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Abstract

In contextual dynamic pricing, a seller sequentially prices goods based on contex-
tual information. Buyers will purchase products only if the prices are below their
valuations. The goal of the seller is to design a pricing strategy that collects as much
revenue as possible. We focus on two different valuation models. The first assumes
that valuations linearly depend on the context and are further distorted by noise.
Under minor regularity assumptions, our algorithm achieves an optimal regret
bound of Õ(T 2/3), improving the existing results. The second model removes the
linearity assumption, requiring only that the expected buyer valuation is β-Hölder
in the context. For this model, our algorithm obtains a regret Õ(T d+2β/d+3β),
where d is the dimension of the context space.

1 Introduction

Setting a price and devising a strategy to dynamically adjust it poses a fundamental challenge in
revenue management. This problem, known as dynamic pricing or online posted price auction,
finds applications across various industries and has received significant attention from economists,
operations researchers, statisticians, and machine learning communities. In this problem, a seller
sequentially offers goods to arriving buyers by presenting a one-time offer at a specified price. If
the offered price falls below the buyer’s (unknown) valuation of the item, a transaction occurs, and
the seller obtains the posted price as revenue. Conversely, if the price exceeds the buyer’s valuation,
the transaction fails, resulting in zero gain for the seller. Crucially, the seller solely receives binary
feedback indicating whether the trade happened. Her objective is to learn from this limited feedback
how to set prices that maximize her cumulative gains while ensuring that transactions take place. In
this paper, we study the problem of designing an adaptive pricing strategy, when the seller can rely
on contextual information, describing the product itself, the marketing environment, or the buyer.

While this problem has been extensively studied, previous results either rely on strong assumptions
on the structure of the problem, greatly limiting the applicability of such approaches, or achieve
sub-optimal regret bounds. In this work, we aim to improve both aspects—achieving better regret
bounds while making minimal assumptions about the problem. Specifically, we study two different
models for the valuation of buyers as a function of the context: 1) linear valuations, where the
item valuation of buyers is an unknown noisy linear function of the context; and 2) non-parametric
valuations, where the valuation is given by an unknown Hölder-continuous function of the contextual
information, perturbed by noise.

∗Equal contribution.
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Table 1: Summary of existing regret bounds. g is the expected valuation function, F is the c.d.f. of
the noise, and π(x, p) is the reward for price p and context x, defined in Section 2.1.

Model Noise Assumption Regret

Linear

F is known Õ(T 2/3) [11]
F is known or parametric, and log-concave Õ(T 1/2) [15]
F has m-th order derivatives Õ(T 2m+1/4m−1) [14]
F ′′ is bounded Õ(T 2/3) ∨ ∥θ − θ̂∥1T [21]

F is Lipschitz Õ(T 3/4) [14], Õ(T 2/3) [this work]
Ω(T 2/3) [30]

Bounded noise Õ(T 3/4), [30]

Non-
parametric

π(x, ·) is quadratic around its maximum
for all x, F and g are Lipschitz

Õ(T d+2/d+4) [10]
Ω(T d+2/d+4) [10]

F is Lipschitz and g is Hölder Õ(T d+2β/d+3β) [this work]

1.1 Related Work

Dynamic pricing has been extensively studied for half a century [19, 25], leading to rich research
on both theoretical and empirical fronts. For comprehensive surveys on the topic, we refer the
readers to [6, 12]. While earlier works assumed that the buyer’s valuations are i.i.d. [18, 5, 16, 9],
recent research has increasingly focused on feature-based (or contextual) pricing problems. In this
scenario, product value and pricing strategy depend on covariates. Pioneering works considered
valuations depending deterministically on the covariates. Linear valuations have been the most
studied [3, 15, 11, 20], yet a few authors have also explored non-parametric valuations [23].

Recent works have extended these methods to random valuations, mainly assuming that valuations
are given by a function of the covariate, distorted by an additive i.i.d. noise. As this poses more
challenges, authors have mostly focused on the simplest case of linear valuation functions, under
additional assumptions. Initial studies assumed knowledge of the noise distribution [11, 15, 29].
This assumption was later relaxed, albeit with additional regularity requirements on the cumulative
distribution function (c.d.f.) of the noise and/or the reward function [14, 21]. Closest to our work, [30]
achieves a regret bound of Õ(T 3/4) for linear valuations, while assuming only the boundedness of the
noise. Other parametric models have been explored, with, for example, generalized linear regression
models [27], though they also require strong assumptions, including quadratic behavior of the reward
function around each optimal price. Few works have considered non-deterministic valuations with
non-parametric valuation functions. Among those, [10] consider Lipschitz-continuous valuation
functions of d-dimensional covariates. They achieve a regret of order Õ(T d+2/d+4), assuming again
quadratic behaviour around optimal prices. We refer to Table 1 for a comprehensive comparison
between different previous works, their assumptions and regret bounds.

To improve on previous results, we design algorithms that share information on the noise distribution
across different contexts. This idea relates to methods used in cross-learning, a research direction
stemming from online bandit problems with graph feedback [22, 2]. In this framework, introduced by
[4] and further studied in [26], when choosing to take action i in context xt, the agent observes the
reward ri(xt) along with rewards ri(x′

t) associated with other contexts xt′ . Our algorithms leverage
similar principles to learn information usable across different contexts. However, compared to the
typical problems addressed by cross-learning methods (e.g., first-price auctions, sleeping bandits,
multi-armed bandits with exogenous costs), the contextual dynamic problem is more complex due to
the intricate dependence of the reward on the unknown valuation function.

1.2 Outline and Contributions

In this work, we tackle the problem of dynamic pricing with contextual information. We consider
two models for the expected valuations of the buyer, assuming respectively that they are given by a
linear function, or by a non-parametric function. For both models, we present a general algorithmic
scheme called VALUATION APPROXIMATION - PRICE ELIMINATION (VAPE), and provide bounds
on its regret in both models:
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• In the linear model, we obtain a regret of Õ(T 2/3), assuming only that the c.d.f. of the noise
is Lipschitz. This concludes an extensive series of papers on the topic, as it establishes the
minimax optimal regret rate and proves it is attainable under minimal assumptions.

• In the non-parametric model, we obtain a regret rate of Õ(T d+2β/d+3β), assuming only the
Lipschitz-continuity of the noise and the Hölder one of the valuation function. This result is
the first of its kind under such minimal assumptions.

The rest of the paper is organized as follows. We begin by presenting the model and summarizing
the notations used throughout the paper in Section 2.1. Section 2.2 outlines our assumptions and
compares them with those in previous works. In Section 2.3, we discuss the main sources of difficulty
of the problem and highlight the importance of information sharing in contextual dynamic pricing. In
Section 3, we present our algorithmic scheme, VAPE, and provide an initial informal result bounding
its regret. Then, in Section 4, we apply this algorithmic scheme to linear valuations and provide a
bound on its regret. Finally, in Section 5, we extend this algorithm to non-parametric valuations.

2 Preliminaries

2.1 Model and Notations

The problem of dynamic pricing with contextual information is formalized as follows. At each step
t ≤ T , a context xt ∈ Rd, describing a sale session (product, customer, and context) is revealed. The
customer assigns a hidden valuation yt to the product, and the seller proposes a price pt, based on xt

and on historical sales records. If pt ≤ yt, the trade is successful, and the seller receives a reward
yt; otherwise the trade fails. The seller’s only feedback is the binary outcome ot = 1{pt ≤ yt}. We
assume that the seller’s valuation is given by

yt = g(xt) + ξt, (1)

where g : Rd 7→ R is the valuation function, and ξt is a centered, bounded, i.i.d. noise term,
independent of xt and of (xs, ps, ξs)s<t. In the present paper, we consider successively linear and
non-parametric valuation functions g in Sections 4 and 5. The seller’s objective is to maximize the
sum of her cumulative earnings. We denote by π(p, xt) the expected reward of the seller if she posts
a price p for a product described by covariate xt:

π(xt, p) = E[p1{p ≤ yt}|p, xt].

Adopting the terminology of the literature on multi-armed bandits, we measure the performance of
our algorithm and the difficulty of the problem through the regret RT , defined as

RT =

T∑
t=1

max
p∈R

π(xt, p)−
T∑

t=1

π(xt, pt).

Notations Throughout this paper, we make use of the following notation. We denote by ∥·∥ the
Euclidean norm. For all A,B ∈ R, we denote by JA,BK the set {A,A + 1, . . . , B}. RT ≲ BT

(resp. RT = Õ(BT )) means that there exists a (possibly problem-dependent) constant C such that
RT ≤ CBT (resp. RT = O(log(T )CBT )). Finally, f and F denote the p.d.f. and c.d.f. of the noise,
respectively.

2.2 Assumptions

For both valuation models, we make the following assumptions on the context and noise distribution.
Assumption 1. Contexts and expected valuations are bounded: ∥xt∥2 ≤ Bx and |g(xt)| ≤ Bg a.s.

This assumption is classical in contextual dynamic pricing problems. We underline that contexts
do not need to be random. In particular, they can be chosen by an adaptive adversary, aware of the
seller’s strategy, and based on past realizations of (xs, ps, ξs)s<t. Assumption 1 is milder than the
i.i.d. context assumption appearing in [14, 27, 10].

Dynamic pricing strategies mostly assume that the buyer’s valuations are bounded. To enforce this,
we assume that the noise is bounded; moreover, we assume that its c.d.f. Lipschitz continuous.
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Assumption 2. The noise ξt is bounded: |ξt| ≤ Bξ a.s. Moreover, its c.d.f. F is Lξ-Lispchitz
continuous: for all (δ, δ′) ∈ Rd, |F (δ)− F (δ′)| ≤ Lξ |δ − δ′| .

Assumption 2 is weaker than most of the assumptions in related works. For example, [15] require
both F and 1−F to be log-concave. [14] assume that F has m-th derivative, and that δ−1−F (δ)/F ′(δ)

is greater than some positive constant for all δ, achieving a regret of order Õ(T 2m+1/4m−1). In the
case m = 1, they propose a different algorithm, reaching a regret Õ(T 3/4). [21] consider Lipschitz-
continuous noise, under the additional assumption that, for every x, p∗(x) ∈ argmaxp π(x, p) is
unique, and that F ′′ is bounded. [10] assume quadratic behaviour around every maxima: for every x,
p∗(x) ∈ argmaxp π(x, p), p

∗(x) is unique, and for all p, C(p∗(x)−p)2 ≤ π(x, p∗(x))−π(x, p) ≤
C ′(p∗(x)− p)2 for some constants C,C ′. The only work considering non-Lipschitz c.d.f. is [30];
however, they achieve a higher regret bound of Õ(T 3/4).

2.3 Information Sharing in Contextual Dynamic Pricing

For δ ∈ R, we denote D(δ) = P (ξt ≥ δ) = 1−F (δ), the demand function associated with the noise
ξt. Note that, under Assumption 2, D is Lξ-Lipschitz continuous. Straightforward computations show
that, for any price increment δ ∈ R, the expected reward corresponding to the price p = g(xt) + δ in
the context xt is given by

π(xt, g(xt) + δ) = (g(xt) + δ)D(δ). (2)
Equation (2) highlights the intricate roles played by the expected valuation g(xt) and the price
increment δ = p − g(xt) in the reward. An immediate consequence is that the optimal price
increment δ depends on the value of g(xt). Intuitively, if g(xt) is large, the seller should choose δ to
be small to ensure a high probability D(δ) to perform a trade. However, for smaller values of g(xt),
the seller might prefer a larger δ to ensure significant rewards when a trade occurs. Importantly, there
is no explicit relationship between the optimal increments δ for different valuations g(xt), so knowing
the optimal price for a value g(xt) does not allow optimal pricing for a different value g(xt′).

This reasoning suggests that the optimal price increment may span a wide range of values as the
expected valuation g(xt) varies. Unfortunately, as is typical in bandit problems, it is necessary
to estimate the reward function around the optimal price with high precision to ensure low regret.
Consequently, solving the dynamic pricing problem may entail estimating the demand function
precisely across a broad range of price increments. This marks a significant departure from non-
contextual dynamic pricing and non-parametric bandit problems, where precise estimation of the
reward function is often only necessary around its (single) maximum. Thus, the contextual dynamic
pricing problem might be more challenging than its non-contextual counterpart, potentially leading to
higher regret. This intuition is supported by the fact that straightforward application of basic bandit
algorithms, even in the most simple linear model, leads to regret higher than the rate of order Õ(T 2/3)
encountered in non-contextual dynamic pricing problems, as we show in the following discussion.

Naïve bandit algorithms for contextual dynamic pricing. As a first attempt, one might apply a
simple explore-then-commit algorithm. Such algorithms start with an exploration phase to obtain
uniformly good estimates of both g and of the demand function D over a finite grid of price increments
{δk}k∈K. Then, in a second exploitation phase, prices are set greedily to maximize the estimated
reward. To bound the regret of this approach, note that uniform estimation of D over the grid {δk}k∈K
with precision ϵ requires ϵ−2|K| estimation rounds. Moreover, the Lipschitz continuity of the reward
function implies a discretization error of order 1/|K|. Classical arguments suggest that the regret
would be at least T (ϵ + 1/|K|) + |K|ϵ−2, which is minimized for ϵ = 1/|K| = T−1/4. Thus, this
approach would lead to a regret of order Õ(T 3/4).

Another approach, akin to that used in [10], involves partitioning the covariate space into bins and
running independent algorithms for non-parametric bandits (such as CAB1 [17]) within each bin. Let
us assume, for simplicity, contexts in [0, 1], and that we partition this segment into K bins. Then,
the discretization error is 1/K. Classical results show that the regret in one bin is Õ(T 2/3

K ), where
TK = T/K is the number of rounds in each bin. Consequently, the regret is Õ(T/K +K × (T/K)2/3),
which is minimized for K = T 1/4, resulting in a regret Õ(T 3/4).

Thus, both approaches – using either independent bandit algorithms over binned contexts or common
exploration rounds followed by an exploitation phase – suffer a regret of order T 3/4 in the linear model.
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This raises the question of whether this rate is optimal for the linear model, and if the contextual
dynamic pricing problem is indeed more difficult than the non-contextual one. Strikingly, we show
that this is not the case. We rely on an intermediate approach, based on regret-minimizing algorithms
for each valuation level g(xt) that share information across different values of g(xt). We show that it
achieves an optimal regret rate of order Õ(T 2/3) in the linear valuation model. Moreover, it achieves
a rate of order Õ(T d+2β/d+3β) in the non-parametric valuation model under minimal assumptions.

3 Algorithmic Approach

In this section, we present the general algorithmic approach that we use to tackle dynamic pricing
with covariates, called VALUATION APPROXIMATION - PRICE ELIMINATION (VAPE). Before
presenting the full scheme, described in Algorithm 1, we start with some intuition that leads to its
design. Then, we provide a first analysis of the regret of this algorithm.

3.1 Outline of the Algorithm

Equation (2) highlights how the reward is influenced by the expected valuation g(xt) and by the
demand at the price increment δ = pt − g(xt). To separate the effect of these terms, we estimate g
and D independently. Hereafter, we assume that the valuations yt are bounded, in [−By, By].

Estimation of g. To estimate g(xt), we rely on the following observation: when prices pt are
uniformly chosen from the interval [−By, By], the random variable 2By (ot − 1/2) can serve as
an unbiased estimate of g(xt) conditioned on xt. Given that 2By (ot − 1/2) is bounded, classical
concentration results can be employed to bound the error of our estimates for g(xt). Thus, in each
round, we test whether our estimate of g(xt) is precise enough to ensure that the error g(xt)− ĝ(xt)
is small. If this is not the case, we conduct a VALUATION APPROXIMATION round by setting a
uniform price. In the next sections, we consider linear and non-parametric valuation functions, and
we discuss how to ensure sufficient precision in a limited number of valuation approximation rounds.

Surprisingly, even though this estimation approach for g(xt) from binary feedback is extremely simple
to perform, this method appears to have never been used in dynamic pricing. Previous approaches
for estimating valuation functions in the linear model include the regularized maximum-likelihood
estimator [15, 29], which requires knowledge of the noise distribution. Another approach used in
[21] relies on the relation between estimating a linear valuation function from binary feedback and
the classical linear classification problem. The authors propose recovering the linear parameters
θ through logistic regression; however, they do not provide an explicit estimation rate for θ. [20]
use the EXP-4 algorithm to aggregate policies corresponding to different values of θ and F , thus
circumventing the necessity to estimate them. In a similar vein, in the non-parametric valuation
model, [10] avoid the need to estimate g(xt) by employing independent bandit algorithms for each
(binned) value of xt. Closer to our method, [14] also set uniform prices to obtain unbiased estimates
of valuations. Yet, their analysis does not rely on classic bandit techniques, but rather uses more
intricate arguments and requires stronger assumptions on F and on the distribution of the contexts.

Estimation of D. If the expected valuation g(xt) is known with sufficient precision, we can use it
to estimate the demand function over a set of candidate price increments {δk}k∈K. More precisely,
assume we set a price pt = ĝ(xt) + δk, and that |ĝ(xt)− g(xt)| ≤ ϵ. Then, the observation ot can
be used as an almost unbiased estimate of the demand at level δk, since

E[ot] = E [1{ĝ(xt) + δk ≤ g(xt) + ξt}] = D(δk + ĝ(xt)− g(xt)).

Under Assumption 2, D is Lξ-Lipschitz, so the bias is of order Lξϵ. Then, relying on classical
bandit techniques, we show that with high probability (for α small enough), |D(δk) − D̂k

t | is of
order Lξϵ +

√
log(1/α)/Nk

t , where D̂k
t is the average of the observations ot when setting a price

pt = ĝ(xt) + δk, and Nk
t is the number of rounds in which we chose the price increment δk up

to round t. Importantly, to estimate D̂k
t , we share information collected during all rounds we

chose the increment δk across all values of ĝ(xt); this is necessary to obtain better regret rates.
Then, using ptD̂

k
t as an estimate of the reward π(xt, pt) given the price pt = ĝ(xt) + δk, the error

|π(xt, pt)− ptD̂
k
t | is of order By(Lξϵ+

√
log(1/α)/Nk

t ).
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Algorithm 1 VALUATION APPROXIMATION - PRICE ELIMINATION (VAPE): General scheme
1: Input: Price increments {δk}k∈K, expected valuation precision errt(x), reward confidence

intervals [LCBt(k),UCBt(k)], parameters α, ϵ.
2: while t ≤ T do
3: if errt(xt) > ϵ then ▷ Valuation Approximation
4: Post a price pt ∼ U([−By, By])
5: Use ot to improve the valuation estimator ĝ(xt)
6: else ▷ Price Elimination
7: At ← {k ∈ K : ĝt + δk ∈ [0, By]}
8: Kt ← {k ∈ At : UCBt(k) ≥ maxk′∈At

LCBt(k
′)}

9: Choose kt ∈ argmink∈Kt
Nk

t and post a price pt = ĝt + δkt

10: Update D̂kt
t+1, Nkt

t+1

The PRICE ELIMINATION subroutine relies on the previous remark to select a price increment. For
each increment δk, we build a confidence bound [LCBt(δk),UCBt(δk)] = [ptD̂

k
t ± By(2Lξϵ +√

2 log(1/α)/Nk
t )] for the reward of price pt = ĝ(xt) + δk. Then, we use a successive elimination

algorithm [13, 24] to select a good increment. More precisely, we consider increments δk such that
UCBt(δk) ≥ maxl LCBt(δl), and we choose among these increments the increment δkt

that has
been selected the least frequently. By doing so, we ensure to only select potentially optimal prices
and gradually eliminate sub-optimal increments.

3.2 A First Bound on the Regret

Before discussing the application of the algorithmic scheme VAPE to linear and non-parametric
valuation functions, we provide some intuition on regret bounds achievable through this scheme.

Claim 1. (Informal) Let δk = kϵ for k ∈ K ≜ J⌊−By−1/ϵ⌋, ⌈By+1/ϵ⌉K. Assume that, on a high-
probability event, |ĝ(xt)− g(xt)| ≤ ϵ for every round t where PRICE ELIMINATION is conducted.
Then, on a high-probability event, the regret of VAPE verifies

RT ≲ TVA(ϵ) + Tϵ+ log(1/α)ϵ−2.

where TVA(ϵ) is a bound on the length of the VALUATION APPROXIMATION phase.

Claim 1 is proved in the Appendix by combining Equations (4) and (5), and Lemma 4. We provide a
sketch of proof below. To bound on regret of VAPE using Claim 1, it will suffice to bound the length
of the VALUATION APPROXIMATION phase, and prove high-probability error bounds on g(xt).

Sketch of proof. Note that the regret in the VALUATION APPROXIMATION phase scales at most
linearly with its length. Then, to prove Claim 1, it is enough to bound the regret during the PRICE
ELIMINATION phase. We begin by bounding the sub-optimality gap of the price chosen at round t,
showing that it is of order ϵ+

√
log(1/α)/Nkt

t .

To do so, for p ∈ R, we define ∆t(xt, p) = maxp′ π(xt, p
′) − π(xt, p) the sub-optimality gap

corresponding to price p. Recall that δkt
is the increment chosen at round t, i.e. that pt = ĝ(xt)+ δkt

.
Classical arguments from the bandit literature show that with high probability, for all k ∈ K, the
upper and lower confidence bounds on π(xt, ĝ(xt) + δk) given by UCBt(δk) and LCBt(δk) are
valid. Then, the optimal increment δk∗

t
defined by k∗ = argmaxk∈At

π(xt, ĝ(xt) + δk) belongs
to the set of non-eliminated increments. Now, on the one hand, since UCBt(δkt) ≥ LCBt(δk∗

t
),

and since the confidence interval are valid, the gap π(xt, ĝ(xt) + δk∗
t
) − π(xt, pt) is of order

ϵ+
√

2 log(1/α)/Nkt
t +

√
2 log(1/α)/Nk∗

t
t . Our round-robin sampling scheme ensures that Nk∗

t
t ≥ Nkt

t ,

so this bound is of order ϵ+
√

log(1/α)/Nkt
t . On the other hand, our choice of grid {δk}k∈K, together

with the Lipschitz-continuity of the reward in Assumption 2, imply that the cost ∆t(xt, ĝ(xt) + δk∗
t
)

of considering a discrete price grid is of order ByLξϵ. Thus, at each round, the gap ∆t(xt, ĝ(xt)+δkt
)

is at most of order ϵ+
√

log(1/α)/Nkt
t (up to problem-dependent constants).
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Algorithm 2 VALUATION APPROXIMATION - PRICE ELIMINATION (VAPE) for Linear Valuations
1: Input: bounds By and Lξ, parameters α, µ, ϵ.
2: Initialize: θ̂1 = 0d, V1 = Id, K = ⌈(By+1)/ϵ⌉, K = J−K,KK, and for k ∈ K, Nk

1 = D̂k
1 = 0.

3: while t ≤ T do
4: if ∥xt∥V−1

t
> µ then ▷ Valuation Approximation

5: Post a price pt ∼ U([−By, By])

6: ιt ← 1, Vt+1 ←
∑
s≤t

ιsxsx
⊤
s + Id, θ̂t+1 ← 2ByV−1

t+1

∑
s≤t

ιs
(
os − 1

2

)
xs

7: else ▷ Price Elimination
8: ιt ← 0, ĝt ← x⊤

t θ̂t, At ← {k ∈ K : ĝt + kϵ ∈ [0, By]}
9: for k ∈ At do

10: UCBt(k)← (ĝt + kϵ) (D̂k
t +

√
2 log(1/α)

Nk
t

+ 2Lξϵ)

11: LCBt(k)← (ĝt + kϵ) (D̂k
t +

√
2 log(1/α)

Nk
t
− 2Lξϵ)

12: Kt ← {k ∈ At : UCBt(k) ≥ maxk′∈At
LCBt(k

′)}
13: Choose kt ∈ argmink∈Kt

Nk
t and post a price pt = ĝt + ktϵ

14: Update D̂kt
t+1 ←

N
kt
t D̂

kt
t +ot

N
kt,s
t +1

, Nkt
t+1 ← Nkt

t + 1.

Now, let us decompose the regret of the PRICE ELIMINATION phase as follows:∑
t∈PRICE ELIMINATION phase

∆(xt, pt) =
∑
k∈K

∑
t:kt=k

∆(xt, pt).

In order to bound
∑

t:kt=k ∆(xt, pt) for k ∈ K, we begin by introducing further notations. Let
us denote τk1 , . . . , τ

k
T the rounds in the PRICE ELIMINATION phase where we choose kt = k. We

also define ∆a = 2−a and a such that ∆a ≈ ϵ. For all a ≤ a, we also define ta such that the
bound ϵ+

√
log(1/α)/ta is of order ∆a. Then, our previous reasoning implies that if i ≥ ta for some

a ∈ {1, a}, it must be that ∆t(xt, pτk
i
) ≤ ∆a. Moreover, for a ≥ 1, each phase {ta, . . . , ta+1} is of

length approximately log(1/α)(∆−2
a+1 −∆−2

a ). Thus,

∑
t:kt=k

∆(xt, pt) ≲
log(1/α)

∆1
+

a−1∑
a=1

∆a ×
(
log(1/α)

∆2
a+1

− log(1/α)

∆2
a

)
+∆aN

k
T .

Using the definitions of ∆a and a, we find that this sum is of order log(1/α)/ϵ+ ϵNk
T . We conclude

by summing over the values of k ∈ K, using
∑

k∈K Nk
T ≤ T and the fact that |K| is of order ϵ−1.

4 Linear Valuation Functions

In this section, we consider the linear valuation model, given by

g(x) = x⊤θ , (3)

where θ ∈ Rd is an unknown parameter. To ensure that the valuations are bounded, we assume the
boundedness of the parameter θ.
Assumption 3. The parameter θ is bounded: ∥θ∥ ≤ Bθ

Note that under Assumptions 1 and 3, the expected valuations g(xt) verify |g(xt)| ≤ Bg for
Bg = Bx ×Bθ. Moreover, the random valuations verify a.s. |yt| ≤ By for By = Bg +Bξ.

We apply the VAPE algorithmic scheme to the problem of dynamic pricing with linear valuations.
To estimate the valuation function, we use a ridge estimator for the parameter θ. Moreover, we
distinguish between phases by setting ιt = 1 if t belongs to the VALUATION APPROXIMATION phase
and ιt = 0 if t belongs to the PRICE ELIMINATION one. The details are presented in Algorithm 2.
Theorem 1. Assume that the valuations follow the model given by Equations (1) and (3). Under
Assumptions 1, 2, and 3, the regret of Algorithm VAPE for Linear Valuations with parameters
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ϵ = (d
2 log(T )2/T)1/3, µ = ϵ/

(
By

√
d log

(
1+B2

xT

α

)
+Bθ

)
, and α = 1/

(
T+2T 2

(
3+(Bξ+1)T

1/3
))

verifies

RT ≤ CBξ,Bx,Bθ,Lξ
d

2/3T
2/3 log(T )

2/3

with probability 1− T−1, where CBξ,Bx,Bθ,Lξ
is a constant that polynomially depends on Bξ, Bx,

Bθ, and Lξ.

Sketch of proof. [See Appendix A for the full proof] Using Claim 1, we see that it is enough to
prove that the VALUATION APPROXIMATION phase allows to estimate g(xt) up to precision ϵ =
(d

2 log(T )2/T)1/3 in at most O(d2/3T 2/3 log(T )2/3) rounds.

To prove the first part of the claim, note that for all rounds in the PRICE ELIMINATION phase,
∥xt∥V−1

t
≤ µ = ϵ/

(
By

√
d log(1+B2

xT/α)+Bθ

)
. Then,

|ĝ(xt)− g(xt)| ≤ ∥θ − θ̂t∥Vt∥xt∥V−1
t
≤ ∥θ − θ̂t∥Vt × ϵ/

(
By

√
d log(1+B2

xT/α)+Bθ

)
.

Classical result on ridge regression in bandit framework [1] show that on a large probability event,

∥θ − θ̂t∥Vt
≤
(
By

√
d log

(
1+B2

xT/α
)
+Bθ

)
, so |ĝ(xt)− g(xt)| ≤ ϵ.

To prove the second part of the claim, we rely on the elliptical potential lemma to bound the number
of rounds where ∥xt∥V−1

t
≥ µ. This Lemma states that

∑|G|
i=1 ∥xti∥V−1

ti−1
≤
√
|G|d log (|G|+d/d),

where ti is the i-th round of the VALUATION APPROXIMATION phase, and |G| is its length. Using
the fact that ∥xti∥V−1

ti−1
≥ µ, we conclude that |G| ≤ d log(T+d/d)

µ2 , which implies the result.

Theorem 1 provides a regret bound of order Õ(T 2/3), showing that VAPE for Linear Valuations
is minimax optimal, possibly up to sub-logarithmic terms and to sub-linear dependence in the
dimension. Indeed, it matches the T 2/3 lower bound established in [30] for linear valuation functions
and Lipschitz-continuous demand functions. This result represents a clear improvement over the
existing regret bounds for the same problem. Indeed, VAPE achieves the regret bound conjectured in
[21] while at the same time removing their regularity assumption on the revenue function. On the
other hand, we improve on the regret rate Õ(T 3/4) achieved respectively in [30] under assumptions
slightly milder than ours, and in [14] under stronger assumptions.

5 Non-Parametric Valuation Functions

In this Section, we consider the non-parametric valuation model. As usual in dynamic pricing, we
assume that the valuation function g is bounded. Furthermore, we assume that it is (Lg, β)-Hölder
continuous for some constants Lg > 0 and 0 < β ≤ 1.

Assumption 4. The valuation function g is (Lg, β)-Hölder: for all (x, x′) ∈ Rd, |g(x)− g(x′)| ≤
Lg ∥x− x′∥β .

Under Assumptions 1 and 2, the random valuations yt verify |yt| ≤ By for By = Bξ +Bg .

Next, we apply the VAPE algorithmic scheme to the non-parametric valuation model. To estimate
the function g, we use a finite grid of points, on which this function is evaluated. More precisely, we
consider a minimal (ϵ/3Lg)

1/β-covering X of the ball of radius Bx in Rd, i.e. a finite set of points, of
minimal cardinality, such that for any context x such that ∥x∥ ≤ Bx, there exists a point in X at a
distance at most (ϵ/3Lg)

1/β from x.

At each round, we round the context xt to the closest context x in X by setting xt =
argminx′∈X ∥xt − x′∥, and acting as if we observed the context xt. If this context has not been
observed sufficiently, we conduct a round of VALUATION APPROXIMATION: we sample a price
uniformly at random and use it to update our estimate of g(xt); otherwise, we proceed with the PRICE
ELIMINATION phase. To distinguish between the VALUATION APPROXIMATION steps corresponding
to contexts x ∈ X , we collect their indices in sets Gx. The algorithm is presented in Algorithm 3.
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Algorithm 3 VALUATION APPROXIMATION - PRICE ELIMINATION (VAPE) for Non-Parametric
Valuations

1: Input: bounds By and Lξ, finite set X ⊂ Rd, parameters α, τ , ϵ.
2: Initialize: Gx = ∅ for all x ∈ X , K = ⌈By+1/ϵ⌉, K = J−K,KK, and for k ∈ K, Nk

1 = D̂k
1 = 0.

3: while t ≤ T do xt ← argminx′∈X ∥xt − x′∥
4: if |Gxt

| < τ then ▷ Price Elimination
5: Post a price pt ∼ U([−By, By])

6: Gxt
← Gxt

∪ {t}, ĝ(xt)← 2By

|Gxt |
∑

s∈Gxt

(
os − 1

2

)
7: else ▷ Run Successive Elimination
8: ĝt ← ĝ(xt), At ← {k ∈ K : ĝt + kϵ ∈ [0, By]}
9: for k ∈ At do

10: UCBt(k)← (ĝt + kϵ) (D̂k
t +

√
2 log(1/α)

Nk
t

+ 2Lξϵ)

11: LCBt(k)← (ĝt + kϵ) (D̂k
t +

√
2 log(1/α)

Nk
t
− 2Lξϵ)

12: Kt ← {k ∈ At : UCBt(k) ≥ maxk′∈At
LCBt(k

′)}
13: Choose kt ∈ argmink∈Kt

Nk
t and post a price pt = ĝt + ktϵ

14: Update D̂kt
t+1 ←

N
kt
t D̂

kt
t +ot

N
kt,s
t +1

, Nkt
t+1 ← Nkt

t + 1.

Theorem 2. Assume that the valuations follow the model given by Equation (1). Under Assumptions
1, 2, and 4, with probability 1− T−1 the regret of Algorithm VAPE for non-parametric Valuations
with parameters ϵ = (T/log(T ))

−β
d+3β , α = T−4, τ = 18B2

y log(2|X|/α)/ϵ2, and X a minimal (ϵ/3Lg)
1/β-

covering of the ball of radius Bx verifies

RT ≤ CBx,Bg,Bξ,Lg,Lξ,d,βT
d+2β
d+3β log(T )

β
d+3β ,

where CBx,Bg,Bξ,Lg,Lξ,d,β is a constant that polynomially depends on Bx, Bg , Bξ , Lg , Lξ , d, and β.

Sketch of proof. [See Appendix B for the full proof] Using Claim 1, we only need to show that the
length of the VALUATION APPROXIMATION phase is at most of order T d+2β/d+3β log(T )β/d+3β and
that w.h.p., it allows estimating g uniformly on a ball of radius Bx with precision ϵ=(T/log(T ))−β/d+3β .

To prove the first part of the claim, we note that classical results imply that the size of a minimal
covering of precision ϵ1/β of a ball in dimension d scales as ϵ−d/β. Then, the total length of the
VALUATION APPROXIMATION phase is of order ϵ−d/βτ ≈ T d+2β/d+3β log(T )β/d+3β. To prove the
second part of the lemma, note that the Hölder-continuity of g and the definition of the (ϵ/3Lg)

1/β-
covering G ensure that |g(xt)− g(xt)| ≤ ϵ/3. Then, standard concentration arguments reveal that τ ≈
log(|X |/α)/ϵ2 samples are sufficient to estimate g(xt) with precision ϵ with high probability.

Theorem 2 shows that the Algorithm VALUATION APPROXIMATION – PRICE ELIMINATION for
non-parametric valuations enjoys a Õ(T d+2β/d+3β) regret bound when the noise c.d.f. is Lipschitz
and the valuation function Hölder-continuous. This result is the first of its kind under such minimal
assumptions. In particular, previous work by [10] assumes quadratic behavior around the optimal price
for all values of g(x) – a very strong assumption. However, this rate is higher than the Õ(T d+β/d+2β)
rates that are usually encountered in β-Hölder non-parametric bandits [7]. Thus, the question of
optimality of the VAPE algorithmic scheme in the non-parametric valuation problem remains open.

6 Conclusions

In this paper, we studied the problem of dynamic pricing with covariates. We first presented a novel
algorithmic approach called VAPE, which adaptively alternates between improving the valuation
approximation and learning to set prices through successive elimination. We then applied VAPE
under two valuation models – when the buyer’s valuation corresponds to a noisy linear function
and when expected valuations follow a smooth non-parametric model. In the linear case, our regret
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bounds are order-optimal, while in the non-parametric setting, we improve existing results. All our
results are proven under regularity assumptions that are either milder or match existing assumptions.

Our results on the linear valuation model are the first to match the existing lower bound rate of
Ω
(
T 2/3

)
under our assumptions. However, the optimal dependence of this rate on the dimension of

the context remains unknown. Additionally, there are no similar lower bounds for non-parametric
valuations. We conjecture that our results are also tight in this setting but leave this for future work.
Future research directions also include exploring other valuation models, and further relaxing our
assumptions, as Lipschitz-continuity of the noise (Assumption 2). Without this, even minor increases
in the price could lead to a major drop in revenue, magnifying the impact of valuation approximation
errors. Another limiting assumption is that the noise is independent and identically distributed, such
that its distribution can be learned across different contexts. It is of great interest to study problems
where the noise distribution can change between rounds, or depends on the context.
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A Proof of Theorem 1

We state several lemmas before proving Theorem 1. We begin by bounding the length of the
exploration phase corresponding to lines 5 and 6 of Algorithm 2.
Lemma 1. Let G = {t ≤ T : ιt = 1}. Almost surely, the length of exploration phase G is bounded as

|G| ≤
d log

(
T+d
d

)
µ2

.

The following lemma bounds the error of our estimates for θ and D, for the values of µ prescribed in
Theorem 1. Before stating the Lemma, we define the event

E =

{
∀t /∈ G, |ĝt − g(xt)| ≤ ϵ, and

∣∣∣D̂k
t −D(kϵ)

∣∣∣ ≤√2 log(1/α)

Nk
t

+ Lξϵ

}
.

Lemma 2. The event E happens with probability at least 1− (α+ 2T 2|K|α).

Finally, we bound the number of times a sub-optimal price increment kϵ can be selected. For p ∈ R,
x ∈ Rd, we define

∆(x, p) = sup
p′∈[0,By ]

π(x, p′)− π(x, p).

Lemma 3. On the event E , for all t /∈ G, if kt = k, then k must be such that

∆(xt, ĝt + kϵ) ≤ By

(
4

√
2 log(1/α)

Nk
t

+ 9Lξϵ

)
.

We are now ready to bound the regret of Algorithm VAPE for Linear Valuations. We begin by
rewriting the regret as

RT =

T∑
t=1

(
max

p∈[0,By ]
π(xt, p)− π(xt, pt)

)
=
∑
t∈G

(
max

p∈[0,By ]
π(xt, p)− π(xt, pt)

)
+
∑
t/∈G

(
max

p∈[0,By ]
π(xt, p)− π(xt, pt)

)
. (4)

Under Assumptions 1, 2, and 3, both the optimal price and pt are in [0, By], we know that the
instantaneous regret is bounded by By . Then,∑

t∈G

(
max

p∈[0,By ]
π(xt, p)− π(xt, pt)

)
≤ By|G|. (5)

Using Lemma 1 together with the definition of µ, we find that

∑
t∈G

max
p∈[0,By ]

(π(xt, p)− π(xt, pt)) ≤
Byd log

(
T+d
d

)(
By

√
d log

(
BxT+1

α

)
+Bθ

)2

ϵ2
. (6)

We rely on the following Lemma to bound
∑

t/∈G
(
maxp∈[0,By ] π(xt, p)− π(xt, pt)

)
.

Lemma 4. On the event E ,∑
t/∈G

(
max

p∈[0,By ]
π(xt, p)− π(xt, pt)

)
≤ |K|

(
512By log(1/α) + 22

By log(1/α)

Lξϵ

)
+ 36ByTLξϵ.

Combining Equations (4), (6), and Lemma 4, we find that

RT ≤
Byd log

(
T+d
d

)(
By

√
d log

(
BxT+1

α

)
+Bθ

)2

ϵ2
+ |K|

(
512By log(1/α) + 22

By log(1/α)

Lξϵ

)
+ 36ByTLξϵ.

Using the definition of K, ϵ and α allows us to conclude the proof.
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B Proof of Theorem 2

The proof of Theorem 2 follows closely the proof of Theorem 1. The following two Lemmas are
analogues of Lemmas 1 and 2.

Lemma 5. Let X be an ( ϵ
3Lg

)1/β-covering of BBx,d of minimal cardinality, and let G =
⋃

x∈X
Gx.

Almost surely, the length of exploration phase G is bounded as

|G| ≤

(
2Bx

(
3Lg

ϵ

)1/β

+ 1

)d

(τ + 1).

Recall that we defined the event E as

E =

{
∀t /∈ G, |ĝt − g(xt)| ≤ ϵ, and

∣∣∣D̂k
t −D(kϵ)

∣∣∣ ≤√2 log(1/α)

Nk
t

+ Lξϵ

}
.

The following lemma shows that E happens with large probability.
Lemma 6. The event E happens with probability at least 1− (α+ 2T 2|K|α).

The rest of the proof holds follows the proof of Theorem 1. In particular, on the event E , we still have

RT =
∑
t∈G

(
max

p∈[0,By ]
π(xt, p)− π(xt, pt)

)
+
∑
t/∈G

(
max

p∈[0,By ]
π(xt, p)− π(xt, pt)

)

≤ By|G|+ |K|
(
512By log(1/α) + 22

By log(1/α)

Lξϵ

)
+ 36ByTLξϵ.

where we used the fact that the instantaneous regret is bounded by By along with Lemma 4. Using
Lemma 5, we obtain

RT ≤ By

(
2Bx

(
3Lg

ϵ

)1/β

+ 1

)d

(τ + 1) + |K|
(
512By log(1/α) + 22

By log(1/α)

Lξϵ

)
+ 36ByTLξϵ.

Using the definition of K, ϵ, τ and α allows us to conclude the proof.

C Proof of Auxilliary Lemmas

C.1 Proof of Lemma 1

We use the elliptical potential Lemma (see, e.g., Proposition 1 in [8]) to bound the total number of
rounds used to estimate θ. Formally, denote the estimation indices G =

{
t1 . . . , t|G|

}
and notice that

ιt = 1 only for these indices. Thus, for all i ∈ [|G|], we can write Vti =
∑i

k=1 xtkx
⊤
tk

+ Id and
Vti−1 = Vti−1

. In particular, the elliptical potential lemma implies that

|G|∑
i=1

∥xti∥V−1
ti−1

=

|G|∑
i=1

∥xti∥V−1
ti−1

≤

√
|G|d log

(
|G|+ d

d

)
.

Since for all t such that ιt = 1, x⊤
t V−1

ti−1xt ≥ µ, this implies that

|G|µ ≤

√
|G|d log

(
|G|+ d

d

)
.

Now, almost surely, |G| ≤ T . Using this bound and reorganizing the inequality leads to the desired
result

|G| ≤
d log

(
T+d
d

)
µ2

.
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C.2 Proof of Lemma 2

Lemma 2 is obtained by combining the following two results.
Lemma 7. Let us define the event

E1 = {∀t /∈ G : |g(xt)− ĝt| ≤ ϵ}
Then, the event E1 happens with probability at least 1− α.

The remainder of the proof follows from the following lemma.
Lemma 8. Let us define the event

E =

{
∀t ∈ [T ], k ∈ K,

∣∣∣D̂k
t −D(kϵ)

∣∣∣ ≤√2 log(1/α)

Nk
t

+ Lξϵ

}
∩ E1

Assume that event E1 holds with probability 1 − α. Then, the event E happens with probability at
least 1− (α+ 2T 2|K|α).

C.3 Proof of Lemma 3

We assume that t /∈ G, that kt = k, and that Nk
t > 0 (otherwise the statement is trivial). We begin by

stating an auxiliary result, which follows immediately from Lemma 2.
Lemma 9. On the event E , we have that for all t /∈ G, and all k ∈ At;

LCBt(k) ≤ π(xt, ĝt + kϵ) ≤ UCBt(k).

Moreover, k∗t ∈ Kt, where
k∗t ∈ argmax

k∈At

π(xt, ĝt + kϵ).

On the event E , Lemma 9 implies that

π(xt, ĝt + kϵ) ≥ LCB(k)
= UCB(k)− (UCB(k)− LCB(k)).

Since k∗t ∈ At , we have
UCBt(k) ≥ LCBt(k

∗
t ).

This implies

π(xt, ĝt + kϵ) ≥ LCBt(k
∗
t )− (UCBt(k)− LCBt(k))

= UCBt(k
∗
t )− (UCBt(k)− LCBt(k))− (UCBt(k

∗
t )− LCBt(k

∗
t ))

≥ π(xt, ĝt + k∗t ϵ)− (UCBt(k)− LCBt(k))− (UCBt(k
∗
t )− LCBt(k

∗
t ))

Thus,

π(xt, ĝt + k∗t ϵ)− π(xt, ĝt + kϵ)

≤ (UCBt(k)− LCBt(k)) + (UCBt(k
∗
t )− LCBt(k

∗
t )) .

Now,

UCBt(k)− LCBt(k) = (ĝt + kϵ)

(√
8 log(1/α)

Nk
t

+ 4Lξϵ

)

≤ By

(√
8 log(1/α)

Nk
t

+ 4Lξϵ

)
since k ∈ At. Moreover, since kt = k, and since k∗t ∈ Kt by Lemma 9, we know that Nk

t ≤ Nk∗

t .
This implies that

UCBt(k
∗
t )− LCBt(k

∗
t ) = (ĝt + k∗t ϵ)

(√
8 log(1/α)

N
k∗
t

t

+ 4Lξϵ

)

≤ By

(√
8 log(1/α)

Nk
t

+ 4Lξϵ

)
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Thus,

π(xt, ĝt + k∗t ϵ)− π(xt, ĝt + kϵ) ≤ 2By

(√
8 log(1/α)

Nk
t

+ 4Lξϵ

)
. (7)

Next, we bound the discretization error using the following Lemma.
Lemma 10. On the event E , we have that∣∣∣∣∣ sup

p∈[0,By ]

π(xt, p)− π(xt, ĝt + k∗t ϵ)

∣∣∣∣∣ ≤ ByLξϵ.

By Lemma 10, Equation (7) implies that on the event E ,

∆(xt, ĝt + kϵ) ≤ By

(
4

√
2 log(1/α)

Nk
t

+ 9Lξϵ

)
.

C.4 Proof of Lemma 4

Note that ∑
t/∈G

(
max

p∈[0,By ]
π(xt, p)− π(xt, pt)

)
=
∑
k∈K

∑
t/∈G:kt=k

∆(xt, ĝt + kϵ) (8)

We bound this term on the high-probability event E . For k ∈ K, we define tk1 < · · · < tk
Nk

T+1

the rounds where t /∈ G and kt = k. We split these rounds into episodes as follows. We define
a = ⌊− log2 (18Lξϵ)⌋. For a ∈ J1, aK, we also define

ta =
128 log(1/α)

2−2a
.

With these notations, we have∑
t/∈G:kt=k

∆(xt, ĝt + kϵ) =
∑

i≤t1∧Nk
T+1

∆(xtki
, ĝtki + kϵ) +

a−1∑
a=1

∑
ta∧Nk

T+1<i≤ta+1∧Nk
T+1

∆(xtki
, ĝtki + kϵ)

+
∑

ta∧Nk
T+1<i≤Nk

T+1

∆(xtki
, ĝtki + kϵ)

On the one hand, ∆(xt, pt) ≤ By for all t ≤ T , so∑
i≤t1∧Nk

T+1

∆(xtki
, ĝtki + kϵ) ≤ Byt1

On the other hand, using Lemma 3, we see that on the event E , if i ≥ ta and a ∈ J1, aK,

∆(xtki
, ĝtki + kϵ) ≤ By

4

√
2 log(1/α)

ta
+ 9Lξϵ


≤ By

(
2−a

2
+ 9Lξϵ

)
Since 2−a ≥ 18Lξϵ, this implies that

∆(xtki
, ĝtki + kϵ) ≤ 2−aBy.

Then,
a−1∑
a=1

∑
ta∧Nk

T+1<i≤ta+1∧Nk
T+1

∆(xtki
, ĝtki + kϵ) ≤ By

a−1∑
a=1

(ta+1 − ⌈ta⌉+ 1) 2−a

≤ By

a−1∑
a=1

(ta+1 − ta) 2
−a +By
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By definition of ta, this implies that

a−1∑
a=1

∑
ta∧Nk

T+1<i≤ta+1∧Nk
T+1

∆(xtki
, ĝtki + kϵ) ≤ 128By log(1/α)

a−1∑
a=1

(
22a+2 − 22a

)
2−a +By

≤ 384By log(1/α)

(
1 +

a−1∑
a=1

2a

)
≤ 384By log(1/α)2

a

≤ 22
By log(1/α)

Lξϵ

where we used that 2a ≤ 1
18Lξϵ

. Similarly,∑
ta∧Nk

T+1<i≤Nk
T+1

∆(xtki
, ĝtki + kϵ) ≤ 2−aByN

k
T+1

≤ 36ByN
k
T+1Lξϵ.

Combining these results, we find that∑
t/∈G:kt=k

∆(xt, ĝt + kϵ) ≤ 512By log(1/α) + 22
By log(1/α)

Lξϵ
+ 36ByN

k
T+1Lξϵ. (9)

We conclude the proof by summing over k ∈ K, and using the fact that
∑

k∈K Nk
T+1 ≤ T .

C.5 Proof of Lemma 5

We note that

|G| ≤ |X |(τ + 1).

We conclude by using classical results on covering number of the ball (see, e.g., Corollary 4.2.13
in [28]), stating that there exists an ( ϵ

3Lg
)1/β-covering of the ball of radius Bx in dimension d of

cardinality at most
(
2Bx

(
3Lg

ϵ

)1/β

+ 1

)d

.

C.6 Proof of Lemma 6

The proof of Lemma 6 relies on the following Lemma.

Lemma 11. Let us define the event

E1 = {∀t /∈ G : |g(xt)− ĝ(xt)| ≤ ϵ}

Then, the event E1 happens with probability at least 1− α.

Note that Lemma 8 still holds for non-parametric valuations. This concludes the proof of Lemma 6.

C.7 Proof of Lemma 7

We introduce the variables

x̃t = ιtxt and ỹt = 2Byιt

(
ot −

1

2

)
and the σ-algebra Ft = σ ((xs)s≤t+1, (os)s≤t) . Since Vt−1 and xt are Ft−1-measurable, then so
does ιt, and thus both x̃t+1 and ỹt are Ft-measurable. Moreover, for any round where ιt = 1, the
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price is chosen uniformly at random and we have

E [ỹt|Ft−1] = ιt ×

(
2By

∫ By

−By

P [u ≤ yt|Ft−1]
du

2By
−By

)

= ιt ×

(∫ By

−By

∫ Bξ

−Bξ

1
{
u ≤ x⊤

t θ + ξ
}
f(ξ) dξ du−By

)

= ιt ×

(∫ Bξ

−Bξ

∫ ξ+x⊤
t θ

−By

duf(ξ) dξ −By

)

= ιt ×

(
x⊤
t θ +

∫ Bξ

−Bξ

ξf(ξ) dξ

)
= ιt × x⊤

t θ

where in the last equality we used that
∫ Bξ

−Bξ
ξf(ξ) dξ = E [ξt] = 0. The same relation also trivially

holds when ιt = 0. Thus, conditionally on Ft−1, ỹt − x̃⊤
t θ is centered and in [−By, By], which

implies that it is By-subgaussian. Now, for all t ≤ T , we have

θ̂t = 2By

(∑
s<t

ιsxsx
⊤
s + Id

)−1∑
s∈G

(
os −

1

2

)
xs

=

(∑
s<t

x̃sx̃
⊤
s + Id

)−1∑
s<t

ỹsx̃s.

Using the fact that for all t ≥ 1, ∥x̃t∥ ≤ Bx, and that ∥θ∥ ≤ Bθ, and applying Theorem 2 in [1], we
find that for all t ≥ 0, with probability 1− α,

∥θ̂t − θ∥(∑s<t x̃lx̃⊤
l +Id) ≤ By

√
d log

(
1 +B2

xT

α

)
+Bθ.

Note that our definitions of x̃t and ỹt ensure that ∥θ̂t − θ∥(∑s<t x̃lx̃⊤
l +Id) = ∥θ̂t − θ∥Vt

. Moreover,
for all t,

|x⊤
t (θ̂t − θ)| ≤ ∥x⊤

t ∥V−1
t
∥θ̂t − θ∥Vt

.

In particular, if t /∈ G, ∥x⊤
t ∥(Vt)

−1 ≤ µ, so

|x⊤
t (θ̂t − θ)| ≤ µ

(
By

√
d log

(
1 +B2

xT

α

)
+Bθ

)
.

The conclusion follows from the choice ϵ = µ

(
By

√
d log

(
1+B2

xT
α

)
+Bθ

)
, and the fact that

ĝt = x⊤
t θ̂t.

C.8 Proof of Lemma 8

We rely on the following well-known result (we provide proof in the appendix for the sake of
completeness).
Lemma 12. Let (yt)t≥1 be a sequence of random variables adapted for a filtration Ft, such that
yt − E [yt|Ft−1] ∈ [m,M ]. Assume that for t ∈ N∗, ιt ∈ {0, 1} is Ft−1-measurable, and define

Nt =
∑

l≤t ιl, and µ̂t =
∑

l≤t ιl(yl−E[yl|Fs−1])

Nt
if Nt ≥ 1. Then, for any t ∈ N∗ and α ∈ (0, 1),

P

Nt = 0 or |µ̂t| ≤ (M −m)

√
log(1/α)

2Nt

 ≥ 1− 2tα.
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Moreover, for any t > 0 and α ∈ (0, 1),

P

Nt = t and |µ̂t| ≥ (M −m)

√
log(1/α)

2Nt

 ≤ 1− 2α.

Note Lemma 8 holds trivially for all t such that Nk
t = 0. Therefore we assume w.l.o.g. that Nk

t ≥ 1

(otherwise the statement is trivial). For any such given t ∈ [T ], we control the error |F̂ k
t − F (kϵ)|

uniformly for k ∈ K. To do so, we rely on Lemma 12; we define ι̃t = 1 {ιt = 0 and kt = k}, and
note that for Ft = σ ((x1, . . . , xt+1), (o1, . . . , ot)), ι̃t is Ft−1-measurable, and ot is Ft adapted.
Moreover,

ι̃tE [ot|Ft−1] = ι̃tP (g(xt) + ξt ≥ ĝt + kϵ)

= ι̃tD (ĝt − g(xt) + kϵ) ,

and directly by definition, it holds that D̂k
t =

∑
s≤t ι̃tot

Nt
. Using Lemma 12, we find that with

probability 1− 2αt, Nk
t = 0 or∣∣∣∣D̂k

t −
∑

s≤t ι̃tD (ĝt − g(xt) + kϵ)

Nk
t

∣∣∣∣ ≤
√

2 log(1/α)

Nk
t

.

Moreover, on the event E1, which happens w.p. at least 1− α, for all t /∈ G, |ĝt − g(xt)| ≤ ϵ. Using
the fact that D is Lξ-Lipschitz, we find that for all t /∈ G,

|D (ĝt − g(xt) + kϵ)−D (kϵ) | ≤ Lξ|ĝt − g(xt)| ≤ Lξϵ.

Thus, with probability 1− 2αt,∣∣∣D̂k
t −D(kϵ)

∣∣∣ ≤√2 log(1/α)

Nk
t

+ Lξϵ.

Using a union bound over all k ∈ K and t ∈ [T ] and then intersecting with E1 using another union
bound yields the desired result.

C.9 Proof of Lemma 9

For any t /∈ G, denoting pt(k) = ĝt + kϵ, we first rewrite

π(xt, pt(k)) = E[pt(k)1{pt(k) ≤ yt}|pt(k), xt]

= pt(k)E[1{pt(k) ≤ g(xt) + ξt}|pt(k), xt]

= pt(k)D(pt(k)− g(xt))

= (ĝt + kϵ)D(ĝt − g(xt) + kϵ)

= (ĝt + kϵ)D̂k
t + (ĝt + kϵ)

(
D(ĝt − g(xt) + kϵ)− D̂k

t

)
.

Since the event E holds, the following hold for all t /∈ G and k ∈ At:

|ĝt − g(xt)| ≤ ϵ, and
∣∣∣D̂k

t −D(kϵ)
∣∣∣ ≤√2 log(1/α)

Nk
t

+ Lξϵ.

In particular, we have that:∣∣∣D(ĝt − g(xt) + kϵ)− D̂k
t

∣∣∣ ≤ |D(ĝt − g(xt) + kϵ)−D(kϵ)|+
∣∣∣D(kϵ)− D̂k

t

∣∣∣
(1)

≤ Lξ|ĝt − g(xt)|+
∣∣∣D(kϵ)− D̂k

t

∣∣∣
≤ Lξϵ+

√
2 log(1/α)

Nk
t

+ Lξϵ

=

√
2 log(1/α)

Nk
t

+ 2Lξϵ
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Relation (1) holds since D is Lξ-Lipschitz and (2) is under the event E for all t /∈ E . As the set At is
chosen such that ĝt + kϵ ≥ 0 for all k ∈ At, it implies that

∣∣∣π(xt, ĝt + kϵ)− (ĝt + kϵ)D̂k
t

∣∣∣ ≤ (ĝt + kϵ)

(√
2 log(1/α)

Nk
t

+ 2Lξϵ

)
.

Reorganizing, we get for all k ∈ At and t /∈ G

LCBt(k) ≤ π(xt, ĝt + kϵ) ≤ UCBt(k).

which proves the first part of the statement.

Now let k∗t ∈ argmaxk∈At
π(xt, ĝt + kϵ). By the first part of the claim, it holds that

UCBt(k
∗
t )

(∗)
≥ π(xt, ĝt + k∗t ϵ) = max

k∈At

π(xt, ĝt + kϵ)
(∗)
≥ max

k∈At

LCBt(k),

where relations (∗) are due to the first part of the lemma; this proves that k∗t ∈ Kt.

C.10 Proof of Lemma 10

The proof follows by noticing that, on the one hand, K ensures that for all p ∈ [0, By], there
exists k ∈ K such that ĝt + kϵ ∈ [0, By] and |ĝt + kϵ − p| ≤ ϵ. On the other hand, the prices
considered are bounded by By , and the demand function D is Lξ-Lipschitz, so the reward function π
is ByLξ-Lipschitz.

C.11 Proof of Lemma 11

For x ∈ X , let us define recursively the variables ιx1 = 1 {x1 = x}, and for t > 1, ιxt =
1
{
xt = x, and

∑
s<t ι

x
s < τ

}
, and define the variables

g̃xt = ιxt g(xt) and ỹxt = 2Byι
x
t

(
ot −

1

2

)
and the σ-algebra Ft = σ ((xs)s≤t+1, (os)s≤t) . Note that ιxt is Ft−1-measurable, and thus both
x̃t+1 and ỹt are Ft-measurable. Moreover, for any round where ιxt = 1, the price is chosen uniformly
at random and we have

E
[
ỹxt |Ft−1

]
= ιxt ×

(
2By

∫ By

−By

P [u ≤ yt|Ft−1]
du

2By
−By

)

= ιxt ×

(∫ By

−By

∫ Bξ

−Bξ

1 {u ≤ g(xt) + ξ} f(ξ) dξ du−By

)

= ιxt ×

(∫ Bξ

−Bξ

∫ ξ+g(xt)

−By

duf(ξ) dξ −By

)

= ιxt ×

(
g(xt) +

∫ Bξ

−Bξ

ξf(ξ) dξ

)
= g̃xt

where in the last equality we used that
∫ Bξ

−Bξ
ξf(ξ) dξ = E [ξt] = 0. The same relation also trivially

holds when ιxt = 0. Thus, conditionally on Ft−1, ỹt − g̃xt is centered and in [−By, By]. We denote
Nx

t =
∑

s<t ι
x
s , we note that if t /∈ Gx, then Nx

t = ⌈τ⌉ a.s. Using Lemma 12, we find that for all
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t /∈ Gx, a.s., Nx
t = ⌈τ⌉. Then,

P

∃t /∈ Gx :

∣∣∣∣∣
∑

s∈Gx,s<t ỹ
x
t − g̃xt

Nx
t

∣∣∣∣∣ ≥ 2By

√
log(2|X |/α)

2⌈τ⌉


≤ P

Nx
t = ⌈τ⌉ and

∣∣∣∣∣
∑

s∈Gx,s<t ỹ
x
t − g̃xt

Nx
t

∣∣∣∣∣ ≥ 2By

√
log(2|X |/α)

2⌈τ⌉


≤ α

|X |
.

Moreover, since g is (Lg , β)-Holder- continuous, and ∥xt − xt∥ ≤ ( ϵ
3Lg

)1/β a.s., we have

|g(xt)− g̃xt | ≤ Lg ·

[(
ϵ

3Lg

)1/β
]β

=
ϵ

3
.

Then, with probability at least 1− α/|X |, for all t /∈ Gx,

|ĝ(xt)− g(xt)| ≤ 2By

√
log(2|X |/α)

2⌈τ⌉
+

ϵ

3

≤ 2ϵ

3
.

where we used τ =
18B2

y log(|X |/α)
ϵ2 . Using a union bound over X , we find that with probability at

least 1− α, for all t /∈ Gx,

|ĝ(xt)− g(xt)| ≤
2ϵ

3
.

Similarly, for all t /∈ G, ∥g(xt)− g(xt)∥ ≤ Lg
ϵ

3Lg
. Then, we have that with probability 1− α, for

all t /∈ Gx,

|ĝ(xt)− g(xt)| ≤ ϵ.

C.12 Proof of Lemma 12

Let us define Zt =
∑

s≤t ιt(yt − E [yt|Ft−1]), and for x ∈ R, Mt = exp
(
xZt − x2(M−m)2Nt

8

)
.

We begin by showing that Mt is a super-martingale. Indeed, we have that

E
[
exιt(yt−E[yt|Ft−1])

∣∣∣Ft−1

]
= E

[
ιte

x(yt−E[yt|Ft−1]) + (1− ιt)
∣∣∣Ft−1

]
≤ ιte

x2(M−m)2

8 + (1− ιt)

≤ e
x2(M−m)2ιt

8 .

where we use the fact that (yt − E [yt|Ft−1]) is bounded in [m,M ] together with the conditional
version of Hoeffding’s Lemma. Noticing that

Mt = Mt−1e
xιt(yt−E[yt|Ft−1])− x2(M−m)2ιt

8 ,

this proves that Mt is a super-martingale, and so E [Mt] ≤ E [M0] = 1.

Now, for all ϵ > 0 and all l ∈ N, and all x > 0, by a Markov-Chernoff argument,

P (Zt ≥ ϵ and Nt = l) = P
(
1 {Nt = l} exZt ≥ eϵx

)
≤ e−ϵxE

(
exZt1 {Nt = l}

)
= e−ϵx+

x2(M−m)2l
8 E

(
exZt− x2(M−m)2l

8 1 {Nt = l}
)
.
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Using the previous result, we have that

E
(
exZt− x2(M−m)2l

8 1 {Nt = l}
)

= E
(
exZt− x2(M−m)2Nt

8 1 {Nt = l}
)

≤ E
(
exZt− x2(M−m)2Nt

8

)
= E(Mt)

≤ E(M0) = 1.

so

P (Zt ≥ ϵ and Nt = l) ≤ e−ϵx+
x2(M−m)2l

8 .

In particular, for ϵ = (M −m)
√

l·log(1/α)
2 and x = 4ϵ

l(M−m)2 ,

P

(
Zt ≥ (M −m)

√
l · log(1/α)

2
and Nt = l

)
≤ α.

This proves the first part of the Lemma. Summing over the values of l from 1 to t, we find that

P

(
Zt ≥ (M −m)

√
Nt log(1/α)

2
and Nt ≥ 1

)
≤ tα.

Similar arguments can be used to prove that

P

(
−Zt ≥ (M −m)

√
Nt log(1/α)

2
and Nt ≥ 1

)
≤ tα.

Noting that Zt = µ̂tNt and normalizing by Nt (and since adding the case Nt = 0 can only increase
the probability) concludes the proof of the Lemma.
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