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ABSTRACT

To combat the rise of antibiotic-resistant Mycobacterium tuberculosis, genotype-
based diagnosis of resistance is critical, as it could substantially speed time
to treatment. However, machine learning efforts at genotype-based resistance
prediction are hindered by limited sequence diversity and high redundancy in
genomic datasets, complicating model generalization. Here, we use a dataset of
M. tuberculosis sequences for nine key resistance-associated genes and corre-
sponding resistance phenotypes, performing genotype de-duplication to mitigate
the effects of data leakage. This study introduces a Fused Ridge approach
that moves beyond sequence-only prediction by introducing protein structure
constraints. We compare to baseline Ridge regression and zero-shot mutation
effect prediction using ESM-2 embeddings.

Our results show that Fused Ridge achieves the highest mean AUC (0.766),
outperforming Ridge regression (0.755) and ESM-2-based log-likelihood ratio
scoring (0.603). It also exhibits improved precision and recall in identifying
resistance-conferring variants, particularly for genes such as gyrA and rpoB, likely
due to strong association between the 3D location of mutations and resistance.
The fusion penalty enforces smoothness in regression coefficients for spatially ad-
jacent residues, embedding biological knowledge into the predictive framework,
and improves generalization in sparse and redundant datasets.

1 INTRODUCTION

Tuberculosis (TB) remains a major global health challenge, causing an estimated 1.25 million
deaths in 2023 (World Health Organization, 2024). In 2023, an estimated 410,000 individuals
developed drug-resistant TB, yet only 43% were diagnosed and initiated on appropriate treat-
ment (World Health Organization, 2024). The increasing prevalence of rifampicin mono-resistance
and transmission-driven resistance cases (>90%), as shown by Farhat et al. (2024), highlights the
urgent need for accurate resistance prediction models to guide early intervention and surveillance.

Genotype-based resistance prediction offers a promising approach for rapid TB diagnostics but faces
critical challenges. Current sequence-based models suffer from data redundancy and limited training
diversity, reducing their ability to generalize to real-world multidrug-resistant TB cases (Farhat et al.,
2024; Ektefaie et al., 2024). Protein language models (PLMs) such as ESM-2 leverage evolutionary
sequences to predict mutation effects in a zero-shot manner, and therefore may hold promise for
limited data regimes. (Meier et al., 2021). However,t Jiao et al. (2024) showed that ESM may
struggle in contexts where structural organization of mutations in protein 3D structure is important,
which is the case for resistance-conferring mutations that disrupt protein active sites.

Inspired by recent approaches showing success integrating protein 3D structure constraints for mu-
tation effect prediction (Cheng et al., 2023; Gao et al., 2023) we propose Fused Ridge Regression,
which extends ridge regression with a fusion penalty to integrate protein 3D structural informa-
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tion into resistance prediction. We benchmark against the effectiveness of zero-shot prediction of
antibiotic resistance using a PLM and a baseline ridge regression approach (Green et al., 2022).

This study demonstrates the power of integrating structural and sequence-based modeling for com-
putational diagnostics for antibiotic resistant tuberculosis, particularly in high-burden settings where
novel resistance mutations frequently arise (Cohen et al., 2015).This study makes several key con-
tributions:

• Prediction in Real-World Dataset: Our approach addresses a key challenge in global TB
diagnostics, and achieves high accuracy despite data scarcity.

• Limitations of Zero-Shot prediction with ESM: We demonstrate that ESM-2 embed-
dings underperform simple supervised models in distinguishing resistant from susceptible
M. tuberculosis strains, highlighting the utility of simple approaches for data-scarce tasks.

• Fused Ridge for Sequence-Structure Integration: We introduce Fused Ridge regression
(Figure 1), which leverages 3D structural information to enhance prediction over sequence-
based models.

Figure 1: Training a Fused Ridge model for phenotype prediction from unique protein sequences. Schematic
of the Fused Ridge model, incorporating an L2 penalty (blue) for shrinkage and a fusion penalty (green) for
smoothness across adjacent coefficients. The outer ellipse represents the loss contours of the model’s objective
function. The model is trained using protein sequences and 3D protein structure.

2 METHODS

2.1 DATASET OVERVIEW

We analyzed nine M. tuberculosis genes associated with antibiotic resistance using complete genome
sequences aligned to the H37Rv reference genome (Green et al., 2022). Table 1 summarizes the
dataset.

2.1.1 SEQUENCE PROCESSING AND DE-DUPLICATION

DNA sequences were translated into protein sequences using Biopython (Cock et al., 2009), with
frameshift mutations identified, flagged, and assigned an indicator variable. Reference-alternate
encoding was applied relative to the H37Rv reference genome. Each amino acid was assigned 0
(wild-type) or 1 (mutation).
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Table 1: Data Summary for M. tuberculosis Antibiotic Resistance Genes.

Gene No. of Unique
Sequences

Gene
Length (nt)

No. of Variable
Positions

Protein Structure
Length (aa)

gyrA 439 2516 220 766
embB 681 3296 443 1054
inhA 102 809 65 246
rpsL 13 374 17 122
katG 905 2222 498 716
gid 342 674 205 202
ethA 371 1469 342 482
pncA 257 560 182 185
rpoB 877 3518 453 1138

To mitigate redundancy, we removed duplicate sequences and excluded entries with missing or
invalid labels. Stratified split of trains and tests ensured a balanced representation of resistance
phenotypes. Further details on translation, frameshift handling, and deduplication are provided in
the Appendix A.

2.2 MODELING APPROACHES

This study evaluates three computational approaches to predict antibiotic resistance phenotypes:
field standard ridge regression, zero-shot embeddings from protein language models (ESM-2), and
Fused Ridge regression, which integrates 3D structural constraints of proteins. Details on ridge
regression, ESM model architecture, and log-likelihood ratio scoring are provided in Appendices B.1
and B.2.

Fused Ridge Regression We extend ridge regression by incorporating structural constraints via
a fusion penalty, enforcing smoothness in regression coefficients for spatially adjacent mutations,
inspired by previous work on fused lasso regression for adjacent data points (Tibshirani et al., 2004).
The objective function extends the standard ridge loss by introducing a fusion penalty:

L(β) =
1

2

N∑
i=1

yi −
p∑

j=1

xijβj

2

+ α

p∑
j=1

β2
j + λfuse

p−1∑
j=1

p∑
k=j+1

wjk(βj − βk)
2

where wjk encodes 3D spatial relationships. Residue pairs beyond 5 Å were excluded (wjk = 0).The
weight matrix construction and alignment strategy are detailed in Appendix A.4. Details of objective
formulation and model optimization are included in Appendix C.1 and C.2.

3 PREDICTION PERFORMANCE OF RIDGE, FUSED RIDGE, AND ESM-2

We evaluated Ridge regression, Fused Ridge, and ESM-2 embeddings across nine resistance-
associated genes using AUC as the primary metric (Table 2). Fused Ridge achieved the highest
mean AUC (0.766), outperforming Ridge (0.755) and ESM-2 (0.603), with notable gains in pncA
and inhA.

We also analyzed the ability of the models to discover known resistance-conferring variants based
on the WHO table of resistance-conferring mutations (World Health Organization, 2023a). In most
cases, Fused Ridge improved precision and recall for identifying resistance-conferring variants by
a small amount over baseline ridge, particularly for genes like gyrA and rpoB. However, for genes
such as ethA, Fused Ridge traded recall for precision. Details of evaluation of precision and recall
metrics are in Appendix D.2.
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Table 2: AUC Comparison for Ridge, Fused Ridge, and ESM-2 Models Across Genes.

Gene Ridge AUC Fused Ridge AUC ESM-2 AUC
embB 0.868 0.871 0.686
ethA 0.572 0.547 0.540
gid 0.562 0.529 0.470
gyrA 0.919 0.926 0.742
inhA 0.685 0.722 0.678
katG 0.719 0.727 0.559
pncA 0.522 0.625 0.604
rpoB 0.950 0.946 0.645
rpsL 1.000 1.000 0.500

We further evaluated ESM-2’s log-likelihood ratio (LLR) scores across resistant (R) and susceptible
(S) strains in rpoB, katG, and pncA. LLR score distributions exhibited substantial overlap (Ap-
pendix D.3), highlighting ESM-2’s inability to fully capture resistance-driving structural effects.

3.1 NOVEL MUTATION RATES BETWEEN TRAIN AND TEST

To assess the model’s ability to generalize to unseen resistance variants, we analyzed the distribution
of novel mutations between training and test sets after genotype-level deduplication. This deduplica-
tion step produces a dataset of unique isolates and naturally introduces out-of-distribution mutation
profiles, serving as an implicit test of generalization. As shown in Figure 4, a substantial fraction
of test-time mutations are not observed during training for several genes—e.g., gyrA (36.1%), rpsL
(33.3%), inhA (15.4%), and embB (14.7%). Even rpoB, a well-characterized resistance gene, exhib-
ited 14.3% novel mutations in the test set.

In contrast, genes such as katG, ethA, and pncA showed no novel variants, indicating either a highly
recurrent mutational landscape or saturation of common resistance mutations in the dataset. While
our current model does not explicitly stratify performance by mutation novelty, the deduplicated
data structure inherently enforces generalization to unseen variants.

3.2 SUBSAMPLING ANALYSIS

To evaluate model robustness under varying training set sizes, we conducted a subsampling experi-
ment across eight genes. For each gene, we fixed the test set and trained the Fused Ridge model on
progressively larger random subsets (20% to 100%) of the training set. Performance was measured
via AUC and averaged over random seeds. We excluded the rpsL gene due to its small sample size,
which made subsampling infeasible [Table1]. Unlike our main experiments result shown in Table 2,
this analysis was performed without warm-start approach (initialized with zero coefficients instead
of ridge coefficients) to objectively measure the robustness of the Fused Ridge model.

As shown in Table 7, AUCs for genes such as embB, inhA, ethA improve with more training data and
indicate the effective utilization of additional labels. Conversely, genes like rpoB, katG show min-
imal variance, suggesting that either the available data is already sufficient or further optimization
improvements are needed (Figure 5).

3.3 COMPARISON OF APPROACHES

• Ridge Regression: Simple, interpretable, and effective for linear relationships but lacks
structural context.

• ESM-2 Embeddings: Leverages pre-trained embeddings to infer mutation effects but
struggles with domain-specific antibiotic resistance phenotypes.

• Fused Ridge: Integrates sequence and structural information, improving generalization
and robustness in sparse datasets.
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4 DISCUSSION AND CONCLUSION

This study demonstrates that integrating protein structural constraints into predictive models en-
hances antibiotic resistance classification in M. tuberculosis, particularly in data-limited settings
dominated by redundant sequences. Our Fused Ridge framework incorporates protein structure pri-
ors via fusion penalty, enforcing coefficient smoothness for spatially adjacent residues. Our biologi-
cally informed regularization improves generalization despite limited training samples, addressing a
key limitation of standard ridge regression and ESM-2 embeddings. This performance improvement
is likely because resistance-conferring mutations often cluster in functionally critical protein regions
(Green et al., 2022).

ESM-2 embeddings rely on patterns in amino acid sequences and struggle to capture functional
complexities influenced by structural context as shown in Jiao et al. (2024), which is critical for dis-
tinguishing resistance mechanisms. The limited performance of ESM-2 in distinguishing resistant
and susceptible strains for certain genes, such as katG and gid, suggests that evolutionary embed-
dings alone may not fully capture mutational impacts driven by drug pressure (Farhat et al., 2024).

Model performance is gene-specific. Longer genes with more genetic variation, such as rpoB and
embB (see Table 1), consistently achieved strong predictive performance across all models. In con-
trast, genes like ethA and gid, which have fewer observed variants, showed poorer performance.
These observations suggest that both sequence diversity and structural factors may play a role in
predictive accuracy, though further analysis is needed to confirm these relationships. Notably, pncA
demonstrated improved performance with the Fused Ridge model despite being one of the smallest
genes with no clear hotspot for mutations (Miotto et al., 2014).

While our analysis focuses on nine key resistance-associated genes, it is important to note that
these genes represent the vast majority of clinically significant antibiotic resistance mutations cur-
rently characterized in Mycobacterium tuberculosis (Green et al., 2022; World Health Organization,
2023b). The primary data restriction in our study is the need for sequences with labeled phenotype
data. Future studies could expand the scope of genes considered.

Future directions include hybrid models that integrate pre-trained evolutionary embeddings (e.g.,
ESM-2, MSA-Transformer) with structural constraints for improved generalization. Integrating
structural insights into computational models can strengthen MDR-TB surveillance and early de-
tection of antibiotic resistance, enabling more effective treatment strategies in this inherently data-
limited setting.
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A DATA PREPROCESSING AND STRUCTURAL INTEGRATION

A.1 DATA SOURCES

Proteins sequences were matched with homologous 3D structures using the default sequence
alignemnt pipeline from EVcouplings (Hopf et al., 2018). For proteins that lacked a structural hit
with at least 90% coverage of the query sequence, we use the AlphaFold structure, as indicated in
Table 3.

A.2 TRANSLATION AND FRAMESHIFT HANDLING

DNA sequences were translated into protein sequences using Biopython (Cock et al., 2009).
Frameshift mutations were identified by detecting indels that disrupted codon alignment. Trans-
lation proceeded according to the following rules:

• Gap Handling: ‘-’ symbols, representing gaps, were retained in codons.
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Table 3: Input Protein, Structure, and Phenotype Label Data

Gene Uniprot ID Locus ID Associated Antibiotic PDB/AlphaFold ID (Chain)
embB P9WNL7 Rv3795 Ethambutol 7BVF (B)
ethA P9WNF9 Rv3854c Ethionamide AF-P9WNF9-F1
gid P9WGW9 Rv3919c Streptomycin 3G8A (A)
gyrA P9WG47 Rv0006 Levofloxacin AF-P9WG47-F1
inhA P9WGR1 Rv1484 Isoniazid 2B36 (C)
katG P9WIE5 Rv1908c Isoniazid 4C51 (A)
pncA I6XD65 Rv2043c Pyrazinamide 3PL1 (A)
rpoB P9WGY9 Rv0667 Rifampicin 5UH6 (C)
rpsL P9WH63 Rv0682 Streptomycin 5MMJ (I)

• Ambiguous Bases: Ambiguous nucleotides represented by ‘N’ were replaced with ‘X’ to
indicate uncertainty in translated amino acid.

• Frameshift Detection: Frameshifted sequences were identified and assigned an all-zero
encoding with a separate frameshift flag. For example:

– Non-frameshift: GTTACTGTATTC→ VTVF (frameshift flag = 0).
– Frameshift: GTTACGTATTC→ VTY- (frameshift flag = 1).

A.3 DE-DUPLICATION AND DATA CLEANING

To prevent bias from redundant sequences, we removed identical sequences. Entries with missing
or invalid resistance labels were excluded. Stratified data splitting ensured balanced distribution of
resistant and susceptible strains.

A.4 WEIGHT MATRIX FOR STRUCTURAL CONSTRAINTS

To integrate 3D structural information, we constructed a weight matrix based on pairwise Euclidean
distances between residues from the protein data bank (PDB) structures. We aligned the H37Rv
reference sequence to residue indices from the PDB. We computed pairwise minimum atom inter-
residue atomic distances using EVcouplings (Hopf et al., 2018). We then applied a Gaussian decay
function, with residue pairs beyond 5 Å excluded (wjk = 0):

wjk = exp

(
− Djk

scale param

)
.

B MODELING APPROACHES

B.1 RIDGE REGRESSION

Ridge regression was implemented using the scikit-learn library (Pedregosa et al., 2011), with a
binary-encoded feature matrix comparing mutations to the H37Rv reference genome.

B.2 ESM MODEL DETAILS

The ESM2-150M model was used for zero-shot resistance prediction using the following steps.
First, protein sequences were tokenized and mutations were identified by aligning sequences to
H37Rv. To calculate the Log-Likelihood Ratio (LLR), wild-type residues were masked in the input
sequence, and probability scores were computed as per (Meier et al., 2021):

log p(xi = xmt
i | x−M )− log p(xi = xwt

i | x−M ).

We then trained logistic regression model was trained on log-likelihood ratio (LLR) scores to classify
mutations as resistance-associated or not.
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C FUSED RIDGE MODEL

C.1 OBJECTIVE FUNCTION

The Fused Ridge objective function extends the standard ridge loss by introducing a fusion penalty:

L(β) =
1

2

N∑
i=1

yi −
p∑

j=1

xijβj

2

+ α

p∑
j=1

β2
j + λfuse

p−1∑
j=1

p∑
k=j+1

wjk(βj − βk)
2

Where:

• λfuse: Regularization parameter for the fusion penalty.
• wjk: Weights derived from the 3D distance matrix, penalizing the squared difference be-

tween coefficients βj and βk.

• wjk = exp
(
− Djk

scale param

)
: Weight decay based on the 3D distance Djk between residues j

and k.

Table 4 describes the components of the objective function.

Table 4: Components of the Objective Function

Term Description
L(β) Objective function, representing the total loss to be minimized
N Number of observations (samples) in the dataset
p Number of features (mutation sites) in the model
yi Binary phenotype (resistant or susceptible) for the i-th sample
xij Feature encoding the presence or absence of mutation j in sample i
βj Regression coefficient for mutation j, representing its contribution to resistance
α Regularization strength for the L2 penalty (ridge term) to control overfitting
λfuse Fusion penalty parameter enforcing smoothness between coefficients of struc-

turally adjacent mutations
wjk Weight derived from the 3D structural distance matrix, penalizing the squared

difference between regression coefficients βj and βk

Djk Euclidean distance between residues j and k in protein 3D structure
scale param Normalization factor ensuring proper scaling of wjk, set as max(1, std(Djk))

C.2 IMPLEMENTATION DETAILS

Here, we detail the optimization and training procedure for the fused-ridge model. To initialize β, we
adopted a warm-start approach by using the coefficients from a pre-trained baseline ridge regres-
sion model. This strategy not only provided a strong initialization but also accelerated convergence
by leveraging the stability of ridge regression.

We explored four variants of gradient descent (GD) to identify the most effective optimization
method: vanilla GD, enhanced GD with gradient clipping, momentum-based GD, and Nesterov-
accelerated GD. Among these, enhanced GD consistently yielded the best performance. We con-
ducted a grid search with 5-fold cross-validation to identify the optimal values of key hyperparame-
ters: α, λfuse, learning rate, and scale param.

D PERFORMANCE EVALUATION

D.1 RANKED AUC PERFORMANCE

Figure 2 presents a ranked comparison of AUC scores across genes. Fused Ridge demonstrates on
par or superior classification ability in most genes (six out of nine).
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Figure 2: Ranked AUC scores for the three models across nine genes.

D.1.1 KEY OBSERVATIONS FROM AUC PERFORMANCE

Fused Ridge outperformed Ridge on 66.67% of the genes. For example, in pncA, Fused Ridge
achieved an AUC of 0.625, outperforming both Ridge (0.522) and ESM-2 (0.604). The gene pncA
is displays resistance-conferring mutations across its entire coding region (Shi et al., 2022), because
mutations that ablate the protein’s function are sufficient to cause resistance. This dispersed muta-
tional pattern makes it challenging for models to generalize from limited training data. As evident
here, the sequence-only Ridge model fails to capture meaningful signal, while ESM-2—pretrained
on large-scale protein datasets with implicit structural information—achieves better performance.
Our Fused Ridge model, which explicitly incorporates protein structural priors, outperforms both,
supporting our hypothesis that structure-aware regularization can enhance generalization in genes
with diffused mutation profiles.

In inhA, the Fused Ridge model demonstrated a notable improvement (0.722) over Ridge (0.685)
and ESM-2 (0.678). Marginal gains over the baseline Ridge were observed in genes like gyrA
(Fused Ridge: 0.926 vs. Ridge: 0.919), though Fused Ridge still showed a substantial advantage
over ESM-2 (0.742).

All three models struggled to achieve high AUCs in complex genes such as ethA and gid. For in-
stance, in ethA, baseline Ridge outperformed the other two models (Ridge: 0.572, Fused Ridge:
0.547, ESM-2: 0.540). Genes like ethA and gid, which are associated with ethionamide and strep-
tomycin resistance respectively, are frequently affected by loss-of-function (LOF) mutations, in-
cluding frameshifts, premature stop codons, and large deletions (Gomes et al., 2021). These muta-
tions can lead to resistance even in the absence of conventional SNPs, but they are poorly captured
by models that rely solely on amino acid substitutions or per-residue embeddings. The presence
of these cryptic resistance mechanisms likely contributes to the consistently low AUCs observed
across all models and highlights the need for more comprehensive mutation modeling in genes
prone to LOF-driven resistance. A second confounder for protein-based resistance prediction is that
multiple genetic mechanisms, not just the two genes in question, can confer both streptomycin and
ethionamide resistance.
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D.2 PRECISION AND RECALL OF IDENTIFYING RESISTANCE-CONFERRING VARIANTS

Another important aspect of this study is to identify the true resistance-conferring mutations from
significant coefficients of the trained model and evaluate how well these selected features correspond
to known resistance-conferring variants in M. tuberculosis World Health Organization (2023a).
To quantify the model’s ability to retrieve true resistance-conferring mutations, we define two key
evaluation metrics: Precision and Recall.

Precision is defined as the proportion of correctly identified resistance-conferring mutations among
all mutations selected by the model. A higher precision indicates fewer false discoveries, meaning
the model selects mutations that are more likely to be truly resistance-conferring.

Recall measures the model’s ability to identify all known resistance-conferring mutations. A higher
recall indicates that the model successfully retrieves a larger proportion of true resistance-conferring
mutations.

The variant discovery analysis begins by examining the coefficients generated by the trained model
to assess the importance of various features. A threshold was selected by iteratively evaluating
percentiles of the absolute model coefficients and choosing the one that maximized the F1-score,
i.e., the harmonic mean of precision and recall. Features with coefficients above this threshold are
considered significant and are selected for further analysis.

Once the significant features are identified, they are ranked in descending order of importance based
on the magnitude of their corresponding coefficients, which reflects their relative contribution to the
model’s predictions, and are then assessed for alignment with known resistance-conferring variants
in the WHO catalog (World Health Organization, 2023b). Table 5 summarizes the precision and
recall values for Ridge and Fused Ridge optimizers using the Enhanced optimizer.

Table 5: Precision and Recall Scores for Ridge and Fused Ridge using the Enhanced Optimizer.

Gene Ridge Precision (%) Fused Precision (%) Ridge Recall (%) Fused Recall (%)
embB 87.76 84.49 50.00 50.00
ethA 75.82 75.82 77.78 44.44
gid 90.27 91.15 36.36 36.36
gyrA 67.46 76.19 42.86 64.29
inhA 87.10 87.10 100.00 100.00
katG 79.01 79.88 25.00 25.00
pncA 81.32 80.68 56.12 56.12
rpoB 82.69 84.13 56.25 59.38
rpsL 70.97 81.25 50.00 100.00

Fused Ridge demonstrates higher precision compared to ridge for gyrA and rpsL. For genes like gid,
embB, and pncA, precision is similar between the two methods. Fused Ridge also shows improve-
ment in recall for gyrA, rpsL, and rpoB.

D.3 ESM ZERO-SHOT PERFORMANCE

D.3.1 EVALUATION OF ESM-2 FOR ANTIBIOTIC RESISTANCE PREDICTION

ESM-2 embeddings, derived from transformer-based protein language models, provide zero-shot
mutation effect predictions based on evolutionary context (Lin et al., 2023). Here, we further ex-
plore their ability to distinguish resistant (R) and susceptible (S) M. tuberculosis strains across nine
antibiotic resistance genes.

D.3.2 PERFORMANCE SUMMARY

The violin plots in Figure 3 illustrate the normalized log-likelihood ratio (LLR) score distributions
for R and S phenotypes in three representative genes: rpoB, katG, and pncA.

• RpoB (Rifampicin Resistance): The LLR score distribution for rpoB shows a slight dif-
ference between resistant and susceptible strains (Figure 3). That leads to an AUC of 0.645.
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Figure 3: Normalized LLR score distributions for resistant (R) and susceptible (S) strains for rpoB,
katG, and pncA.

Despite its critical role in rifampicin resistance, ESM-2 embeddings demonstrate limited
discriminatory power in distinguishing resistant and susceptible strains.

• KatG (Isoniazid Resistance): For katG, responsible for isoniazid resistance, ESM-2’s
AUC is 0.559, indicating limited performance in distinguishing resistant and susceptible
strains. Figure 3 shows significant overlap in LLR score distributions, with close median
values for resistant strains.

• PncA (Pyrazinamide Resistance): The AUC for pncA is 0.604, which shows that ESM-
2 is relatively performing better for distinguishing pyrazinamide resistance compared to
katG. The violin plot in Figure 3 shows a wider range of LLR scores for resistant strains.
This suggests that certain mutations in pncA are strongly associated with resistance.

While ESM-2 provides a baseline for zero-shot resistance prediction, it is outperformed by even
simple supervised models. Since ESM-2 embeddings are trained on evolutionary sequence data,
they may not effectively distinguish mutations driven by recent pressure for antibiotic resistance,
rather than long-term selection. Additional fine-tuning may improve the performance of ESM-2 for
this task ((Ektefaie et al., 2024)).

E GENERALIZATION TO NOVEL MUTATIONS

To evaluate whether our model encounters novel resistance mutations at test time, we conducted a
per-gene analysis of mutation overlap between training and test sets after genotype deduplication.
The results show that a substantial proportion of test-set mutations are indeed unseen during training,
particularly in genes such as gyrA (36.1%), rpsL (33.3%), and inhA (15.4%).

These findings confirm that our deduplication strategy produces out-of-distribution mutations in the
evaluation split. While we do not explicitly stratify performance by mutation novelty in this version,
our results indicate that the model is already being tested under generalization conditions. In future
work, we plan to explore performance stratified by mutation novelty, and to augment training with
synthetic or rare variants for enhanced generalization.

F SUBSAMPLING AUC VS. TRAIN FRACTION

To assess the impact of training set size on model robustness, we conducted a subsampling experi-
ment across eight genes. For each gene, we fixed the test set and trained the Fused Ridge model on
increasingly larger random subsets (20% to 100%) of the training set. Performance was evaluated
using AUC and averaged over five random seeds.

Figure 5 shows the subsampling analysis performance of the fused-ridge model without ridge initial-
ization (i.e., warm start) to isolate the intrinsic data efficiency of the model. Instead, we initialized
the Fused Ridge coefficients to zero for each run to avoid confounding the model’s sensitivity to
training size with the influence of a potentially well-informed initialization. We have excluded the
rpsL gene from this experiment due to its small number of training samples, which made meaningful
subsampling infeasible.
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Figure 4: Novel Mutation Distribution Per Gene between Train and Test set

Table 6: Per-gene analysis of novel mutations in the test set after genotype deduplication. Novel
mutations constitute a substantial portion of test mutations for several genes. Thereby, the model is
inherently exposed to out-of-distribution variants.

Gene Train Test Test Novel Shared Novel
Samples Samples Mutations Mutations Mutations %

inhA 82 21 65 10 54 15.38
katG 724 181 424 0 424 0.00
pncA 205 52 167 0 167 0.00
rpsL 10 3 3 1 2 33.33
embB 545 137 443 65 377 14.67
gid 273 69 205 3 201 1.46
ethA 296 75 325 0 325 0.00
gyrA 351 88 83 30 53 36.14
rpoB 702 176 453 65 387 14.35

As Table 7 shows, genes like embB, inhA, and ethA show increasing AUC trends, suggesting that the
Fused Ridge model benefits from additional data. In contrast, performance for genes like rpoB and
katG remains relatively stable, indicating either sufficient training coverage or limited scalability
due to optimization limitations or data complexity.

To further contextualize these findings, we compare them with a warm-start variant of the model in
Table 8. As expected, warm-started training improves AUCs across all genes due to better initial
coefficient estimates. However, the trends with respect to training set size remain consistent, con-
firming that the Fused Ridge model benefits from careful initialization. These results confirm that
while warm-starting can enhance performance, our main conclusions about data-driven variability
in model robustness are valid even without it.
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Figure 5: Subsampling Analysis:Impact of Training set size on Model Robustness

Table 7: AUC scores from subsampling experiments across training fractions (without warm start).

Gene 0.2 0.4 0.6 0.8 1.0 Average AUC
rpoB 0.712 0.701 0.697 0.699 0.696 0.701
gyrA 0.642 0.611 0.599 0.608 0.599 0.612
embB 0.682 0.722 0.741 0.736 0.747 0.726
inhA 0.592 0.623 0.625 0.636 0.646 0.624
ethA 0.555 0.596 0.613 0.609 0.616 0.598
gid 0.512 0.527 0.548 0.541 0.540 0.534
pncA 0.604 0.607 0.616 0.611 0.660 0.619
katG 0.526 0.524 0.512 0.506 0.506 0.515

Table 8: AUC scores from subsampling experiments with ridge initialization (warm start).

Gene 0.2 0.4 0.6 0.8 1.0 Average AUC
rpoB 0.931 0.932 0.929 0.934 0.934 0.932
gyrA 0.863 0.893 0.892 0.888 0.913 0.890
embB 0.786 0.829 0.844 0.843 0.852 0.831
inhA 0.552 0.601 0.719 0.694 0.659 0.645
ethA 0.563 0.575 0.561 0.579 0.571 0.570
gid 0.500 0.511 0.560 0.521 0.531 0.524
pncA 0.594 0.595 0.591 0.594 0.629 0.601
katG 0.702 0.703 0.690 0.720 0.719 0.707
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