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External stress can accelerate molecular mobility of amorphous solids by several orders of magnitude.
The changes in mobility are commonly interpreted through the Eyring model, which invokes an empirical
activation volume. Here, we analyze constant-stress molecular dynamics simulations and propose a
structure-dependent Eyring model, connecting activation volume to a machine-learned field, softness.
We show that stress has a heterogeneous effect on the mobility that depends on local structure through
softness. The barrier impeding relaxation reduces more for well-packed particles, which explains the
narrower distribution of relaxation time observed under stress.
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Introduction.—Stress-induced dynamical acceleration at
the molecular level, observed in experiments [1–5] and
simulations [6–8], is widely believed to be the origin of
yielding and plastic motion in glasses [9–13]. In ductile
polymers, this leads to tough materials that can dissipate
large amounts of energy before failure, enabling applications
in protective coatings and membranes. As a result, under-
standing how external stress affects polymer dynamics is
critical to understanding the mechanism of deformation.
The Eyring model is a classic generic model for

describing the effect of external stress on dynamical
yielding of activated processes, where an applied stress
causes a linear reduction in the energy barrier impeding
thermally activated motion [14]. This model and many later
modifications [9,15,16] based on the idea that stress can
induce faster mobility are still widely employed. However,
many studies raise concerns about the validity of this
model, mainly from two perspectives: (i) The effective
free energy barrier is controlled by an empirical parameter,
activation volume, which has neither a clear physical
meaning nor a connection to a particle-scale property.
(ii) The thermal free energy barrier is assumed to be same
everywhere, despite the difference in local structure and
potential structural changes in preferred packing during
deformation. Both of these concerns can be attributed to the
key limitation of the Eyring model, where it does not have a
clear structural dependence, neither on a microscopic level
nor in an average sense.
It has been long suspected that structure plays an

important role in glassy dynamics [17–19], though only
recently have structural metrics that are truly predictive of
glassy dynamics been developed [20]. Liu and co-workers
recently developed a machine-learned field, softness, which
characterizes particles’ local structure and shows a strong
correlation with particle-level dynamics [21–23]. Particles
with a higher softness represent that they are more likely
to rearrange. This new structural measurement has given

insights to many aspects of glassy dynamics, from
aging [24] to structural initiation of shear band [25,26].
With softness, bulk glassy dynamics can be decomposed as
a product of two independent processes: one that depends
on structure through softness, and one that is independent
of softness [22,27]. These findings together delineate an
inherent connection between structure and dynamics in
glassy materials, which further emphasizes the potential for
embedding structural components into the Eyring model.
In this study, we refer to particles with relatively high

(low) softness as soft(hard) particles and thus soft particles
are more likely to rearrange compared to hard particles. We
first expand the idea of dynamical decomposition in bulk
glass [22,27] to systems undergoing creep deformation. We
then prove its validity by proposing a structure-dependent
Eyring model that applies within the linear and weakly
nonlinear creep region, where the strain rate is constant.
Our model connects the activation volume to a structural
property (softness) quantitatively for the first time, accounts
for the structural heterogeneity, and the model isolates
the effect of stress from the structural evolution during
deformation. We show that the dynamical enhancement is
heterogeneous in the system; hard particles are more
sensitive to stress than soft particles and their energy
barriers impeding relaxation are reduced more at a given
stress, which explains the narrower distributions of relax-
ation time during deformation observed previously in
experiments [10,28–31] and simulations [11,20,30]. This
is also consistent with the interpretation suggested by
previous work, where dynamical acceleration induced by
deformation is higher at slow regions [2].
Methods.—Simulation details: We used a coarse-grained

bead-spring model to construct the polymer matrix in our
simulation system [32]. Each polymer chain consists of
128 Lennard-Jones (LJ) interaction sites, connected with
fully flexible harmonic bonds. Systems are equilibrated in
the NPTensemble at T ¼ 1.0 and P ¼ 0 with a time step of
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0.002τ−1LJ , and then quenched to different target temper-
atures (T ¼ 0.35 to 0.42) near our simulated Tg ¼ 0.46
with a same cooling rate, Γ ¼ 10−4τ−1LJ , followed by an
aging process of 10000τLJ. Creep deformations with a
series of stresses (σc ¼ 0.1 to 0.5) are then performed at
different temperatures (T ¼ 0.35 to 0.42). All the units are
in LJ reduced units and simulations are performed using the
LAMMPS package [33]. More technical details can be
found in the Supplemental Material [34].
Structural measurement—Softness: Softness is a

machine-learned field that shows strong correlation with
particle-level dynamics [21–23]. Training softness begins
by first identifying an equal number of soft particles which
are about to rearrange and hard particles that go a long time
without rearranging and characterizing their local environ-
ment using a group of Nst (usually tens to hundreds)
structure functions [21,44]. The values of these structure
functions form a feature vector for every particle, and each
particle corresponds to a point in a high dimensional real
space, RNst . By applying a support vector machine (SVM)
we can find a hyperplane that best separate the soft particles
and the hard particles in RNst . The signed distance between
the point and the hyperplane is defined as softness of that
particle, which is positive for rearranging side and negative
for non-rearranging side. Previous work has shown that
particles’ rearranging probability increases approximately
exponentially with their softness [21–23].
In this study, we use a hyperplane trained previously in a

quiescent neat polymer system at T ¼ 0.50, where the only
difference is polymer chain length. More technical details
can be found in the Supplemental Material [34] and our
recent work [26]. Our tests suggest softness calculated
with this hyperplane follows a normal distribution with a
standard deviation σ ¼ 1.0 and more than 90% of rearrang-
ing particles in our system have a positive softness (see
Fig. S1 [34]). For the following analysis, unless specified,
we focus on the softness ranges from −3.5 to 1.5, covering
98% of particles.
Dynamical measurement—Particles rearranging prob-

ability, PR: Instead of the segmental relaxation time, τα, we
use particles rearranging probability at a given softness,
PRðSÞ, as the measurement for monomer mobility (see
more details in the Supplemental Material [34]). It has been
shown that τα can be predicted from knowledge of PRðSÞ
and the softness distribution, where τα ∝ f1=½PRðSÞ�g
[22,24]. Materials below their glass transition undergo a
process known as physical aging, whereby the material
slowly evolves towards equilibrium with an increasing
density and reduced mobility. It has been shown that
deformation can alter aging dynamics and even reverse
its effects (rejuvenation) [29,45,46]. Recent work has
shown that the slow glassy dynamics during aging is a
structural process (average softness decreases) and the
PR − S relation remains unchanged for different aging
times [24]. Thus, an essential advantage of using PRðSÞ

to measure mobility is that we will be able to separate the
effects of stress on the mobility from changes in the
structure that arise due to physical aging or rejuvenation.
Results and discussion.—Recent works have shown that

the glassy dynamics in the quiescent bulk glassy system
[22] and polymer thin films [27] at a given temperature
can be decomposed as a product of two independent
processes as

PRðSÞ ¼ exp

�
Σ −

ΔE
T

�
¼ exp

��
Σ0 −

e0
T

��
;

exp

�
−
�
Σ1 −

e1
T

�
S

�
¼ PIðTÞ · PDðT; SÞ: ð1Þ

Here, PIðTÞ is structural independent and PDðT; SÞ depends
on structure through softness, and the four parameters Σi
and ei are independent of temperature and softness. We take
the same protocol described in the literature [22,27] and
start from the quiescent system at a series of T below Tg

(T=Tg ¼ 0.76–0.91). As shown in Figs. 1(a) and 1(b), we
observed a similar trend as a bulk glass system [22], where
particles rearranging probability, PR, exhibits an Arrhenius
behavior at each softness, and all the left-extended fitting
curves [using Eq. (1)] share a common intersection point.
The shared intersection point indicates that Σ and ΔE
depend linearly on the softness and the polymer dynamics
can be decomposed into two independent parts as shown
above in Eq. (1). The corresponding temperature of this
intersection point has been demonstrated to scale with the
onset temperature of glassy dynamics [22].
We next test whether the dynamical decomposition

procedure continues to apply for systems undergoing creep.
We performed a series of constant uniaxial, tensile stress
MD simulations with stress values ranging from 0.1 to 0.5
while maintaining constant pressure in the transverse
directions. The strain-time curves and corresponding soft-
ness evolution at the highest temperature (T ¼ 0.42) can be
found in Figs. 1(e) and 1(f) (see lower T in Fig. S2 [34]).
Since our goal is understanding how stress affects the
energy barriers of rearranging for a given structure (soft-
ness), we primarily focus on the low stress regime where
the Eyring model for stress activation has been shown to be
most effective [30]. More specifically, we use data collected
from t ∈ ½0; 2000� for σc ∈ ½0; 0.40�. While for σc ¼ 0.45,
we only use the time period of t ∈ ½0; 1000�, before the
samples begin to yield. Both the strain and softness changes
are larger at σc ¼ 0.50, and we observe larger deviations
from the Arrhenius relation at each softness. Thus, we take
σc ¼ 0.45 as the upper limit for the decomposition in this
work. The system average softness remains unchanged or
increases steadily after the initial elastic response within
this regime [see Fig. 1(f)]. Our results indicate dynamical
decomposition still applies in polymer glasses under
external stress, and we observe that the predicted onset
temperature (intersection point) shifts to lower values under
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deformation, which is consistent with the general notion
that mobility can be enhanced by stress [see Figs. 1(c), 1(d),
and Fig. S3 [34] ].
The Eyring model [14] is widely employed to describe

the dynamical acceleration due to external stress in amor-
phous solids [9,10,30,47,48]. The segmental relaxation
time at a certain applied stress, σc, can be predicted as
τα ∝ f½σc�= sinh ½ðσc · V�Þ=2kBT�g, where V� is an empiri-
cal activation volume and kBT is the thermal energy.
Physically, V� controls how strong the mobility depends
on the applied stress. Considering PR ∝ 1=τα, we expect the
changes in PR due to stress based on the Eyring model to be

PR ∝
expðσc·V�

2kBT
Þ − exp ð− σc·V�

2kBT
Þ

2σc
; ð2Þ

To measure the stress-induced dynamical enhancement,
here we introduce a new term, PR;Eyring≡f½PRðSÞ�=
½PR;uðSÞ�g, which is the ratio of PR during creep relative

to the undeformed system for a given softness. Inserting
PR;Eyring into Eq. (2) and bringing σc to the left-hand side, we
have for the stress-induced acceleration

σc · PR;Eyring ¼ A ·

�
exp

�
σc · V�

2kBT

�
− exp

�
−
σc · V�

2kBT

��
;

ð3Þ

where A is a prefactor. In Fig. 2(a), we plot σc · PR;Eyring

versus stress for different values of softness at T ¼ 0.42,
and the measured dynamical enhancement can be nicely
described by Eq. (3) for stresses σc ≤ 0.45. We choose this
temperature because the statistics are usually better at high
temperature, since there are more rearrangements, especially
for the hard particles, and other temperatures exhibit quali-
tatively similar behavior (seeFig. S4 [34]).Results inFig. 2(a)
suggest that change of PR;Eyring agrees well with the Eyring
model, which provides a route to look closely at the
dynamical expressions of Eq. (1) for glassy polymers under
creep. To do so, we first need to address how do the
parameters A and V� depend on softness.
In Figs. 2(b) and 2(c), we plot A and V� versus softness,

finding that A grows exponentially with S while V�
decreases linearly. As a result, we can write A ¼
exp ðα1 · S − α0Þ and V� ¼ β0 − β1 · S, where αi and βi
are independent of softness. We choose an exponential
rather than a linear dependence for the prefactor A because
(i) it is unphysical for A to have a negative value and (ii) an
exponential relation better matches the other terms in the
dynamical decomposition model. Note that unlike the
parameters (Σi and ei) we have in the original (σc ¼ 0)

FIG. 2. (a) σc · PR;Eyring versus stress at different softness. The
dash curves are fitted using Eq. (3) for σc ≤ 0.45 (with param-
eters A and V�). (b) The prefactor A and (c) activation volume V�
versus softness. Error bars represent the standard deviation of
uncertainty. (d) logPR;Eyring versus stress at different softness [fit
for 0.3 ≤ σc ≤ 0.45 using Eq. (5)]. The softness color gradient
represents the same gradient presented in Figs. 1(a) and 1(c).

FIG. 1. (a) Polymer monomer rearranging probability at a given
softness, PRðSÞ, versus 1=T at different softness values in the
quiescent system (σc ¼ 0). The color gradient represents the
gradient in softness, ranging from dark blue at lowest S (−2.75) to
dark red at highest S (1.25). Dashed lines are fits to an Arrhenius
expression, PR ∝ exp½−EAðSÞ=T�. (b) Σ (red) and ΔE (blue)
versus softness, where PRðSÞ ¼ expðΣ − ΔE=TÞ. (c) PRðSÞ ver-
sus 1=T in polymers under creep where σc ¼ 0.45. (d) Σ and ΔE
in polymers under creep where σc ¼ 0.45. (e) Strain-time curves
of polymers under creep at T ¼ 0.42. (f) Evolution of average
softness in polymers under creep at T ¼ 0.42. The color gradient
represents the gradient in stress, ranging from light for quiescent
system (σc ¼ 0) to dark at the highest stress (σc ¼ 0.50).
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model, we observe that αi and βi depend on T (see Fig. S4
[34]), which is expected because the magnitude of
dynamical enhancement for a given stress can vary strongly
with T. If we put the expressions for A and V� into Eq. (3)
and combine with the above expression PRðSÞ ¼ PR;uðSÞ ·
PR;EyringðSÞ, we can arrive at a complete expression for
polymer dynamics under creep,

PRðSÞ ¼
exp ðα1 · S − α0Þ

σc
·

�
exp

σc · ðβ0 − β1 · SÞ
T

− exp
�
−
σc · ðβ0 − β1 · SÞ

T

��

· exp

��
Σ0 −

e0
T

��
· exp

�
−
�
Σ1 −

e1
T

�
S

�
: ð4Þ

We refer to this model as the structure-dependent Eyring
model. Note that we have not taken any approximations
beyond the functional forms of each term, so we expect
this relationship to hold if we restrict ourselves within the
low stress regime, where both the Eyring model and the
dynamical decomposition remain valid.
Because of the existence of the hyperbolic sine term, it

seems that we cannot as easily separate (decompose) the
dynamics for systems under creep deformation into distinct
structure dependent and independent terms. However, our
simulations show that the negative exponential term decays
rapidly with stress. In other words, when stress is not too
small (σc ≥ 0.25), Eq. (4) can be written approximately as

PRðSÞ ≈
1

σ
· exp

�
Σ0 − α0 þ

β0 · σc − e0
T

�

· exp

�
−
�
Σ1 − α1 þ

β1 · σc − e1
T

�
· S

�
: ð5Þ

From Eq. (5) we can see that PR can be approximated as a
product of two exponential terms when external stress is
large enough, where one depends on softness and the
other does not. This makes PR have a similar form as
Eq. (1), explaining why dynamical decomposition works in
this situation.
In the limit of small applied stress, f½σc · ðβ0 − β1 ·

SÞ�=Tg is close to 0, and a Taylor expansion for the sinh
term yields f½2σc · ðβ0 − β1 · SÞ�=Tg, which is not an
exponential term and appears to preclude dynamical
decomposition. However, when stress is small, the dynami-
cal change is also insignificant and PR;Eyring is nearly 1,
allowing us to assume the effects of stress can be decom-
posed. Thus, the dynamical decomposition is valid in both
cases, consistent with the results presented in the last
section.
The Eyring activation volume physically measures

the stress sensitivity of overall energy barrier for rearrange-
ments, and V� is regarded as a volume because
ð½σc · V��=½2kBT�Þ need to be dimensionless. It has

generally been considered as an empirical fitting parameter
that has not yet been connected to a microscopic structure
[9,10,16]. Traditionally, the activation volume V� also does
not change with stress for a given material at constant
temperature. However, our results indicate that V� is not
constant but heterogeneous in glassy polymers, and fur-
thermore it decreases linearly with softness, a measurement
of particles local structure. This finding puts the activation
volume on similar footing as the activation energy in
quiescent glass-forming materials, which is known to be
heterogeneous and intimately connected to the local struc-
ture [21–23]. For the harder particles, which is less likely to
rearrange even under deformation, the larger activation
volume corresponds to a larger decrease in the energy
barrier for rearrangements. Integrating V� ¼ β0 − β1 · S
over the softness distribution at different stress yields an
overall V� similar to traditional values, V� ≈ 1.6, which
agrees with the interpretation that V� is the cooperative
movement of two to three segments [10]. Our results also
show that this overall V� depends weakly on stress, since
external stress can slightly increase the mean softness.
Based on our derivation above, there are two different

regimes for polymer dynamical enhancement under linear
creep. When the stress is sufficiently small (i.e., the two
stress-involved exponential terms are in the same order of
magnitude), the dynamical acceleration is relatively small,
leading to a weak dependence on particles local environ-
ment. When the stress becomes larger (but not so large as to
induce yielding and an increasing strain rate), polymer
dynamics can be expressed as a product of two independent
processes for a given stress.
In Fig. 2(d), we plot logPR;Eyring versus stress at

T ¼ 0.42 and find a turning point that indicates this
crossover in behavior at approximately σc ¼ 0.25. Below
this stress, the dynamical enhancement is relatively small,
although there is still a weak dependence on the structure.
After this point, the enhancement grows exponentially
with stress, and the growth is larger for the hard particles.
This threshold value and unsmoothed dependences of the
mobility on stress has been observed in experiments [1].
The fitting curves of different softness share a common
intersection point, which is expected from the linear
relation between activation volume and softness. In other
words, for polymer glass under creep, the dynamical
enhancement directly depends on the local structure, and
the mobility acceleration is larger for the hard particles
compared with soft particles. Considering softness is
intimately related to the barrier for particle rearrangements
in glassy systems [22], our results suggest this barrier
decreases more under stress for harder particles.
While this heterogeneous acceleration offsets the hetero-

geneous structure in the polymer glass, the structural
heterogeneity remains unchanged during creep, as evi-
denced by the constant variation of softness distribution
(see Fig. S5 [34]). This ultimately leads to a narrower
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distribution of mobility for polymer under external stress,
which can be confirmed from the dynamical heterogeneity
measured through the KWW stretching exponent (see
Fig. S6 [34]).
Conclusion.—In summary, we have demonstrated that in

glassy polymer systems the dynamics can be decomposed
into two independent processes, and this decomposition
can be further expanded to systems under creep, at least
within the low stress regime. By introducing a dynamical
enhancement ratio, PR;Eyring, we show particles that are
less likely to rearrange in the quiescent state have their
energy barrier for rearrangement reduced more than
particles that are prone to rearranging, as indicated by
the larger activation volume for the hard particles. To the
best of our knowledge, this is the first time that the
activation volume has been correlated with a particle-
scale property. We also reveal that there is a turning point
for the dynamical enhancement for polymer glass under
external load, as predicted by the structural-dependent
Eyring model. When the stress is small, the acceleration
is small and the dependence on structure is weak. When it
is sufficiently large enough and make the negative
exponential term in the Eyring model negligible, the
dynamical enhancement grows exponentially with stress
and shows a strong dependence on softness. As shown
previously, regions with lower softness have a higher
local density [27]. Thus, the mobility of denser-packed
particles accelerates more under external stress. This
heterogeneous dynamical enhancement reduces the
dynamical heterogeneity caused by the structure, which
remains unchanged under stress, and leads to the narrower
mobility distribution observed in polymer glass under active
deformation.

We thank Karen Winey, Bharath Natarajan, and James
Pressly for helpful discussion. This work was supported
by ExxonMobil Research and Engineering as well as
DOE-BES via DE-SC0016421. We also acknowledge com-
putational resources provided through Extreme Science and
Engineering Discovery Environment (XSEDE) allocation
TG-DMR150034.

*rrig@seas.upenn.edu
[1] M. D. Ediger, H. N. Lee, K. Paeng, and S. F. Swallen, Dye

reorientation as a probe of stress-induced mobility in
polymer glasses, J. Chem. Phys. 128, 034709 (2008).

[2] H.-N. Lee, K. Paeng, S. F. Swallen, M. D. Ediger, R. A.
Stamm, G. A. Medvedev, and J. M. Caruthers, Molecular
mobility of poly(methyl methacrylate) glass during uniaxial
tensile creep deformation, J. Polym. Sci., Part B: Polym.
Phys. 47, 1713 (2009).

[3] J. Ricci, T. Bennin, E. Xing, and M. D. Ediger, Linear stress
relaxation and probe reorientation: Comparison of the
segmental dynamics of two glassy polymers during physical
aging, Macromolecules 52, 8177 (2019).

[4] D. Bonn, H. Tanaka, P. Coussot, and J. Meunier, Ageing,
shear rejuvenation and avalanches in soft glassy materials,
J. Phys. Condens. Matter 16, S4987 (2004).

[5] P. Agarwal and L. A. Archer, Strain-accelerated dynamics of
soft colloidal glasses, Phys. Rev. E 83, 041402 (2011).

[6] R. A. Riggleman, H.-N. Lee, M. D. Ediger, and J. J. de
Pablo, Free Volume and Finite-Size Effects in a Polymer
Glass under Stress, Phys. Rev. Lett. 99, 215501 (2007).

[7] R. A. Riggleman, K. S. Schweizer, and J. J. De Pablo,
Nonlinear creep in a polymer glass, Macromolecules 41,
4969 (2008).

[8] J. Rottler, Relaxation times in deformed polymer glasses: A
comparison between molecular simulations and two theo-
ries, J. Chem. Phys. 145, 064505 (2016).

[9] K. Chen and K. S. Schweizer, Stress-enhanced mobility and
dynamic yielding in polymer glasses, Europhys. Lett. 79, 2
(2007).

[10] H.-N. Lee, K. Paeng, S. F. Swallen, and M. D. Ediger, Direct
measurement of molecular mobility in actively deformed
polymer glasses, Science 323, 231 (2009).

[11] R. A. Riggleman, H. N. Lee, M. D. Ediger, and J. J. De
Pablo, Heterogeneous dynamics during deformation of a
polymer glass, Soft Matter 6, 287 (2010).

[12] K. Chen and K. S. Schweizer, Theory of yielding, strain
softening, and steady plastic flow in polymer glasses under
constant strain rate deformation, Macromolecules 44, 3988
(2011).

[13] S. M. Fielding, R. G. Larson, and M. E. Cates, Simple
Model for the Deformation-Induced Relaxation of Glassy
Polymers, Phys. Rev. Lett. 108, 048301 (2012).

[14] H. Eyring, Examples of absolute reaction rates, J. Chem.
Phys. 4, 283 (1936).

[15] K. Chen and K. S. Schweizer, Theory of aging, rejuvena-
tion, and the nonequilibrium steady state in deformed
polymer glasses, Phys. Rev. E 82, 041804 (2010).

[16] D. R. Long, L. Conca, and P. Sotta, Dynamics in glassy
polymers: The eyring model revisited, Phys. Rev. Mater. 2,
105601 (2018).

[17] M. L. Manning, J. S. Langer, and J. M. Carlson, Strain
localization in a shear transformation zone model for
amorphous solids, Phys. Rev. E 76, 056106 (2007).

[18] C. P. Royall, S. R. Williams, T. Ohtsuka, and H. Tanaka,
Direct observation of a local structural mechanism for
dynamic arrest, Nat. Mater. 7, 556 (2008).

[19] M. L. Manning and A. J. Liu, Vibrational Modes Identify
Soft Spots in a Sheared Disordered Packing, Phys. Rev. Lett.
107, 108302 (2011).

[20] D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang,
S. A. Ridout, B. Xu, G. Zhang, P. K. Morse, J.-L. Barrat, L.
Berthier, M. L. Falk, P. Guan, A. J. Liu, K. Martens, S.
Sastry, D. Vandembroucq, E. Lerner, and M. L. Manning,
Predicting plasticity in disordered solids from structural
indicators, Phys. Rev. Mater. 4, 113609 (2020).

[21] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J.
Rottler, D. J. Durian, E. Kaxiras, and A. J. Liu, Identifying
Structural Flow Defects in Disordered Solids using Machine-
Learning Methods, Phys. Rev. Lett. 114, 108001 (2015).

[22] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras,
and A. J. Liu, A structural approach to relaxation in glassy
liquids, Nat. Phys. 12, 469 (2016).

PHYSICAL REVIEW LETTERS 128, 097801 (2022)

097801-5

https://doi.org/10.1063/1.2815325
https://doi.org/10.1002/polb.21774
https://doi.org/10.1002/polb.21774
https://doi.org/10.1021/acs.macromol.9b01625
https://doi.org/10.1088/0953-8984/16/42/014
https://doi.org/10.1103/PhysRevE.83.041402
https://doi.org/10.1103/PhysRevLett.99.215501
https://doi.org/10.1021/ma8001214
https://doi.org/10.1021/ma8001214
https://doi.org/10.1063/1.4960208
https://doi.org/10.1209/0295-5075/79/26006
https://doi.org/10.1209/0295-5075/79/26006
https://doi.org/10.1126/science.1165995
https://doi.org/10.1039/B912288E
https://doi.org/10.1021/ma200436w
https://doi.org/10.1021/ma200436w
https://doi.org/10.1103/PhysRevLett.108.048301
https://doi.org/10.1063/1.1749836
https://doi.org/10.1063/1.1749836
https://doi.org/10.1103/PhysRevE.82.041804
https://doi.org/10.1103/PhysRevMaterials.2.105601
https://doi.org/10.1103/PhysRevMaterials.2.105601
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1038/nmat2219
https://doi.org/10.1103/PhysRevLett.107.108302
https://doi.org/10.1103/PhysRevLett.107.108302
https://doi.org/10.1103/PhysRevMaterials.4.113609
https://doi.org/10.1103/PhysRevLett.114.108001
https://doi.org/10.1038/nphys3644


[23] E. D. Cubuk et al., Structure-property relationships from
universal signatures of plasticity in disordered solids,
Science 358, 1033 (2017).

[24] S. S. Schoenholz, E. D. Cubuk, E. Kaxiras, and A. J. Liu,
Relationship between local structure and relaxation in out-
of-equilibrium glassy systems, Proc. Natl. Acad. Sci. U.S.A.
114, 263 (2017).

[25] R. J. S. Ivancic and R. A. Riggleman, Identifying structural
signatures of shear banding in model polymer nanopillars,
Soft Matter 15, 4548 (2019).

[26] E. Yang, R. J. S. Ivancic, E. Y. Lin, and R. A. Riggleman,
Effect of polymernanoparticle interaction on strain
localization in polymer nanopillars, Soft Matter 16, 8639
(2020).

[27] D. M. Sussman, S. S. Schoenholz, E. D. Cubuk, and A. J.
Liu, Disconnecting structure and dynamics in glassy thin
films, Proc. Natl. Acad. Sci. U.S.A. 114, 10601 (2017).

[28] R. Besseling, E. R. Weeks, A. B. Schofield, and W. C. K.
Poon, Three-Dimensional Imaging of Colloidal Glasses
under Steady Shear, Phys. Rev. Lett. 99, 028301 (2007).

[29] H. N. Lee and M. D. Ediger, Interaction between physical
aging, deformation, and segmental mobility in poly
(methyl methacrylate) glasses, J. Chem. Phys. 133, 014901
(2010).

[30] H.-N. Lee, R. A. Riggleman, J. J. de Pablo, and M. D.
Ediger, Deformation-induced mobility in polymer glasses
during multistep creep experiments and simulations, Macro-
molecules 42, 4328 (2009).

[31] C. Eisenmann, C. Kim, J. Mattsson, and D. A. Weitz, Shear
Melting of a Colloidal Glass, Phys. Rev. Lett. 104, 035502
(2010).

[32] K. Kremer and G. S. Grest, Dynamics of entangled linear
polymer melts: A molecular-dynamics simulation, J. Chem.
Phys. 92, 5057 (1990).

[33] S. Plimpton, Fast parallel algorithms for short-range
molecular dynamics, J. Comput. Phys. 117, 1 (1995).

[34] SeeSupplementalMaterialathttp://link.aps.org/supplemental/
10.1103/PhysRevLett.128.097801 for softness distribution,
results for other temperature and stresses, discussion on
dynamical enhancement and heterogeneity, and details of
softness training, PR measurements, and MD simulations,
which includes Refs. [10,21–24,26,27,29,32,33,35–43].

[35] R. A. Riggleman, G. N. Toepperwein, G. J. Papakonstanto-
poulos, and J. J. De Pablo, Dynamics of a glassy polymer

nanocomposite during active deformation, Macromolecules
42, 3632 (2009).

[36] R. Candelier, A. Widmer-Cooper, J. K. Kummerfeld, O.
Dauchot, G. Biroli, P. Harrowell, and D. R. Reichman,
Spatiotemporal Hierarchy of Relaxation Events, Dynamical
Heterogeneities, and Structural Reorganization in a Super-
cooled Liquid, Phys. Rev. Lett. 105, 135702 (2010).

[37] A. Smessaert and J. Rottler, Distribution of local relaxation
events in an aging three-dimensional glass: Spatiotemporal
correlation and dynamical heterogeneity, Phys. Rev. E 88,
022314 (2013).

[38] E. D. Cubuk, S. S. Schoenholz, E. Kaxiras, and A. J. Liu,
Structural properties of defects in glassy liquids, J. Phys.
Chem. B 120, 6139 (2016).

[39] M. L. Falk and J. S. Langer, Dynamics of viscoplastic
deformation in amorphous solids, Phys. Rev. E 57, 7192
(1998).

[40] W. Li, J. M. Rieser, A. J. Liu, D. J. Durian, and J. Li,
Deformation-driven diffusion and plastic flow in amorphous
granular pillars, Phys. Rev. E 91, 062212 (2015).

[41] N. C. Karayiannis, V. G. Mavrantzas, and D. N. Theodorou,
A Novel Monte Carlo Scheme for the Rapid Equilibration of
Atomistic Model Polymer Systems of Precisely Defined
Molecular Architecture, Phys. Rev. Lett. 88, 105503 (2002).

[42] B. J. Banaszak and J. J. De Pablo, A new double-rebridging
technique for linear polyethylene, J. Chem. Phys. 119, 2456
(2003).

[43] R. Auhl, R. Everaers, G. S. Grest, K. Kremer, and S. J.
Plimpton, Equilibration of long chain polymer melts in
computer simulations, J. Chem. Phys. 119, 12718 (2003).

[44] J. Behler and M. Parrinello, Generalized Neural-Network
Representation of High-Dimensional Potential-Energy
Surfaces, Phys. Rev. Lett. 98, 146401 (2007).

[45] J. J. Martinez-Vega, H. Trumel, and J. L. Gacougnolle,
Plastic deformation and physical ageing in PMMA, Polymer
43, 4979 (2002).

[46] H. N. Lee and M. D. Ediger, Mechanical rejuvenation in
poly(methyl methacrylate) glasses? Molecular mobility
after deformation, Macromolecules 43, 5863 (2010).

[47] C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan,
and S. W. Martin, Relaxation in glassforming liquids and
amorphous solids, J. Appl. Phys. 88, 3113 (2000).

[48] R. J. Hunter, Foundations of Colloid Science (Oxford
University Press, New York, 2001).

PHYSICAL REVIEW LETTERS 128, 097801 (2022)

097801-6

https://doi.org/10.1126/science.aai8830
https://doi.org/10.1073/pnas.1610204114
https://doi.org/10.1073/pnas.1610204114
https://doi.org/10.1039/C8SM02423E
https://doi.org/10.1039/D0SM00991A
https://doi.org/10.1039/D0SM00991A
https://doi.org/10.1073/pnas.1703927114
https://doi.org/10.1103/PhysRevLett.99.028301
https://doi.org/10.1063/1.3450318
https://doi.org/10.1063/1.3450318
https://doi.org/10.1021/ma900394n
https://doi.org/10.1021/ma900394n
https://doi.org/10.1103/PhysRevLett.104.035502
https://doi.org/10.1103/PhysRevLett.104.035502
https://doi.org/10.1063/1.458541
https://doi.org/10.1063/1.458541
https://doi.org/10.1006/jcph.1995.1039
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.097801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.097801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.097801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.097801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.097801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.097801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.097801
https://doi.org/10.1021/ma802865n
https://doi.org/10.1021/ma802865n
https://doi.org/10.1103/PhysRevLett.105.135702
https://doi.org/10.1103/PhysRevE.88.022314
https://doi.org/10.1103/PhysRevE.88.022314
https://doi.org/10.1021/acs.jpcb.6b02144
https://doi.org/10.1021/acs.jpcb.6b02144
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevE.91.062212
https://doi.org/10.1103/PhysRevLett.88.105503
https://doi.org/10.1063/1.1583673
https://doi.org/10.1063/1.1583673
https://doi.org/10.1063/1.1628670
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1016/S0032-3861(02)00332-4
https://doi.org/10.1016/S0032-3861(02)00332-4
https://doi.org/10.1021/ma1006649
https://doi.org/10.1063/1.1286035

