 under the L2(P )-metric is isomet-
ric to U(Λ) := {a ≡ (ak)

∞
k=1 :

∑
k≥0:ak ̸=0 a

2
k/λk ≤ 1} under the ℓ2-metric via the mapping

ak(f) :=
∫
f(x)ϕk(x)dP (x). Here, we evaluate 0/0 = ∞. Therefore, the compactness of BH,1

in L2(P ) follows from the compactness of U(Λ) in ℓ2. To show the compactness of the latter, it
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suffices to show its completeness and total boundedness. The completeness is trivial, while the total
boundedness follows from the fact that the elements of U(Λ) is approximated with their projections
onto the first K coordinates where the approximation error is bounded by λK+1, which tends to zero
as K →∞.
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