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Abstract
We study efficient algorithms for the Euclidean
k-Center problem, focusing on the regime of large
k. We take the approach of data reduction by con-
sidering α-coreset, which is a small subset S of
the dataset P such that any β-approximation on
S is an (α + β)-approximation on P . We give
efficient algorithms to construct coresets whose
size is k · o(n), which immediately speeds up ex-
isting approximation algorithms. Notably, we ob-
tain a near-linear time O(1)-approximation when
k = nc for any 0 < c < 1. We validate the perfor-
mance of our coresets on real-world datasets with
large k, and we observe that the coreset speeds
up the well-known Gonzalez algorithm by up to
4 times, while still achieving similar clustering
cost. Technically, one of our coreset results is
based on a new efficient construction of consis-
tent hashing with competitive parameters. This
general tool may be of independent interest for
algorithm design in high dimensional Euclidean
spaces.

1. Introduction
The k-CENTER problem is a fundamental clustering prob-
lem that has been extensively studied in various areas, in-
cluding combinatorial optimization, data science, and ma-
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chine learning. In k-CENTER, the input is a dataset P ⊆ Rd

of n points and a parameter k. The goal is to find a set
C ⊆ Rd (called centers) with |C| = k that minimizes the
cost function

cost(P,C) := max
p∈P

dist(p, C),

where dist(p, q) := ∥p − q∥2 and dist(p, C) :=
minc∈C dist(p, c). The k-CENTER problem presents sub-
stantial computational challenges and remains APX-hard
even when d = O(1) (Feder & Greene, 1988).

The study of efficient approximation algorithms for k-
CENTER dates back to the 1980s, with several algorithms
providing 2-approximations (Gonzalez, 1985; Hochbaum &
Shmoys, 1985; 1986). Among these, the classic algorithm
of Gonzalez (Gonzalez, 1985) runs in O(nkd) time. While
it achieves good performance for k = O(1), its O(nk) de-
pendence renders it much less efficient for large k. In fact,
large values of k in k-clustering are increasingly relevant in
modern applications such as product quantization for near-
est neighbor search (Jégou et al., 2011) in vector databases.
This has motivated algorithmic studies for the large k regime
for k-clustering in various computational models (Ene et al.,
2011; Bateni et al., 2021; Coy et al., 2023; Czumaj et al.,
2024; la Tour & Saulpic, 2024). The record linkage problem,
also known as entity resolution or reference reconciliation,
has been a subject of study in databases for decades (Koudas
et al., 2006; Herzog et al., 2007; Dong & Naumann, 2009).
This problem can also be viewed as a k-center clustering
problem, where k represents the number of ground truth
entities and is often very large.

For the large-k regime, it is possible to obtain a subquadratic
Õ(n2−

√
ϵ) time1 (2+O(ϵ))-approximation algorithm2, and

a general ratio-time trade-off as an O(c)-approximation in
Õ(n1+1/c2) time (Eppstein et al., 2020)3. Yet, it is un-

1Throughout the paper, the Õ-notation hides the dependence
on poly(d logn).

2This can be obtained by combining an O(n2−
√
ϵ)-time (1 +

O(ϵ))-approximate r-net construction (Avarikioti et al., 2020) with
a standard reduction of k-CENTER to net constructions (Hochbaum
& Shmoys, 1986).

3A similar tradeoff can also be achieved via running an O(1)-
approximation for sparse graphs (Thorup, 2004) on a Euclidean
spanner (Har-Peled et al., 2013).
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known if these trade-offs can be improved. The ideal goal is
to design an O(1)-approximation in near-linear time Õ(n),
which would directly improve the original Gonzalez’s run-
time by removing an O(k) factor. However, this seems to
be challenging with current techniques. Indeed, even the
apparently easier task of finding an O(1)-approximation to
the cost of a given center set C, without optimizing C, in
near-linear Õ(n) time remains unsolved.

In this paper, we present new trade-offs between approx-
imation ratio and running time for k-CENTER. Specifi-
cally, we focus on optimizing the trade-off in the case of
k = nc (0 < c < 1). Our results make a significant step
forward towards the ultimate goal of achieving near-linear
running time for O(1)-approximation in this regime.

1.1. Our Results

We take a data reduction approach to systematically im-
prove the running time of approximation algorithms for
k-CENTER. Specifically, we use the notion of an α-coreset
(for α ≥ 1), defined as a subset S ⊆ P of the dataset P
such that any β-approximate solution to k-CENTER on S is
an (α+ β)-approximation on the original dataset P .

Our main result consists of two coresets with slightly dif-
ferent parameter trade-offs, both of size k · o(n). This
essentially reduces the input size from n to k · o(n), speed-
ing up any (existing) approximation algorithm. Notably,
we obtain an O(1)-approximation in near-linear time for
k = nc (0 < c < 1). We summarize the new approxima-
tion algorithms in Table 1.

Coresets. Our first result, Theorem 1.1, constructs an
O(α)-coreset of size O(kn1/α2/3

) in a runtime that is
near-linear in n and independent of α. Running the exist-
ing Õ(n1+1/α2

)-time O(α)-approximation algorithm (Epp-
stein et al., 2020) on this coreset, we obtain an O(α)-
approximation in time Õ(n+k1+1/α2

nO(1/α2/3)). This im-
mediately improves the algorithm in (Eppstein et al., 2020).
In particular, as long as k = nc (for any 0 < c < 1) which
can be arbitrarily close to linear n, this running time reduces
to Õ(n) by setting α = poly((1− c)−1).

Theorem 1.1. For every α ≥ 1, there exists an O(α)-
coreset of size Õ(kn1/α2/3

) that can be computed in time
Õ(n) with probability at least 0.99.

Our Theorem 1.1 relies on a geometric hashing technique
called consistent hashing (Czumaj et al., 2022) (see Defi-
nition 3.1). Our main technical contribution is to devise a
new consistent hashing that offers a competitive parameter
trade-off, while still running in poly(d) time, exponentially
improving the previous exp(d) time construction (Czumaj
et al., 2023) (albeit theirs achieves better parameter trade-
offs). See Section 3 for a more detailed discussion. This

new hashing result may be useful for algorithm design in
high-dimensional Euclidean spaces in general. Finally, we
remark that our coreset in Theorem 1.1 may be applied re-
cursively to further reduce the coreset size; see Appendix D
for a detailed discussion.

Our second coreset (Theorem 1.2) has size Õ(k), which is
independent of α, but has a larger Õ(nk1/α

2

) construction
time. Running the algorithm in (Eppstein et al., 2020) on
this coreset, we obtain an alternative O(α)-approximation
for k-CENTER in Õ(nk1/α

2

) time.

Theorem 1.2. For every α ≥ 1, there exists an O(α)-
coreset of size k · polylog(n) that can be computed in time
Õ(nk1/α

2

) with probability at least 0.99.

Previously, it was observed that the point sequence dis-
covered by an (approximate) furthest-neighbor traversal
as in Gonzalez’s algorithm (Gonzalez, 1985) is an O(1)-
coreset (Braverman et al., 2021), and one could use an
algorithm in (Eppstein et al., 2020) to find such a se-
quence, which yields an O(α)-coreset of size O(k) in time
Õ(n1+1/α2

). While this coreset size is competitive, the run-
ning time remains super-linear in k for k = nc (0 < c < 1),
which is too large for our purpose of near-linear algorithms.

Experiments. Our experiments validate the performance
of our coresets, with a focus on Theorem 1.1, since The-
orem 1.1 leads to near-linear running time for k-CENTER
when k = nc (0 < c < 1), which is likely to be prac-
tical. Our experiments are conducted on four real-world
datasets of various sizes and dimensions, and we evaluate
the speedup of the well-known Gonzalez’s algorithm (Gon-
zalez, 1985) on our coreset. The experiments show that our
coreset provides a consistently better tradeoff between the
coreset size and clustering cost than baselines, and runs 2 to
4 times faster than directly running Gonzalez algorithm on
the dataset, while still achieving comparable cost values.

1.2. Related Work

Our notion of coreset is related to the widely considered
strong coreset (Agarwal et al., 2004; Har-Peled & Mazum-
dar, 2004), which is a subset S ⊆ P satisfying that
cost(S,C) ∈ (1± ϵ) cost(P,C) for all center sets C ⊆ Rd.
The key difference is that ours may not preserve the cost
value on S for all C, but it does preserve the approxima-
tion ratio. Moreover, this stronger notion inherently leads
to a prohibitively large coreset size of exp(Ω(d)), even for
k = 1.4 Our notion is sometimes referred to as weak core-
sets in the literature, and similar notions were also consid-
ered in (Feldman et al., 2007; Munteanu & Schwiegelshohn,
2018; Huang et al., 2023; Carmel et al., 2025).

4This lower bound is folklore, but can be easily proved using
an ϵ-net on the unit sphere.
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Table 1: Summary of approximation algorithms for k-CENTER in Rd

Approx. ratio Running time Reference

2 O(nkd) Gonzalez (1985)
O(α) Õ(n1+1/α2

) Eppstein et al. (2020)
O(α) Õ(n+ k1+1/α2

nO(1/α2/3)) Theorem 1.1 + Eppstein et al. (2020)
O(α) Õ(nk1/α

2

) Theorem 1.2 + Eppstein et al. (2020)

2. Preliminaries
Notations. For m ∈ N≥1, denote [m] := {1, . . . ,m}.
For a point set C ⊆ Rd, let diam(C) denote the diameter
of C. For x ∈ Rd and r ≥ 0, the ball of radius r centered
at x is denoted by B(x, r) = {y ∈ Rd : dist(x, y) ≤ r},
and we write BS(x, r) := B(x, r) ∩ S for S ⊆ Rd. For
two sets A,B ⊆ Rd, their Minkowski sum is A ⊕ B :=
{x+ y : x ∈ A, y ∈ B}. For a function f : Rd → Rd and
a set S ⊆ Rd, we define f(S) := {f(x) : x ∈ S}.
Definition 2.1 (Covering). Given a set P ⊆ Rd and ρ ≥ 0,
a subset S ⊆ P is called a ρ-covering for P if for every
p ∈ P , there exists a q ∈ S such that dist(p, q) ≤ ρ.

The following lemma will be useful in both of our coreset
constructions. Its proof is deferred to Appendix A.
Lemma 2.2 (Coarse approximation). There is an algorithm
that, given as input a dataset P ⊂ Rd with |P | = n and an
integer k ≥ 1, computes a poly(n)-approximation to the k-
CENTER cost value with probability at least 1−1/ poly(n),
running in time O(nd+ npolylog(n)).

3. Efficient Consistent Hashing
The notion of consistent hashing was coined in (Czumaj
et al., 2023), which partitions Rd into cells such that each
small ball in Rd intersects only a small number of cells.
Partitions with similar properties have also been studied
under the notion of sparse partitions for general metric
spaces (see, e.g., (Jia et al., 2005; Filtser, 2024)). The main
differences are that consistent hashing requires the partition
to be defined using a (data-oblivious) hash function and
emphasizes computational efficiency.

Below we present our formal definition of consistent hash-
ing, which relaxes the definition of Czumaj et al. (2023)
by only requiring the number of intersecting cells to be
bounded in expectation.
Definition 3.1. A (Γ,Λ, ℓ)-consistent hashing is a distri-
bution over functions φ : Rd → Rd such that for every
x ∈ Rd,

• (diameter) diam(φ−1(x)) ≤ ℓ, and
• (consistency) E[|φ(B(x, ℓ

Γ )|] ≤ Λ.

In this definition, the hash partitions Rd into buckets of
diameter at most ℓ (which can be picked arbitrarily), such

that any subset in Rd of diameter at most ℓ/Γ intersects
no more than Λ buckets (in expectation). Since consistent
hashings are scale invariant in Rd, we omit the parameter
ℓ in our discussion below. Ours and previous results are
summarized in Table 2.

For every parameter β ≥ 1, Filtser (2024) constructed a
deterministic consistent hashing (namely, the consistency
guarantee is worst-case and not in expectation) with pa-
rameters Γ = β and Λ = Õ(d) · exp(O(d/β)). However,
computing φ(x) for a given point x requires both time and
space that are exponential in d. Nevertheless, Filtser showed
that this trade-off between Γ and Λ is tight up to second
order terms regardless of runtime, even when the consis-
tency guarantee is relaxed to expectation only (implicitly).
Czumaj et al. (2023) constructed a deterministic consistent
hashing with the same parameters, requiring only Õ(d2)
space, though the function evaluation still takes exponential
time in d. They also constructed a time- and space-efficient
consistent hashing, which can be evaluated in poly(d) time
but with sub-optimal parameters of Λ and Γ.

Our hash function is the first to achieve the bound Λ =
exp(O(d/βc)) (for some 0 < c ≤ 1) when Γ = β for
every β ≥ 1, while still running in polynomial time in d.
Technically, we construct the hash function using a surpris-
ingly simple randomly-shifted grid, which is widely used in
geometric algorithm design.

Previous works also studied laminar consistent hashing
(Busch et al., 2012; 2023), which is a sequence of hash
functions at different scales, each refining the previous one.
We note also that Chen & Zhang (2016) studied a related
notion to consistent hashing, but their diameter guarantee
was only probabilistic, so it is not directly comparable.

Lemma 3.2. For every β ≥
√
2π and ℓ > 0, there exists

a (β, tβ , ℓ)-consistent hashing φ : Rd → Rd with tβ :=

poly(d) · exp(O(d/β
2
3 )) which can be computed in O(d)

time.

Proof. Since it suffices to define the hash function for an
(arbitrary) fixed ℓ, in this proof we fix ℓ :=

√
d.

Construction. The hash is defined by a randomly-shifted
grid. Formally, we first choose a uniformly random vector
v ∈ [0, 1]d and, for each x ∈ Rd, define φ(x) = ⌊x +
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Table 2: Summary of results on consistent hashing in Euclidean Rd. The third result is a lower bound.

Γ Λ Guarantee Runtime Space Reference

1 exp(O(d)) worst-case exp(d) exp(d) Jia et al. (2005)
β Õ(d) · exp(O(d/β)) worst-case exp(d) exp(d) Filtser (2024)
β Λ > (1 + 1

2β )
d expected (implicit) N/A N/A Filtser (2024)

β Õ(d) · exp(O(d/β)) worst-case exp(d) poly(d) Czumaj et al. (2023)
O(d1.5) O(d) worst-case poly(d) poly(d) Czumaj et al. (2023)
β poly(d) · exp(O(d/β

2
3 )) expected O(d) O(d) Lemma 3.2

v⌋. Here, for a vector z = (z1, . . . , zd) ∈ Rd, we define
⌊z⌋ = (⌊z1⌋, ⌊z2⌋, . . . , ⌊zd⌋) ∈ Rd, i.e, rounding down z
coordinatewise.

Analysis. To evaluate φ(x), we simply round x+ v down
coordinatewise to the nearest integer, which takes O(d)
time. The diameter property is also straightforward, since
φ−1(t) = ×d

i=1[ti − vi, ti − vi + 1) (t ∈ Zd), which is a
half-open unit cube and has diameter

√
d = ℓ.

It remains to verify that an arbitrary ball of radius r =√
d/β intersects only poly(d) exp(O(d/β

2
3 )) grid cells in

expectation. Let x ∈ Rd be arbitrary and consider the ball
B(x, r). Let r̃ = ⌈r⌉. By symmetry, we can assume w.l.o.g.
that x ∈ [r̃, r̃ + 1)d. Further, for the sake of analysis only,
we will slightly change the hash function. Let ∆ ≫ r̃ be
some fixed large integer to be determined later. Instead
of sampling v ∈ [0, 1]d, we sample v = (v1, . . . , vd) ∈
[0,∆]d uniformly at random and map each point y to ⌊y +
v⌋. Note that the number of intersecting grid cells by a
ball centered at (x+ v) equals the number of intersecting
cells by a ball centered at x + (v1 mod 1, . . . , vd mod 1).
Thus, the two hash functions have exactly the same expected
consistency.

Since x ∈ [r̃, r̃ + 1)d and v ∈ [0,∆]d, the ball B(x+ v, r)

can only intersect grid cells in the box G = [0,∆+ 3r̃]
d.

Fix some grid cell K = ×d
i=1[ti, ti + 1) ⊂ G. Let XK be

an indicator for the event that the ball B(x+ v, r) intersects
K. This happens if and only if the ball B(v, r) intersects
the box ×d

i=1[ti − xi, ti − xi + 1), or, v is contained in the
Minkowski sum of the box ×d

i=1[ti − xi, ti − xi + 1) and
the ball B(⃗0, r). The following lemma bounds the volume
of this Minkowski sum.

Lemma 3.3 (Aiger et al. (2014), Lemma 3.1). Let C =
[0, 1]d be the unit cube in Rd and 0 < r ≤

√
d/2π be a

parameter. Let Cr = C ⊕B(⃗0, r), then

vol (Cr) ≤ poly(d) · exp
(
3/2 · (2π) 1

3 d
2
3 r

2
3

)
.

Applying Lemma 3.3 with our r =
√
d/β, we have

vol
(
C√

d/β

)
≤ poly(d) · exp

(
3

2
(2π)

1
3 d

2
3 · (
√
d/β)

2
3

)
= poly(d) · exp

(
3

2
(2π)

1
3 d/β

2
3

)
= poly(d) · exp

(
O(d/β

2
3 )
)

.

Therefore,

EXK

(∗)
≤

vol
(
[ti − xi, ti − xi + 1)⊕B(⃗0, r)

)
vol ([0,∆]d)

=
vol (Cr)

∆d
=

1

∆d
· poly(d) · exp(O(d/β

2
3 )) .

Here (∗) is an inequality, rather than equality, because the
Minkowski sum [ti − xi, ti − xi + 1) ⊕ B(⃗0, r) might
not be fully contained in [0,∆]d. Only grid cells from
G = [0,∆+ 3r̃]

d have a non-zero probability of intersect-
ing B(x+ v, r). Since there are only (∆ + 3r̃)d such grid
cells K, by linearity of expectation, the expected number of
grid cells intersecting B(x+ v, r) is at most

(∆ + 3r̃)d/∆d · poly(d) · exp(O(d/β
2
3 ))

= poly(d) · exp(O(d/β
2
3 )) ,

where the last equality holds for large enough ∆. This
verifies the consistency bound of the consistent hashing and
completes the proof of Lemma 3.2.

4. Proof of Theorem 1.1
We prove Theorem 1.1 in this section (restated below).

Theorem 1.1. For every α ≥ 1, there exists an O(α)-
coreset of size Õ(kn1/α2/3

) that can be computed in time
Õ(n) with probability at least 0.99.

We start by reducing the task of finding coresets to the con-
struction of ρ-coverings (see Definition 2.1) via a standard
fact that any α-approximation on an (β opt)-covering is
a (α+ β)-approximation to k-CENTER (see Lemma 4.1);
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hence, it suffices to find a small (β opt)-covering as a core-
set. Indeed, covering is a fundamental notion in geometric
optimization. In the context of k-CENTER, it can be viewed
as a bi-criteria approximation that uses slightly more than k
center points.

Lemma 4.1. For a dataset P ⊆ Rd and integer k, consider
a (β opt)-covering S ⊆ P for some β ≥ 1. Then any α-
approximation on S is an (α+ β)-approximation on P for
k-CENTER. In other words, S is a β-coreset.

Proof. For a generic point set W ⊆ Rd and a point
x ∈ Rd, we define the projection function πW (x) :=
argminy∈W dist(x, y), which maps x to its nearest neigh-
bor in W (ties are broken arbitrarily). Since S is a (β opt)-
covering, for every p ∈ P we have dist(p, πS(p)) ≤ β opt.
Let Ĉ be an α-approximation to k-CENTER on S. Then,

cost(P, Ĉ) = max
p∈P

dist(p, πĈ(p))

≤ max
p∈P

dist(p, πS(p)) + dist(πS(p), πĈ(πS(p)))

≤ max
p∈P

dist(p, πS(p)) + max
p∈S

dist(p, πĈ(p))

≤ β opt+α optS

≤ β opt+α opt,

where the last inequality follows from the fact that the opti-
mal k-CENTER cost on the subset S cannot be larger than
the optimal k-CENTER cost on P , which is true since we
consider the continuous version of the k-CENTER problem
where centers are chosen from the entire Rd.

Thanks to Lemma 4.1, it remains to find a small (β opt)-
covering. We give the following construction of covering
based on consistent hashing (Definition 3.1). This is the
main technical lemma for Theorem 1.1. Its proof is post-
poned to Section 4.1.

Lemma 4.2. There is an algorithm that takes as input a
dataset P ⊆ Rd with |P | = n, β ≥ 1 and integer k ≥ 1,
computes a set S ⊆ P with |S| ≤ k · poly(d) exp(d/β2/3)
in time O(nd log n), such that S is an O(β opt)-covering
of P with probability at least 0.991.

Lemma 4.2 allows us to compute a covering set whose
size is exponential in the dimension (assuming d ≫ β).
To mitigate this, we apply the Johnson-Lindenstrauss (JL)
transform (Johnson & Lindenstrauss, 1984), using random
projections to reduce the dimension of the input point set to
O(log n). The JL Lemma is restated as follows.

Lemma 4.3 (Johnson-Lindenstrauss Lemma). Let P ⊆ Rd

be a set of n points and ϵ ∈ (0, 1
2 ). Then there exists a map

f : P → Rd′
for some d′ = O(ϵ−2 log n) such that

(1− ϵ) dist(x, y) ≤ dist(f(x), f(y)) ≤ (1 + ϵ) dist(x, y)

for all x, y ∈ P . Moreover, the image f(P ) can be
computed in O(ε−2nd log n) time with probability at least
1− 1/poly(n).

Now we are ready to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. For a generic point set W ⊆ Rd,
let opt(W ) be the optimal k-CENTER value on W . The
algorithm for Theorem 1.1 goes as follows. We first run
Lemma 4.3 with some constant ϵ = O(1) to obtain a map-
ping f : Rd → Rd′

where d′ = O(log n). Let P ′ := f(P )
be the dataset in the target space after JL. Then, we ap-
ply Lemma 4.2 on P ′, to obtain an O(α opt(P ′))-covering
S′ ⊆ P ′ of P ′. Let S := f−1(S′), and this is well-defined
since S′ is a subset of P ′ and f is injective on P . The
algorithm returns S as the covering.

The running time follows immediately from Lemmas 4.2
and 4.3. Next, we verify that S is a desired covering. Condi-
tioning on the success of Lemma 4.3, i.e., for every x, y ∈ P ,
dist(f(x), f(y)) ∈ (1± ϵ) dist(x, y), we consider an arbi-
trary x ∈ P . Then

dist(x, S) ≤ (1 + ϵ) · dist(f(x), S′)

≤ (1 + ϵ) ·O(α opt(P ′))

≤ 2(1 + ϵ)2 ·O(α) opt(P )

≤ O(α) opt(P ),

where the first inequality directly follows from the condi-
tioned event, and the third inequality from the claim that
opt(P ′) ≤ 2(1+ ϵ) opt(P ), which can be derived from the
conditioned event as follows5. Consider a 2-approximation
Ĉ ⊆ P of k-CENTER on P (for instance, consider the solu-
tion of Gonzalez’s algorithm (Gonzalez, 1985)), and the con-
dition implies opt(P ′) ≤ cost(P ′, f(Ĉ)) ≤ 2(1 + ϵ) opt.
Finally, the failure probability follows from a union bound
of the failure of Lemmas 4.2 and 4.3. This finishes the
proof.

4.1. Proof of Lemma 4.2

Proof overview. The covering construction is based on
consistent hashing (see Definition 3.1). Consider the k
clusters C∗

1 , . . . , C
∗
k in an optimal solution, then by def-

inition
⋃

i C
∗
i = P and diam(C∗

i ) ≤ 2 opt for all C∗
i .

Roughly speaking, the key property of a consistent hash-
ing φ, is that each C∗

i is mapped to |φ(C∗
i )| ≤ Λ dis-

tinct buckets, and that each bucket has diameter O(α opt),
where Λ is a parameter of the hashing and we have Λ =
poly(d) · exp(O(d/β

2
3 )) in our construction (Lemma 3.2).

Then, picking an arbitrary point from every non-empty
bucket yields an O(α opt)-covering of size kΛ. This hash

5In fact, one can show opt(P ′) ≤ (1 + ϵ) opt(P ), which has
also been analyzed in, e.g., (Jiang et al., 2024).
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Algorithm 1 Covering based on consistent hashing

1: apx ← a γ-approximate of k-CENTER(P ) using
Lemma 2.2, where γ = poly(n).

2: tβ ← poly(d) · exp(O(d/β2/3)) (as in Lemma 3.2)
3: for i = 0 to ⌈log γ⌉ do
4: τ ← apx

γ · 2
i

5: let φτ be a (β, tβ , βτ)-hashing sampled using
Lemma 3.2

6: for each z ∈ φτ (P ), pick an arbitrary representative
point rep(z) from the bucket φ−1

τ (z) ∩ P
7: let Sτ ← {rep(z) : z ∈ φτ (P )}
8: if |Sτ | ≤ 200ktβ then return Sτ

9: end for

φ is data-oblivious and we can evaluate φ(x) for every
x ∈ Rd in O(d) time, which leads to a Õ(n) running time
of Lemma 4.2.

Algorithm. The algorithm is listed in Algorithm 1. Let
opt denote the cost of the optimal solution to the k-
CENTER on P . The algorithm starts by finding a poly(n)-
approximation to opt (using Lemma 2.2). It then checks
O(log n) geometrically increasing values of τ , one of which
estimates opt up to a factor of 2. For each value τ , we pick
a consistent hash φτ as in Lemma 3.2, with scale parameter
β · τ , such that the points of every ball of radius β·τ

β = τ are
hashed into only tβ = poly(d) · exp(O(d/β2/3)) cells in
expectation. For each hash φτ , the algorithm computes a set
Sτ , containing a single representative from every nonempty
hash cell. Once |Sτ | ≤ 10k · tβ , the algorithm halts and
returns Sτ .

Consider an estimate τ such that τ
2 < opt ≤ τ . The points

in P are contained in k balls of radius opt < τ (around
the centers in the optimal solution). Under φτ , the points
within each of these balls are hashed into only tβ cells in ex-
pectation. This implies that, with high constant probability,
|Sτ | ≤ 200k · tβ , leading the algorithm to halt and return
Sτ . We now proceed with a formal proof.

Lemma 4.4. For every τ , the set Sτ is a (βτ)-covering for
P (with probability 1).

Proof. Clearly, Sτ ⊆ P . Now, fix some p ∈ P , let z :=
φτ (p). Then rep(z) ∈ Sτ , and by Definition 3.1, we have
dist(p, Sτ ) ≤ dist(p, rep(z)) ≤ diam(φ−1

τ (z)) ≤ βτ .
This verifies the definition of βτ -covering.

Lemma 4.5. For τ ≥ opt, |Sτ | ≤ 200ktβ with probability
at least 0.995 (over the randomness of φτ ).

Proof. Let C∗ = {c∗1, ..., c∗k} be an optimal solution for
k-CENTER. Then P can be covered by the k balls of radius

opt around c∗j ’s, i.e., P =
⋃k

j=1 BP (c
∗
j , opt). As opt ≤ τ ,

by linearity of expectation, it holds that

E [|Sτ |] = E [|φτ (P )|] = E
[∣∣∣φτ (

k⋃
j=1

BP (c
∗
j , opt))

∣∣∣]

≤
k∑

j=1

E
[∣∣φτ (BP (c

∗
j , opt))

∣∣] ≤ k · tβ .

By Markov’s inequality, Pr[|Sτ | > 200ktβ ] ≤ 0.005.

Proof of Lemma 4.2. We define the two following events:

• Eapx: the event that the k-CENTER approximation al-
gorithm in Lemma 2.2 succeeds: opt ≤ apx ≤ γ · opt.

• Ehash: the event that for τ such that opt ≤ τ < 2 opt,
it holds that |Sτ | ≤ 200ktβ .

By Lemma 2.2 and Lemma 4.5, with probability at least
0.991, events Eapx and Ehash both happen. We now condi-
tion on both events and, in the rest of the proof, argue that
the algorithm succeeds. Lemma 4.2 will then follow.

Covering property. The algorithm iterates over different
values of τ , starting at τ0 = apx

γ ≤ opt, and increase τ
in jumps of 2, with the maximum value being τ⌈log γ⌉ =
apx
γ · 2

⌈log γ⌉ ≥ apx ≥ opt. Let τ ′ be the estimate such that
opt ≤ τ ′ < 2 opt. If the algorithm will reach the estimate
τ ′, then as we conditioned on Ehash, the algorithm will halt
and return Sτ ′ . Otherwise, the algorithm will halt earlier at
some value τ ≤ 1

2 · τ
′ ≤ opt. In either case, by Lemma 4.4,

the algorithm returns a set Sτ , which is a (βτ)-covering for
P . Note that βτ ≤ 2β · opt.

Running time. The invocation of Lemma 2.2 in Line 1
only takes O(nd+ n log n) time. The for-loop runs at most
O(log n) times, and in each iteration, it takes O(nd) time
to evaluate all hash values φ(P ). In summary, the overall
running time of the algorithm is O(nd log n). This finishes
the proof of Lemma 4.2.

5. Constructing Covering via Sampling
We now prove Theorem 1.2 (restated below).
Theorem 1.2. For every α ≥ 1, there exists an O(α)-
coreset of size k · polylog(n) that can be computed in time
Õ(nk1/α

2

) with probability at least 0.99.

The proof is similar to that of Theorem 1.1, using a reduction
to covering (Lemma 4.1). Hence, the remaining step is to
find a suitable covering for Theorem 1.2, which is stated in
the following lemma. The lemma relies on an approximate
nearest neighbor search (ANN) structure, where given a set
of input points T and a query point q, the α-ANN finds for
each a point x ∈ T such that dist(x, q) ≤ α · dist(q, T ).
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Lemma 5.1. Given a set of points P ⊆ Rd, and k, β ≥ 1,
there is an algorithm that runs in Õ(nk1/β

2

) time, and
with probability at least 0.991 returns a set S ⊆ P of
k · polylog(n) points such that S is an O(β opt)-covering
of P .

Note that Theorem 1.2 follows directly from Lemmas 4.1
and 5.1. The rest of this section proves Lemma 5.1.

Proof overview for Lemma 5.1. Our proof is based on
random hitting sets. For the sake of presentation, assume
that the k clusters in an optimal solution are of similar
size Θ(nk ). Then a uniform sample S of size O(k log n)
would hit all clusters w.h.p. . Furthermore, by the definition
of k-CENTER, the entire dataset is contained in a (2 opt)-
neighborhood of S. This (2 opt)-neighborhood of S gives
the covering and can be computed using ANN. The general
case where the clusters are not balanced can be handled
similarly. Specifically, for a random sample S of O(k log n)
points, at least half of the points will, with high probability,
be within a distance of 2 opt from S. We can eliminate
these points, and repeat this process for O(log n) rounds to
cover all points.

Algorithm. The algorithm (Algorithm 2) begins by com-
puting a poly(n)-approximation to opt, denoted by apx.
Then it checks O(log n) geometrically increasing values of
τ , one of which estimates opt up to a factor of 2. For each
value of τ , the algorithm attempts to construct a coreset Sτ

such that for every point x ∈ P , dist(x, Sτ ) ≤ 2βτ . In
more detail, a set Q of uncovered points is maintained. The
process consists of L = O(log n) iterations, where in each
iteration, O(k log n) random (uncovered) points from Q are
added to Sτ . ANN is then invoked at Line 6, using the newly
sampled points as the input set and the uncovered points in
Q as queries, where we use the ANN algorithm of Andoni
& Indyk (2006). Every point whose β-approximate nearest
neighbor is within a distance of at most 2βτ is subsequently
removed from Q. If Q becomes empty during the O(log n)
iterations, the algorithm returns Sτ .

For the analysis, consider τ ≥ opt, and Q ⊆ P . Since Q
can be covered by k balls of radius τ , by an averaging argu-
ment, at least half of the points in Q must belong to the balls
that each contains at least a 1

2k fraction of Q. Consequently,
each such point will, with constant probability, be within
a distance of at most 2τ from the sampled points and will
thus be removed from Q. It follows that Q is expected to
shrink in size by a constant factor in each iteration and, after
O(log n) iterations, becomes empty. The running time is
dominated by the executions of ANNs. The next lemma is
the main technical guarantee of Algorithm 2 and its proof is
postponed to Appendix B.
Lemma 5.2. Suppose that τ ≥ opt. With probability at
least 1 − 1/n, there exists j ≤ L such that Q(j) = ∅ at

Algorithm 2 Covering based on sampling

1: apx ← a γ-approximate of k-CENTER(P ) using
Lemma 2.2, where γ = poly(n)

2: for i← 0 to ⌈log γ⌉ do
3: τ ← apx

γ · 2
i, Sτ ← ∅, Q(0) ← P

4: for j ← 1 to L = 5⌈log n⌉ do
5: draw O(k log n) uniform samples S(j) with re-

placement from Q(j−1)

6: for each x ∈ Q(j−1), compute d̂ist(x, S(j)) such
that d̂ist(x, S(j)) ≤ β dist(x, S(j)) using ANN

7: R(j) ← {x ∈ Q(j−1) : d̂ist(x, S(j)) ≤ 2βτ}
8: Sτ ← Sτ ∪ S(j), Q(j) ← Q(j−1) \R(j)

9: if Q(j) = ∅ then return Sτ

10: end for
11: end for

Table 3: Specifications of datasets, where d is the original
data dimension and d′ is the target dimension of the JL
transform.

dataset size (approx.) d d′

Kddcup 5M 38 30
Covertype 581K 55 50
Census 2M 69 60
Fashion-MNIST 70K 784 100

Line 9.

Proof of Lemma 5.1. During the execution of the algorithm
we construct an β-ANN structure O(log2 n) times, each
with input size O(k log n). On each such data structure
we perform at most n queries. Specifically, we use the
β-ANN algorithm of Andoni & Indyk (2006), which takes
Õ(m1+1/β2

) pre-processing time and Õ(m1/β2

) query time
to compute an O(β)-approximate NN for each query point
in Rd, over an m-point input set. This algorithm answers all
O(n) queries successfully with 1− 1/ poly(n) probability.
Hence, the overall running time is Õ(n · k1/β2

) (where we
set m = O(k log n)). This also dominates all the other
steps.

Let i ∈ [0, ⌈log γ⌉] be such that apx
γ ·2

i−1 < opt ≤ apx
γ ·2

i.
If the algorithm terminates at iteration i′ < i, then it has
found a set Sτ which is a ρ-covering of P for ρ = 2β · apxγ ·
2i

′−1 < 2β opt, as claimed. Otherwise, by Lemma 5.2,
with probability at least 1− 1/n, Algorithm 2 would termi-
nate at the i-th iteration and, in this case, Sτ is a ρ-covering
of P for ρ = 2β · apxγ · 2

i ≤ 2β · 2 opt = 4β opt.

6. Experiments
We implement our coreset from Theorem 1.1 and evaluate
its performance by measuring how effective it speeds up
the classical algorithm of Gonzalez (1985), which gives a
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Figure 1: The cost evaluation for all baselines in each dataset.

Figure 2: The variance evaluation for our coreset.

2-approximation for k-CENTER. We focus on the coreset of
Theorem 1.1 due to its near-linear running time and use of
simple grid structure, which makes it more practical. Specif-
ically, we conduct experiments with varying coreset sizes
and report running time and the corresponding clustering
cost when running Gonzalez’s algorithm on the coreset. The
research code for this experiment is available at a GitHub
repository.

Datasets. We use four real datasets: Kddcup (Stolfo et al.,
1999), Covertype (Blackard, 1998), Census (Meek et al.,
2001), and Fashion-MNIST (Xiao et al., 2017). For each
dataset, we extract numerical features to construct a vec-
tor in Rd for each record, and we perform a Johnson-
Lindenstrauss (JL) transform on each dataset. The detailed
dataset specifications as well as the target dimension of the
JL transform are summarized in Table 3.

Implementation details. The implementation of our core-
set mostly follows Algorithm 1 but involves an important
modification. Since our experiment is to generate a coreset
with a specified size budget s (instead of a pre-defined target
error), the error parameter β, which controls the coreset size,
is no longer useful. Consequently, we replace the coreset
size upper bound 10ktβ in Line 8 directly with the budget
s. We also replace the third parameter ℓ = βτ of the hash
function in Line 5 with τ . The coresets generated in this
manner may not have an exact size of s, but it is nonetheless
close to s.

Baselines. We employ five baselines for k-CENTER, one
is a brute-force benchmark, three are coreset-based, and the
other one is based on tree embedding method. The brute-
force benchmark, named benchmark, runs Gonzalez’s
algorithm on the entire dataset. The three baseline coresets
are as follows: a) a heuristic coreset based on uniform sam-
pling, called uniform, which samples uniformly a subset
of a given size from the dataset; b) a coreset designed for low
dimensions, called low-dim, which has a worst-case size
of O(k2O(d)) (Agarwal et al., 2004); c) a coreset designed
for k-MEDIAN clustering, called k-median (Chen, 2009;
Cohen-Addad et al., 2021). We run a Gonzalez’s algorithm
on the coresets. The last baseline is based on tree embed-
ding, where we first run a fast tree embedding algorithm via
randomly-shifted grid (Indyk, 2004), which has O(log2 n)
distortion, followed by running Gonzalez’s algorithm on the
tree embedding, referred to as tree-embedding.

Note that there is no standard way to adapt the low-dim
construction to our context; a naı̈ve implementation can
lead easily to a coreset size close to O(k2O(d)), which is
prohibitively large for our datasets. In our experiments, we
implement this low-dim baseline in a manner similar to
our coreset construction, with the only difference being that
we do not use a random shift in the hash function.

Experiment setup. For all experiments, we set the num-
ber of centers k ≈

√
n, where n denotes the size of the

dataset. For coreset baselines, we vary the target coreset
size s (ranging from k up to 30k), compute each baseline
coreset with the target size s, and evaluate the clustering
cost on the full dataset. We report both the running time
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Figure 3: The running time evaluation for all baselines in each dataset.

and the evaluated cost, averaged over 3 independent trials.
All algorithms are implemented in C++ and compiled with
Apple Clang version 15.0.0 at -O3 optimization level. All
the experiments are run on a MacBook Air 15.3 with an Ap-
ple M3 chip (8 cores, 2.22 GHz), 16GB RAM, and macOS
14.4.1 (23E224).

Experiment results. We depict in Figure 1 the clustering
cost of the baselines. More specifically, this also shows
a trade-off between the coreset size and the clustering
cost for coreset baselines (and for non-coreset baselines
benchmark and tree-embeddingwe simply plot their
cost as a constant function of size). Our coreset uses 5% of
the full dataset to achieve a <1.3 times of benchmark’s
costs on all datasets. Moreover, our algorithm consis-
tently achieves the smallest cost compared with the other
uniform, low-dim and tree-embedding baselines,
and outperforms k-median baseline on most datasets,
which confirms the superior performance of our coresets.

We give more discussions on the performance of baselines.
The uniform baseline performs generally worse than ours
and low-dim (albeit comparable to low-dim in Cover-
type), which is expected, since naı̈ve uniform sampling may
not hit sparse clusters. This is particularly seen in Kddcup
dataset, where it has been observed that this dataset has out-
lier/noisy points (Tavallaee et al., 2009). The performance
of low-dim is closer to ours, which is an interesting fact,
since our implementation helps it to escape the worst-case
size of k · 2−O(d) on the tested datasets. As mentioned, the
only difference between the implementation of low-dim
and ours lies in whether or not a random shift is applied in
the hash function (Lemma 3.2). Therefore, the performance
gain of ours justifies the effectiveness of a random shift even
on real-world datasets. The k-median baseline achieves
lower costs on Covertype. This suggests that the solutions
to k-MEDIAN and k-CENTER are similar on this dataset.
The tree-embedding baseline performs poorly across
all datasets. this is due to the fact that the tree embedding
method only provides bounded distortion in expectation,
which is insufficient for the k-CENTER objective, where the

maximum distance is critical.

We also report the variance of our algorithm in Figure 2,
which is very small compared to the magnitude of the cost.
Finally, we report in Figure 3 the running time, including
both coreset construction and the execution of Gonzalez’s
algorithm, as a function of coreset size. Ours yields a 2x - 4x
speedup over benchmark, and has generally comparable
running time with other baselines albeit achieving a better
accuracy as discussed above.
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A. Proof of Lemma 2.2
Lemma 2.2 (Coarse approximation). There is an algorithm that, given as input a dataset P ⊂ Rd with |P | = n and an
integer k ≥ 1, computes a poly(n)-approximation to the k-CENTER cost value with probability at least 1− 1/ poly(n),
running in time O(nd+ npolylog(n)).

Proof. The plan is to first do a random projection to 1D, and show that the pairwise distance is preserved up to poly(n)
factor. This step takes O(nd) time. Then we can apply an off-the-shelf near-linear n · polylog(n) time algorithm for
k-CENTER on 1D (Megiddo & Tamir, 1983).

Specifically, let v ∈ Rd be a random vector with entries sampled independently from a standard Gaussian distribution, i.e.,
v ∼ N (0, Id). For every point in P , compute its inner product with v, resulting in P ′, i.e., P ′ = {⟨p, v⟩ : ∀p ∈ P}. P ′ can
be interpreted as the projection of P onto one-dimension. It remains to prove the following distortion bound.

Claim. Pr
[
∀x, y ∈ P, dist(x,y)

poly(n) ≤ |⟨v, x⟩ − ⟨v, y⟩| ≤ dist(x, y) · poly(n)
]
≥ 1− 1/poly(n).

Proof of Claim. The claim trivially holds if x = y, and hence we assume x ̸= y. Let u := (⟨v, x⟩ − ⟨v, y⟩)/ dist(x, y).
Then by a standard property of Gaussian, u ∼ N (0, 1). On the one hand, by Markov’s inequality, we immediately
obtain Pr[|u| ≥ poly(n)] ≤ 1/ poly(n) since E[|u|] = Θ(1). On the other hand, since the density function of N(0, 1)
is upper bounded by 1/

√
2π, we know that Pr[|u| ≤ 1/ poly(n)] ≤ 1/ poly(n) by integrating the density function from

−1/ poly(n) to 1/ poly(n). This finishes the proof.

B. Proof of Lemma 5.2
Lemma 5.2. Suppose that τ ≥ opt. With probability at least 1− 1/n, there exists j ≤ L such that Q(j) = ∅ at Line 9.

Proof. Fix some iteration j in the inner for-loop (Line 4). We claim that

Pr
[
|Q(j)| ≤ 1

2
· |Q(j−1)|

]
≥ 1

2
. (1)

That is, in any given iteration, the size of Q(j) decreases by a factor of at least 2 with probability at least 1
2 . Over the L

iterations of the for-loop, if this size reduction occurs in at least log n iterations, then Q(j′) will be the empty set for some
j′ ≤ L. Assuming that inequality (1) holds, the probability that the size reduction occurs less than log n times is negligibly
small:

Pr
[
Q(L) ̸= ∅

]
≤

⌈logn⌉∑
q=0

(
L

q

)
· 1

2L

(∗)
≤ 1

2L

(
L · e
⌈log n⌉

)⌈logn⌉

=
1

32⌈logn⌉ · (5e)
⌈logn⌉

<
1

2⌈logn⌉ ≤
1

n
,

where (∗) follows from the bound
∑k

i=0

(
n
i

)
≤ ( enk )k (see, e.g., Exercise 0.0.5 in Vershynin (2018)).

It remains to prove inequality (1). Let {c∗1, . . . , c∗k} be an optimal solution for k-CENTER on P , thus Q(j−1) ⊆ P ⊆⋃k
q=1 BP (c

∗
q , opt). Let C1, C2, . . . , Ck be a partition of Q(j−1) such that Cq ⊆ BP (c

∗
q , opt) for all q ∈ [k]. In particular,

diam(Cq) ≤ 2 opt for each Cq. We say that a cluster Cq is large if |Cq| ≥ |Q(j−1)|
2k , and small otherwise. Denote by C the

set of large clusters. Note that the number of points in small clusters is at most k · |Q
(j−1)|
2k = |Q(j−1)|

2 . Let Ψ be the event
that the set S(j) of samples contains at least one point from each large cluster. By a union bound, the probability that Ψ does
not happen is

Pr
[
Ψ
]
= Pr

[
∃ large cluster Cq s.t. Cq ∩ S(j) = ∅

]
12
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≤
∑
Cq∈C

Pr
[
Cq ∩ S(j) = ∅

]

=
∑
Cq∈C

(
1− |Cq|
|Q(j−1)|

)O(k·logn)

≤ k ·
(
1− 1

2k

)O(k·logn)

=
k

nO(1)
≤ 1

n
.

Next, condition on Ψ. Then S(j) contains a point from Cq for every large cluster Cq. Since each cluster has diameter

at most 2 opt and more than half of the points belong to large clusters, it follows that there are at least |Q(j−1)|
2 points

in Q(j−1), each of which is within a distance of at most 2 opt ≤ 2τ from some point in S(j). Our ANN will return
with high probability, for each x ∈ Q(j), an estimate d̂ist(x, S(j)) such that d̂ist(x, S(j)) ≤ β dist(x, S(j)). It follows
that d̂ist(x, S(j)) ≤ 2βτ for all the large cluster points. Consequently, all these points will be included in R(j) and thus

|Q(j)| =
∣∣Q(j−1) \R(j)

∣∣ ≤ |Q(j−1)|
2 , with probability at least 1

2 , as claimed.

C. Composability and Reducibility of Covering
Note that our α-coresets in both Theorem 1.1 and Theorem 1.2 for a point set P are specifically (α opt)-covering for
P . We show that such covering is both composable and reducible, in the following claims. Combining both claims,
our coreset may be plugged in a merge-and-reduce framework (Har-Peled & Mazumdar, 2004), which has been used to
obtain streaming (Har-Peled & Mazumdar, 2004), dynamic (Henzinger & Kale, 2020) and distributed (Balcan et al., 2013)
algorithms for clustering, to imply algorithms for k-CENTER in the mentioned settings.

However, we note that the claimed composability and reducibility may not hold directly from the definition of our coreset
(which is more general than covering).
Claim C.1. For a generic point set W ⊆ Rd, let opt(W ) be the optimal k-CENTER cost on W . Consider two datasets
A,B ⊆ Rd, and suppose SA, SB are (α opt(A))-covering for A and (α opt(B))-covering for B, respectively. Then,
SAB := SA ∪ SB is an (α opt(A ∪B))-covering for A ∪B.

Proof. We verify the definition. Consider any point x ∈ A ∪B, then

dist(x, SAB) = dist(x, SA ∪ SB) = min{dist(x, SA),dist(x, SB)} ≤ min{α opt(A), α opt(B)} ≤ α opt(A ∪B).

This finishes the proof.

We also give the following claim on the reducibility of covering.
Claim C.2. Consider a dataset P ⊆ Rd, and suppose S is an (α opt(P ))-covering on P . Then any (β opt(S))-covering
on S is an (α+ β) opt(P )-covering on P .

Proof. We verify the definition. Consider an arbitrary (β opt(S))-covering S′ on S. For a generic set W ⊆ Rd and y ∈ Rd,
let W (y) denote the neareset neighbor of y in W . Then for every x ∈ P , we have

dist(x, S′) = dist(x, S′(x)) ≤ dist(x, S(x)) + dist(S(x), S′(x)) ≤ α opt(P ) + β opt(S) ≤ (α+ β) opt(P ).

This finishes the proof.

D. Recursive Application of Theorem 1.1
In the k = n1−ϵ regime which we focus on, a recursive application of Theorem 1.1 will lead to an improved coreset size, as
well as a respective improvement in the runtime for the k-CENTER algorithm. The optimal number of recursion iterations
depends on k. In what follows we provide a more detailed explanation.

Denote by nj the coreset size after j applications of our algorithm in Theorem 1.1. The first coreset is of size roughly

n1 ∼ knα−2/3

, running it again will get us an O(α)-coreset of size n2 ∼ k ·
(
knα− 2

3

)α− 2
3

= k1+α− 2
3 · nα− 4

3 , and this is

13
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an improvement when k ≤ n1−α− 2
3 . In general, for any fixed j, one can apply the algorithm recursively j times and get an

O(j · α) coreset of asymptotic size nj ∼ k
∑j−1

q=0

(
α− 2

3

)q

· n
(
α− 2

3

)j

= k
1−(α−2/3)j

1−α−2/3 n(α−2/3)j . This is beneficial as long as

k ≤ n1−α− 2
3

j . However, one should note that our notation hides polylogarithmic factors that will accumulate. Thus one
should use the recursion only a constant number of times.

Applying (Eppstein et al., 2020) on top of the resulting coreset after j iterations will lead to an O(j · α) approximation

algorithm for k-CENTER with running time bounded by Õ
(
n+ n1+α−2

j

)
= Õ(n) + Õ

(
k

1−(α−2/3)j

1−α−2/3 n(α−2/3)j
)1+α−2

≤

Õ

(
n+ k

1+α−2

1−α−2/3 nα− 2j
3 ·(1+α−2)

)
, for any fixed j.
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