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Abstract
Neural algorithmic reasoning (NAR) is a growing field that aims to embed al-
gorithmic logic into neural networks by imitating classical algorithms. In this
extended abstract, we detail our attempt to build a neural algorithmic reasoner
that can solve Knapsack, a pseudo-polynomial problem bridging classical algo-
rithms and combinatorial optimisation, but omitted in standard NAR benchmarks.
Our neural algorithmic reasoner is designed to closely follow the two-phase
pipeline for the Knapsack problem, which involves first constructing the dynamic
programming table and then reconstructing the solution from it. The approach,
which models intermediate states through dynamic programming supervision,
achieves better generalization to larger problem instances than a direct-prediction
baseline that attempts to select the optimal subset only from the problem inputs.

1 Introduction

Neural algorithmic reasoning [1, NAR] aims to connect the flexibility of machine learning with the
structure and reliability of classical algorithms. Rather than learning purely from input-output pairs,
as in most standard machine learning pipelines, NAR models are usually trained under supervision
at the algorithm’s intermediate computation steps, enabling them to better generalize and reason
algorithmically. The CLRS-30 benchmark [2] was introduced to support this paradigm, covering 30
polynomial-time algorithms ranging from sorting to graph algorithms and dynamic programming.
However, many important combinatorial optimization problems – including the Knapsack problem
[3] – fall outside its scope.

Knapsack is NP-hard. [4] CLRS-30 omits this class of problems, due to the impossibility of generating
sufficiently many samples for them (unless NP=co-NP) [5]. However, for Knapsack, there exists a
dynamic programming solution whose runtime depends on the numeric value of the capacity rather
than its bit-length. This makes Knapsack a pseudo-polynomial problem1, lifting the implications of
Yehuda et al. [5], provided we do not consider extreme capacities. Despite its theoretical and practical
significance, the problem has not been explored within the NAR framework. Thus, we develop a
neural algorithmic reasoner for Knapsack following a two-phase pipeline: dynamic programming
table construction and solution reconstruction, as shown in Figure 1. This approach is transferable to
other pseudo-polynomial problems, as further discussed in Appendix B.

In general, the contributions of our work can be summarised as follows: 1) we introduce a two-step
construction-reconstruction NAR approach for pseudo-polynomial problems; 2) we outline several
key design choices that enabled generalization to larger problem instances, namely edge length
encoding and explicitly removing unnecessary input; 3) through results and appendices we provide
extensive benchmarking and ablations of our approach giving insight into our architectural decisions.

1Informal term meaning the problem admits a pseudo-polynomial algorithm; formally, it is weakly NP-hard.
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Figure 1: Visualization of the Knapsack problem and its dynamic programming solution. Left: input
items with their weights and values. Middle: dynamic programming table and decision table. Right:
optimal solution with selected items. dp[i][c] – optimal value for the first i items with capacity c.

2 NAR for Knapsack
2.1 Problem Representation

Given n items, each with a weight wi and value vi, and a capacity C, we aim to select a subset of
the items such that the total weight does not exceed C, whilst maximizing value. The problem is
pseudo-polynomial if at least one of the weights or values are integers [6] – we chose the weights to
be integers. As current NAR models struggle with unbounded integers, we represent weights with
a one-hot encoded input feature, limiting the weight to wmax. This is equivalent to lowering the
capacity to C := min(n · wmax, C), bringing us in the “non-extreme capacity” case discussed in §1.

For the problem representation, we use the CLRS-30 framework [7]. In it, any algorithm A operates
on graphs G = (V, E) and the execution of A is defined by probes, representing the set of node/edge/-
graph inputs (IV /IE /IG), hints (H(t)

V /H(t)
E /H(t)

G ), or outputs. The latent node/edge/graph features at
timestep t – X(t) ∈ R|V|×d, E(t) ∈ R|V|×|V|×d, and g(t) ∈ Rd, where d = 128 – are obtained by
encoding hints and inputs using encoders (various functions f below) based on their specific types:

X(t) = fAn (IV) + f̃An (H(t)
V ) E(t) = fAe (IE) + f̃Ae (H(t)

E ) g(t) = fAg (IG) + f̃Ag (H(t)
G )

After encoding, the features are passed through a processor network and next step hints
(H(t+1)
V /H(t+1)

E /H(t+1)
G ) are predicted from the latent embeddings. At inference the model uses

its own soft hint predictions [7, p.5]. For processor’s architecture and losses we follow the CLRS-30
framework, unless otherwise stated, but we deviate on how we predict final outputs – see below.

2.2 Pseudo-Polynomial Modeling

We split our training into training the model that constructs the DP table, and training the model
to reconstruct the solution based on the input and the DP table generated by the first. We initially
attempted a unified approach but found it too unstable to train, resulting in poor inference performance.

Dynamic Programming Table Construction. The dynamic programming state dpi,c represents
the maximum value achievable with the first i items and a knapsack capacity of c. A decisioni,c
variable indicates whether the i-th item is included in the optimal solution dpi,c, as shown in Figure 1.
As the DP table is constructed row by row, we chose V = {u0, . . . uC} for each t ∈ {1, . . . , n}. At
timestep t we set IG = {wt, vt}. Then the model predicts H(t)

V = {dpt,:,decisiont,:}. The decision
probability table is obtained by stacking the decision row predictions decisiont,: at each step.

Edge length encoding was a crucial ingredient for successful training of the NAR constructor:

IE = IE ∪ {EL(E)} EL(E)ijm = δm,min(|i−j|,M−1) EL : P(E)→ {0, 1}|V|×|V|×M

where δ is the Kronecker delta function andM = 10 is the cutoff. Such categorical encoding gives the
model the ability to choose the correct past states that influence the current one. Edge length encoding
is illustrated in Figure 2. Figure 3 shows the impact of EL on an in-distribution problem instance in
comparison to standard random node positional encoding. For more details, see Appendix F.

We additionally observe that the CLRS-30’s processors struggle to handle the Knapsack DP scalar
values larger than those seen in training. We propose to mitigate this issue by adopting a homogeneous
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Figure 2: Categorical edge length encoding for the NAR construction model. Although we use
M = 10 in the implementation, here, due to visualization constraints, the case with M = 6 is shown.

(a) True DP tables (b) No edge length encoding (c) With edge length encoding

Figure 3: Comparison of constructed DP tables for n = 16, C = 16 (in-distribution). Using
categorical edge length encoding sharpens the predicted tables and enables reasoning.

processor [8], which enforces the model to be invariant to the scale of the item values. This
substantially improves the value generalization performance of the model on instances larger than
those seen in training. Appendix G provides more results and a discussion.

Solution Reconstruction. Based on problem input and the predicted decision table, the solution
is reconstructed by iteratively selecting the items that are part of the optimal set, as illustrated in
Figure 1. Unlike in the construction phase, in order to encode information about all items and the
entire decision table, V = {u0, . . . , uC} ∪ {uC+1, . . .C+n} where the second set are the item nodes.

IV = {p,w, [ 0, . . . , 0︸ ︷︷ ︸
C+1

, 1, . . . , 1︸ ︷︷ ︸
n

]} IE =
⋃

(c,i)∈E

{decisionic} ∪
⋃

(c,c′)∈E

{EL(E)cc′}

where p and w are the vectors of positional encodings and weights (capacity nodes are padded with
0), 0 ≤ c, c′ ≤ C and C + 1 ≤ i ≤ C + n and IG = ∅. To model the reconstruction process, the
hints provide information on the item currently under consideration, the total remaining capacity,
and the set of items selected up to that point. For each item, the model outputs the probability that it
belongs to the solution. Due to the space constraints, details can be found in Appendix E.

To reconstruct the solution from the decision table, it is sufficient to have information about the
item weights. During reconstruction, as shown in Figure 4, having item values leads to worse
generalization, as the model is trying to find a shortcut to the solution, without actually learning to
navigate the decision table. We hypothesise that this is the reason why the joint model approach did
not work. We also note that having two alternating steps, one for decision and one for moving the
pointer works better than combining the two. Further details are provided in Figure 8, Appendix E.

Deterministic Reconstruction. An alternative would be to perform reconstruction based on the
decision probability table, as it allows for end-to-end differentiability. In Appendix H, we describe in
more detail such a differentiable deterministic reconstruction. Sadly, our initial experiments in training
an NAR construction, coupled with deterministic reconstruction, were unstable. Nevertheless, in the
evaluation, we include as a baseline a model that, during the inference phase, performs deterministic
reconstruction based on the decision table generated by NAR construction model.

3 Evaluation
Experimental Setup. Our experiments are implemented on top of CLRS-30 [7] (3 seeds for std).
Hyperparameters (learning rate, optimiser, etc.) are inherited, including the use of Triplet-GMPNN
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Figure 4: Comparison of NAR reconstruction performance with and without item values in the input,
given the true decision table during both training and inference. Having the items’ values in the input
prevents the NAR reconstruction model from generalizing to larger instances.

Table 1: In- and out- of distribution performance for different models. Best results are boldfaced,
but we separate models using an oracle in their execution. Best viewed on screen.

n C
no-hint baseline reg. c. + reg. r. homo. c. + reg. r. homo. c. + det. r. Tropical Attention [11]

micro-F1 exact micro-F1 exact micro-F1 exact micro-F1 exact micro-F1 exact

16 16 0.889±0.017 0.385±0.101 0.989±0.004 0.906±0.031 0.985±0.007 0.901±0.033 0.975±0.004 0.891±0.013 0.909±0.013 0.381±0.005

16 64 0.943±0.000 0.250±0.000 0.785±0.063 0.438±0.095 0.917±0.017 0.495±0.115 0.957±0.012 0.578±0.109 0.892±0.011 0.493±0.027

32 32 0.656±0.122 0.000±0.000 0.854±0.015 0.177±0.039 0.925±0.040 0.510±0.173 0.933±0.034 0.521±0.128 0.923±0.012 0.186±0.078

64 16 0.835±0.030 0.031±0.031 0.824±0.055 0.135±0.127 0.939±0.011 0.615±0.110 0.949±0.015 0.635±0.102 0.822±0.024 0.043±0.047

64 64 0.543±0.000 0.000±0.000 0.448±0.084 0.000±0.000 0.668±0.087 0.000±0.000 0.770±0.115 0.000±0.000 0.374±0.000 0.000±0.000

processor [9] as well as the standard node positional encoding. Differently from CLRS-30, we use
the model from the final epoch for testing, as it was recommended in [10]. Furthermore, during
the construction training phase, we perform 30,000 epochs, as we observed that the model does not
stabilize within the first 10,000 epochs.

The model is trained on samples where n ≤ 16 and C ≤ 16 (in-distribution). For out-of-distribution
experiments, we consider different values of n and C (up to n = 64 and C = 64). Each configuration
consists of 64 samples. Item weights are uniformly sampled from {1, 2, . . . , 8}, and item values are
uniformly sampled from the interval [0, 1].

Following CLRS-30, during testing, we report the micro-F1 score. We also add exact-match accuracy
– the fraction of samples whose discretized solution, obtained by greedily selecting the highest-
probability item until capacity is reached, exactly matches the ground truth.

Models and Baselines. Alongside the models with regular processors (reg. c. + reg. r.), and a
homogeneous processor during construction (homo. c. + reg. r.), we evaluate a no-hint baseline,
which directly predicts the optimal subset from the input. It is implemented using the no-hint mode in
CLRS-30 with 2n message-passing steps, and includes scalar features for item weights and capacity.
We additionally zero-shot evaluate the homogeneous construction processor with the deterministic
reconstruction baseline (homo. c. + det. r.), despite the fact they were not trained together. We also
compare our models to Tropical Attention [11], a recent direct-prediction model for combinatorial
optimization problems based on tropical projective geometry and polyhedral geometric inductive
bias. To make the comparison, we adjusted the sampler and the training and test sizes to match ours,
see Appendix C. For more information on this and other relevant works, see Appendix A.

3.1 Results

Results are presented in Table 1. Our first observation is that the combination of two regular processors
does not obtain higher F1-scores than the baseline and even falls short on the most extreme OOD (64,
64) test set. Despite that, exact-match accuracy for (reg. c. + reg. r.) is often significantly higher than
the baseline. The results suggest that: 1) the construction-reconstruction pipeline works differently
than the baseline and 2) node-level metrics should often be combined with instance-level ones [10].

The second result we want to highlight is the increase in performance when using a homogeneous
NAR constructor. In the larger OOD regimes (homo. c. + reg. r.) significantly outperforms the
baseline F1 scores and achieves best exact-match accuracy from the fully-neural models. According
to our observations, even if the input value scales remain fixed across test distributions, homogeneity

4



KNARsack: Teaching Neural Algorithmic Reasoners to Solve Pseudo-Polynomial Problems

Table 2: Proportions of DP table entries satisfying three fundamental properties under ε=0.01: (1)
item-wise monotonicity: dpi,c ≥ dpi−1,c − ε; (2) capacity-wise monotonicity: dpi,c ≥ dpi,c−1 − ε;
(3) optimal substructure: dpi,c ≥ max(dpi−1,c,dpi−1,c−wi

+ vi)− ε.

n C
item-wise mon. capacity-wise mon. optimal substructure

reg. c. homo. c. reg. c. homo. c. reg. c. homo. c.

16 16 0.893±0.032 0.974±0.009 0.951±0.027 0.945±0.036 0.700±0.057 0.948±0.015

16 64 0.915±0.049 0.988±0.004 0.892±0.035 0.799±0.062 0.377±0.070 0.677±0.043

64 16 0.711±0.014 0.978±0.003 0.975±0.010 0.981±0.014 0.548±0.031 0.967±0.006

32 32 0.773±0.028 0.983±0.004 0.967±0.009 0.967±0.018 0.447±0.060 0.901±0.028

64 64 0.636±0.022 0.981±0.005 0.860±0.031 0.841±0.064 0.241±0.032 0.715±0.036

could be one of the requirements when modelling pseudo-polynomial DP problems, since the
magnitude of the solution increases with size (Appendix G).

The best results were achieved with the (homo. c. + det. r.) combination. Although we did observe
improvements over (homo. c. + reg. r.) in both metrics, results were comparable. Our conclusions are:
1) perfect DP construction execution might be necessary and 2) our neural reconstruction behaves
similarly to the deterministic one.

Our best fully neural model (homo. c. + reg. r.) achieves better performance than Tropical Attention
in all OOD settings, but it is important to interpret these results in the context of the differences
between approaches. We note that Tropical Attention’s primary aim, like ours, is not to compete with
traditional or neural Knapsack solvers, but rather to demonstrate the effectiveness of their proposed
architecture. We further hypothesize that combining Tropical Attention’s insights with ours – which
are largely orthogonal – could yield even stronger performance.

3.2 Properties of Generated Scalar DP Tables

In Table 5, Appendix G, we report qualities of the generated decision tables, but – aside from a
few visual examples – we do not quantify the quality of the predicted scalar DP tables. Because
mean squared error is not very interpretable for this purpose, we perform an analysis based on three
statistics that correspond to the fundamental properties of the Knapsack DP table. To avoid issues
with numerical precision of predicted values, we use ε = 0.01, which is sufficiently precise for
gaining insights into the constructed DP tables, given that item values are sampled from [0, 1]. These
statistics measure the proportion of DP table cells for which the specified constraints hold.

The results in Table 2 show that the homogeneous processor model produces significantly better
tables in terms of item-wise monotonicity and optimal substructure property, while capacity-wise
monotonicity results are comparable. The results suggest that capacity generalization presents a
greater challenge than item count generalization when predicting DP scalars. While the optimal
substructure property was violated 30% of the time for our largest OOD experiment, the 46%
improvement was sufficient to improve our downstream predictions. Note that there exist other
alternative approaches [12], that provably generalise to any input size, but those mimic the algorithms
too closely, trading the flexibility of neural networks, which is one of the reasons NAR exists.

Limitations and Future Work. In spite of the solid results, there are limitations remaining to be
addressed: 1) Oracle instability – we were unable to train (homo. c. + det. r.), due to exploding/van-
ishing gradients. We hypothesise this is due to the algorithm chaining multiplications of probabilities
and/or operating in scalar space (Appendix H). 2) Separated trainings – currently, the training of
the construction model is completely decoupled from the training of the reconstruction one. This is
not common for NAR models and is a topic of our future interests. Looking ahead, we also plan to
investigate how the observations made in this work, such as the use of edge length encoding, could
be applied to problems from CLRS-30, shedding light on their potential beyond the current setting.
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[1] Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7), 2021. 1
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[9] Andrew Joseph Dudzik and Petar Veličković. Graph neural networks are dynamic programmers.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=wu1Za9dY1GY. 4, 8

[10] Sadegh Mahdavi, Kevin Swersky, Thomas Kipf, Milad Hashemi, Christos Thrampoulidis, and
Renjie Liao. Towards better out-of-distribution generalization of neural algorithmic reasoning
tasks. arXiv preprint arXiv:2211.00692, 2022. 4, 8

[11] Baran Hashemi, Kurt Pasque, Chris Teska, and Ruriko Yoshida. Tropical attention: Neural
algorithmic reasoning for combinatorial algorithms. arXiv preprint arXiv:2505.17190, 2025. 4,
8

[12] Gleb Rodionov and Liudmila Prokhorenkova. Discrete neural algorithmic reasoning. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=Inrv8EXylW. 5
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Learning on Graphs Conference, pages 5–1. PMLR, 2024. 8
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A Related Work

Neural algorithmic reasoning aligns learned computation with classical algorithms, with the aim
of obtaining trained neural models that can execute the target algorithm in the out-of-distribution
regime. Intermediate-step supervision [2, 13], also utilised here, has been the initial approach to
achieve such alignment. However, this alone is not sufficient and architectural modifications were
necessary. Early analyses studied what neural networks can reason about and how they extrapolate
[14, 15] – on an informal level their findings state that neural networks extrapolate well if the
algorithm can be separated into subfunctions and each of them is easily learnable by a corresponding
neural submodule. This, combined with the rise of standardised NAR benchmarks (CLRS-30 [2]
and SALSA-CLRS [16]) gave rise to many subsequent works, proposing architectural alignment
strategies such as homogeneity [8], persistent message passing [17], relational/positional attention
[18, 19], and recurrent aggregators [20]. Related efforts explore structured memory for recursion and
data structures [21, 22], while others investigate reducing or re-structuring hints [10, 23–26].

Graph neural networks [27], the underlying architecture behind the NAR processors, are theoretically
aligned to dynamic programming algorithms [9]. However, when NAR is benchmarked, most studies
address polynomial-time DPs, and the 0–1 Knapsack algorithm, being pseudo-polynomial (weakly
NP-hard), was deliberately omitted from CLRS-30. While some works have addressed NP-hard
problems [28, 29], none have focused specifically on pseudo-polynomial problems. Outside of the
field of NAR, there exist DP-inspired neural networks [30] that provably solve Knapsack, but their
weights are hardcoded, rather than learned from data, as is the case in our work. Due to the nature of
our problem, classical neural combinatorial optimisation (NCO) approaches could also be applied.
Some possible approaches are Bello et al. [31], Kwon et al. [32], Afshar et al. [33], Zhang et al.
[34], but these are fundamentally different from our approach. Moreover, these approaches represent
item values and weights as real numbers and use fixed capacity. Additionally, they do not consider
out-of-distribution settings at all – the instance size is fixed and ranges up to several hundred items.
It is worth noting that the idea of combining NAR and RL is very recent [35], and there are no
approaches that would tackle pseudo-polynomial algorithms in this manner.

From the NCO approaches, our work is most conceptually similar to supervised methods that
solve Knapsack by learning the input-output mapping directly, without following the algorithm’s
intermediate steps [11, 36, 37]. One supervised approach [36], which uses the same sampler as Kwon
et al. [32], does consider OOD, but trains on sizes of 100 and tests on 200, 500, and 1000, which is
not comparable to our setting. Another supervised learning approach for solving Knapsack [37] does
not have available source code and reproducibility is not at the required level. The only work we
found that is comparable to ours in terms of the training and testing scales is Tropical Attention [11].
Tropical Attention [11] introduces a solution based on tropical projective geometry and polyhedral
geometric inductive bias. The Tropical Transformers enhance OOD performance in both length and
value generalization on several combinatorial optimization problems. In the Knapsack experiments,
the model is trained for n = 8 and tested for length generalization to n = 64. Capacity generalization
is not performed – capacity is integer from 10 to 20, in both cases. The model has much shorter
training time, primarily due to the lightweight implementation and the fact that it does not use hints,
but rather performs supervised direct-prediction of outputs based on inputs. The source code for
Tropical Attention is available, so we adapted the sampler and training and test sizes to compare it
with our approach.
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B Other Pseudo-Polynomial Problems

Table 3: In- and out- of distribution performance for the Subset Sum problem.

nnumbers target
no-hint baseline homo. c. + reg. r.

micro-F1 exact micro-F1 exact

16 16 0.770±0.014 0.354±0.024 1.000±0.000 1.000±0.000

16 64 0.886±0.000 0.266±0.000 0.621±0.121 0.255±0.018

32 32 0.406±0.094 0.365±0.036 0.854±0.135 0.542±0.423

64 16 0.666±0.056 0.380±0.055 0.993±0.008 0.990±0.009

64 64 0.353±0.000 0.141±0.000 0.530±0.106 0.094±0.041

Table 4: In- and out- of distribution performance for the Partition problem.

nnumbers sum
no-hint baseline homo. c. + reg. r.

micro-F1 exact micro-F1 exact

8 32 0.813±0.007 0.406±0.027 0.996±0.007 0.990±0.018

16 64 0.093±0.154 0.063±0.000 0.698±0.027 0.042±0.036

24 96 0.037±0.064 0.000±0.000 0.578±0.088 0.000±0.000

32 128 0.030±0.052 0.000±0.000 0.572±0.123 0.000±0.000

While this work focuses exclusively on the Knapsack problem, the underlying approach is readily
transferable to other pseudo-polynomial problems. Both the Subset Sum and Partition problem can
be directly reduced to the Knapsack formulation, which allowed us to apply our method with only
minimal modifications to the sampler. The results for these problems are reported in Table 3 and
Table 4. Even without any problem-specific tuning, our model tended to generalize better than the
baseline in most cases. Extending the approach to other pseudo-polynomial problems – such as
Minimum Coin Exchange or Rod Cutting – would require adjustments to the problem representation.
Nevertheless, the core methodology can be applied without substantial changes.

C Additional Details on the Experimental Setup
Training and Testing Scales. Training on sizes up to 16 with OOD testing on size 64 is the
standard for the CLRS-30 benchmark [2] and is therefore followed by the vast majority of NAR
works. Since we ultimately aim to include pseudo-polynomial problems in the benchmark, this
emerged as the most natural choice. Given that in our reconstruction model the number of graph
nodes equals N + C + 1, training on (n = 32, C = 32) is already not memory-feasible within the
CLRS-30 framework. If we consider node accuracy alone, 4× generalization is gradually becoming
obsolete as OOD test, e.g., for the Bellman-Ford algorithm. However, from our baselines (the default
models in CLRS-30), we can see that this is not the case for Knapsack. Additionally, in our case we
have two parameters that determine the problem size, while all CLRS-30 algorithms have only one
parameter. The size of our DP table is N × (C + 1), so with our OOD experiments on parameters
(n = 16, C = 64), (n = 64, C = 16), and (n = 32, C = 32), we effectively test 4× generalization
as in CLRS-30, as the number of total elements in the table grows fourfold, and with the additional
(n = 64, C = 64) we test up to 16× generalization.

Runtime and Memory Requirements. Runtime and memory requirements are comparable to the
ones reported for CLRS-30 benchmark algorithms. Apart from the homogeneity, we do not modify
the computational structure of the GNN layers, so we do not incur any slowdown from the GNN
architecture. The only slowdown incurred is for reconstruction, where we do twice the amount
of steps a standard model would do (see Figure 8). All experiments were conducted on a single
NVIDIA A100 GPU with 40 GB of memory. The longest single training run for any model presented
in this work was 44 minutes and 56 seconds. All models consumed less than 10 GB of memory,
which allowed us to train 4 different models simultaneously. As a result, we were able to conduct
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all experiments presented in the paper (across all 3 seeds) in less than 10 hours. Inference time is
negligible, measuring less than one second per instance across all configurations.

Adapting Tropical Attention. To enable comparison with our model, we made modifications to the
Tropical Attention repository2 (commit 534ac67). In dataloaders.py, the Knapsack dataset
generation was modified to use uniform random values in the range [0, 1] for item values instead
of integer values from value_range (line 264), and the type signature of set_knapsack_01
was updated to accept float values (line 177). A new greedy_decoding method was added
to experiment.py to convert the model’s probability predictions into valid Knapsack solutions.
The _eval_one_epoch method (experiment.py, line 205) was extended to integrate greedy
decoding for exact match calculation. Exact match ratio was added as an evaluation metric. The
model was trained on samples where n = 16 and C ≤ 16, and tested on the same size combinations
as in our experiment.

D NAR Construction Implementation

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1

0 0 1 1 4 4 5 5 5

0 0 1 2 4 4 5 6 6

0 0 1 3 4 4 5 7 7

2kg $1

4kg $4

3kg $2

3kg $3

Obtained by stacking
the predicted rows.

Figure 5: Visualization of the NAR construction process for the Knapsack problem. At each step, the
next row of the DP value table and the decision table is predicted from the current latent embeddings.
Unlike the standard CLRS-30 approach, where the output is predicted separately using additional
node/edge/graph features, our model accumulates the predicted rows of the decision table, which are
then passed to the NAR reconstruction.

1 # Specification:
2 ’NAR_construction’: {
3 ’pos’: (Stage.INPUT, Location.NODE, Type.SCALAR),
4 ’edge_length_encoding’: (Stage.INPUT, Location.EDGE, Type.CATEGORICAL),
5 ’dp_h’: (Stage.HINT, Location.NODE, Type.SCALAR),
6 ’decision_h’: (Stage.HINT, Location.NODE, Type.MASK),
7 ’input_categorical_weight’: (Stage.HINT, Location.GRAPH, Type.CATEGORICAL), # "RNN input"
8 ’input_value’: (Stage.HINT, Location.GRAPH, Type.SCALAR), # "RNN input"
9 ’dummy_output’: (Stage.OUTPUT, Location.GRAPH, Type.SCALAR),

10 },
11
12 # Implementation:
13 def NAR_consturction(weights, values, capacity):
14 probes = probing.initialize(specs.SPECS[’NAR_construction’])
15 # Edge length encoding construction is omitted for brevity, see Appendix F.
16 probing.push(
17 probes,
18 specs.Stage.INPUT,
19 next_probe={
20 ’pos’: np.arange(capacity + 1) * 1.0 / (capacity + 1),
21 ’edge_length_encoding’: edge_length_encoding,
22 })
23
24 # Capacity is implicitly defined through the number of nodes in the graph.
25 dp = np.zeros(capacity + 1)
26 decision_h = np.zeros(capacity + 1)
27

2https://github.com/Baran-phys/Tropical-Attention/
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28 for i in range(num_items + 1):
29 probing.push(
30 probes,
31 specs.Stage.HINT,
32 next_probe={
33 ’dp_h’: dp.copy(),
34 ’decision_h’: decision_h.copy(),
35 # The following two are representetd as hints for implementation purposes,
36 # but they are handled as inputs, because the true values are given in each
37 # step and no prediction is done for them.
38 ’input_categorical_weight’: to_categorical(weights[i] if i < num_items else 0),
39 ’input_value’: values[i] if i < num_items else 0,
40 })
41 decision_h = np.zeros(capacity + 1)
42 if i < num_items:
43 for j in range(capacity, weights[i] - 1, -1):
44 if dp[j] < dp[j - weights[i]] + values[i]:
45 decision_h[j] = 1
46 dp[j] = dp[j - weights[i]] + values[i]
47
48 # Dummy output omitted for brevity.
49
50 probing.finalize(probes)
51 return 0, probes

Listing 1: Python-style pseudocode for NAR construction for Knapsack. In line with CLRS-30,
adding a new algorithm involves specifying its specification, implementation, and sampler. Based on
this, examples are generated and the neural model is trained. Our only deviation from CLRS-30 is
that at each step we explicitly provide the current item as input. For simplicity, this is implemented
via hints (marked with "RNN input"), which are ignored during decoding and in the loss function.

E NAR Reconstruction Implementation

2kg $1

4kg $4

3kg $2

3kg $3

Take
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X

Change
capacity!

Take
item #3?

×

Do not
change

capacity!

×

×
X

Take
item #2?

×

Change
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×

×
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×

×

Do not
change

capacity!

Output
decoding. 4kg $4
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capacity: 8kg

Figure 6: Visualization of the NAR reconstruction process for the Knapsack problem. Using the
predicted decision table and item weights (see Figure 7), the model simulates item selection and
traversal of the table, i.e. 2 steps per item (2n in total). After the table is traversed, the probability of
each item being part of the solution is predicted. While item selection and capacity updates could be
merged into a single step, keeping them separate has shown better generalization (see Figure 8).

1 # Specification:
2 ’NAR_reconstruction’: {
3 ’pos’: (Stage.INPUT, Location.NODE, Type.SCALAR),
4 ’node_type’: (Stage.INPUT, Location.NODE, Type.MASK),
5 ’categorical_weight’: (Stage.INPUT, Location.NODE, Type.CATEGORICAL),
6 ’edge_length_encoding’: (Stage.INPUT, Location.EDGE, Type.CATEGORICAL),
7 ’predicted_decision_table’: (Stage.INPUT, Location.EDGE, Type.MASK), # Soft MASK
8 ’node_idx’: (Stage.HINT, Location.NODE, Type.MASK_ONE), # The item currently being processed.
9 ’capacity_pointer’: (Stage.HINT, Location.NODE, Type.MASK_ONE), # The remaining capacity corresponds to one

10 # of our capacity nodes.
11 ’alternation_type’: (Stage.HINT, Location.GRAPH, Type.MASK), # Item taking step or capacity decrease step?
12 # Check alternation_type.
13 ’take_curr_item’: (Stage.HINT, Location.GRAPH, Type.MASK), # Whether the current item is part of the final solution.
14 ’selected_h’: (Stage.HINT, Location.NODE, Type.MASK), # The selected items so far.
15 ’selected’: (Stage.OUTPUT, Location.NODE, Type.MASK), # The final solution.
16 }
17
18
19 # Implementation:
20 def NAR_reconsturction(weights, capacity, predicted_decision_table):
21 # Predicted_decision_table are probabilities calucluated by the NAR construction model.
22 # These probabilities are assigned to the edges connecting the item and capacity nodes.
23 # The other edges are assigned a probability of 0.
24
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25 num_items = len(weights)
26
27 dp = np.zeros((num_items, capacity + 1))
28 decision = np.zeros((num_items, capacity + 1))
29 # Calculate true dp and decision tables as in NAR_construction, omitted for brevity.
30
31 # Edge length encoding construction is omitted for brevity, see Appendix F.
32 # Capacity is implicitly defined through the number of the capacity nodes in the graph.
33 probing.push(
34 probes,
35 specs.Stage.INPUT,
36 next_probe={
37 ’node_type’: np.concatenate([np.zeros(num_items), np.ones(capacity + 1)]),
38 ’pos’: np.concatenate([np.arange(num_items) * 1.0 / num_items, np.arange(capacity + 1) * 1.0 / (capacity + 1)]),
39 ’categorical_weight’: to_categorical(np.concatenate([np.array(weights), np.zeros(capacity + 1)])),
40 ’edge_length_encoding’: edge_length_encoding,
41 ’predicted_decision_table’: predicted_decision_table,
42 })
43
44 selected_items = np.zeros(num_items)
45 curr_capacity_pointer = capacity
46
47 for i in range(num_items, -1, -1): # -1 = initialization
48 for phase in (["init"] if i == num_items else ["taking_item", "moving_capacity_pointer"]):
49 if phase == "init":
50 node_idx, alternation_type, take_curr_item = 0, 0, 0
51 elif phase == "taking_item":
52 node_idx, alternation_type, take_curr_item = i, 1, decision[i, curr_capacity_pointer]
53 else:
54 node_idx, alternation_type, take_curr_item = i, 0, 0
55
56 probing.push(
57 probes,
58 specs.Stage.HINT,
59 next_probe={
60 ’node_idx’: probing.mask_one(node_idx, num_items + capacity + 1),
61 ’capacity_pointer’: probing.mask_one(num_items + curr_capacity_pointer, num_items + capacity + 1),
62 ’alternation_type’: alternation_type,
63 ’take_curr_item’: take_curr_item,
64 ’selected_h’: np.concatenate([selected_items, -1 * np.ones(capacity + 1)]),
65 })
66
67 if phase == "taking_item" and take_curr_item == 1:
68 curr_position -= weights[i] # Move capacity pointer.
69 selected_items[i] = 1 # Add item to selected items.
70
71
72 probing.push(
73 probes,
74 specs.Stage.OUTPUT,
75 next_probe={
76 ’selected’: np.concatenate([selected_items, -1 * np.ones(capacity + 1)]),
77 })
78
79 probing.finalize(probes)
80 return selected, probes

Listing 2: Python-style pseudocode for NAR reconstruction for Knapsack. The hints discussed
in the main text (§2, p. 3) are presented in L7-L14. Out of those, the only less standard is
alteration_type. It is similar to the phase hint found in the other algorithms implemented in
CLRS-30, with the exception that alteration_type is always a sequence of alternating zeros
and ones. Contrary to construction, where output was obtained from stacked hints, here it is decoded
from the final latent embeddings, as standard for CLRS-30.

Figure 7: Comparison of NAR reconstruction performance with and without item values in the input,
given the true decision table during both training and inference. Having the items’ values in the input
prevents the NAR reconstruction model from generalizing to larger instances.
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Figure 8: Comparison of the joint-step and split-step NAR reconstruction performances, given the
true decision table during both training and inference. Splitting the processing of a single item into
two steps enables better generalization across the configurations we consider, suggesting that a single
message-passing step is insufficient for both item selection and capacity updates.

F Edge Length Encoding

As shown in Figure 2, edge length encoding for the NAR construction model assigns to each graph
edge eij ∈ E a categorical feature of size M = 10 that represents the absolute difference between the
capacities associated with vertices ui and uj , specifically |i− j|. Since these are categorical features,
all differences greater than or equal to M − 1 are treated as equivalent. For the NAR reconstruction
model, edge length encoding follows a similar approach, but only considers edges between the C + 1
capacity vertices. The remaining (C + 1 + n)2 − (C + 1)2 edges are assigned the same categorical
label as distances greater than or equal to M − 1.

We further elaborate on this empirically important inductive bias by explaining its motivation. As
an example, we use the construction model, which has C + 1 nodes corresponding to capacities
0, 1, . . . , C. A similar argument can be straightforwardly applied to the reconstruction model. Recall
the DP formula dpi,c = max(dpi−1,c,dpi−1,c−wi

+ vi). Observe that at the i-th step, which
corresponds to item i, the following holds for every node c: the DP scalar feature associated with
node c must either remain unchanged or be updated based on the value of the DP scalar feature
associated with node c′ = c − wi, where c ≥ wi. We see that c − c′ = wi, meaning that for all
nodes c, the distance to their corresponding candidate node c′ is equal to the item weight wi. NAR
processors are based on GNNs where, along every edge (i, j), a message from node i to node j,
mij , is computed based on the edge embedding and the embeddings of i and j, and these messages
are then aggregated across all neighboring nodes [2]. As it is currently implemented, the CLRS-30
employs a positional encoding scheme with scalar real values in [0, 1]. As a result, the model
cannot infer if either of the two nodes is a candidate for the other. The introduction of edge length
encoding, which assigns categorical features to edges corresponding to their length (i.e., the absolute
difference in capacities), means that, to a large extent, computing the message mij boils down to
checking whether the corresponding distance equals wi or not. Note that our use of the absolute
difference |c− c′| in the definition of edge length encoding reduces the number of required categories,
which is possible because candidates c′ < c are easily identified based on the existing scalar node
positional encoding. The cutoff M is used because it is necessary when employing categorical
features, and its value is adjusted to the maximum considered item weight. It is important to note that
this argumentation is not limited to the Knapsack problem but can be applied to all pseudo-polynomial
DP algorithms. Specifically, the same alignment between edge length encoding and the structure of
the pseudo-polynomial DP relation holds for other problems: in Subset Sum and Partition problems,
the alignment corresponds to differences of possible sums, while in Minimum Coin Exchange, it
corresponds to differences of possible target amounts, to name a few.
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G Homogeneous NAR Construction
In Figure 9, we observe that for the regular processor the bottom-right scalar predictions appear
lighter than expected, indicating for out-of-distribution the model is predicting lower DP scalar values
than the ground-truth ones. A similar phenomenon was reported by Mirjanic et al. [38] in the context
of the Bellman-Ford algorithm, where it was suggested to scale the embeddings by a constant factor
c < 1 at every message-passing step. Differently from them, we address this problem by constraining
our processor to be homogeneous [8], which enforces the model to be invariant with respect to the
scale (f(αx) = αf(x), α > 0) of the item values. Concretely, this entails removing bias terms
from the network, as well as eliminating layer normalisations [39] and gating mechanisms [7, p.5].
Additionally, in each step, it is necessary to encode only homogeneous dpi,: hints, while applying
the decode-only hint mode for other hints. As shown in Figure 10, these modifications improve
the correlation between true and predicted DP values, and lead to better generalization of the NAR
construction model (Table 5), which enables significantly better overall NAR model performance
compared to the no-hint baseline.

(a) True DP value and deci-
sion table

(b) Tables predicted by regular
NAR construction

(c) Tables predicted by homo-
geneous NAR construction

Figure 9: Comparison of DP value and decision tables for n = 64, C = 16, examining the effect
of the NAR construction model homogeneity. The lighter color in the bottom-right of the regular
processor’s scalar predictions indicates under-prediction of out-of-distribution values, which is
corrected in the homogeneous model.
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(a) Regular NAR construction (b) Homogeneous NAR construction

Figure 10: Correlation between true and predicted DP values for (a) regular and (b) homogeneous
NAR construction models, considering all examples for n = 64, C = 16. Blue dots represent
elements of the DP table whose corresponding decision is correctly determined, while red dots
represent those where it is not.

Table 5: In- and out- of distribution performance comparison of regular vs. homogeneous NAR
construction models, tested on original and 10× scaled item values. From the 10× results we observe
that the homogeneous model is indeed invariant to item value scaling, while the poor performance of
the regular model in this case further confirms its inability to generalize to larger scalar values.

mult. n C
micro-F1

reg. c. homo. c.

1

16 16 0.991±0.001 0.989±0.002

16 64 0.978±0.005 0.976±0.013

32 32 0.958±0.008 0.972±0.013

64 16 0.909±0.030 0.972±0.011

64 64 0.847±0.033 0.861±0.105

10

16 16 0.460±0.182 0.989±0.002

16 64 0.646±0.255 0.976±0.013

32 32 0.436±0.157 0.971±0.014

64 16 0.263±0.066 0.972±0.010

64 64 0.423±0.121 0.861±0.104
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H Deterministic Reconstruction Implementation
1 def deterministic_reconstruction(weights, capacity, decision):
2 n = len(weights)
3 soft_selected = numpy.zeros(n)
4 dp_prob = numpy.zeros((n, capacity + 1))
5 for i in range(n - 1, -1, -1):
6 for j in range(capacity, 0, -1):
7 if i == n - 1:
8 if j == capacity:
9 dp_prob[i, j] = 1

10 continue
11 dp_prob[i, j] = (1 - decision[i + 1, j]) * dp_prob[i + 1, j]
12 if j + weights[i + 1] <= capacity:
13 dp_prob[i, j] += decision[i + 1, j + weights[i + 1]] * dp_prob[i + 1, j + weights[i + 1]]
14 for j in range(weights[i], capacity + 1):
15 soft_selected[i] += dp_prob[i, j] * decision[i, j]
16 return soft_selected

Listing 3: Python implementation of the deterministic reconstruction algorithm.

Note that in our two-phase NAR approach, the reconstruction model is always trained on the true
discrete steps of classical backtracking, regardless of the probabilistic decision table predicted by
the NAR construction model. The classical reconstruction procedure relies on discrete dynamic
programming: at each state (i, j) one either includes or excludes item i, producing a single path
and a final 0–1 solution vector. This process is not differentiable, as it involves the discrete argmax
operator.

We introduce a deterministic relaxation of this process (see Listing 3). Instead of hard choices, we
employ a table decision[i, j] ∈ [0, 1], which represents the “soft” probability of including item i
given remaining capacity j. Using these probabilities, we recursively compute a distribution of prob-
ability mass dp_prob[i, j], describing the probability of reaching state (i, j) during reconstruction.
At each branching step, the mass is split proportionally according to decision (for inclusion) and
1− decision (for exclusion). In this way, the algorithm maintains a superposition of all feasible
backtracking paths, rather than committing to a single one. Finally, the expected inclusion of item i is
obtained as

soft_selected[i] =

C∑

j=0

dp_prob[i, j] · decision[i, j].

This produces values in [0, 1], which can be interpreted as a continuous relaxation of binary inclusion
decisions. The procedure is differentiable since the recursion involves only additions and multiplica-
tions of continuous variables. No discrete operators (such as argmax or indicator functions) appear,
ensuring that gradients can propagate through the entire reconstruction phase.
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