
Under review as a conference paper at ICLR 2023

LEARNING FOR EDGE-WEIGHTED ONLINE BIPARTITE
MATCHING WITH ROBUSTNESS GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many real-world problems, such as online ad display, can be formulated as online
bipartite matching. The crucial challenge lies in the nature of sequentially-revealed
online item information, based on which we make irreversible matching decisions
at each step. While numerous expert online algorithms have been proposed with
bounded worst-case competitive ratios, they may not offer satisfactory performance
in average cases. On the other hand, reinforcement learning (RL) has been applied
to improve the average performance, but they lack robustness and can perform
arbitrarily badly. In this paper, we propose a novel RL-based approach to edge-
weighted online bipartite matching with robustness guarantees (LOMAR), achieving
both good average-case and good worst-case performance. The key novelty of
LOMAR is a new online switching operation which, based on a judiciously-designed
condition to hedge against future uncertainties, decides whether to follow the
expert’s decision or the RL decision for each online item arrival. We prove that
for any ρ ∈ [0, 1], LOMAR is ρ-competitive against any given expert online algo-
rithm. To improve the average performance, we train the RL policy by explicitly
considering the online switching operation. Finally, we run empirical experiments
to demonstrate the advantages of LOMAR compared to existing baselines.

1 INTRODUCTION

Online bipartite matching is a classic online problem of practical importance (Mehta, 2013; Kim
& Moon, 2020; Fahrbach et al., 2020; Antoniadis et al., 2020b; Huang & Shu, 2021; Gupta &
Roughgarden, 2020). In a nutshell, online bipartite matching assigns online items to offline items
in two separate sets: when an online item arrives, we need to match it to an offline item given
applicable constraints (e.g., capacity constraint), with the goal of maximizing the total rewards
collected (Mehta, 2013). For example, numerous applications, including scheduling tasks to servers,
displaying advertisements to online users, recommending articles/movies/products, among many
others, can all be modeled as online bipartite matching or its variants.

The practical importance, along with substantial algorithmic challenges, of online bipartite matching
has received extensive attention in the last few decades (Karp et al., 1990; Fahrbach et al., 2020).
Concretely, many algorithms have been proposed and studied for various settings of online bipar-
tite matching, ranging from simple yet effective greedy algorithms to sophisticated ranking-based
algorithms (Karp et al., 1990; Kim & Moon, 2020; Fahrbach et al., 2020; Aggarwal et al., 2011;
Devanur et al., 2013). These expert algorithms typically have robustness guarantees in terms of
the competitive ratio — the ratio of the total reward obtained by an online algorithm to the reward
of another baseline algorithm (commonly the optimal offline algorithm) — even under adversarial
settings given arbitrarily bad problem inputs (Karp et al., 1990; Huang & Shu, 2021). In some
settings, even the optimal competitive ratio for adversarial inputs has been derived (readers are
referred to (Mehta, 2013) for an excellent tutorial). The abundance of competitive online algorithms
has clearly demonstrated the importance of performance robustness in terms of the competitive ratio,
especially in safety-sensitive applications such as matching mission-critical items or under contractual
obligations (Fahrbach et al., 2020). Nonetheless, as commonly known in the literature, the necessity
of conservativeness to address the worst-case adversarial input means that the average performance
is typically not optimal (see, e.g., (Christianson et al., 2022; Zeynali et al., 2021) for discussions in
other general online problems).
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More recently, online optimizers based on reinforcement learning (RL) (Chen et al., 2022; Georgiev
& Lió, 2020; Wang et al., 2019; Alomrani et al., 2021; Du et al., 2019; Zuzic et al., 2020) have been
proposed in the context of online bipartite matching as well as other online problems. Specifically,
by exploiting statistical information of problem inputs, RL models are trained offline and then
applied online to produce decisions given unseen problem inputs. These RL-based optimizers can
often achieve high average rewards in many typical cases. Nonetheless, they may not have any
performance robustness guarantees in terms of the competitive ratio. In fact, a crucial pain point
is that the worst-case performance of many RL-based optimizers can be arbitrarily bad, due to,
e.g., testing distribution shifts, inevitable model generalization errors, finite samples, and/or even
adversarial inputs. Consequently, the lack of robustness guarantees has become a key roadblock for
wide deployment of RL-based optimizers in real-world applications.

In this paper, we focus on an important and novel objective — achieving both good average per-
formance and guaranteed worst-case robustness — for edge-weighted online bipartite matching
(Fahrbach et al., 2020; Kim & Moon, 2020). More specifically, our algorithm, called LOMAR
(Learning-based approach to edge-weighted Online bipartite MAtching with Robustness guarantees),
integrates an expert algorithm with RL. The key novelty of LOMAR lies in a carefully-designed
online switching step that dynamically switches between the RL decision and the expert decision
online, as well as a switching-aware training algorithm. For both no-free-disposal and free-disposal
settings, we design novel switching conditions as to when the RL decisions can be safely followed
while still guaranteeing robustness of being ρ-competitive against any given expert online algorithms
for any ρ ∈ [0, 1]. Furthermore, if the expert itself has a competitive ratio of λ ≤ 1 against the
optimal offline algorithm (OPT), then it will naturally translate into LOMAR being ρλ-competitive
against OPT. To improve the average performance of LOMAR, we train the RL policy in LOMAR
by explicitly taking into account the introduced switching operation. Importantly, to avoid the “no
supervision” trap during the initial RL policy training, we propose to approximate the switching
operation probabilistically. Finally, we offer empirical experiments to demonstrate that LOMAR can
improve the average cost (compared to existing expert algorithms) as well as lower the competitive
ratio (compared to pure RL-based optimizers).

2 RELATED WORKS

Online bipartite matching has been traditionally approached by expert algorithms (Mehta, 2013;
Karande et al., 2011; Huang et al., 2019; Devanur et al., 2013). A simple but widely-used algorithm is
the (deterministic) greedy algorithm (Mehta, 2013), achieving reasonably-good competitive ratios and
empirical performance (Alomrani et al., 2021). Randomized algorithms have also been proposed to
improve the competitive ratio (Ting & Xiang, 2014; Aggarwal et al., 2011). In addition, competitive
algorithms based on the primal-dual framework have also been proposed (Mehta, 2013; Buchbinder
et al., 2009). More recently, multi-phase information and predictions have been leveraged to exploit
stochasticity within each problem instance and improve the algorithm performance (Kesselheim
et al., 2013). For example, (Korula & Pál, 2009) designs a secretary matching algorithm based on
a threshold obtained using the information of phase one, and exploits the threshold for matching
in phase two. Note that stochastic settingsconsidered by expert algorithms (Mehta, 2013; Karande
et al., 2011) mean that the arrival orders and/or rewards of different online items within each problem
instance are stochastic. By contrast, as shown in equation 2, we focus on an unknown distribution of
problem instances whereas the inputs within each instance can still be arbitrary.

Another line of algorithms utilize RL to improve the average performance (Wang et al., 2019;
Georgiev & Lió, 2020; Chen et al., 2022; Alomrani et al., 2021). Even though heuristic methods (such
as using adversarial training samples (Zuzic et al., 2020; Du et al., 2022)) are used to empirically
improve the robustness, they do not provide any theoretically-proved robustness guarantees.

ML-augmented algorithms have been recently considered for various problems (Rutten et al., 2022;
Christianson et al., 2022; Chłędowski et al., 2021; Lykouris & Vassilvitskii, 2021; Gupta & Rough-
garden, 2017). By viewing the ML prediction as blackbox advice, these algorithms strive to provide
good competitive ratios when the ML predictions are nearly perfect, and also bounded competitive
ratios when ML predictions are bad. But, they still focus on the worst case without addressing the
average performance or how the ML model is trained. By contrast, the RL model in LOMAR is trained
by taking into account the switching operation and performs inference based on the actual state
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(rather than its own independently-maintained state as a blackbox). Assuming a given downstream
algorithm, (Wang et al., 2021; Liu & Grigas, 2021; Wilder et al., 2019; Elmachtoub & Grigas, 2017;
Du et al., 2021; Anand et al., 2021) focus on learning the ML model to better serve the end goal in
completely different (sometimes, offline optimization) problems.

LOMAR is relevant to conservative bandits/RL (Wu et al., 2016; Kazerouni et al., 2017; Yang et al.,
2022; Garcelon et al., 2020). With unknown reward functions (as well as transition models if
applicable), conservative bandits/RL leverages an existing policy to safeguard the exploration process.
But, they only consider the cumulative reward without addressing future uncertainties when deciding
exploration vs. rolling back to an existing policy. Thus, as shown in Section 4, this cannot guarantee
robustness in our problem. Also, constrained policy optimization (Yang et al., 2020; Kumar et al.,
2020; Schulman et al., 2015; Achiam et al., 2017; Thomas et al., 2021; Berkenkamp et al., 2017)
focuses on average (cost) constraints in the long run, whereas LOMAR achieves stronger robustness
(relative to an expert algorithm) for each episode with even adversarial inputs.

3 PROBLEM FORMULATION

We focus on edge-weighted online bipartite matching, which includes un-weighted and vertex-
weighted matching as special cases (Fahrbach et al., 2020; Kim & Moon, 2020). In the following, we
also drop “edge-weighted” if applicable when referring to our problem.

The goal of the agent is to match items (a.k.a. vertices) between two sets U and V to gain as high total
rewards as possible. Suppose that U is fixed and contains offline items u ∈ U , and that the online
items v ∈ V arrive sequentially: in each time slot, an online item v ∈ V arrives and the weight/reward
information {wuv | wu,min ≤ wuv ≤ wu,max, u ∈ U} is revealed, where wuv represents the reward
when the online item v is matched to each offline u ∈ U . We denote one problem instance by
G = {U ,V,W}, where W = {wuv | u ∈ U , v ∈ V}. We denote xuv ∈ {0, 1} as the matching
decision indicating whether u is matched to v. Also, any offline item u ∈ U can be matched up to cu
times, where cu is essentially the capacity for offline item u known to the agent. The objective is to
maximize the total collected reward

∑
v∈V,u∈U xuvwuv . With a slight abuse of notations, we denote

xv ∈ U as the index of item in U that is matched to item v ∈ V . The set of online items matched to
u ∈ U is denoted as Vu = {v ∈ V |xuv = 1}.

The edge-weighted online bipartite matching problem has been mostly studied under two different
settings: no free disposal and with free disposal (Mehta, 2013). In the no-free-disposal case, each
offline item u ∈ U can only be matched strictly up to cu times; in the free-disposal case, each offline
item u ∈ U can be matched more than cu times, but only the top cu rewards are counted when more
than cu online items are matched to u. Compared to the free-disposal case, the no-free-disposal case
is significantly more challenging with the optimal competitive ratio being 0 in the strong adversarial
setting unless additional assumptions are made (e.g., wu,min > 0 for each u ∈ U (Kim & Moon,
2020) and/or random-order of online arrivals) (Fahrbach et al., 2020; Mehta, 2013). The free-disposal
setting not only makes the problem more tractable, but also is practically motivated by the display ad
application where the advertisers (i.e., offline items u ∈ U ) will not be unhappy if they receive more
impressions (i.e., online items v ∈ V) than their budgets cu, even though only the top cu items count.

LOMAR can handle both no-free-disposal and free-disposal settings. For better presentation of our
key novelty and page limits, we focus on the no-free-disposal setting in the body of the paper, while
deferring the free-disposal setting to Appendix B. Specifically, the offline problem with no free
disposal can be expressed as:

max
∑

xuv∈{0,1},u∈U,v∈V

xuvwuv, s.t.,
∑
v∈V

xuv ≤ cu, and
∑
u∈U

xuv ≤ 1,∀u ∈ U , v ∈ V, (1)

where the constraints specify the offline item capacity limit and each online item v ∈ V can only be
matched up to one offline item u ∈ U .

Given a problem instance G and an online algorithm α, we use fα
u (G) to denote the total reward

collected for offline item u ∈ U , and Rα(G) =
∑

u∈U fα
u (G) to denote the total collected reward.

We will also drop the superscript α for notational convenience wherever applicable.
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Objective. Solving the problem in equation 1 is very challenging in the online case, where the agent
has to make irreversible decisions without knowing the future online item arrivals. Next, we first
define the following generalized competitiveness as a metric of robustness.

Definition 1 (Competitiveness). An online bipartite matching algorithm α is said to be ρ−competitive
with ρ ≥ 0 against the algorithm π if for any problem instance G, its total collected reward Rα(G)
satisfies Rα(G) ≥ ρRπ(G)−B, where B ≥ 0 is a constant independent of the problem input, and
Rπ is the total reward of the algorithm π.

Competitiveness against a given (online) algorithm π is common in the literature (Christianson et al.,
2022): the greater ρ ≥ 0, the better robustness of the online algorithm, although the average rewards
can be worse. Additionally, the constant B ≥ 0 relaxes the strict competitive ratio by allowing an
additive regret (Antoniadis et al., 2020a). When B = 0, the competitive ratio becomes the strict one.

In this paper, we focus on a setting where the problem instance G = {U ,V,W} follows an unknown
distribution, whereas both the rewards W and online arrival order within each instance G can
be adversarial. We consider both average performance and worst-case robustness guarantees as
formalized below:

maxEG [Rα(G)] , s.t. Rα(G) ≥ ρRπ(G)−B, ∀G, (2)

where the expectation EG [Rα(G)] is over the randomness G = {U ,V,W}.

Note carefully that some manually-designed algorithms focus on a stochastic setting where the arrival
order is random and/or the rewards {wuv | wu,min ≤ wuv ≤ wu,max, u ∈ U} of each online item is
independently and identically distributed (i.i.d.) within each problem instance G Mehta (2013). By
contrast, our settings are significantly different — we only assume an unknown distribution for the
entire problem instance G = {U ,V,W} while both the rewards W and online arrival order within
each instance G can be adversarial in our problem.

4 ONLINE SWITCHING FOR ROBUSTNESS GUARANTEES

We present LOMAR, which includes an online switching operation to dynamically decide to follow
the ML decision or the expert decision, to achieve robustness guarantees with respect to the expert.

4.1 ONLINE SWITCHING

While switching is common in online algorithms, “how to switch”is highly non-trivial and a key
merit for algorithm designs Antoniadis et al. (2020a); Christianson et al. (2022); Rutten et al. (2022).
To guarantee robustness (i.e., ρ-competitive against a given expert for any ρ ∈ [0, 1]), we propose
a novel online algorithm (Algorithm 1). In the algorithm, we independently run an expert online
algorithm π — the cumulative reward and item matching decisions are all maintained virtually for
the expert, but not used as the actual decisions. Meanwhile, instead of being independently executed
to provide blackbox advice based on its own virtual state (like in the prior ML-augmented online
algorithm (Christianson et al., 2022)), the RL model in LOMAR makes online decisions based on the
actual state at each step.

The most crucial step for safeguarding RL decisions is online switching: Lines 13–19 in Algorithm 1.
The key idea for this step is to switch between the expert decision xπ

v and the RL decision x̃v in
order to ensure that the actual online decision xv meets the ρ-competitive requirement (against the
expert π). Specifically, we follow the RL decision x̃v only if it can safely hedge against any future
uncertainties (i.e., the expert’s future reward increase); otherwise, we need to roll back to the expert’s
decision xπ

v to stay on track for robustness.

Note that naive switching conditions, e.g., only ensuring that the actual cumulative reward is at
least ρ times of the expert’s cumulative reward at each step (Wu et al., 2016; Yang et al., 2022),
can fail to meet the competitive ratio requirement in the end. The reason is that, even though the
competitive ratio requirement is met (i.e., Rv ≥ ρRπ

v − B) at the current step v, the expert can
possibly obtain much higher rewards from future online items v + 1, v + 2, · · · if it has additional
offline item capacity that the actual algorithm LOMAR does not have. Thus, we must carefully design
the switching conditions to hedge against future risks. The no-free-disposal and free-disposal settings
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Algorithm 1 Inference of Robust Learning-based Online Bipartite Matching (LOMAR)
1: Initialization: The actual set of items matched to u ∈ U is Vu,v after sequentially-arriving item

v’s assignment with Vu,0 = ∅, the actual remaining capacity is bu = cu for u ∈ U , and the
actual cumulative reward is R0 =

∑
u∈U fu(Vu,0) = 0. The same notations apply to the expert

algorithm π by adding the superscript π. Competitive ratio requirement ρ ∈ [0, 1] and slackness
B ≥ 0 with respect to the expert algorithm π.

2: for v = 1 to |V| do
3: Run the algorithm π and match the item v to u ∈ U based on the expert’s decision u = xπ

v .
4: Update the expert’s decision set and reward for offline item u = xπ

v :
Vπ
xπ
v ,v

= Vπ
xπ
v ,v−1

⋃
{v} and fxπ

v
= fxπ

v
(Vπ

xπ
v ,v

).
5: Update the expert’s cumulative reward Rπ

v =
∑

u∈U fu
6: Get the set of available items Ua = {u ∈ U | |Vu,v−1| < cu}
7: for u in Ua do
8: Collect the available history information Iu about item u
9: Run the RL model to get score: su = wuv − hθ(Iu, wuv) where θ is the network weight

10: end for
11: Calculate the probability of choosing each available item or skip:

{{s̃u}u∈Ua
, s̃skip} = softmax {{su}u∈Ua

, 0}.
12: Obtain RL decision: x̃v = argmaxu∈Ua

⋃
{skip} {{s̃u}u∈Ua

, s̃skip}.

13: if Rv−1 + wx̃v,v ≥ ρ
(
Rπ

v +
∑

u∈U
(
|Vu,v−1| − |V π

u,v|+ Iu=x̃v

)+ · wu,max

)
−B then

14: Select xv = x̃v . //Follow the RL decision
15: else if xπ

v is available for matching (i.e., |Vxπ
v ,v−1| < cxπ

v
) then

16: Select xv = xπ
v . //Follow the expert

17: else
18: Select xv = skip.
19: end if
20: Update assignment and reward: Vxv,v = Vxv,v−1

⋃
{v} and Rv = Rv−1 + wxv,v

21: end for

require different switching conditions. Due to the page limit, we focus on the no-free-disposal setting
below, while referring readers to Appendix B for more details about the free-disposal setting.

4.2 ROBUSTNESS CONSTRAINT

In the no-free-disposal case, an offline item u ∈ U cannot receive any additional online items if it
has been matched for cu times up to its capacity. By assigning more online items to u ∈ U than the
expert algorithm at step v, LOMAR can possibly receive a higher cumulative reward than the expert’s
cumulative reward. But, such advantages are just temporary, because the expert may receive an even
higher reward in the future by filling up the unused capacity of item u. Thus, to hedge against the
future uncertainties, LOMAR chooses the RL decisions only when the following condition is satified:

Rv−1 + wx̃v,v ≥ ρ

(
Rπ

v +
∑
u∈U

(
|Vu,v−1| − |V π

u,v|+ Iu=x̃v

)+ · wu,max

)
−B, (3)

where Iu=x̃v
= 1 if and only if u = x̃v and 0 otherwise, (·)+ = max(·, 0), ρ ∈ [0, 1] and B ≥ 0

are the hyperparameters indicating the desired robustness with respect to the expert algorithm π.
The interpretation of equation 3 is as follows. The left-hand side is the total reward of LOMAR after
assigning the online item v based on the RL decision (i.e. x̃t). The right-hand side is the expert’s
cumulative cost Rπ

v , plus the term
∑

u∈U
(
|Vu,v−1| − |V π

u,v|+ Iu=x̃v

)+ ·wu,max which indicates the
maximum reward that can be possibly received by the expert in the future. This reservation term is
crucial, especially when the expert has more unused capacity than LOMAR. Specifically, |Vu,v−1| is
the number of online items (after assigning v − 1 items) already assigned to the offline item u ∈ U ,
and hence

(
|Vu,v−1| − |V π

u,v|+ Iu=x̃v

)+
represents the number of more online items that LOMAR

has assigned to u than the expert if LOMAR follows the RL decision at step v. If LOMAR assigns fewer
items than the expert for an offline item u ∈ U , there is no need for any hedging because LOMAR is
guaranteed to receive more rewards by filling up the item u up to the expert’s assignment level.
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The term wu,max in equation 3 is the set as the maximum possible reward for each decision. Even
when wu,max is unknown in advance, LOMAR still applies by simply setting wu,max = ∞. In this
case, LOMAR will be less “greedy” than the expert and never use more resources than the expert at
any step for any u ∈ U .

4.3 ROBUSTNESS ANALYSIS

We now formally show the competitive ratio of LOMAR. The proof is available in the appendix.

Theorem 4.1. For any 0 ≤ ρ ≤ 1 and B ≥ 0 and any expert algorithm π, LOMAR achieves a
competitive ratio of ρ against the algorithm π, i.e., R ≥ ρRπ −B for any problem input.

The hyperparameters 0 ≤ ρ ≤ 1 and B ≥ 0 govern the level of robustness we would like to achieve,
at the potential expense of average reward performance. For example, by setting ρ = 1 and B = 0,
we achieve the same robustness as the expert but leave little to none freedom for RL decisions. On
the other hand, by setting a small ρ > 0 and/or large B, we provide higher flexibility to RL decisions
for better average performance, while potentially decreasing the robustness. In fact, designing an
algorithm that is guaranteed to simultaneously outperform RL and the expert is very challenging,
if not impossible, and such tradeoff is necessary in the broad context of ML-augmented online
algorithms (Rutten et al., 2022; Christianson et al., 2022). Additionally, in case of multiple experts,
we can first combine these experts into a single expert and then apply LOMAR as if it works with a
single combined expert.

While the competitive ratio of all online algorithms against the optimal offline algorithm is zero
in the no-free-disposal and general adversarial setting, there exist provably competitive online
expert algorithms under some mild assumptions and other settings (Mehta, 2013). For example, the

simple greedy algorithm achieves
(
1 + maxu∈U

wu,max

wu,min

)−1

under bounded weights assumptions

for the adversarial no-free-disposal setting (Kim & Moon, 2020), and 1
2 for the free-disposal setting

(Fahrbach et al., 2020), and there also exist 1/e-competitive algorithms against the optimal offline
algorithm for the random-order setting (Mehta, 2013). Thus, an immediate result follows.

Corollary 4.1.1. For any 0 ≤ ρ ≤ 1 and B ≥ 0, by using Algorithm 1 and an expert online algorithm
π that is λ-competitive against the optimal offline algorithm OPT, then under the same assumptions
for π to be λ-competitive, LOMAR is ρλ-competitive against OPT.

Corollary 4.1.1 provides a general result that applies to any λ-competitive expert algorithm π under its
respective required assumptions. For example, if the expert π assumes an adversarial or random-order
setting, then Corollary 4.1.1 also holds true under the same adversarial or random-order setting.

Finally, we comment on the randomized setting where randomization is over the algorithm choice
and potentially increases the competitive ratio (Gupta & Roughgarden, 2020; Mehta, 2013). For
the randomized setting, the competitive ratio is modified as E(R) ≥ ρROPT − B, where E is the
expectation and ROPT is the optimal reward of the optimal offline algorithm (Mehta, 2013). We
make no assumptions on the expert π in Algorithm 1. Thus, if the expert π itself is randomized in
Algorithm 1, then LOMAR will also be randomized. Also, for any ρ ∈ [0, 1] and B ≥ 0, by directly
applying Theorem 4.1 and Corollary 4.1.1 to the randomized setting, the competitive ratio of LOMAR
will be ρλ-competitive against OPT if the randomized expert π itself is λ-competitive against OPT.

5 RL POLICY TRAINING WITH ONLINE SWITCHING

The existing ML-augmented online algorithms typically assume a pre-trained standalone RL model
(Christianson et al., 2022; Rutten et al., 2022). While the standalone RL model may perform well on
its own, some already good actions can be replaced by expert’s action due to switching for robustness
in inference. In other words, there will be a objective mismatch between training and testing. To
rectify the mismatch, we propose a novel approach to train the RL model in LOMAR by explicitly
considering the switching operation.

RL architecture. For solving online bipartite matching, there exist various network architectures,
e.g., fully-connected networks and scalable invariant network for arbitrary graph sizes. The prior
study (Mehta, 2013) has shown using extensive empirical experiments that the invariant network
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architecture, where each offline-online item pair runs through a separate neural network with shared
weights among all the item pairs, is empirically advantageous, due to its scalability to large graph
sizes and high average performance. We denote the RL model as hθ(Iu, wuv) where θ is the
network parameter. By feeding the item weight wuv and applicable history information Iu for each
offline-online item pair (u, v), we can use the RL model to output a threshold for possible item
assignment, following threshold-based algorithms (Huang et al., 2019; Mehta, 2013). The history
information Iu includes, but is not limited to, the average value and variance of weights assigned
to u, average in-degree of u, and maximum weight for the already matched items. More details
about the information can be found in the appendix. Then, with the RL output, we can obtain a score
su = wuv − hθ(Iu, wuv), for each possible assignment, and the RL uses the offline item u ∈ U (plus
“skip” with sskip = 0 in the no-free-disposal setting) with the largest su as its candidate action x̃v

when checking the switching condition in Algorithm 1.

Policy training. Training the RL model by considering switching in Algorithm 1 is highly non-trivial.
Most critically, the initial RL decisions can perform arbitrarily badly upon policy initialization,
which means that the initial RL decisions are almost always overridden by the expert’s decisions
for robustness. Due to following the expert’s decisions, the RL agent almost always receive a good
reward, which actually has nothing to do with the RL’s own decisions and hence provides little to no
supervision to improve the RL policy. Consequently, this creates a gridlock for RL policy training.
While using an offline pre-trained standalone RL model without considering online switching (e.g.,
(Alomrani et al., 2021)) as an initial policy may partially address this gridlock, this is certainly
inefficient as we have to spend resources for training another RL model, let alone the likelihood of
being trapped into the standalone RL model’s suboptimal policies (e.g. local minimums).

To address these issues, we introduce another softmax probability with temperature t to approximate
the hard switching process during training. The switching probability depends on the cumulative
reward difference Rdiff in the switching condition, which is

Rdiff = Rv−1 + wx̃v,v − ρ

(
Rπ

v +
∑
u∈U

(
|Vu,v−1| − |V π

u,v|+ Iu=x̃v

)+ · wu,max

)
+B (4)

Then the probability of following RL is pos = e
Rdiff/t

1+eRdiff /t , where t is the temperature of softmax
function. This softmax probability is differentiable and hence allows backpropagation to supervise
the training of the RL model weight θ. We train the RL agent by applying REINFORCE (Williams,
1992) to optimize the policy parameter θ. Denote τ = {x1, · · · , xv} as an action trajectory sample
and pθ(τ) as the possibility of the trajectory given the RL policy, where pθ is calculated based on the
selection probability of RL model and expert.

Our goal is to maximize the expected total reward Rθ = Eτ∼pθ
[wxv,v]. Thus, at each training step,

given an RL policy with parameter θ, we sample n action trajectories {τi = {x1,i, · · · , xv,i}, i ∈
[n]} and record the corresponding rewards. We can get the approximated average reward
as R̂θ = 1

n

∑n
i=1 w

i
xi,v,v. Then, we calculate the gradient of the RL policy parameter as

∇θR̂θ =
∑n

i=1

(∑
v∈V ∇θ log pθ(xv,i | Iu,i)

) (∑
v∈V wi

xv,i,v

)
. Then, we update the parameter

θ by θ = θ + α∇θR̂θ, where α controls the training step size.

By changing the temperature t for softmax, we are able to balance exploration and exploitation.
Specifically, at the beginning of the policy training, we can set a high temperature to encourage the
RL model to explore more aggressively, instead of sticking to the expert’s decisions. As the RL
model performance continuously improves, we can reduce the temperature in order to make the RL
agent more aware of the downstream switching operation. The training process is performed offline
as in the existing RL-based optimizers (Alomrani et al., 2021; Du et al., 2022) and described in
Algorithm 3.

6 EXPERIMENT

6.1 SETUP

To validate the effectiveness of LOMAR, we conduct experiments based on the movie recommendation
application. Specifically, when an user (i.e., online item v) arrives, we recommend a movie (i.e.,
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offline item u) to this user and receive a reward based on the user-movie preference information. We
choose the MovieLens dataset (Harper & Konstan, 2015), which provides a total of 3952 movies,
6040 users and 100209 ratings. We preprocess the dataset to sample movies and users randomly from
the dataset to generate subgraphs, following the same steps as used by (Dickerson et al., 2019) and
(Alomrani et al., 2021). In testing dataset, we empirically evaluate each algorithm using average
reward (AVG) and competitive ratio (CR, against OPT), which represents the average performance
and worst case performance, respectively. Thus, the value of CR is the empirically worst reward ratio
in the testing dataset. For fair comparison, all the experimental settings like capacity cu follow those
used in (Alomrani et al., 2021). More details about the problem setup and training details are deferred
to Appendix A.

Baseline Algorithms. We consider the following baselines. All the RL policies are trained offline
with the same architecture and applicable hyperparameters.

• OPT: The offline optimal oracle has the complete information about the bipartite graph. We
use the Gurobi optimizer to find the optimal offline solution.

• Greedy: At each step, Greedy selects the available offline item with highest weight.

• DRL: It uses the same architecture as in LOMAR, but does not consider online switching for
training or inference. That is, the RL model is both trained and tested with ρ = 0. More
specifically, our RL architecture has 3 fully connected layers, each with 100 hidden nodes.

• DRL-OS (DRL-OnlineSwitching): We apply online switching to the same RL policy used
by DRL during inference. That is, the RL model is trained with ρ = 0, but tested with a
different ρ > 0.

The choice of baselines include all those considered in (Alomrani et al., 2021). In the no-free-disposal
setting, the best competitive ratio is 0 in general adversarial cases (Mehta, 2013). Here, we use
Greedy as the expert algorithm, because the recent study (Alomrani et al., 2021) has shown that
Greedy performs better than other alternatives and is a strong baseline.

6.2 RESULTS

DRL-OS LOMAR (ρ = 0.4) LOMAR (ρ = 0.6) LOMAR (ρ = 0.8) Greedy
Test AVG CR AVG CR AVG CR AVG CR AVG CR

ρ = 0.4 12.315 0.800 12.364 0.819 12.288 0.804 12.284 0.804 11.000 0.723
ρ = 0.6 11.919 0.787 11.982 0.807 11.990 0.807 11.989 0.800 11.000 0.723
ρ = 0.8 11.524 0.773 11.538 0.766 11.543 0.762 11.561 0.765 11.000 0.723

Table 1: Comparison under different ρ. In the top, LOMAR (ρ = x) means LOMAR is trained with
the value of ρ = x. The average reward and competitive ratio are represented by AVG and CR,
respectively — the higher, the better. The highest value in each testing setup is highlighted in bold.
The AVG and CR for DRL are 12.909 and 0.544 respectively. The average reward for OPT is 13.209.

We show the comparison of LOMAR with baseline algorithms in Table 1. First, we see that DRL has
the highest average reward, but its empirical competitive ratio is the lowest. The expert algorithm
Greedy is fairly robust, but has a lower average award than RL-based policies. Second, DRL-OS can
improve the competitive ratio compared to DRL. But, its RL policy is trained alone without being
aware of the online switching. Thus, by making the RL policy aware of online switching, LOMAR
can improve the average reward compared to DRL-OS. Specifically, by training LOMAR using the
same ρ as testing it, we can obtain both the highest average cost and the highest competitive ratio.
One exception is the minor decrease of competitive ratio when ρ = 0.8 for testing. This is likely due
to the dataset and a few hard instances can affect the empirical competitive ratio, which also explains
why the empirical competitive ratio is not necessarily monotonically increasing in the ρ ∈ [0, 1].
Nonetheless, unlike DRL that may only work well empirically without guarantees, LOMAR offers
provable robustness guarantees while exploiting the power of RL to improve the average performance.
The boxplots in Fig. 1 visualizes the reward ratio distribution of LOMAR, which further validates the
importance of switching-aware training.
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Figure 1: Boxplot for reward ratio with different ρ within testing dataset. Greedy and DRL-OS are
also shown here for comparison. The best average performance in each figure is achieved by choosing
the same ρ during training and testing.
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(d) ρ = 0.8

Figure 2: Histogram of bi-competitive reward ratios of DRL-OS (against Greedy and DRL) under
different ρ.

To show the effect of switching with different ρ, we calculate the bi-competitive reward ratios.
Specifically, for each problem instance, the bi-competitive ratio compares the actual reward against
those of Greedy and RL model, respectively. To highlight the effect of online switching, we focus
on DRL-OS (i.e., training the RL with ρ = 0) whose training process of RL model is not affected
by ρ, because the RL model trained with ρ > 0 in LOMAR does not necessarily perform well on
its own and the reward ratio of LOMAR to its RL model is not meaningful. The histogram of the
bi-competitive ratios are visualized in Fig. 2. When ρ = 0, the ratio of DRL-OS/ DRL is always 1
unsurprisingly, since DRL-OS are essentially the same as DRL in this case (i.e., both trained and
tested with ρ = 0). With a large ρ (e.g. 0.8) for testing, the reward ratios of DRL-OS/Greedy for
most samples are around 1, which means the robustness is achieved, as proven by our theoretical
analysis. But on the other hand, DRL-OS has limited flexibility and can less exploit the good average
performance of DRL. Thus, the hyperparameter ρ ∈ [0, 1] governs the tradeoff between average
performance and robustness relative to the expert and, like other hyperparameters, can be tuned to
maximize the average performance subject to the robustness requirement.

We also consider a crowdsourcing application, as provided by the gMission dataset (Chen et al.,
2014). Additional results for LOMAR and baselines in gMission are deferred to Appendix A.

7 CONCLUSION

In this paper, we propose LOMAR to achieve both good average-case and good worst-case performance
for edge-weighted online bipartite matching. LOMAR includes a novel online switching operation to
decide whether to follow the expert’s decision or the RL decision for each online item arrival. We
prove that for any ρ ∈ [0, 1], LOMAR is ρ-competitive against any expert online algorithms, which
directly translates a bounded competitive ratio against OPT if the expert algorithm itself has one. We
also train the RL policy by explicitly considering the online switching operation so as to improve the
average performance. Finally, we run empirical experiments to validate LOMAR.
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REPRODUCIBILITY STATEMENT

The details of proving Theorem 4.1 are included in Appendix C. The experimental codes and
settings are based on the open-sourced resources in Alomrani et al. (2021). The implementation of
LOMAR mainly includes adding the switching condition for training and testing based on the standard
DRL-based algorithm Alomrani et al. (2021) and will be released upon publication.
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APPENDIX

In the appendix, we show the experimental setup and additional results (Appendix A), algorithm
details for the free-disposal setting (Appendix B), and finally the proof of Theorem 4.1 (Appendix C).

A EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

Our implementation of all the considered algorithms, including LOMAR, is based on the source
codes provided by Alomrani et al. (2021), which includes codes for training the RL model, data
pre-proposing and performance evaluation. We conduct experiments on two real-world datasets:
MovieLens Harper & Konstan (2015) and gMission Chen et al. (2014).

A.1 MOVIELENS

A.1.1 SETUP AND TRAINING

We first sample u0 movies from the original MovieLens dataset Harper & Konstan (2015). We
then sample v0 users and make sure each user can get at least one movie; otherwise, we remove
the users that have no matched movies, and resample new users. After getting the topology graph,
we use Gurobi to find the optimal matching decision. In our experiment, we set u0 = 10 and
v0 = 60 to generate the training and testing datasets. The number of graph instances in the training
and testing datasets are 20000 and 1000, respectively. For the sake of reproducibility and fair
comparision, our settings follows the same setup of Alomrani et al. (2021). In particular, the general
movie recommendation problem belongs to online submodular optimization, but it can actually be
equivalently mapped to edge-weighted online bipartite matching with no free disposal under the
setting considered in Alomrani et al. (2021). So by default, the capacity cu for each offline node is set
as 1 and wu,max = 5. While LOMAR can use any RL architecture, we follow the design of inv-ff-hist
proposed by Alomrani et al. (2021), which empirically demonstrates the best performance among all
the considered architectures.

The input to our considered RL model is the edge weights wuv revealed by the online items plus some
historical information, which includes: Mean and variances of each offline node’s weights; Average
degree of each offline nodes; Normalized step size; Percentage of offline nodes connected to the
current node; Statistical information of these already matched nodes’ weights (maximum, minimum,
mean and variance); Ratio of matched offline node; Ratio of skips up to now; Normalized reward
with respect to the offline node number. For more details of the historical information, readers are
referred to Table 1 in Alomrani et al. (2021).
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Figure 3: Tail reward ratio comparison. In
this experiment, we set ρ = 0.4 for DRL-
OS and LOMAR.

For applicable algorithms (i.e., DRL, DRL-OS, and
LOMAR), we train the RL model for 300 epochs in the
training dataset with a batch size of 100. In LOMAR, the
parameter B = 0 is used to follow the strict definition of
competitive ratio. We test the algorithms on the testing
dataset to obtain the average reward and the worst-case
competitive ratio empirically. By setting ρ = 0 for train-
ing, LOMAR is equivalent to the vanilla inv-ff-hist RL
model (i.e., DRL) used in Alomrani et al. (2021). Using
the same problem setup, we can reproduce the same
results shown in Alomrani et al. (2021), which reaffirms
the correctness of our data generation and training pro-
cess.

Additionally, training the RL model in LOMAR usually takes less than 8 hours on a shared research
cluster with one NVIDIA K80 GPU, which is almost the same as the training the model for DRL in a
standalone manner (i.e., setting ρ = 0 without considering online switching).

A.1.2 ADDITIONAL RESULTS

In Table 1, we have empirically demonstrated that LOMAR achieves the best tradeoff between the
average reward and competitive ratio. In Fig 3, we further demonstrate that LOMAR not only achieves
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a better worst-case competitive ratio (at 100.0%). The tail reward ratio of LOMAR is also good
compared to the baseline algorithms. Specifically, we show the percentile of reward ratios (compared
to the optimal offline algorithm) — the 100% means the worst-case empirical reward ratio (i.e.,
competitive ratio). We see that DRL has a bad high-percentile reward ratio and lacks performance
robustness, although its lower-percentile cost ratio is better. This is consistent with the good average
performance of LOMAR. Because of online switching, both DRL-OS and LOMAR achieve better
robustness, and LOMAR is even better due to its awareness of the online switching operation during its
training process. The expert Greedy has a fairly stable competitive ratio, showing its good robustness.
But, it can be outperformed by other algorithms when we look at lower-percentile reward ratio.

A.1.3 RESULTS FOR ANOTHER EXPERT ALGORITHM

Optimally competitive expert algorithms have been developed under the assumptions of random oder
and/or i.i.d. rewards of different online items. In particular, by considering the random order setting,
OSM (online secretary matching) has the optimal competitive ratio of 1/e (Kesselheim et al., 2013).
Note that the competitive ratio for OSM is average over the random order of online items, while the
rewards can be adversarially chosen. We show the empirical results in Fig. 4. As OSM skips the first
|V|/e online items, it actually does not perform (in terms of the empirical worst-case cost ratio) as
well as the default expert Greedy in our experiments despite its guaranteed competitive ratio against
OPT. That said, we still observe the same trend as using Greedy for the expert: by tuning ρ ∈ [0, 1],
LOMAR achieves a good average performance while guaranteeing the competitiveness against the
expert OSM (and against OPT as OSM itself is optimally competitive against OPT).
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Figure 4: Cost ratio distribution (OSM as the expert)

Fig. 4 shows the empirical results in our testing dataset, which does not strictly satisfy the random
order assumption required by OSM. Next, to satisfy the random order assumption, we select a
typical problem instance and randomly vary the arrival orders of online items. We show the cost ratio
averaged over the random arrival order in Table 2. Specifically, we calculate each cost ratio by 100
different random orders, and repeat this process 100 times. We show the mean and stand deviation
of the average cost ratios (each averaged over 100 different random orders). We see that LOMAR
improves the average cost ratio compared to OSM under the random order assumption. While DRL
has a better average cost for this particular instance, it does not provide any guaranteed worst-case
robustness as LOMAR.

Pure ML LOMAR ρ = 0.2 LOMAR ρ = 0.4 LOMAR ρ = 0.6 LOMAR ρ = 0.8 OSM
Mean 0.9794 0.9688 0.9431 0.9095 0.8799 0.8459
Std 0.0074 0.0082 0.0078 0.0086 0.0084 0.0084

Table 2: Cost ratio (averaged over the random arrival order) for a typical graph instance

A.2 GMISSION

The gMission dataset Chen et al. (2014) considers a crowdsourcing application, where the goal is
to assign the tasks (online items) to workers (offline items). The edge weight between a certain
online task and each worker can be calculated by the product of the task reward and the worker’s
success probability, which is determined by the physical location of workers and the type of tasks.
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Our goal is to maximize the total reward given the capacity of each worker, which perfectly fits into
our formulation in Eqn. equation 1.

We use the same data processing and RL architecture design as introduced in Section A.1.1. We train
LOMAR with different ρ in the gMission dataset by setting u0 = 10, v0 = 60, wu,max = 1. Again,
we use Greedy as the expert, which is an empirically strong baseline algorithm as shown in Alomrani
et al. (2021). Our results are all consistent with those presented in Alomrani et al. (2021).

A.2.1 TESTING ON 10× 60

In our the first result, we generate a testing dataset with u0 = 10 and v0 = 60, which is the
same setting as our training dataset. In other words, the training and testing datasets have similar
distributions. Specifically, Greedy’s average reward and competitive ratio are 4.508 and 0.432, while
these two values for DRL are 5.819 and 0.604, respectively. Thus, DRL performs outperforms
Greedy in both average performance and the worst-case performance.

DRL-OS LOMAR ρ = 0.4 LOMAR ρ = 0.6 LOMAR ρ = 0.8 LOMAR ρ = 0.9
ρ in Testing AVG CR AVG CR AVG CR AVG CR AVG CR

0.4 5.553 0.599 5.573 0.598 5.553 0.598 5.523 0.598 5.535 0.598
0.6 5.389 0.591 5.429 0.619 5.420 0.619 5.403 0.623 5.402 0.623
0.8 5.102 0.543 5.115 0.543 5.111 0.523 5.110 0.521 5.107 0.521
0.9 4.836 0.495 4.836 0.495 4.839 0.495 4.839 0.540 4.839 0.540

Table 3: Performance comparison in gMission 10 × 60 for different ρ. LOMAR with ρ = y means
LOMAR is trained with ρ = y.

Next, we show the results for LOMAR and DRL-OS under different ρ ∈ [0, 1] in Table 3. In general, by
setting a larger ρ for inference, both LOMAR and DRL-OS are closer to the expert algorithm Greedy,
because there is less freedom for the RL decisions. As a result, when ρ increases for inference, the
average rewards of both DRL-OS and LOMAR decrease, although they have guaranteed robustness
whereas DRL does not. Moreover, by training the RL model with explicit awareness of online
switching, LOMAR can have a higher average cost than DRL-OS, which reconfirms the benefits of
training the RL model by considering its downstream operation. Interestingly, by setting ρ identical
for both training and testing, the average reward may not always be the highest for LOMAR. This
is partially because of the empirical testing dataset. Another reason is that, in this test, DRL alone
already performs the best (both on average and in the worst case). Hence, by setting a smaller ρ for
inference, LOMAR works better empirically though it is trained under a different ρ. Nonetheless, this
does not void the benefits of guaranteed robustness in LOMAR. The empirically better performance of
DRL lacks guarantees, which we show as follows.

A.2.2 TESTING ON 100× 100

In our second test, we consider an opposite case compared to the first one. We generate a testing
dataset with u0 = 100 and v0 = 100, which is different from the training dataset setting. As a result,
the training and testing datasets have very different distributions, making DRL perform very badly.
Specifically, Greedy’s average reward and competitive ratio are 40.830 and 0.824, and these two
values for DRL are 32.938 and 0.576, respectively. DRL has an even lower average reward than
Greedy, showing its lack of performance robustness.

We show the results for LOMAR and DRL-OS under different ρ ∈ [0, 1] in Table 4. In general, by
setting a larger ρ for inference, both LOMAR and DRL-OS are closer to the expert algorithm Greedy.
As Greedy works empirically much better than DRL in terms of the average performance and the
worst-case performance, both LOMAR and DRL-OS have better performances when we increase ρ
to let Greedy safeguard the RL decisions more aggressively. Moreover, by training the RL model
with explicit awareness of online switching, LOMAR can have a higher average cost than DRL-OS,
which further demonstrates the benefits of training the RL model by considering its downstream
operation. Also, interestingly, by setting ρ identical for both training and testing, the average reward
may not be the highest for LOMAR, partially because of the empirical testing dataset. Another reason
is that, in this test, DRL alone already performs very badly (both on average and in the worst case)
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DRL-OS LOMAR ρ = 0.4 LOMAR ρ = 0.6 LOMAR ρ = 0.8 LOMAR ρ = 0.9
ρ in Testing AVG CR AVG CR AVG CR AVG CR AVG CR

0.4 33.580 0.604 37.030 0.707 38.199 0.750 38.324 0.750 38.538 0.766
0.6 34.973 0.680 37.490 0.731 38.518 0.762 38.505 0.756 38.727 0.767
0.8 37.939 0.758 38.866 0.775 39.502 0.782 39.385 0.794 39.552 0.781
0.9 39.772 0.794 40.057 0.803 40.377 0.806 40.239 0.812 40.332 0.798

Table 4: Performance comparison on gMission 100× 100 for different ρ. LOMAR with ρ = y means
LOMAR is trained with ρ = y.

due to the significant training-testing distributional discrepancy. Hence, by setting a higher ρ, LOMAR
works better empirically though it is tested under a different ρ. An exception is when testing LOMAR
with ρ = 0.9: setting ρ = 0.6/0.8 for training makes LOMAR perform slightly better in terms of the
average performance and worst-case performance, respectively. But, setting ρ = 0.9 for training
still brings benefits to LOMAR compared to DRL-OS that does not consider the downstream online
switching operation.

To sum up, our experimental results under different settings demonstrate: LOMAR’s empirical improve-
ment in terms of the average reward compared to DRL-OS; the improved competitive ratio of LOMAR
and DRL-OS compared to DRL, especially when the training-testing distributions differ significantly;
and the improved average reward of LOMAR compared to Greedy when RL is good. Therefore,
LOMAR can exploit the power of RL while provably guaranteeing the performance robustness.

B FREE DISPOSAL

The offline version of bipartite matching with free disposal can be expressed as:

With Free Disposal: max
∑

xuv∈{0,1},u∈U

(
max

S⊆Vu,|S|≤cu

∑
v∈S

wuv

)

s.t. Vu = {v ∈ V |xuv = 1} ∀u ∈ U ,
∑
u∈U

xuv ≤ 1, ∀v ∈ V,
(5)

where Vu = {v ∈ V |xuv = 1} is the set of online items matched to u ∈ U and the objective
maxS∈Vu,|S|≤cu

∑
v∈S xuvwuv indicates that only up to top cu rewards are counted for u ∈ U .

In the free-disposal setting, it is more challenging to design the switching conditions to guarantee the
robustness. The reason is the additional flexibility allowed for matching decisions — each offline item
u ∈ U is allowed to be matched more than cu times although only up to top cu rewards actually count
Mehta (2013); Fahrbach et al. (2020). For example, even though LOMAR and the expert assign the
same number of online items to an offline item u ∈ U and LOMAR is better than the expert at a certain
step, future high-reward online items can still be assigned to u ∈ U , increasing the expert’s total
reward or even equalizing the rewards of LOMAR and the expert (i.e., high-reward future online items
become the top cu items for u ∈ U for both LOMAR and the expert). Thus, the temporarily “higher”
rewards received by LOMAR must be hedged against such future uncertainties. Before designing our
switching condition for the free-disposal setting, we first define the set containing the top cu online
items for u ∈ U after assignment of v:

Eu,v(Vu,v) = arg max
E⊆Vu,v,|E|=cu

∑
v∈E

wuv, (6)

where Vu,v is the set of all online items matched to u ∈ U so far after assignment of item v ∈ V .
When there are fewer than cu items in Vuv , we will simply add null items with reward 0 to Eu,v such
that |Eu,v| = cu. We also sort the online items denoted as eu,i, for i = 1, · · · , cu, contained in Eu,v
according to their weights in an increasing order such that wu,eu,1

≤ · · · ≤ wu,eu,cu
. Similarly, we

define the same top-cu item set for the expert algorithm π by adding the superscript π.

Next, we define the following value which indicates the maximum possible additional reward for
the expert algorithm π if LOMAR simply switches to the expert and follows it for all the future steps
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Algorithm 2 Inference of LOMAR (Free Disposal)
1: Initialization: The actual set of items matched to u ∈ U is Vu,v after sequentially-arriving item

v’s assignment with Vu,0 = ∅, the actual remaining capacity is bu = cu for u ∈ U , and the
actual cumulative reward is R0 =

∑
u∈U fu(Vu,0) = 0. The same notations apply to the expert

algorithm π by adding the superscript π. Competitive ratio requirement ρ ∈ [0, 1] and slackness
B ≥ 0 with respect to the expert algorithm π.

2: for v = 1 to |V| do
3: Run the algorithm π and match the item v to u ∈ U based on the expert’s decision u = xπ

v .
4: Update the expert’s decision set and reward for offline item u = xπ

v :
Vπ
xπ
v ,v

= Vπ
xπ
v ,v−1

⋃
{v} and fxπ

v
= fxπ

v
(Vπ

xπ
v ,v

).
5: Update the expert’s cumulative reward Rπ

v =
∑

u∈U fu
6: for u in U do
7: Collect the available history information Iu about item u
8: Run the RL model to get score: su = wuv − hθ(Iu, wuv) where θ is the network weight
9: end for

10: Calculate the probability of choosing each item u: {{s̃u}u∈U} = softmax {{su}u∈U}.
11: Obtain RL decision: x̃v = argmaxu∈U

⋃
{skip} {{s̃u}u∈U}.

12: Find ∆fx̃v
in Eqn. equation 8 and G

(
x̃v, {Vu,v−1}u∈U , {Vπ

u,v}u ∈ U
)

in Eqn. equation 14
13: if Rv−1 +∆fx̃v ≥ ρ

(
Rπ

v +G
(
x̃v, {Vu,v−1}u∈U , {Vπ

u,v}u∈U
))

−B then
14: Select xv = x̃v . //Follow the ML action
15: else
16: Select xv = xπ

v . //Follow the expert
17: end if
18: Update assignment and reward: Vxv,v = Vxv,v−1

⋃
{v} and Rv =

∑
u∈U fu(Vu,v)

19: end for

v + 1, v + 2, · · · :

G
(
x̃v, {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
=
∑
u∈U

 max
i=1,··· ,cu

i∑
j=1

(wu,eu,j
− wu,eπu,j

)

+

, (7)

where eπu,j ∈ Eπ
u (Vπ

u,v), and eu,j ∈ Eu(Ṽu,v) in which Ṽu,v = Vu,v−1 if x̃v ̸= u and Ṽu,v =
Vu,v−1

⋃
{v} if x̃v = u.

The interpretation is as follows. Suppose that LOMAR follows the RL decision for online item v. If it
has a higher cumulative reward for the j-th item in the top-cu item set Eu,v than the expert algorithm
π, then the expert can still possibly offset the reward difference wu,eu,j

−wu,eπu,j
by receiving a high-

reward future online item that replaces the j-th item for both LOMAR and the expert. Nonetheless, in
the free-disposal model, the items in the top-cu set Eu,v are removed sequentially — the lowest-reward
item will be first removed from the sorted set Eu,v , followed by the next lowest-reward item, and so
on. Thus, in order for a high-reward item to replace the i-th item in the sorted set Eu,v , the first (i− 1)
items have to be removed first by other high-reward online items. As a result, if LOMAR has a lower
reward for the j-th item (for j ≤ i) in the top-cu item set Eu,v than the expert algorithm π, then it will
negatively impact the expert’s additional reward gain in the future. Therefore, for item u ∈ U we only

need to find the highest total reward difference,
(
maxi=1,··· ,cu

∑i
j=1(wu,eu,j − wu,eπu,j

)
)+

, that can
be offset for the expert algorithm π by considering that i items are replaced by future high-reward
online items for i = 1, · · · , cu. If maxi=1,··· ,cu

∑i
j=1(wu,eu,j

−wu,eπu,j
) is negative (i.e., the expert

algorithm cannot possibly gain higher rewards than LOMAR by receiving high-reward online items to
replace its existing ones), then we use 0 as the hedging reward.

Finally, by summing up the hedging rewards for all the offline items u ∈ U , we obtain the
total hedging reward in Eqn. equation 7. Based on this hedging reward, we have the con-
dition (Line 28 in Algorithm 1 for LOMAR to follow the RL decision: Rv−1 + ∆fx̃v ≥
ρ
(
Rπ

v +G
(
x̃v, {Vu,v−1}u∈U , {Vπ

u,v}u∈U
))
−B, where ∆fx̃v

defined below is the additional reward
that would be obtained by following the RL decision:

∆fx̃v = fx̃v (Vx̃v,v

⋃
{v})− fx̃v (Vx̃v,v−1), (8)
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Algorithm 3 Training LOMAR with Online Switching (No Free Disposal)
Input: Available history information {Iu | u ∈ U}; set of weights for the online item arrival

{wuv, u ∈ U}; up to the online item v, the expert’s cumulative reward Rπ
v , expert’s set of items

matched to u ∈ U is Vπ
u,v; up to the online node v − 1, the actual cumulative reward Rv−1, the

actual set of items matched to u ∈ U is Vu,v−1;
1: for u in Ua do
2: su = wuv − hθ(Iu, wuv)
3: end for
4: Calculate the probabilities of selecting an available item or skip:

{{s̃u}u∈Ua
, s̃skip} = softmax {{su}u∈Ua

, 0}.
5: Obtain the RL action: x̃v = argmaxUa

⋃
{skip} {{s̃u}u∈Ua

, s̃skip}.
6: Calculate Rdiff based on the switching condition

Rdiff = Rv−1 + wx̃v,v − ρ
(
Rπ

v +
∑

u∈U
(
|Vu,v−1| − |V π

u,v|+ Iu=x̃v

)+ · wu,max

)
+B

7: if xπ
v ∈ Ua then

8: The probability of each action is
{
{s̃πu}u∈Ua

, s̃πskip

}
= {{1}u=xπ

v
, {0}u̸=xπ

v ,skip
}

9: else
10: The probability of each action is

{
{s̃πu}u∈Ua

, s̃πskip

}
= {{0}u∈Ua

, 1}
11: end if
12: With online switching, the probabilities of following RL or expert are

{s̃OS , s̃
π
OS} = softmax{Rdiff/t, 0}

13: Calibrated probabilities of choosing an available offline item u or skip are
{{ŝu}u∈Ua

, ŝskip} = s̃OS · {{s̃u}u∈Ua
, s̃skip}+ s̃πOS ·

{
{s̃πu}u∈Ua

, s̃πskip

}
.

in which fu = fu(V ′) = maxS∈V′,|S|≤cu

∑
v∈S wuv is the reward function for an offline item u ∈ U

in the free-disposal model. The condition means that if LOMAR can maintain the competitive ratio ρ
against the expert algorithm π by being able to hedge against any future uncertainties even in the
worst case, then it can safely follow the RL decision x̃v at step v.

Training with free disposal. The training process for the free-disposal setting is the same as that
for the no-free-disposal setting, except for Line 6 of Algorithm 3 in which we need to modify Rdiff

based on the switching condition (i.e., Line 13 of Algorithm 2) for the free-disposal setting.

C PROOF OF THEOREM 4.1

The key idea of proving Theorem 4.1 is to show that there always exist feasible actions (either
following the expert or skip) while being able to guarantee the robustness if we follow the switch-
ing condition. Next, we prove Theorem 4.1 for the no-free-disposal and free-disposal settings,
respectively.

C.1 NO FREE DISPOSAL

Denote Vu,v as the actual set of items matched to u ∈ U after making decision for v. Denote Vπ
u,v as

the expert’s set of items matched to u ∈ U . We first prove a technical lemma.

Lemma C.1. Assuming that the robustness condition is met after making the decision for v − 1,
i.e. Rv−1 ≥ ρ

(
Rπ

v−1 +
∑

u∈U
(
|Vu,v−1| − |V π

u,v−1|
)+ · wu,max

)
− B. If at the step when v

arrives and the expert’s decision xπ
v is not available for matching, then xv = skip always satisfies

Rv ≥ ρ
(
Rπ

v +
∑

u∈U
(
|Vu,v| − |V π

u,v|
)+ · wu,max

)
−B.

Proof. If the item xπ
v is not available for matching, it must have been consumed before v arrives,

which means |Vxπ
v ,v−1| − |V π

xπ
v ,v−1| ≥ 1 (since otherwise the expert cannot choose xpi

v either). Since
xv = skip, we have Rv = Rv−1 and Vu,v = Vu,v−1, ∀u ∈ U . Then, by the robustness assumption
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of the previous step, we have

Rv = Rv−1 ≥ρ

(
Rπ

v−1 +
∑
u∈U

(
|Vu,v−1| − |V π

u,v−1|
)+ · wu,max

)
−B

≥ρ

(
Rπ

v−1 + wxπ
v ,v

− wxπ
v ,max +

∑
u∈U

(
|Vu,v−1| − |V π

u,v−1|
)+ · wu,max

)
−B

=ρ

(
Rπ

v +
∑
u∈U

(
|Vu,v| − |V π

u,v|
)+ · wu,max

)
−B

(9)

where the last equality holds because (|Vu,v| − |Vπ
u,v|)+ − (|Vu,v−1| − |Vπ

u,v−1|)+ = −1 if u = xπ
v ,

and (|Vu,v| − |Vπ
u,v|)+ − (|Vu,v−1| − |Vπ

u,v−1|)+ = 0 otherwise.

We next prove by induction that the condition

Rv ≥ ρ

(
Rπ

v +
∑
u∈U

(
|Vu,v| − |V π

u,v|
)+ · wu,max

)
−B (10)

holds for all steps by Algorithm 1.

At the first step, if x̃v is not the same as xπ
v and wx̃v,v ≥ ρ

(
wxπ

v ,v
+ wu,max

)
−B, we select the RL

decision xv = x̃v, and the robustness condition equation 10 is satisfied. Otherwise, we select the
expert action xv = xπ

v and the condition still holds since Av = Cv and wxv,v ≥ ρwxπ
v ,v

−B holds
when ρ ≤ 1 and B ≥ 0.

Then, assuming that the robustness condition in equation 10 is satisfied after making the decision
for v − 1, we need to prove it is also satisfied after making the decision for v. If the condition in
equation 3 in Algorithm 1 is satisfied, then xv = x̃v and so equation 10 holds naturally. Otherwise,
if the expert action xπ

v is available for matching, then we select expert action xv = xπ
v . Then, we

have wxv,v ≥ ρwxπ
v ,v

− B and |Vu,v| − |V π
u,v| = |Vu,v−1| − |V π

u,v−1|, ∀u ∈ U , and hence the
condition equation 10 still holds. Other than these two cases, we also have the option to “skip”,
i.e. xv = skip. By Lemma C.1, the condition equation 10 still holds. Therefore, we prove that the
condition equation 10 holds for every step.

After the last step v = |V|, we must have

Rv ≥ ρ

(
Rπ

v +
∑
u∈U

(
|Vu,v̂| − |V π

u,v̂|
)+ · wu,max

)
−B ≥ ρRπ

v −B (11)

where Rv and Rπ
v are the total rewards of LOMAR and the expert algorithm π after the last step

v = |V|, respectively. This completes the proof for the no-free-disposal case.

C.2 WITH FREE DISPOSAL

We now turn to the free-disposal setting which is more challenging than the no-free-disposal setting
because of the possibility of using future high-reward items to replace existing low-reward ones.

We first denote ∆fxπ
v

as the actual additional reward obtained by following the expert’s decision xπ
v ,

∆fxπ
v
= fxπ

v
(Vxπ

v ,v

⋃
{v})− fxπ

v
(Vxπ

v ,v−1), (12)

Additionally, we denote ∆fπ
xπ
v

as the expert’s additional reward of choosing xπ
v , where

∆fπ
xπ
v
= fxπ

v
(Vπ

xπ
v ,v

⋃
{v})− fxπ

v
(Vπ

xπ
v ,v−1). (13)

For presentation convenience, we rewrite the hedging reward as G̃
(
{Vu,v}u∈U , {Vπ

u,v}u∈U
)

as

G̃
(
{Vu,v}u∈U , {Vπ

u,v}u∈U
)
=
∑
u∈U

 max
i=1,··· ,cu

i∑
j=1

(wu,eu,j
− wu,eπu,j

)

+

, (14)

where eπu,j ∈ Eπ
u (Vπ

u,v), eu,j ∈ Eu(Vu,v), and Eu is defined in Eqn. equation 6.
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Lemma C.2. Assuming that the robustness condition is met after making the decision for v − 1, i.e.
Rv−1 ≥ ρ

(
Rπ

v−1 + G̃
(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
))

− B. At step v, we have ∆fxπ
v
−∆fπ

xπ
v
≥

G
(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
− G̃

(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
)
.

Proof. We begin with “G
(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
− G̃

(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
)
” in

Lemma C.2. By definition, it can be written as

G
(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
− G̃

(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
)

=

 max
i=1,··· ,cu

i∑
j=1

(wu,êu,j
− wu,êπu,j

)

+

−

 max
i=1,··· ,cu

i∑
j=1

(wu,eu,j
− wu,eπu,j

)

+
(15)

where u = xπ
v , êπu,j ∈ Eπ

u (Vπ
u,v−1

⋃
{v}), and êu,j ∈ Eu(Vu,v−1

⋃
{v}). Besides, eπu,j ∈

Eπ
u (Vπ

u,v−1), and eu,j ∈ Eu(Vu,v−1).

To prove the lemma, we consider four possible cases for wu,v to cover all the cases.

Case 1: If the reward for v is small enough such that wu,v < wu,eu,1
and wu,v < wu,eπu,1

, then
v /∈ Eu(Vu,v−1

⋃
{v}) and v /∈ Eu(Vπ

u,v−1

⋃
{v}). Then we have ∆fxπ

v
= ∆fπ

xπ
v
= 0, since both the

expert and LOMAR cannot gain any reward from the online item v. From Eqn. equation 15, we can
find that the right-hand side is also 0. Therefore, the conclusion in Lemma C.2 holds with the equality
activated.

Case 2: If the reward for v is large enough such that wu,v > wu,eu,1
and wu,v > wu,eπu,1

, then
v ∈ Eu(Vu,v−1

⋃
{v}) and v ∈ Eu(Vπ

u,v−1

⋃
{v}). In other words, we will remove the smallest-

reward item eu,1 /∈ Eu(Vu,v−1

⋃
{v}) and eπu,1 /∈ Eu(Vπ

u,v−1

⋃
{v}). Then

G
(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
− G̃

(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
)
≤ −wu,eu,1

+ wu,eπu,1

The inequality holds because (wu,eu,1 − wu,eπu,1
)+ ≥ wu,eu,1 − wu,eπu,1

. In this case, ∆fxπ
v
=

wu,v − wu,eu,1
and ∆fπ

xπ
v
= wu,v − wu,eπu,1

. Therefore, the conclusion in Lemma C.2 holds.

Case 3: If the reward for v satisfies wu,v ≥ wu,eu,1
and wu,v ≤ wu,eπu,1

, then v ∈ Eu(Vu,v−1

⋃
{v})

and v /∈ Eu(Vπ
u,v−1

⋃
{v}). In other words, even if v ∈ Eu(Vu,v−1

⋃
{v}) (i.e., the online item v

produces additional rewards for LOMAR), the reward of v is still smaller than the smallest reward for
the expert. Then, we have G

(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
− G̃

(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
)
=

0. In this case, ∆fxπ
v
= wu,v −wu,eu,1

≥ 0 and ∆fπ
xπ
v
= 0. Therefore, the conclusion in Lemma C.2

still holds.

Case 4: If the reward for v satisfies wu,v ≤ wu,eu,1
and wu,v ≥ wu,eπu,1

, then in this case, only the
current smallest-reward item is replaced with v for the expert, while the reward of LOMAR remains
unchanged. Thus, we have

G
(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
− G̃

(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
)
= wu,eπu,1

− wu,v.

In this case, ∆fxπ
v
= 0 and ∆fπ

xπ
v
= wu,v − wu,eπu,1

. Then the conclusion in Lemma C.2 still holds
with the equality activated.

We next prove by induction that the condition

Rv ≥ ρ
(
Rπ

v + G̃
(
{Vu,v}u∈U , {Vπ

u,v}u∈U
))

−B (16)

holds for all steps by Algorithm 1.

At the first step, by using xv = xπ
v , we have Rv = Rπ

v and G̃
(
{Vu,v}u∈U , {Vπ

u,v}u∈U
)
= 0, and it

is obvious that the condition in equation 16 is satisfied. Thus, there is at least one solution xv = xπ
v

for our robustness condition in equation 16.

Starting from the second step, assume that after the step v − 1, we already have

Rv−1 ≥ ρ
(
Rπ

v−1 + G̃
(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
))

−B (17)
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If the condition in Line 28 of Algorithm 1 is already satisfied, we can just use xv = x̃v, which
directly satisfies equation 16. Otherwise, we need to follow the expert by setting xv = xπ

v . We prove
xv = xπ

v satisfies the robustness condition at any step v.

From Lemma C.2, since 0 ≤ ρ ≤ 1 and ∆fxπ
v
≥ 0 we have

∆fxπ
v
≥ ρ

(
∆fπ

xπ
v
+G

(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
− G̃

(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
))

.

Then, by substituting it back to Eqn. equation 17, we have

Rv−1 +∆fxπ
v
≥ρ
(
∆fπ

xπ
v
+G

(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
)
− G̃

(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
))

+ ρ
(
Rπ

v−1 + G̃
(
{Vu,v−1}u∈U , {Vπ

u,v−1}u∈U
))

−B

=ρ
(
Rπ

v−1 +∆fπ
xπ
v
+G

(
xπ
v , {Vu,v−1}u∈U , {Vπ

u,v}u∈U
))

−B

=ρ
(
Rπ

v + G̃
(
{Vu,v}u∈U , {Vπ

u,v}u∈U
))

−B.

(18)

Therefore, after the last step v, LOMAR must satisfy

Rv ≥ ρ
(
Rπ

v + G̃
(
{Vu,v}u∈U , {Vπ

u,v}u∈U
))

−B ≥ ρRπ
v −B,

where Rv and Rπ
v are the total rewards of LOMAR and the expert algorithm π after the last step

v = |V|, respectively. Thus, we complete the proof for the free-disposal setting.
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