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Abstract

While GPT2 generates sentences that are re-001
markably human-like, longer documents can002
ramble and do not follow human-like writing003
structure. We study the problem of imposing004
structure on long-range text. We propose a005
novel controlled text generation task, sequen-006
tially controlled text generation, and identify007
a dataset, NewsDiscourse as a starting point008
for this task. We develop a sequential con-009
trolled text generation pipeline with generation010
and editing. We test different degrees of struc-011
tural awareness and show that, in general, more012
structural awareness results in higher control-013
accuracy, grammaticality, coherency and topi-014
cality, approaching human-level writing perfor-015
mance.016

1 Introduction017

Imagine that you are tasked with: Write a “Related018

Works” section. Would it help to know the past019

structure of the article (e.g. it is coming after the020

“Discussion” section)? How about the full struc-021

ture of the article (e.g. after the “Introduction” but022

before the “Problem Statement”)?023

The macro-structure of text (i.e. it’s discourse024

structure (Po¨ ttker, 2003)) impacts both human025

and machine comprehension (Emde et al., 2016;026

Sternadori and Wise, 2010; Lu et al., 2019; Zhou027

et al., 2020). Although naive language models have028

made impressive advancements and generate fluent029

text (Radford et al., 2019; Brown et al., 2020; Belt-030

agy et al., 2020), the text is structurally dissimilar031

to human-written text (Figure 2, Section 7). Even032

the well-known Ovid’s Unicorn generation, which033

seems like a natural news article, exhibits unnatural034

structure (see Appendix F).035

On the other hand, although numerous works036

have focused on content planning using keywords037

(Yao et al., 2019), plot-design (Rashkin et al., 2020)038

and entity tracking (Peng et al., 2021), macro-039

structural control has been relatively understudied.040

Figure 1: We study the task of sequentially-controlled
generation: generating documents exhibiting structure
given by a sequence of local control codes. Shown is a
news article with it’s Van Dijk structure (Van Dijk, 2013)
and headline. Our models take as input the headline and
discourse tags and generate a sequence of sentences. We
explore the degree of structural awareness (local, past-
aware or full-sequence) for controlling each sentence
in the document, with the goal of generating the most
structurally faithful, coherent and topical text.

So, we study (1) how to impose macro-structural 041

control on narrative text generation and (2) how 042

much structural awareness during generation con- 043

tributes to well-structured and fluent text. We pro- 044

pose a novel task, sequentially controlled text gen- 045

eration. In this task, the user provides a sequence 046

of local control codes, each guiding the generation 047

of a sentence. In our experiments, we use headlines 048

as prompts and Van Dijk (2013) discourse tags as 049

control codes (Figure 1). 050

We develop methods to solve this task, expand- 051

ing prior work focused on single control code gen- 052

eration (Keskar et al., 2019; Dathathri et al., 2019; 053

Yang and Klein, 2021). Because our methods al- 054

low us to probe the dependencies between tag se- 055

quences, which prior methods did not, we are able 056

to test what degree of structural awareness yields 057

the highest-quality documents: local-only (where 058

the generator is only aware of the current sentences’ 059

control code), past-aware (where the generator is 060

aware of the current sentences’ control code and all 061

previous control codes), and full-sequence (where 062

the generator is aware of the entire document’s se- 063

quence of control codes). We show that more struc- 064

1



(a) Structure of human-written articles. (b) Structure of naively generated GPT2
articles

(c) Structure of sequentially controlled
GPT2 articles.

Figure 2: Discourse structure (Van Dijk, 2013) of articles generated according to different processes. The likelihood
of a tag in the kth fraction of a news article is shown. Machine-generated structure is labeled by humans.

tural awareness, especially of past structure, helps065

us generate the highest-quality text. Finally, we066

show how to further balance structural and local067

control in a pipeline by combining the structurally-068

aware generation methods described above with a069

local sentence-level editing technique. Using both070

techniques in tandem generates fluent documents071

that exhibit appropriate structure.072

In summary, our novel contributions are:073

• We propose a novel task, sequentially con-074

trolled text generation and identify a dis-075

course schema (Van Dijk, 2013) and dataset076

(Choubey et al., 2020) to explore this task077

(Section 2, 4).078

• We combine two different approaches in con-079

trolled text generation: generation and editing,080

and show that the highest-quality text is gener-081

ated when both of these approaches are used082

(Section 3).083

• We use our methods to study the degree of084

structural control yields the highest-quality085

text: local, past-aware and full-sequence con-086

trol. We show that overall, full-sequence pro-087

duces optimal text over an array of metrics088

(Section 7).089

We hope in the future that this work will provide090

a natural complement to other forms of controlled091

generation, like fact-aware generation (Logan IV092

et al., 2019). We envision this line of work being093

used by journalists to quickly prototype different094

structures for their work, or fill in missing structural095

components to aid in human-in-the-loop computa-096

tional journalism (Cohen et al., 2011).097

2 Problem Statement098

We assume, as input, a headline sentence, X0, and099

a sequence of control codes c⃗ = c1, ..., cS of length100

S (i.e. one for each sentence we wish to generate in 101

the document. Adjacent codes can be of the same 102

type.) We wish to produce, as output, a document 103

X of length S as a sequence of sentences X = 104

X1, ..., XS , each composed of a sequence of words 105

Xk = x1, ..., xnk
of length nk. 106

We define the sequentially controlled text gener- 107

ation objective as: 108

p(x|⃗c) =
S∏

k=1

nk∏
i=1

p(xi|x<i, X<k, c⃗)︸ ︷︷ ︸
t1: word likelihood

(1) 109

Where xi is a word in sentence k, x<i are the 110

preceding words, X<k are the preceding sentences 111

(including the headline, X0). ck is the control code 112

for k. We assume that c⃗, the entire sequence of 113

control-codes for a document, is given. 114

We use Bayes rule to factorize t1 into: 115
116

∝ p(xi|x<i, X<k)︸ ︷︷ ︸
t2: naive word likelihood

p(c⃗|xi, x<i, X<k)︸ ︷︷ ︸
t3: class likelihood

(2) 117

t2 is calculated using a standard pretrained lan- 118

guage model (PTLM) and t3 is calculated by a 119

trained discriminator. This allows us to maximally 120

re-use naively trained language models and, we 121

show, is far more resource efficient than fine-tuning 122

a prompt-based model. 123

Three approximations for t3 are: 124
125

Local-Only t3 ≈ p(cs|xi, x<i, X<s) (3) 126

In the local-only model, we assume each control 127

code ck is conditionally independent of other con- 128

trol codes given xi. Thus, our generator model t1 129

is made aware only of local structure: the control 130

code ck pertaining to the current sentence, k. Be- 131

cause of this conditional independence assumption, 132

local-only control is similar to prior work that used 133
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only single-control codes, where the goal was to134

generate a single sentence p(x|c) =
∏n

i=1 p(xi|c)135

(Keskar et al., 2019). However, we show that we136

can remove these independence assumptions and137

study more complicated structural control which,138

we show later, produces more coherent output.139
140

Past-Aware141

t3 ≈
k∏

j=1

p(cj |xi, x<i, X<k, c<j) (4)142

In the past-aware model, we assume autoregres-143

sive dependence between control codes, condi-144

tioned on x. Control codes for future sentences,145

c>k, are conditionally independent. In Equation146

1, this results in xi being dependent on ck and the147

sequence of control codes, c<k.148
149

Full-Sequence150

t3 =
S∏

j=1

p(cj |xi, x<i, X<k, c<j) (5)151

In the full-sequence model, we make no condi-152

tional independence assumptions.153

We can restrict both the past-aware and the154

full-sequence approximations to a sliding window155

around sentence s1. We can also add a prior on156

p(c⃗) to induce a discount factor2. This focuses the157

generator on control code ck and down-weights158

surrounding control codes.159

In the next section, we show how to model these160

objectives. We first describe the discriminator we161

use as our control-code model, the controlled gen-162

eration techniques and the editing techniques we163

adapt.164

3 Methodology165

As described in Section 2, we can efficiently do gen-166

eration by combining a naively-trained language167

model with a discriminator. Hence, the discrimina-168

tor is the main architectural component that allows169

us to incorporate inter-dependencies between con-170

trol code sequences. We start by describing how171

our discriminator models different degrees of struc-172

tural awareness (Equations 3, 4 and 5) in Section173

3.1.174

1i.e. t3 ranges only from j = k − w...k + w instead of
the full sequence of sentences. In practice, we use w = 3.

2The form of our prior is: t3 =∏S
j=1 m(i, j)p(cj |xi, x<i, X<k, c<j), where m(i, j) =

b|i−j|. We experiment with b = [.33, .66, 1].

We design a generation pipeline to balance struc- 175

tural and local awareness. The flow we use to ac- 176

complish this is depicted in Figure 3. The first step 177

is Generation. Here, we sample each word, xi us- 178

ing techniques described in Section 3.2 which allow 179

us to leverage our discriminator to impose struc- 180

tural control. When we have completed a sentence, 181

we move to Editing. Here, we edit the sentence 182

to further impose local control on each sentence, 183

updating x to optimize a variation of Equation 1: 184

p(xi|x−i, ck), discussed in Section 3.3. 185

3.1 Discriminator 186

The discriminator we construct takes as input a 187

sequence of sentences (X) and a sequence of lo- 188

cal control tags (⃗c). Our architecture combines a 189

sentence-classification model, similar to that used 190

in Spangher et al. (2021), with separate a label em- 191

bedding architecture to incorporate knowledge of 192

c<j . Hence, we can make predictions for cj based 193

not only on x, but prior tags, c<j , allowing us to 194

model structural dependencies (Equation 2). For a 195

full description of architecture, see Appendix A. 196

We train it to model local-only, past-aware and 197

full-sequence control variants expressed in Sec- 198

tion 2 (Equations 3, 4 and 5): we train sep- 199

arate prediction heads to make predictions on 200

ck−w, ...ck, ...ck+w, i.e. labels from −w, ...,+w 201

steps away from current sentence k. For local- 202

only control (Equation 3) we only use predicted 203

probabilities from the main head, k. In past-aware 204

control (Equation 4), we multiply predicted prob- 205

abilities from heads prior to the current sentence 206

< k, and for full-sequence control, we multiply 207

predicted probabilities from all heads.3 We now 208

describe how we use these predictions. 209

3.2 Generation 210

We combine our discriminator’s predictions with a 211

naive PTLM to solve Equation 2 in two different 212

ways: Hidden-State Control, based on Dathathri 213

et al. (2019) and Direct Probability, based on 214

Yang and Klein (2021). 215

Hidden-State Control (HSC): Wolf et al. 216

(2019)’s GPT2 implementation caches hid- 217

den states H to produce logits approximating 218

p(xi|x<i). We perturb these hidden states H , re- 219

3For the editing operation, the discriminator is trained
without the contexualizing layer (i.e. Transformer and ai

layers are not used) because gradients need to be computed
that pertain only to the sentence being edited, not previous
sentences.
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Figure 3: Generation process. First, we perturb the output of a language model using a structurally-aware classifier
to approximate p(xi|x<i, X<k)p(c⃗|x<i, X<k) and generate word xi by sampling from the perturbed distribution .
When we generate an < eos > token, we edit the sentence. We use a discriminator to identify class-salient words to
mask, generating masked sentence M , and infill to boost class likelihood.

p-
5

p-
4

p-
3

p-
2

p-
1 p

p+
1

p+
2

p+
3

p+
4

p+
50.0

0.6

F1

Micro F1
Macro F1

Figure 4: Discriminator performance on test data. F1
scores for p(cj |X<k, x<i, c<j) predictions. Sentence
index k and word index i are fixed: we show error for
using the current sentence to predict all past, current
and future labels.

sulting in Ĥ that produce logits approximating220

Equation 1 instead. We generate H from a naive221

PTLM and using this to make a prediction ĉ us-222

ing our discriminator. We then calculate the loss223

L(ĉ, c) and backpropogate to H to derive Ĥ .224

Direct-Probability Control (DPC): We calcu-225

late p(xi|x<i, X<s) to identify the 200 most likely226

xi under the naive language model, |xi,j |200j=0. Then227

we calculate p(cs|xi,j , x<i, X<s, c−s) for each xi,j228

using our discriminator. We directly multiply these229

probabilities to calculate Equation 14.230

Note that the HSC and DPC algorithms are ex-231

tensions of previous work: the difference is that232

here they are used to model control code sequences233

rather than single tags. The key components that234

allow this is our discriminator, which makes predic-235

tions based on label sequences, and our algorithm236

which, as shown in Figure 3, increments codes each237

time an <eos> token is generated.238

3.3 Editing239

After we have finished generating a sentence, we240

edit it to introduce more discourse markers of the241

local control code.242

We identify words in our input sequence that243

4Note that DPC has the advantage of being simpler to im-
plement and batch-parallelizable. However, the restriction to
the top k = 200 words selected according to p(xi|x<i, X<s)
means that we might be limiting discriminator perturbation of
word-selection.

have the most impact on control-code prediction by 244

using the gradient on our input sentence of the dis- 245

criminator’s loss, following Ross et al. (2021). We 246

use only the current sentence prediction made by 247

our discriminator (i.e. Equation 3), so that we im- 248

pose local control on the sequence even in settings 249

where the generator imposes structural control. 250

We cull the high-gradient words based on heuris- 251

tics5 to encourage the editor to introduce explicit 252

discourse markers. We fine-tune a label-aware in- 253

filling model (Raffel et al., 2019) to generate can- 254

didate edits6 given the masked input. We mask and 255

infill until we have generated a sentence that has 256

an increased likelihood p(ck|x̂k) > p(ck|xk), and 257

generate edit candidates (n = 10). We select edits 258

on the basis class likelihood and perplexity7. 259

For more comparison and distinction from pre- 260

vious work for both Generation and Editing, see 261

Appendix D.1, E. 262

4 Datasets and Schema 263

The form of sequential control we study is dis- 264

course: i.e. the functional role sentences play in 265

a document’s larger argumentative purpose. We 266

use a news discourse schema proposed by Van Dijk 267

(2013). In Choubey et al. (2020), authors apply 268

this schema and annotate a dataset, NewsDiscourse, 269

consisting of 802 articles from 3 outlets8, tagged 270

on the sentence level. Their schema consists of 9 271

classes: { Main Event, Consequence, Current Con- 272

5Words that are not proper nouns, named entities (except
the DATE class) or adjectives, as we find these categories
are more likely to be topic words spuriously correlated with
control-codes.

6A T5 model trained using a specific input
template incorporating the label. E.g. label:
Background. text: The senator <MASK>
to the courtroom to <MASK>.

7Perplexity of the entire generated document so far is used
as a selection criteria, PPL(xk ⊕X<k), to encourage edits
preserving the logical flow of the document.

8nytimes.com, reuters.com and xinhuanet.com
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Headline UPDATE 1-Belarus food retailer lines up landmark overseas IPO

Main Event SILVER SPRING, Colo. (AP) — A company in Finland is poised to list its first international grocery chain
in the United States after a yearlong search, raising concerns about potential corporate conflicts of interest
and legal issues around using foreign intellectual property.<|endoftext|>

Previous Event The world’s largest retailer of meat and fish products hopes to become one day the leader in convenience
groceries.<|endoftext|>

Expectation It says it could become a leader in fresh fruits and vegetables, as well.<|endoftext|>
Evaluation About 300 Finnish companies have applied to list on the New York Stock Exchange under a new plan to

bypass the U. S. government and create ”licenses” that allow them in many other countries, according to a
regulatory filing.<|endoftext|>

Evaluation The European Union prohibits using foreign intellectual property for purposes outside the country, and
Finland’s National Stock Exchange does not require approval before selling a company’lls share in its new
company.<|endoftext|>

Evaluation "What’s at stake here is transparency, a sense of fairness to all the stakeholders.<|endoftext|>
Evaluation I don’t think it’s right for companies to have intellectual property rights," says Michael Vakilainen, an

independent analyst who has tracked the company since 2008.<|endoftext|>
Expectation He says there are potential conflicts of interest, because one partner is the government.<|endoftext|>
Expectation "What if you’re a government contractor?"<|endoftext|>

Table 1: Sample document generated. Generation Method = Direct Prob. Control. Structure = Past Aware. Edited =
False. (Hyperparams = γ = .75, b = .33)

text, Previous Event, Historical Event, Anecdotal273

Event, Evaluation, Expectation }.9. Although each274

sentence is tagged with a code, codes often repeat.275

For example, an entire paragraph can be tagged276

with Main Event sentences. We show a partial sam-277

ple in Figure 1. We adopt this schema to describe278

each news article’s structure.279

We also use a dataset of unlabeled news arti-280

cles10 to fine-tune GPT2 model for news. We sam-281

ple 30,000 documents from this dataset in a manner282

so that the distribution of sentence-lengths matches283

the distribution of sentence lengths in the Choubey284

et al. (2020) dataset.285

5 Implementation Details286

We fine-tune a GPT2-basemodel on a large news287

corpora with a max word-piece length=204811.288

We use this to generate naive PTLM language-289

modeling as well as sentence-embeddings in our290

Discrimination model. Further implementation de-291

tails discussed in Appendix A.292

We discuss the discriminator results here briefly.293

As shown in Figure 4, the primary head, p, has294

a Micro F1-score of .65, which approaches state-295

of-the-art on this dataset12. However, performance296

degrades rapidly for heads farther from p. For more297

9For a detailed class description, see Appendix F.1
10kaggle.com/snapcrack/all-the-news.

Dataset originally collected from archive.org. We filter
to articles from nytimes.com and reuters.com.

11Rather than 1024 in (Radford et al., 2019). We observe
that > 99% of human-generated news articles were shorter
than 2048 word pieces.

12.71 Micro-F1 in Spangher et al. (2021), which used auxil-
iary datasets.

results on discriminator performance, including 298

experimental variations, see Appendix A.1. 299

6 Experiments 300

We sample 10 documents from the test set of 301

our discourse dataset (n = 200) to test different 302

pipeline settings. The input to our models is a 303

headline (as a prompt) and the full sequence of 304

gold-truth discourse labels of that document. 305

Baselines We compare our experimental 306

pipelines (Section 3) with the following baselines: 307

(1) Naive GPT2 generation given only the 308

headline as input (i.e. no control codes), (2) 309

a fine-tuned Prompting approach and (3) the 310

original Human-written articles. 311

For (2), we directly train a class-conditional lan- 312

guage model to generate text by including labels in 313

the prompt, as in Keskar et al. (2019). Local-only 314

prompting is achieved by only including the local 315

control code (and prior generated sentences) in the 316

prompt, and updating the prompt to generate a new 317

sentence. For past-aware prompting, we include all 318

control codes prior to our current sentence in the 319

prompt, and update on every new sentence. Finally, 320

for full-sequence prompting, we including the full 321

sequence of control codes in the prompt. (See Ap- 322

pendix C for more details and examples of prompt 323

design.) 324

For each of these baselines, we test with and 325

without editing (with the human-written text being 326

edited by our algorithm in Human and with the 327

generated text in all other trials being edited). 328
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Evaluation For all pipelines, we select the best329

hyperparameter configurations based on perplex-330

ity and model-assigned class likelihood. Then, we331

manually annotate each generated document for 4332

metrics: Accuracy (0-1)13 Grammar (1-5)14, Logi-333

cal Flow (1-5)15 and Topicality (1-5)16. We recruit334

two expert annotators with journalism experience335

to perform annotations blindly without awareness336

to which generation pipeline was used, and find337

moderate agreement κ ∈ [.36, .55] across all cat-338

egories. For more details, see Appendix G. We339

record model-dependent and non-model automatic340

metrics used by See et al. (2019), described further341

in Appendix B.342

7 Results343

Best Overall Trial We show automatic and hu-344

man metrics for the subset of pipelines with top-345

performing hyperparameters in Table 2. In general,346

the highest-performing generation pipelines are all347

variations of DPC with either past-aware, or full-348

sequence structural control.349

We observe that DPC with past-aware control350

and editing has the highest class-label accuracy,351

nearly approaching the human trials. The top-352

performing pipeline for logical flow is also DPC353

with past-aware control, but without editing. And354

the top performing pipelines for grammar and top-355

icality are DPC with full-Sequence control and356

without editing.357

Effect of Different Pipeline Components We358

show the distributional shifts in performance across359

all trials, in Figures 5, 617. Structural control has a360

largely positive effect on generated text. In Figure361

5, we find that Full-Sequence models are, on aver-362

age, able to generate the most label-accurate sen-363

tences with the best grammar, logical flow and topi-364

cality. Finally, editing improves accuracy, grammar365

and logical flow (Figure 6.)366

The original human-generated text is our gold-367

standard, and it is highly class-accurate, grammat-368

ical, coherent and topical. Interestingly, as seen369

in Table 2, editing can also be applied to human-370

13Accuracy: how close a generated sentence matches the
discourse function of the gold-truth label for that sentence.

14Grammar: how grammatical and locally coherent a sen-
tence is

15Logical Flow: how well a sentence functions in the flow
of the story

16How well each sentence corresponds to the original head-
line of the article.

17And 10, in Appendix E.
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Figure 5: Comparison of different structural control
methods across different pipelines and hyperparameters.
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Figure 6: The effect of editing, across different pipelines
and hyperparameters.

written text to boost label accuracy, but at the ex- 371

pense of coherence. 372

8 Discussion 373

We set out to answer two questions in this research: 374

(1) whether we could impose structural control 375

over generated documents and (2) what kinds of 376

structural control (local-only, past-aware, or full- 377

sequence) had the greatest effect on discourse, 378

flow, topicality and grammaticality. Our novel 379

pipelines, which extend various discriminator- 380

based approaches for generation and editing, ap- 381

proach human-level performance. However, a gap 382

still remains, suggesting the need for more research 383

or data collection. 384

Insight #1: Some structural information im- 385

proves all metrics of quality. Our structural ex- 386

ploration suggests that, for the best-performing 387

pipelines, past structural information (along with 388

editing) boosts class accuracy the most, but knowl- 389

edge of the full-sequence does not. In the analogy 390

given in the Introduction, this equates to: to write 391

a “Related Works” section, it helps to know that 392
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Human-Annotated Metrics Automatic Metrics

Gener-
ation

Struct-
ure

Label
Acc. ↑
(0-100)

Gram-
mar ↑
(1-5)

Logical
Flow ↑
(1-5)

On-
Topic ↑
(1-5)

Perplex. ↓ Diverse
Ngrams
↑ (%)

Sent.
Len.**

Unseen
Words
↓ (%)

Naive
GPT2

20.0/64.4 4.2/4.5 4.7/4.3 4.6/4.2 48.2/45.4 7.1/8.3 24.9/38.8 4.7/3.2

Gen-Base:
Prompt

local 22.2/51.1 2.8/3.9 2.4/3.0 2.3/2.8 24.4/43.4 3.7/6.5 39.7/32.4 10.6/8.7
past 20.0/31.1 2.9/3.6 2.4/2.9 2.3/3.7 52.2/32.0 5.0/4.5 35.0/44.5 9.3/7.1
full 46.7/64.4 4.4/4.4 3.6/3.7 3.9/3.5 42.5/49.2 7.3/7.8 35.5/42.6 4.6/4.9

Method
#1: HSC

local 28.9/42.2 3.3/3.7 2.7/3.2 3.1/3.4 246.4/115.5 7.0/6.9 16.2/17.5 8.0/6.9
past 44.4/60.0 3.4/3.8 3.0/3.0 3.2/3.3 178.3/147.4 7.5/7.5 14.8/18.8 8.1/6.7
full 55.6/68.9 3.5/4.2 4.0/3.7 4.2/4.3 134.5/129.6 7.2/7.8 17.3/20.7 7.0/7.1

Method
#2: DPC

local 44.4/64.4 4.0/4.4 3.6/4.1 3.8/3.5 42.1/39.9 5.8/8.3 24.8/42.6 4.7/3.0
past 64.4/88.9 4.5/4.6 4.4/4.3 4.4/4.5 37.0/42.2 7.9/8.4 33.1/42.7 3.9/3.1
full 66.7/68.9 4.7/4.5 4.3/4.3 4.7/4.4 42.3/45.6 8.0/8.1 28.2/40.4 4.3/3.3

Human 93.3/95.6 4.9/4.7 4.9/4.7 4.9/4.9 34.2/41.0 8.7/8.7 37.9/39.6 4.2/4.5

Table 2: Metrics on different trial runs. Each cell shows Unedited/Edited variants. (Hyperparams = γ = .75,
b = .33). ** Optimal sentence length is determined relative human generation, i.e. min |x− 37.9|.

it comes after the “Introduction” vs. the “Discus-393

sion”, but not information of what sections come394

after. This is perhaps because enough signal is395

already given by the past sequence and the full396

sequence just adds more noise. However, full-397

sequence information does yield the best grammar398

and topicality. This might indicate a regularizing399

role played by the full-sequence. In general, we400

suspect that past-aware modeling and editing both401

push the model more towards the class label at402

the expense of topicality, flow and grammar, while403

full-sequence does the opposite. In practice, some404

combination of these pipeline components might405

be desired.406

Insight #2: Weak discriminators can still impose407

accurate control. At .61 macro F1, our discrimi-408

nator is a relatively weak classifier. Previous work409

in classifier-based controlled text generation used410

large training datasets and classifiers that routinely411

scored above .8 F1 (Dathathri et al., 2019; Yang412

and Klein, 2021). The weakness of our discrimi-413

nator is one reason why HSC may have performed414

poorly. However, in other trials we see strong ac-415

curacy. Thus, even with a weak classifier, we can416

control generation. This might be because even417

a weak discriminator can still give relative differ-418

ences between generation that does or does match419

the control code.420

Insight #3: Evaluating text candidates using421

multiple model’s perplexity might result in bet-422

ter selections. Just as surprisingly, editing also423

has an overall average positive effect on genera-424

tion accuracy and generation quality (Figure 6). 425

We had hypothesized that, because editor makes 426

locally-aware infilling decisions, it would improve 427

class-accuracy but hurt other metrics of document 428

quality, like topicality and flow. Indeed, for the top- 429

performing trials, like DPC and Human, Editing 430

only improves class accuracy. However, grammar 431

and flow improves in other trials. This could be 432

because, as mentioned in Section 3.3, we selected 433

candidates based on how well they makes sense in 434

the document. This also suggests that using mul- 435

tiple PTLMs to select for better quality combines 436

different virtues of each model. 437

Error Analysis: We observed that sentence tok- 438

enizing remained a huge challenge. Many of the 439

grammar errors that our annotators observed were 440

from sentences that ended early, i.e. after decimal 441

points. Indeed, the correlation between sentence- 442

length and grammar is relatively high (r = .34). 443

One reason for this could be that error-prone sen- 444

tence tokenizing models provided faulty training 445

data during pretrainining of LMs. This will con- 446

tinue to hinder document-level structural work, 447

which often relies on a model accurately ending 448

a sentence. Another observation, in Table 2, is 449

that perplexity doesn’t necessarily correlate with 450

human judgements of quality, especially for more 451

complex writing like Financial news reporting. 452

9 Related Work 453

Discourse-Aware Narrative Text Generation. 454

Generating narrative text, such as news articles 455
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and scientific reports, has been a long standing456

problem in NLP. Early work relies on template (Xu457

et al., 2018; Wiseman et al., 2018), rules (Ahn458

et al., 2016; Leppänen and Toivonen, 2021), or459

specialized architecture (Fan et al., 2018; Bosselut460

et al., 2018) that are hard to generalize. Recently,461

pre-trained Transformers have shown impressive462

capabilities to produce fluent text, yet it is unclear463

how to adapt them to document-level generation464

with appropriate discourse structures.465

Controlled Generation The black-box nature of466

neural generation models posts challenges for many467

real-world applications (Wiseman et al., 2017;468

Holtzman et al., 2019). Researchers have designed469

various techniques to control the syntactic struc-470

ture (Goyal and Durrett, 2020), sentiment (Hu et al.,471

2017; Luo et al., 2019), and language style (Niu and472

Bansal, 2018; Cao and Wang, 2021). Most notably,473

the CTRL model (Keskar et al., 2019) conditions474

the output by incorporating textual control codes475

during the pre-training stage. However, such train-476

ing is resource-intensive and requires large datasets.477

Alternatively, PPLM (Dathathri et al., 2019) and478

FUDGE (Yang and Klein, 2021) achieve inference-479

time control through either directly manipulating480

the generator’s hidden states, or adjusting the prob-481

abilistic distribution over the output vocabulary.482

Our work differs from prior work in that we tackle483

structured control instead of a single attribute.484

Sequentially Controlled Generation Sequential485

control for text generation has been explored from486

many angles, from symbolic planning approaches487

(Meehan, 1976; Lebowitz, 1987), to keyword-488

based approaches (Yao et al., 2019) and con-489

cept, event and entity driven planning approaches490

(Rashkin et al., 2020; Peng et al., 2021; Alabdulka-491

rim et al., 2021). We are the first, to our knowledge,492

to utilize a purely latent control structure based493

off of discourse structures. There is increasing in-494

terest in exploring how discourse can be used to495

guide generation (Ghazvininejad et al., 2021; Co-496

han et al., 2018), from early works developing dis-497

course schemas for generation (Mann, 1984; Stede498

and Umbach, 1998) to evaluating creative gener-499

ation pipelines (Hua and Wang, 2020). However,500

neither direction allows discourse structures to be501

explicitly controlled in generation.502

Editing. Most existing neural models generate503

text in one-shot, from left to right. Recently, an504

emerging line of research (Guu et al., 2018; Malmi505

et al., 2019; Kasner and Dušek, 2020) has explored 506

editing as part of the generation pipeline to further 507

improve the output quality, or satisfy certain de- 508

sired constraints. Our work builds off of the MiCE 509

framework (Ross et al., 2021), which was originally 510

designed for generating contrastive explanations. 511

Finally, we see overlaps as well to an earlier 512

paradigm of generative modeling: Bayesian mod- 513

els for text like Latent Dirichlet Allocation (LDA) 514

(Blei et al., 2003) and, more interestingly, sequen- 515

tial variants (Du et al., 2012). There is recent work 516

marrying PPLM-style controlled text generation 517

with topic modeling (Carbone and Sarti, 2020). 518

Such directions might lead to more hierarchical, 519

structural control. 520

10 Conclusion 521

We have formalized a novel direction in controlled 522

text generation: sequentially controlled text gen- 523

eration. We extended different techniques in con- 524

trolled text generation to fit this direction, and have 525

shown how a news discourse dataset can be used to 526

produce news articles exhibiting human-like struc- 527

ture. We have explored what degrees of structural 528

awareness yield the most human-like output: more 529

structural control yields higher-quality output. And, 530

we shown how to combine structural control with 531

local editing. We have probed different parts of our 532

pipeline to show the effects of each part. 533

11 Ethics Statement 534

11.1 Limitations 535

A central limitation to our work is that the datasets 536

we used to train our models are all in English. 537

As mentioned previously, we used Choubey et al. 538

(2020)’s NewsDiscourse dataset, which consists 539

of the sources: nytimes.com, reuters.com and xin- 540

huanet.com. Although xinhuanet.com is a Chi- 541

nese source, they used English-language articles. 542

Additionally, we used an unlabeled news dataset 543

from Kaggle18 for fine-tuning GPT2-base and for 544

calculating some automatic metrics like % Un- 545

seen Words. We filtered this dataset down to two 546

English-languge, Western domains: nytimes.com 547

and reuters.com in order to match the domains are 548

closely as possible to the NewsDiscourse dataset. 549

Thus, we must view our work in discourse gen- 550

eration with the important caveat that non-Western 551

news outlets may not follow the same discourse 552

18kaggle.com/snapcrack/all-the-news
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structures in writing their news articles. We are not553

aware of existing Van Dijk-style (Van Dijk, 2013)554

datasets towards which we could provide an exact555

comparison. But, we hope in future work to look at556

other kinds of discourse structures that might exist557

in other languages.558

11.2 Risks559

There is a risk that the work will be used for misin-560

formation or disinformation. This risk is acute in561

the news domain, where fake news outlets peddle562

false stories that attempt to look true (Boyd et al.;563

Spangher et al., 2020). Along this vein, there is the564

aforementioned work using discourse-structure to565

identify misinformation (Abbas, 2020; Zhou et al.,566

2020), and the risk in developing better discourse-567

aware generation tools is that these misinformation568

detectors might lose their effectiveness.569

There is also a non-malicious misinformation570

risk, as large language models have been known to571

generate hallucinated information (Choubey et al.,572

2021). The more such threads of research are pur-573

sued without an accompanying focus on factual-574

ity and truth, the more risk we run of polluting575

the information ecosystem. However, like others576

(Dathathri et al., 2019), we see a value in continu-577

ing this direction of research, even if this current578

work is not the final output we wish to see being579

used by non-researchers in the world. It is one step580

along the way.581

There is also a risk that news articles in either of582

our datasets contain potentially libelious or defam-583

atory information that had been removed from the584

publishers’ website after the dataset was collected.585

However, we do not release either of the datasets586

we use, so we do not see our actions as privacy-587

violating.588

11.3 Licensing589

Of the two datasets we used, NewsDiscourse590

(Choubey et al., 2020) is published as a dataset591

resource in ACL 2020. They collected reuters.com592

and xinhua.net via crawling, and the nytimes.com593

from existing academically licensed datasets (Bha-594

tia et al., 2015; Sandhaus, 2008).595

We were unable to ascertain the license for the596

Kaggle dataset. It has been widely used in the aca-597

demic literature, including in papers published in598

ACL venues (Pathak and Srihari, 2019) and oth-599

ers (Alhuqail, 2021). We corresponded with the600

authors and opened a discussion question [URL601

withheld to preserve anonymity] seeking more in- 602

formation about the license. The authors are public 603

about their desire to have their dataset used 19 and 604

we have had independent lawyers at a major media 605

company ascertain that this dataset was low risk for 606

copyright infringement. 607

11.4 Computational Resources 608

The experiments in our paper required computa- 609

tional resources. We used 8 30GB NVIDIA GPUs, 610

AWS storage and CPU capabilities. We designed 611

all our models to run on 1 GPU, so they did not 612

need to utilize model or data-parallelism. However, 613

we still need to recognize that not all researchers 614

have access to this type of equipment. We used 615

Huggingface GPT2-base models for our predictive 616

tasks, and will release the code of all the custom 617

architectures that we constructed. Our models do 618

not exceed 300 million parameters. 619

11.5 Annotators 620

We recruited annotators from professional net- 621

works. Both consented to annotate as part of the ex- 622

periment in exchange for acknowledgement. One 623

is a graduate student studying in Europe, and the 624

other is a former journalist. One annotator is fe- 625

male, and the other is male. One is half-Asian and 626

half-white identifying, the other is white. Both 627

identify as cis-gender. This work passed IRB. 628
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A Further Implementation Details910

A.1 Discrimintor Implementation911

We tested 122 different discriminator variations. A912

summary of the major architectural iterations is913

shown in Table 3. We describe each variation as914

follows; the top-performing variation, with a subset915

of input sentences and labels, is shown in Figure 7.916

Contextualized word vectors (w⃗) from a PTLM917

(we experimented with either GPT2 or a RoBERTa918

as in Spangher et al. (2021)) are obtained for each919

sentence, and are combined using self-attention.920

Switching to GPT2 yielded a 16-point F1-macro921

score drop. Hidden-State Control, based on922

Dathathri et al. (2019), relies on perturbations to the923

state variable H from the naive language model to924

generate word-probabilities p(xi|X<k, x<i, c⃗) =925

p(xi|H, c⃗) = p(c⃗|H,xi)p(xi|H). So, we need to926

use the same PTLM for the language model as we927

do for the discriminator. We do not have the same928

restriction on Direct Probability Control (Yang and929

Klein, 2021), as the probabilities are directly multi-930

plied and thus do not need to share any architectural931

components. For the sake of an apples-to-apples932

comparison on the mechanism of control, though,933

we use a GPT2 model for the PTLM layer in our934

discriminator.935

Next, we tested either embedding each sentence936

separately in batch, or embedding the entire docu-937

ment (+Flattened Sentences). Embedding the entire938

document yielded a 3 point F1-macro increase.939

These sentence vectors are then contextualized:940

we tested an LSTM layer (+LSTM) to contextual-941

ize these vectors and an autoregressive transformer942

layer (+Transformer)20. Using transformer yielded943

a 6 point F1-macro increase. We next fine-tuned944

the GPT2 LM using it’s LM head on an unlabeled,945

30K article news corpus. This yielded a 3 point946

F1-macro increase.947

To incorporate label information as input to the948

model (as in the Past and Full variants) we em-949

bed each label using a learned embeddings layer,950

and then we combine these embeddings using self-951

attention21. Experimenting with a different window952

size yielded a 5 point F1-macro increase. We find953

that a window of 3 yields the best-performing dis-954

criminator.955

20With 2 layers and 2 attention heads
21This architecture allows us to capture structural depen-

dencies between labels better than approaches like a CRF
layer, which cannot easily be extended beyond linear-chain
operations.

Figure 7: Sentence classification model for k = 3 of a
3 sentence document. Word embeddings (w⃗k) for each
sentence (Xk) are combined with self attention (sk). A
transformer contextualizes sk (ak) with s<k. Labels
c⃗ are embedded (e) and self-attention generates label
vectors (hk). ak, hk are combined for predictions (p⃗).

Discriminator Version F1 Macro

RoBERTa Baseline 0.62

GPT2
+ Contextualizing Layer

LSTM 0.46
Transformer 0.52

+ Flattened Sentences 0.55
+ LM Fine-Tuned with News Corpus 0.58
+ Labels

Full 0.58
Window=7 0.61
Window=5 0.62
Window=3 0.63
Window=2 0.62

Table 3: F1 Macro on main prediction head, pk, for
different discriminator variations. RoBERTa baseline is
from Spangher et al. (2021). GPT2 variations described
in body.

Finally, a feed forward classifier combines the 956

sentence vector with the label vector. We find that 957

sharing the PTLM improves accuracy, but not other 958

layers. 959

A.2 Details on Hyperparameters 960

A.2.1 Discount Factor, b 961

To impose further structural control, we impose a 962

prior on t3 that acts as a discount factor. In words, 963

we downweight the discriminator probabilities for 964

control codes that are farther away from the current 965

sentence being generated. The form of our prior is: 966

t3 =
∏S

j=1m(i, j)p(cj |xi, x<i, X<k, c<j), where 967

m(i, j) = b|i−j|. We experiment with b = 968

[.33, .66, 1]. So, the lower the discount factor, b, 969

the more the current, local control code matters. 970

When b = 0, the local-only variant of our discrimi- 971

nator, Equation 3, is expressed by default. 972
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Figure 8: The effect of Discount Factor b, across differ-
ent pipelines and hyperparameters.

We see in Figure 8 that discount factor b has a973

non-linear effect on the output. In accordance with974

our prior results, b = 0 is the lowest-performing975

variant across all four human-quality metrics. b =976

.33 seems to be the most effective discount factor977

overall, and yields the best output for accuracy and978

logical flow, while b = 1 yield the best-performing979

output for grammar and topicality. We conclude980

that a finer-grained balance of local control and981

structural control might be important overall, but982

in some cases more structural control might help983

as noted previously.984

A.2.2 Hidden-State Control (HS)985

In Dathathri et al. (2019), authors find anywhere986

between 3 and 10 backpropogation steps is accept-987

able. In this work, we use 10 steps with a small988

step size. We also test different regularizations,989

also explored in (Dathathri et al., 2019), on the out-990

put logits generated from Ĥ . We experiment with991

different hyperparameters for one of the regular-992

izations: l̂ = γl̂ + (1− γ)l0 where l0 is the naive,993

unperturbed logits. We experiment with different994

values of γ from 0 (fully unperturbed) to 1 (fully995

perturbed).996

A.2.3 Direct-Probability Control (DPC)997

Authors in (Yang and Klein, 2021) offer an innova-998

tion by training their classifier p(c|x) to consider999

subsequences p(c|x1, ...xi) for all i, ostensibly im-1000

proving the accuracy of their joint probability cal-1001

culation while midsequence. This is in contrast to1002

Dathathri et al. (2019)’s training regimine, which1003

only considers full sequences p(c|x1, ...xn). How-1004

ever, Yang and Klein (2021) do not provide abla-1005

tions to show whether it is this training regimine,1006

or their direct calculation of p(x)p(c|x), which is1007

responsible for the improvements they observe. In 1008

this work, we perform this ablation and find that it 1009

has negligible difference, according to automatic 1010

evaluation metrics. We also introduce a mean fu- 1011

sion (Stahlberg et al.) into the p(x)p(c|x) joint 1012

likelihood: γp(c|x) + (1− γ)p(x) and test differ- 1013

ent values of γ. 1014

B Automatic Metrics List 1015

Here, we discuss the automated metrics reported 1016

in Table 2. They are largely based off metrics pro- 1017

posed in See et al. (2019). 1018

B.1 Metrics Reported in Paper 1019

Label Probability : We measure the label prob- 1020

ability assigned to the gold-truth class label given 1021

in our input sequence: p(c|c<s, xi, x<i, X<s). We 1022

use head p, or the current head, in the discriminator 1023

shown in Figure 7. 1024

Perplexity : Perplexity is calculated using the 1025

fine-tuned GPT2 model, which we fine-tuned on 1026

30, 000 news articles. 1027

Diverse N-grams : We measure the likelihood 1028

that an n-gram in one sentence will be unique com- 1029

pared with the entire document. In other words: 1030
1031

Diverse N-Grams(s, d) = 1032

# unique n-grams in sentence s

# n-grams in document d
(6) 1033

We calculate the set of n-grams per document as 1034

the total number of 1,2,3-grams in that document. 1035

We calculate one measurement per sentence in the 1036

document, and average these scores together. 1037

Sentence Length : We measure the total num- 1038

ber of words in the sentence, based on word-level 1039

tokenization using https://spacy.io/. 1040

Unseen Words : We use an external corpus of 1041

30, 000 news articles to determine a typical, large 1042

news vocabulary. Any words that are outside of this 1043

vocabulary are considered “Unseen Words”. For 1044

our purposes, we are most interested in exploring 1045

malformed words, which are sometimes generated 1046

by the language model. However, unseen words 1047

might also be proper nouns. 1048

C Generation-Baseline #1: Prompting. 1049

Further Details 1050

As a baseline, we train a language model to directly 1051

calculate p(xi|x<i, X<s, c⃗), following (Keskar 1052
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et al., 2019). We design the following prompt1053

structure to simulate baseline, past-aware and full-1054

sequence control variants.1055

Baseline:1056

Headline: <Headline> Labels:1057

<Current Label> Sentences:1058

<Sentence 1> <Sentence 2>...1059

<Sentence s>1060

Past-Aware:1061

Headline: <Headline> Labels:1062

<Label 1>, <Label 2> ... <Label1063

k> Sentences: <Sentence 1>1064

<Sentence 2>... <Sentence s>1065

Full-Sequence:1066

Headline: <Headline> Labels:1067

<Label 1>, <Label 2> ... <Label1068

s> Current Position: <i>1069

Sentences: <Sentence 1>1070

<Sentence 2>... <Sentence s>1071

The prompts are specific to current sentence be-1072

ing generated. We first start by generating sen-1073

tence 1, whereby the prompt for Baseline and Past-1074

Aware is both:1075

Headline: <Headline> Labels:1076

<Label 1> Sentences:1077

Then, we let the model generate the first sen-1078

tence and stop when we generate the < EOS >1079

character. We then regenerate the prompt to include1080

the previously generated sentence and update the1081

tags, so Baseline becomes:1082

Headline: <Headline> Labels:1083

<Label 2> Sentences: <Sentence1084

1>1085

and Past-Aware becomes:1086

Headline: <Headline> Labels:1087

<Label 1> <Label 2> Sentences:1088

<Sentence 1>1089

We continue in this fashion, resetting the prompt1090

each time, until we have finished generating sen-1091

tences for all the tags in our input data.1092

The Full-Sequence process is very similar, ex-1093

cept we do not need to update the label-space, since1094

by default the model is exposed to the full sequence1095

of tags before generation.1096

D Editing1097

In this section, we describe the various components1098

of the editing model. First, we note the differences1099

in our approach and Ross et al. (2021)’s method.1100

Then, we discuss the infilling model and the dis-1101

criminator.1102

D.1 Key Differences 1103

Ross et al. (2021) designed their editor to flip clas- 1104

sifier predictions. So, they edited input x → x̂ until 1105

cp(c⃗|x̂) ̸=c p(c⃗|x). Then, ∆(x, x̂) was given as the 1106

explanation for the flip. We are not concerned with 1107

flipping predictions so much as maximizing the 1108

probability of the ground truth label. So, we design 1109

our objective to be x → x̂ until p(c|x̂) > p(c|x). 1110

To understand why the loss-gradient on the input 1111

can provide feature importance, consider the first- 1112

order Taylor approximation of the loss, l(x) ≈ 1113

l(a) + l′(a)(x− a). Here, the gradient of the loss 1114

at a, l′(a), can be seen as a set of linear weights 1115

similar to logistic regression coefficients, which are 1116

commonly used for feature importance. 1117

We also wished to restrict editing to explicit dis- 1118

course markers, spuriously correlated words, so we 1119

heuristically excluded all Proper Nouns, Named 1120

Entities (except DATE) or adjectives from the edit 1121

candidate set. Table 6 shows explicit discourse 1122

markers in the news discourse context. Here, we 1123

show the top words associated with each discourse 1124

class22. Some words effect the tense of the sen- 1125

tence23, others inject epistemological uncertainty24, 1126

still others time-peg events to certain days25. 1127

D.2 Infilling Model 1128

We train a label-aware infilling model in a similar 1129

method as Ross et al. (2021). Our prompt is: 1130

label: <label> text: Lorem 1131

Ipsum <mask> Lorem <mask> Ipsum. 1132

Where the masks replace high-salience words, 1133

which we discovered as described above. We for- 1134

mat samples using sentences in our training dataset, 1135

and train a T5 model as described by the authors. 1136

D.3 Possible Improvements 1137

We note that this infilling method directly mod- 1138

els p(x̂|M(x), c), i.e., the likelihood of infilled 1139

words given a label and a masked sentence. An- 1140

other possible approach to this problem would be 1141

to use a naive infiller and Bayes rule as done in 1142

the generation phase of this paper to generate log- 1143

its p(x̂|M(x))p(c|x̂,M(x)). This could possibly 1144

improve the editor for the same reasons Dathathri 1145

22Most positive coefficients of a Logistic Regression Clas-
sifier that takes as input a sentence and predicts it’s discourse
class

23Top verbs in Expectation are almost all present-tense,
while top verbs in Previous Event are almost all past-tense

24Top verbs in Evaluation are all “say” verbs, while verbs
in Current Context are based on observable events

25Top Main Event nouns are nearly all weekday names
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Discourse Tag Pre-editing Post-editing

Consequence The company has already spent $ 23 billion in Medi-
care, seeking antitrust clearance.

The company also plans to buy $ 23 billion in Medi-
care, seeking antitrust clearance.

Expectation Volvo Car dropped in the first quarter after a trade
row over Chinese car makers.

Volvo Car is expected to close lower in the first
quarter after a trade row over Chinese car makers.

Evaluation The deal values Wind Energy, which has operations
offshore in New York.

The deal is significant for Wind Energy, which has
operations mostly in New York.

Current Context 8 billion shares sold in all of 2015. 8 billion shares were traded in all of China.
Expectation The deal comes as insurers and drugmakers struggle

with competition from Medicare prescription drugs.
The deal could stall as insurers and drugmakers
struggle with competition for Medicare prescription
drugs.

Table 4: A selection of sentences and the edit operations performed on them. The editor focuses on (a) temporal
relations, (b) conditional statements (c) explicit discourse markers (e.g. “expect”) and correct grammar.

et al. (2019) and Yang and Klein (2021) observed1146

an improvement over CTRL (Keskar et al., 2019).1147

Another aspect of the editor that we noticed was1148

that it could sometimes degrade the coherency and1149

topicality of the document. This is especially evi-1150

dent in the Human trials. We partially addressed1151

this by selecting candidate edits based off the per-1152

plexity of the whole document. We could have1153

mitigated this further by giving our infiller the en-1154

tire document as context 26.1155

E Further Methods Comparison1156

The standard controlled text generation setup is1157

typically expressed as follows:1158

p(x|c) =
n∏

i=1

p(xi|x< i, c) (7)1159

where x is the output sequence and c is a single1160

control code (for example: sentiment (Dathathri1161

et al., 2019)). Here, x is a single sentence (or1162

paragraph) of n words, factorized autoregressively1163

into words xi and previous words x<i.1164

Previous approaches to controlled text genera-1165

tion (Dathathri et al., 2019; Yang and Klein, 2021)1166

factorize the right term of Equation 7 as follows:1167

p(xi|x<i, c) ∝ p(xi|x<i)p(c|xi, x<i) (8)1168

As in Equation 7, this factorization decomposes1169

our sequentially controlled text generation model1170

into an uncontrolled language model and a control-1171

code model. The key difference between Equation1172

8 and 2 is in the second term, i.e. how we choose to1173

model the control codes (the difference in the first1174

term is simply a rather trivial extension of a naive1175

26I.e. we could have trained a model based on
p(x̂|M(x), X<s, c), instead of p(x̂|M(x), c)
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Figure 9: Transition Probability Matrix (log likelihood)
for tag sequences.

language from a sentence-to-paragraph generation 1176

to a document-generation context). 1177

We show a direct comparison of all of our gener- 1178

ation approaches in Figure 5. Here, we show that 1179

Direct Probability Control has the best effect over 1180

Naive GPT2 for class-accuracy and, surprisingly, 1181

perhaps, Grammar and Topicality as well. 1182

F Ovid’s Unicorn Is Not Structural 1183

We annotate of the famous Ovid’s Unicorn news ar- 1184

ticle generated and presented by the original GPT2 1185

authors (Radford et al., 2019). 1186

We analyse this article as we have analyzed our 1187

generation models Section 7. One of our annotators 1188

gave each sentence the Van Dijk discourse label 1189

that best fits (Van Dijk, 2013), and the other as- 1190

sessed whether it actually fit. This is not an apples- 1191

to-apples comparison with the Label Acc. column 1192

in Table 2, because we are assessing the accuracy 1193

of the label that we chose after reading the text. 1194

We next measured the likelihood that an arti- 1195

cle with the discourse structure of Ovid’s Unicorn 1196

would exist naturally. We build a simple bigram 1197

model for tags, p(ct+1|c), to calculate the total 1198
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Figure 10: Different generation methods, across differ-
ent pipelines and hyperparameters.

Article Source Average Log-Likelihood

Test Set (5/50/95 Percentile) -1.28/-1.60/-2.01
Ovid Unicorn’s -2.24

Table 5: Log-Likelihood of Tag-Sequence, according to
simple bi-gram model p(ct+1|ct), trained by counting
tag sequences in the training dataset. 5th/50th/95th
percentiles shown for test set.

probability of a tag sequence.We show in Figure1199

9, the typical transitions between discourse labels1200

in the news discourse dataset. We fit our simple1201

bigram model using label sequences in the train-1202

ing dataset, and calculate average log-likelihood1203

of the tag sequence for each document in our test1204

dataset. The median of across these is shown in Ta-1205

ble 5. As can be seen, sequences in the test dataset1206

are far more likely than the Ovid’s unicorn article,1207

which falls outside of the 95th percentile of the1208

distribution of typical articles.1209

F.1 Van Discourse-based Schema Introduced1210

in Choubey et al. (2020)1211

The schema used for News Discourse, introduced1212

by (Choubey et al., 2020), was based off the schema1213

introduced by Van Dijk (2013). As such, the classi-1214

fication guidelines were:1215

Main Event : The major subject of the news1216

report. It can be the most recent event that gave rise1217

to the news report, or, in the case of an analytical1218

news report, it can be a general phenomenon, a1219

projected event, or a subject.1220

Consequence : An event or phenomenon that is1221

caused by the main event or that directly succeeds1222

the main event.1223

Discourse Label Top words

Main Event monday cooperation shot
Consequence closed showed issued
Previous Event comment declined agency
Current Context shot prime groups
Historical Event 2015 2016 2017
Anecdotal Event want told old
Evaluation say think told
Expectation expected likely continue

Table 6: Top predictive words for each discourse type
(top positive β coefficients for a Logistic Regression
trained to predict y = news discourse tag per sentence
using and X = a bag of words representation of each
sentence).

Previous Event : A specific event that occurred 1224

shortly before the main event. It either directly 1225

caused the main event, or provides context and 1226

understanding for the main event. 1227

Current Context : The general context or world- 1228

state immediately preceding the main event, to help 1229

the readers better understand and contextualize the 1230

main event. Similar to Previous Event, but not 1231

necessarily tied to a specific event. 1232

Historical Event : An event occurring more than 1233

2 weeks prior to the main event. Might still impact 1234

or cause the main event, but is more distal. 1235

Expectation : An analytical insight into future 1236

consequences or projections made by the journalist. 1237

Evaluation : A summary, opinion or comment 1238

made by the journalist on any of the other discourse 1239

components. 1240

Anecdotal Event : Sentences describing events 1241

that are anecdotal, such events may happen before 1242

or after main events. Anecdotal events are specific 1243

events with specific participants. They may be 1244

uncertain and can’t be verified. A primary purpose 1245

of this discourse role is to provide more emotional 1246

resonance to the main event. 1247

In Table 6 we attempt to provide more insight 1248

into different News Discourse elements by model- 1249

ing using Logistic Regression. 1250

G Annotation 1251

We recruit two manual annotators, one with > 1 1252

year and the other with > 4 years of journalism 1253

experience. Both annotators offered to perform 1254

these tasks voluntarily in exchange for acknowl- 1255

edgement. 1256
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Figure 11: Tree shown to annotators for reference on manual annotation task.

Figure 12: Visual of the annotation task interface that we asked our annotators to use. We presented annotators with
class labels and asked them to simply determine Y/N whether the label was accurate. We also added a question to
probe topicality. (Prompting Baseline is the method generating the text currently seen in the interface.)

For their reference, we showed the annotators1257

the label definitions (shown in Section F.1) and a1258

decision-tree (shown in Figure 11). The decision-1259

tree breaks down key components of discourse rea-1260

soning.1261

Additionally, we gave them training annotation1262

questions for practice. For the training task, they1263

were asked to view human-written sentences from1264

10 articles and go through the step-by-step question1265

process based on the decision tree. These labels1266

were checked with the gold labels from the training1267

dataset, and they trained until they were answering1268

questions with >80% accuracy.1269

The interface we used to collect annotations is1270

shown in Figure 12. Annotators were blind to the1271

method that generated the text but were shown the1272

desired true labels and simply had agree Y/N if the1273

label fit271274

27An earlier interface that asked annotators to assign their

For Grammar, we asked them to count the 1275

number of grammar mistakes per sentence (1: 1276

>6, 3:2-4, 5:0). For Logical Flow, we 1277

used a qualititative metric (1: “Poor”, 3: 1278

“OK”, 5: “Great”). For Topicality, we 1279

also used a qualitative metric (1: “Not at 1280

all”, 3: “OK”, 5: “Great”) 1281

own tags was too difficult.
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