
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLM-BASED VALIDATED CODE TRANSLATION AND
REPAIR FOR HIGH-PERFORMANCE SOFTWARE

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an LLM-based code translation and repair framework called TRI-
anslate, which translates existing code written in an arbitrary source language
to an arbitrary target language and validates that the output code adheres to de-
sired properties via testing. Existing work has shown that LLMs are remarkable at
code translation and repair tasks. Furthermore, specialized fine-tuned or distilled
LLMs can extend these capabilities to handle niche languages, perform syntax
repair with relatively small cost, or perform semantic repair taking into account
common errors. However, the most robust currently available tools that leverage
these LLMs assign all these distinct subtasks to a single LLM with a feedback loop
from a validation tool. Further, they rely on a rigid set of possible errors as part of
the corrective feedback from the validator or verifier. By contrast, TRI-anslate al-
lows for a user-specified error set and leverages 3 separate LLM feedback loops
to fully utilize the capability of LLMs specialized for generation, syntactic re-
pair, and semantic repair. This also avoids wasting context of later LLMs on the
correction conversation of previous LLMs. We conduct an extensive evaluation,
showcasing the advantage of TRI-anslate over the existing work using the same
setup (≈ 8% increase comparing the base model, ≈ 45% for the fine-tuned model
in CUDA to OpenMP Target Offloading Translation). We also demonstrate how
being able to choose different models per subtask allows TRI-anslate to outper-
form LASSI using any of the individual models, and highlight the extensibility
of TRI-anslate by documenting the effort required to add a new translation task
(CUDA to SYCL).

1 INTRODUCTION

Porting legacy and machine-specific code, via automated translation techniques, to more modern
forms that are compatible and performant on the latest machines is increasingly important, espe-
cially in High-Performance Computing (HPC) settings Świniarski & Derezińska (2025); Bandaru-
palli (2025); Ranasinghe et al. (2025); Diggs et al. (2024); Godoy et al. (2023); Smith & Garcia
(2020); Gel et al. (2017). The motivations for automated code translation are many, including im-
proved security, translating institutional knowledge preserved in legacy code into a modern form,
and lowering maintenance cost by leveraging modern tooling and software infrastructure Dearing
et al. (2024); Juckeland et al. (2017). Further, automated code translation tools can be cheaper and
less error-prone. By contrast, manual translation is costly, time-consuming, and error-prone, leading
to interest in automated code translation tools Pennycook et al. (2019); Juckeland et al. (2017); Du
et al. (2012); Trott et al. (2012); Noaje et al. (2016); Cooper et al. (2003).

This interest has prompted significant industrial research and development in transpilers , rule-based
code translation tools which map program syntax from a given input programming language into
the target while preserving semantics of the programs being translated. Developing such tools re-
quire one to have expertise in both (the source and target) languages, and further require accurate
modeling of the semantics of each language for validation. Another important requirement is that
the generated code in the target language must be human readable, for otherwise the entire point
of porting legacy code to modern infrastructure is rendered moot. These requirements make de-
velopment of transpilers expensive to develop in general, unapproachable for niche languages, and
can introduce subtle errors unless the tool is designed and developed extremely carefully in order to
properly handle semantic edge cases.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In recent years, prompted by the rise of Large Language Models (LLMs), their efficacy in handling
many code tasks, cost-effectiveness, flexibility, and adaptability, we have witnessed groundbreaking
developments in LLM-base code translation tools . As long as one has sufficient high-quality train-
ing data on the source and target languages, LLMs have shown great success in generating translated
code which has all the right properties, i.e., is syntactically correct, seems to preserve program se-
mantics, and even appears to be human-written. LLMs have also shown success in feedback-based
code repair, for certain classes of syntactic and semantic errors Chen et al. (2021); Roziere et al.
(2023); Joshi et al. (2023), via a natural pairing of an LLM and a validation tool. The LLM pro-
vides generations or repair attempts, and a validation tool judges the attempt and provides corrective
feedback Song et al. (2025); Guo et al. (2023).

However, these tools do have some weaknesses, such as their inability to scale to large programs as
well as traditional transpilers Li et al. (2022); Austin et al. (2021). In addition, general foundation
models perform poorly in languages with low data or opaque feedback from verification tools Lu
et al. (2021). The second weakness is somewhat overcome by fine-tuning models with specialized
datasets. However, fine-tuning typically results in a loss of the generality, i.e., the tool becomes
excellent in the narrow context for which it was fine-tuned, but then loses other capabilities that it
previously possessed prior to fine-tuning Hu et al. (2022); Dettmers et al. (2023). This results in
LLMs which can address one component of the translation task, but performs poorly for the others.

1.1 OUR APPROACH

To address the need for better LLM-based code translation tools, we introduce TRI-anslate, a fully
automated end-to-end code translation tool that leverages three LLMs in separate feedback re-
prompting loops for generation, syntax repair, and semantic repair, where the syntatic and semantic
repair LLMs in turn get feedback from a validator (tester). This system of dividing the translation
into these three subtask loops allows the models to not inherit unrelated context from the past, and
further be more specialized through different system prompts. Also, when particular subtasks re-
quire larger models and more effort, this system allows for bulking up a certain stage without being
forced to use an expensive model on the entire process. Similarly, if a smaller model is capable of
handling a specific stage, this system allows for greater efficiency. We demonstrate the capability
and flexibility of TRI-anslate through comparison against an existing LLM-based HPC code trans-
lation tool, evaluating the success rate on an existing translation task, and showcasing the ease of
implementing an arbitrary new translation task.

1.2 CONTRIBUTIONS

In more detail, we make the following contributions:

1. Novel code translation method via 3 LLMs looped with in-context verifier feedback:
We present an LLM-based code translation and repair tool called TRI-anslate, which lever-
ages 3 separate LLM and validator feedback loops to ensure code adheres to specification
of both syntax and semantics. TRI-anslate has several advantages over prior LLM-base
code translation tools. It is more flexible in that the the various components of the tool are
plug-and-play and one can leverage fine-tuned LLMs designed for different translation sub-
tasks. TRI-anslate is also more scalable and efficient because the design of the triple LLM
corrective feedback loop enables the context windows to be used more efficiently. Further,
we have been careful in making implementation of TRI-anslate to be agnostic to the source
and target languages. With appropriate fine-tuning, validators, and prompt specification,
TRI-anslate has the ability to handle any pair of source and target languages.

2. Extensive experimental evaluation against SOTA: Using a selection of diverse scientific
computing kernels collected in the HeCBench benchmark suite Jin & Vetter (2023), we
compare TRI-anslate against LASSI Dearing et al. (2024), a state-of-the-art code transla-
tion tool for scientific software, to showcase the value of the multi-feedback loop design.
TRI-anslate successfully translated 5/62 (≈ 8%) more kernels on the base model and 28/62
(≈ 45%) on a fine-tuned model. We show that by choosing unique LLMs for the different
feedback loops, we can outperform all options for LASSI using the same models. We also
showcase the ease of extending TRI-anslate for arbitrary new translation tasks, highlighting
its flexibility.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Transpilers. These tools have decades of rich history, which we won’t be able to do justice to
here. We briefly mention some recent transpilers such as java2python Melhase et al. (2016) and
py2java Fomin (2019), and TSS code converter TSS (2023), a commercial J2P transpiler. Despite
decades of work, it is well-known that human-written transpilers are error-prone and are expensive
to write and maintain as they require expertise in many small details of both the source and target
languages. This also results in unavailability when either language is without a large following or
high demand.

By contrast, LLM-based code translation tools, including ours, are cheaper to maintain and develop,
since it is data-driven. The primary challenge is in finding or creating sufficiently large high-quality
dataset of equivalent source-target program pairs. Such tools are also more flexible than human-
written transpilers, i.e., can be easily adapted to newer settings without requiring significant effort.

Transformer and ML-based Code Translation Tools. Early ML approaches included encoder-
based CodeBERT Feng et al. (2020), decoder-based CodeGPT Lu et al. (2021) and CodeT5 Wang
et al. (2021), an encoder-decoder system that uses developer supplied identifiers to aid translation.
PLBART Ahmad et al. (2021) is a separate unified transformer model trained via denoising autoen-
coding for a range of NL and Programming Language (PL) tasks.

LLM-based methods. Recent trends in the area have been gravitating towards using LLMs for
translation paired with the use of validation or verification tools during fine-tuning as well as in-
ference. The use of validation and/or verification tools enable one to be certain that the translated
code adheres to desired properties (most importantly, the semantic input/output equivalence between
the source and target programs). Examples include TransCoder-ST Roziere et al. (2022) an unsu-
pervised framework for code translation that employs self-training through automated unit tests to
assess equivalence between source and target code implementations. Wang et al. (2022) uses rein-
forcement learning and pass/fail compiler feedback to fine-tune for code generation. PPOCoder Sho-
jaee et al. (2023), adds CodeBLEU-inspired reward signals during fine-tuning. The Cotran tool Jana
et al. (2024) uses a variant of Reinforcement Learning with Symbolic Feedback (RLSF) Jha et al.
(2024) in order to fine-tune a pair of LLMs back-to-back with the goal of translating Python to Java
and back.

In the High-Performance computing domain, LASSI uses compiler and test case feedback during
translation inference to check the LLM generated solutions are valid. Our approach extends these
LLM-based translation methods by subdividing inference into three subtasks (namely, generation,
syntactic repair, semantic repair), allowing for the usage of specialized LLMs for each subtask.

3 TRI-ANSLATE DESIGN AND ARCHITECTURE

3.1 OVERVIEW

TRI-anslate is designed to fully utilize the advancements in LLM-based translation subtasks while
retaining validation of results and overall translation success. The infrastructure is also easily ex-
tensible, with easy to edit prompts, LLMs, and validation tools. TRI-anslate also maintains useful
statistics and runtime information for the user.

Figure 1 shows an overview of the infrastructure for the experiments of this paper. Note that all
components within the figure are able to be customized or swapped out for existing tools to fit a
desired arbitrary translation task. TRI-anslate handles all the data management and bookkeeping
and edges of the figure, and gives interfaces to adjust the nodes. The structure consists of:

1. Preprocessor - prepares the input for translation
2. Generation Loop - performs initial translation attempts and filters trivial mistakes
3. Syntactic Repair Loop - validates the syntax of the generation and attempts repairs
4. Semantic Repair Loop - validates the semantics of the generated code and attempts repairs

Should any of these components fail to succeed beyond a set number of times per component (mod-
ifiable heuristics), the process will restart so as to avoid getting stuck too long on a single attempt.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: TRI-anslate Infrastructure Overview

The infrastructure was implemented in python, providing modifiable callback-style functions and
prompt dictionary, allowing full user control over the translation while providing the infrastructure
to abstract away the data management and other underlying annoyances.

3.2 PREPROCESSOR

Prior to translation, we first put the input code through a preprocessor. This module allows the input
to be transformed into a form more amenable to LLM input or more relevant to the task at hand.

For our experiments, this component served two functions. One goal was extracting the individual
kernel functions from the input because we are performing function by function translation, and
secondly, we add in a hint about the interface we want it to adhere to so individual functions are
compatible. These inputs came from HeCBench Jin & Vetter (2023), a collection of heterogeneous
computing benchmarks written with CUDA, HIP, SYCL/DPC++, and OpenMP-4.5 target offloading
for studying performance, portability, and productivity. The benchmark suite is also utilized by
LASSI for evaluation.

3.3 GENERATION LOOP

The next component of TRI-anslate is the generation loop. This loop is responsible for performing
the initial translation attempt and checking that it obeys the requirements of the problem. The LLM
is provided the system prompt and initial generation prompt (see Appendix D for the exact prompts
used during experiments), and a generation is made. The validator confirms that the generation
adheres to the requirements and returns feedback and a status that matches up directly with a prompt
in the prompt dictionary if it does not. This feedback and status are used in reprompting based on the
specific issue discovered. Once the validator has certified that the generation passes requirements, it
allows the current attempt to break out of this loop.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For our experiments, the requirements we checked are that the codeblock existed in the attempt,
and that it contained either OpenMP Target offloading statements or SYCL code depending on the
experiment being run. This helps to rule out cases where the LLM generates no code at all, wasting
repair time, or sequential code, which can cause false positives. Note that a similar check that the
code contains the goal programming model was not present in the LASSI tool, but we added it for
fair comparison during experiments.

3.4 SYNTACTIC REPAIR LOOP

The syntactic repair loop is responsible for getting the code syntactically correct, which in most
cases means able to compile. Similar to before, the LLM is given the system prompt, but unlike
before, we check the correctness before prompting. If the validator detects any issues, it matches
these up to the reprompting options and uses the feedback and prompt to fix the mistakes in the code.

For our experiments, this validator replaced the function in an existing correct translation in
HeCBench with the LLM-generated code and attempted to compile. The compiler errors were fed
directly back into a repair prompt. Our method does allow for different prompts of fine granularity
for each of the possible compiler error types, but we opted instead to use a general prompt and the
provided output from the compiler as the feedback as this exact validation was also done in LASSI.

3.5 SEMANTIC REPAIR LOOP

Lastly, we have a semantic repair loop. This component generally uses errors in runtime behavior
of the code or formal semantic checks to guide repair. Firstly, we have the validator perform checks
on the code and use feedback and prompt dictionary matching as before. However, note that after
performing semantic repair, we need to ensure the LLM did not modify the code into an attempt
which no longer compiles, therefore each attempt links back to another pass through the syntactic
repair loop.

In our experiments, the semantic checks were tests already present within the HeCBench files we
substituted into. Therefore, we ran the tests and gave failures as feedback. This is definitely an
informal guarantee of translation success, however it matches the approach used by LASSI, and
could be substituted by something more rigorous depending on the task.

4 EXPERIMENTAL EVALUATION

We aim to answer two research questions by benchmarking and analyzing the results of TRI-anslate:

• RQ1 (Comparison Against SOTA): How does TRI-anslate compare against SOTA LLM-
based code translation tools?

• RQ2 (Design Flexibility): How adaptable is TRI-anslate to new code translation tasks?

4.1 EVALUATION SETUP

To collect the results referenced in this section, we run on a machine running Ubuntu (version 22.04),
an AMD EPYC 9454 (Genoa) system with two 48-core CPUs, 1.5 TB RAM, and an NVIDIA
H100 NVL GPU using Ollama (version 0.11.10) application programming interface through Python
(version 3.10.12) to run the models.

The kernels from HeCBench are specifically chosen from diverse scientific domains for a better
representation of real world problems.

The lables in Table 1 are used to refer to LLM triples used in TRI-anslate (B.#) and individual
LLMs used in LASSI (C.#) during the experiments. Also, ChatPort-32B is a version of qwen2.5-
coder:32b-instruct fine-tuned using translation examples of either CUDA to OpenMP Offloading or
CUDA to SYCL depending on the task being tested. This fine-tuning was done in accordance with
the method described in Pophale et al. (2025).

Exact model versions, seeds, temperature settings, prompts, and verbose breakdowns of the bench-
mark results are available in the appendicies B, C, D, and E.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: TRI-anslate and LASSI LLMs
ID Generation LLM Syntactic Repair LLM Semantic Repair LLM
B.1 qwen2.5-coder:32b-instruct qwen2.5-coder:32b-instruct qwen2.5-coder:32b-instruct
B.2 ChatPort-32B ChatPort-32B ChatPort-32B
B.3 qwen2.5-coder:32b-instruct qwen2.5-coder:7b-instruct qwen2.5-coder:32b-instruct
B.4 ChatPort-32B qwen2.5-coder:7b-instruct qwen2.5-coder:32b-instruct
B.5 ChatPort-32B qwen2.5-coder:7b-instruct gpt-oss:20B
C.1 qwen2.5-coder:32b-instruct
C.2 ChatPort-32B
C.3 qwen2.5-coder:7b-instruct

Table 2: CUDA to OpenMP Results

LLM Triple Solved / 62
TRI-anslate Single Code LLM B.1 32
TRI-anslate Fine-Tuned LLM B.2 45
TRI-anslate Smaller Syntactic Repair B.3 50
TRI-anslate Fine-Tuned Gen. & Smaller Syntax Repair B.4 47
TRI-anslate F-T Gen. & Smaller Syntax & Chain-Of-Thought Semantic Repair B.5 44
LASSI w/ qwen2.5-coder:32b-instruct C.1 27
LASSI w/ ChatPort-32B C.2 17
LASSI w/ qwen2.5-coder:7b-instruct C.3 31

4.2 RQ1: COMPARISON AGAINST SOTA

In order to evaluate our tool against the current state-of-the-art, we test CUDA to OpenMP trans-
lation against LASSI. Edits were made to LASSI in order for fair comparison. These edits are
adding a timelimit cutoff of 10 minutes per testcase, adding an additional validation check that the
code generated by the LLM uses the desired model (OpenMP Target Offloading), and adjusted the
prompts and compilation to be for function-to-function translation instead of whole program, includ-
ing adding the desired interface of the translated function and a validation check that the generated
code matches. These same requirements were imposed on TRI-anslate, using the same feedback in
prompts in event of a mismatched function interface or the code did not use the desired programming
model.

The results of running TRI-anslate and LASSI are in table 2. Some interesting observations come
from these tests.

Firstly, both LASSI and TRI-anslate benefited from switching to the smaller code model. Intuition
predicted that the smaller model would suffer a performance hit if used for the entirety of translation,
but would have less of an issue if utilized only for the syntactic repair subtask of the translation. The
fact that LASSI also outperformed using the smaller model compared to the larger version of the
same model was unexpected. It is difficult to pinpoint an exact reason for this. One potential
reason is the speed of generation allowed both tools to generate more attempts within the timelimit.
Another interesting result was that the fine-tuned LLM outperformed the basemodel when used for
all three stages, succeeding on 45 cases instead of 32, but when comparing the basemodel with
smaller syntax repair against the fine-tuned model with smaller syntax repair, the fine-tuned model
translated 3 fewer tests successfully. This implies that the generation of the basemodel is potentially
stronger than the fine-tuned LLM, but the fine-tuned LLM is better at the repair stages, the opposite
of what the fine-tuning was expected to produce.

B.1 and C.1, along with B.2 and C.2 show apples-to-apples comparison where LASSI and TRI-
anslate are using the exact same model. One apparent result from these experiments is that using 3
feedback loops allowed us to achieve better results than LASSI even using the exact same model and
setup. TRI-anslate succeeded on 5/62 (≈ 8%) more test cases for using qwen2.5-coder:32b-instruct,
and 28/62 (≈ 45%) more test cases when using the fine-tuned ChatPort-32B model. Although there

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: CUDA to SYCL TRI-anslate Results
LLM Triple Solved / 62
Single Code LLM B.1 46
Fine-Tuned LLM B.2 38

is no way to be certain, the reasoning we feel is most likely for this occurrence is the ability to have
the chat reset and distinct system prompts per subtask. This clears out the context used by prior
stages of translation and guides the current step better, allowing the model to best match the subtask
at hand without overloading the model context with unrelated fixes made previously. This seems
to affect the fine-tuned model much more significantly, perhaps due to the loss of generality from
fine-tuning affecting the model’s capability to switch subtasks.

Additionally, the comparison between B.3 and C.3 shows that while TRI-anslate was able to benefit
from the smaller model during syntactic repair only, LASSI cannot choose to use different models
mid-translation. In both the cases of LASSI only using the small model and when only using the
larger model, it performed worse and could not reach the 50 solved by the combination of the two
used by TRI-anslate.

Another result is that switching from the single code LLM of qwen2.5-coder:32b-instruct to the
fine-tuned ChatPort-32B LLM saw an increased success in translation where LASSI actually saw
a decrease in successful translations. This fine-tuned model may be overloaded when the context is
kept and there is no system prompt to change the focus of the model to the new subtask.

4.3 RQ2: DESIGN FLEXIBILITY

In order to showcase the flexibility of our tool, we implemented a different translation task, CUDA
to SYCL, on the same test set. SYCL is a very different programming model than OpenMP, and
equally or more niche compared to the target offloading semantics of OpenMP. This task also does
not have any available traditional transpilers, and there are not that many resources in terms of
datasets and code examples. This makes CUDA to SYCL translation another perfect task for LLMs,
more specifically fine-tuning LLMs to best address the problem.

In order to extend our tool to handle this new translation task, we have to edit a few components
of the process. The prompt dictionary file is changed to have the prompts in D.2 instead. The
generation validator is changed to ensure SYCL was generated instead of OpenMP Target. The
syntactic validator calls a SYCL compiler instead of OpenMP and replaces the function in a SYCL
oracle instead of an OpenMP oracle. No changes were required for the preprocessor because we are
taking from the same dataset, and no changes were required for the semantic validator to run the
testcases.

In general, changing to a different translation task involves swapping out the preprocessor, valida-
tors, and prompts. The prompts are in a simple json file and the preprocessor and validators are all
done through python callback-style functions which provide all the relevant information regarding
the state of the translation and a scratchpad to store data for other validator calls later in the process.
No part of the system is language specific, allowing for fair results regardless of the source and
target language. In Table 3, we see that out of the same tests, TRI-anslate was able to adapt and find
decent success on translation to a completely different target programming model.

TRI-anslate is already prepared to run a user provided list of files/folders and create detailed for-
matted reports of the results. This allows for testing and comparing different model triples on many
different benchmarks easily. TRI-anslate also has built in intranode parallelism support, allowing
for all available GPUs to run models attacking the current testcase.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 DISCUSSION

5.1 LIMITATIONS

One limitation of the work is that we evaluate TRI-anslate on only a single benchmark set for these
code translations. The HeCBench benchmark suite is the source for all the test kernels we translate,
the source for the fine-tuning of the ChatPort LLM (different examples than the test set), and the
source of the test cases for evaluation of the translations. This is unfortunately mostly unavoid-
able, as HeCBench is the only suite of programs for high-performance code with valid translated
implementations in multiple different niche HPC programming models.

Another limitation is the work only compares to LASSI and not a large suite of existing code trans-
lation tools including traditional transpilers. Part of the value of the work of LLM-based code
translation is the flexibility to handle more niche source and target languages via fine-tuning, which
we tested with our experiments. In these cases, there are no existing transpilers and it would be pro-
hibitively difficult to write one. Also, many existing LLM-based approaches do not have validation
or prompting easily mapped to this task.

Although our method can be extended to do more rigorous checking, one possible limitation for our
evaluation is that we can have false positives. Possible examples include using compiler-specific
code which would not be portable, test set benchmarks with weak tests, or some sort of cheating
where the model hardcodes in the answers to tests that it failed. This concern is valid, however
the experiments were done under the same models and same validation criteria, so the tools are
completely equally evaluated. In the future, adding multiple compilers to test, or generating tests
randomly and getting expected output via the oracle implementation may be a quick way to attempt
to make the validation more robust. Also, formal verifiers exist as an option if the code is pre-
annotated with invariants or proof goals.

5.2 FUTURE WORK

Currently, the TRI-anslate infrastructure is capable of parallelizing across multiple GPUs running
models for a given test case. This parallelism assists the scalability of the approach, but has not
been thoroughly examined nor evaluated. Also, this parallelizes multiple chat threads for the same
test case for more attempts, although it may be more practically useful to instead parallelize across
different test cases to leverage all the computing resources for efficient translation of large scale
programs.

We also would like to investigate more thoroughly the capabilities of models to handle the generation
and repair. Specifically, we believe that agentic-style or commercial models could potentially prove
better at some subtasks. More testing needs to be done to find the specific triple of model types that
balance results and efficiency.

Also, our infrastructure naturally creates good training data for fine-tuning repair models. We save
all attempts, including those before and after syntactic and semantic success with the validator feed-
back. This is an opportunity to extend the framework for a symbiotic relationship with existing work
on fine-tuning for repair.

6 CONCLUSIONS

We have presented TRI-anslate, a novel framework for performing automatic code translation
through the use of a triple validated LLM feedback loop system. TRI-anslate allows for separa-
tion of subtasks, specialization of models, and the refreshing of model context, leading to TRI-
anslate outperforming LASSI. TRI-anslate is able to successfully perform more translations in a
one-to-one comparison, using the same models (≈ 8% for base model, ≈ 45% for fine-tuned), and
with the ability to use specific models with specific subtasks, surpass any possible LASSI run using
the same models. TRI-anslate is also language agnostic and shown to be easy to extend for use in
new arbitrary code translation tasks, able to handle CUDA to SYCL translation without issue.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

REFERENCES

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified Pre-training for Pro-
gram Understanding and Generation. In Proc. 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2655–2668,
Online, June 2021. ACL. doi: 10.18653/v1/2021.naacl-main.211.

J. Austin, A. Odena, et al. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021. MBPP Dataset.

Gopichand Bandarupalli. Code reborn: AI-driven legacy systems modernization from COBOL
to Java. arXiv preprint arXiv:2504.11335, 2025. URL https://arxiv.org/abs/2504.
11335.

M. Chen, J. Tworek, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Keith D. Cooper, Devika Subramanian, and Linda Torczon. Refactoring fortran 77 legacy codes
to fortran 90: Lessons learned. Software: Practice and Experience, 33(3):295–311, 2003. doi:
10.1002/spe.513.

Matthew T. Dearing, Yiheng Tao, Xingfu Wu, Zhiling Lan, and Valerie Taylor. LASSI: An LLM-
Based Automated Self-Correcting Pipeline for Translating Parallel Scientific Codes . In 2024
IEEE International Conference on Cluster Computing Workshops (CLUSTER Workshops), pp.
136–143, Los Alamitos, CA, USA, September 2024. IEEE Computer Society. doi: 10.1109/
CLUSTERWorkshops61563.2024.00029. URL https://doi.ieeecomputersociety.
org/10.1109/CLUSTERWorkshops61563.2024.00029.

T. Dettmers, A. Pagnoni, et al. QLoRA: Efficient finetuning of quantized LLMs. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Christopher Diggs, Michael Doyle, Ananya Madan, et al. Leveraging LLMs for legacy code mod-
ernization: Challenges and opportunities for LLM-generated documentation. arXiv preprint
arXiv:2411.14971, 2024. URL https://arxiv.org/abs/2411.14971.

Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory D. Peterson, and Jack Dongarra.
From CUDA to OpenCL: Towards a performance-portable solution for multi-platform gpu pro-
gramming. In Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques (PACT), pp. 431–440, 2012. doi: 10.1145/2370816.2370873.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A Pre-Trained Model for Programming
and Natural Languages. In Findings of the Association for Comput’nl Linguistics: EMNLP 2020,
pp. 1536–1547. ACL, 2020.

Nikita Fomin. py2java: Python to Java Language Translator, 2019. https://pypi.org/
project/py2java/.

A. Gel et al. Modernization and optimization of a legacy open-source cfd code for high-performance
computing architectures. Journal of Computational Science, 22:240–252, 2017. doi: 10.1016/j.
jocs.2017.02.006.

William F. Godoy, Steven E. Hahn, Michael M. Walsh, et al. Software engineering to sustain a high-
performance computing scientific application: QMCPACK. arXiv preprint arXiv:2307.11502,
2023. URL https://arxiv.org/abs/2307.11502.

Q. Guo et al. Is self-repair a general capability of llms? In International Conference on Learning
Representations (ICLR), 2023.

E. Hu et al. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations (ICLR), 2022.

Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham Kishore, Aryan Mahajan, and Vijay Ganesh.
CoTran: An LLM-Based Code Translator Using Reinforcement Learning with Feedback from
Compiler and Symbolic Execution. 10 2024. ISBN 9781643685489. doi: 10.3233/FAIA240968.

9

https://arxiv.org/abs/2504.11335
https://arxiv.org/abs/2504.11335
https://doi.ieeecomputersociety.org/10.1109/CLUSTERWorkshops61563.2024.00029
https://doi.ieeecomputersociety.org/10.1109/CLUSTERWorkshops61563.2024.00029
https://arxiv.org/abs/2411.14971
https://pypi.org/project/py2java/
https://pypi.org/project/py2java/
https://arxiv.org/abs/2307.11502


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Piyush Jha, Prithwish Jana, Pranavkrishna Suresh, Arnav Arora, and Vijay Ganesh. Rlsf: Fine-
tuning llms via symbolic feedback. arXiv:2405.16661 [cs.CL], 2024. URL https://arxiv.
org/abs/2405.16661.

Zheming Jin and Jeffrey S. Vetter. A benchmark suite for improving performance portability of the
sycl programming model. In 2023 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 325–327, 2023. doi: 10.1109/ISPASS57527.2023.00041.

S. Joshi et al. Repair is nearly generation: LLMs are few-shot semantic code repairers. In Advances
in Neural Information Processing Systems (NeurIPS), 2023.

Guido Juckeland, Michael Klemm, Ruud van der Pas, and Bronis R. de Supinski. Experiences mi-
grating OpenACC to OpenMP target offloading. In Proceedings of the 13th International Work-
shop on OpenMP (IWOMP), pp. 1–14, 2017. doi: 10.1007/978-3-319-65578-9_1.

Y. Li et al. Competition-level code generation with alphacode. Science, 378(6624):1092–1097,
2022.

S. Lu, D. Wang, et al. Codexglue: A machine learning benchmark dataset for code understanding
and generation. In NeurIPS Datasets and Benchmarks, 2021.

Troy Melhase, Brian Kearns, Ling Li, Iulius Curt, and Shyam Saladi. java2python: Simple
but Effective Tool to Translate Java Source Code into Python, 2016. https://github.com/
natural/java2python.

Rabah Noaje, Joel Falcou, Jean-Marie Falcou, et al. A source-to-source translation framework
for OpenMP to OpenACC. In Proceedings of the 12th International Workshop on OpenMP
(IWOMP), pp. 121–134, 2016. doi: 10.1007/978-3-319-45550-1_9.

S. Pennycook, J. Hammond, S. Wright, and J. Herdman. A survey of performance portability in hpc.
International Journal of High Performance Computing Applications, 33(6):1123–1138, 2019.

Swaroop Pophale, Zheming Jin, and Keita Teranishi. Chatport: Fine-tuned llm for easy code PORT-
ing. In International Workshop on OpenMP 2025 (to appear), 10 2025.

N. R. Ranasinghe, S. M. Jones, M. Kucer, et al. LLM-assisted translation of legacy FORTRAN
codes to C++: A cross-platform study. arXiv preprint arXiv:2504.15424, 2025. URL https:
//arxiv.org/abs/2504.15424.

B. Roziere, M. Allal, et al. Santacoder: Don’t reach for the stars! arXiv preprint arXiv:2301.03988,
2023.

Baptiste Roziere, Jie Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. TransCoder-ST: Leveraging Automated Unit Tests for Unsupervised Code Translation.
In Tenth International Conference on Learning Representations (ICLR), 2022.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based Code
Generation using Deep Reinforcement Learning. Transactions on Machine Learning Research,
2023. ISSN 2835-8856.

E. Smith and F. Garcia. Modernizing legacy systems with microservices: A roadmap. In Proceed-
ings of the International Conference on Software Architecture (ICSA), pp. 105–115, 2020. doi:
10.1109/ICSA.2020.00020.

Z. Song et al. Mind the gap: Quantifying self-improvement in large language models. In Proceed-
ings of the Web Conference (WWW), 2025.

Adrian Świniarski and Anna Derezińska. Automated migration of legacy code from the C++14
to C++23 standard. In Proceedings of the 20th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE), pp. 549–556, 2025. doi: 10.5220/
0013013000003737.

Christian Trott, Alan Gray, et al. Porting molecular dynamics codes from CUDA to OpenCL: A
case study with LAMMPS. Journal of Computational Chemistry, 33(30):2273–2282, 2012. doi:
10.1002/jcc.23056.

10

https://arxiv.org/abs/2405.16661
https://arxiv.org/abs/2405.16661
https://github.com/natural/java2python
https://github.com/natural/java2python
https://arxiv.org/abs/2504.15424
https://arxiv.org/abs/2504.15424


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

TSS. The Most Accurate and Reliable Source Code Converters, 2023. (Tangible Software Solns.):
https://www.tangiblesoftwaresolutions.com/.

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang,
and Qun Liu. Compilable Neural Code Generation with Compiler Feedback. In Findings of the
Association for Computational Linguistics: ACL 2022, pp. 9–19, 2022.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware Unified
Pre-trained Encoder-Decoder Models for Code Understanding and Generation. In Proc. 2021
Conference on Empirical Methods in NLP, pp. 8696–8708. ACL, 2021. doi: 10.18653/v1/2021.
emnlp-main.685.

A USAGE OF LLMS IN PAPER PREPARATION

LLMs were used to assist the writing of this paper. They were used to:

• Aid or polish writing
• Retrieve related work
• Write scripts and functions for analyzing/summarizing experimental results
• Assist in table and figure formatting
• Creating and cleaning bibliography

More specifically: Some sentences were given to an LLM to be rewritten for clarity. Many python
scripts to load in the data and generate LATEX tables were created via refining the initial attempt by
an LLM. Some formatting such as the indentation of LLM triple information in B was suggested by
an LLM. The field of LLM-based software engineering is rapidly developing, so LLMs were used
to retrieve related work to ensure the already cited work in the area was sufficient.

B TRI-ANSLATE LLM INFO

B.1 LLM TRIPLE #1 : SINGLE CODE LLM

GENERATION

Model: qwen2.5-coder:32b-instruct
Temperature: 0.2
Seed: 82

SYNTACTIC REPAIR

Model: qwen2.5-coder:32b-instruct
Temperature: 0.2
Seed: 82

SEMANTIC REPAIR

Model: qwen2.5-coder:32b-instruct
Temperature: 0.2
Seed: 82

B.2 LLM TRIPLE #2 : FINE-TUNED LLM

GENERATION

Model: ChatPort-32B
Base Model: qwen2.5-coder:32b-instruct
Temperature: 0.2
Seed: 82

11

https://www.tangiblesoftwaresolutions.com/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

SYNTACTIC REPAIR

Model: ChatPort-32B

Base Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

SEMANTIC REPAIR

Model: ChatPort-32B

Base Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

B.3 LLM TRIPLE #3 : SMALLER SYNTACTIC REPAIR

GENERATION

Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

SYNTACTIC REPAIR

Model: qwen2.5-coder:7b-instruct

Temperature: 0.2
Seed: 82

SEMANTIC REPAIR

Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

B.4 LLM TRIPLE #4 : FINE-TUNED GENERATION & SMALLER SYNTACTIC REPAIR

GENERATION

Model: ChatPort-32B

Base Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

SYNTACTIC REPAIR

Model: qwen2.5-coder:7b-instruct

Temperature: 0.2
Seed: 82

SEMANTIC REPAIR

Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.5 LLM TRIPLE #5 : FINE-TUNED GENERATION & SMALLER SYNTACTIC REPAIR &
CHAIN-OF-THOUGHT SEMANTIC REPAIR

GENERATION

Model: ChatPort-32B

Base Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

SYNTACTIC REPAIR

Model: qwen2.5-coder:7b-instruct

Temperature: 0.2
Seed: 82

SEMANTIC REPAIR

Model: gpt-oss:20b

Temperature: 0.2
Seed: 82

C LASSI LLM INFO

C.1 MODEL #1

Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

C.2 MODEL #2

Model: ChatPort-32B

Base Model: qwen2.5-coder:32b-instruct

Temperature: 0.2
Seed: 82

C.3 MODEL #3

Model: qwen2.5-coder:7b-instruct

Temperature: 0.2
Seed: 82

D PROMPTS

The following variables in prompts are replaced by data mid-translation:

+SRC CODE+ The original code to be translated

+GENERATION+ The current attempt generated by the LLM

+FEEDBACK+ The feedback from the last validation check (could be compiler, tests, etc.)

D.1 CUDA TO OPENMP PROMPTS

GENERATION

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Prompt Type Prompt
System You are a programming model translation expert which will

translate functions written in CUDA C++ to equivalent
functions using OpenMP Target Offloading. For every piece of
code, produce: 1. A translated code block surrounded with “‘
that preserves the semantics and parallelism. 2. A description
section explaining your thought process for the translation.
Rigorous checks will determine if your translation attempt is
successful.

Initial Generation Please perform translation of the following CUDA code to
OpenMP Target Offloading maintaining the OpenMP function
interface: “‘+SRC CODE+“‘

Missing Codeblock Your generation attempt was missing the codeblock surrounded
by “‘. Please retry generation. Here is the original code to
translate to OpenMP Target Offloading: “‘+SRC CODE+“‘

No OpenMP Target
Offloading

Your generation attempt did not use the Target Offloading
capabilities of OpenMP. Please retry generation. Here is the
original code to translate to OpenMP Target Offloading:
“‘+SRC CODE+“‘

SYNTACTIC REPAIR

Prompt Type Prompt
System You are a code syntax repair expert. You will be provided the

code and the error message. Use the error information to repair
the code and fix the error.

Compiler Error The following OpenMP Target Offloading code is
uncompilable. Please repair the code to compile correctly.
Code: +GENERATION+ Compiler Output: +FEEDBACK+

SEMANTIC REPAIR

Prompt Type Prompt
System You are an expert at fixing logical errors in code. You will be

provided the original code written in CUDA C++ and the
attempt at recreating the code using OpenMP Target Offloading.
Identify any logical issues and correct the OpenMP Target
Offloading code.

Test Error The following OpenMP Target Offloading code fails tests that
ensure that the behavior of the code is equivalent to a correct
implementation written in CUDA C++. Original Code: +SRC
CODE+ OpenMP Code: +GENERATION+ Feedback:
+FEEDBACK+

D.2 CUDA TO SYCL PROMPTS

GENERATION

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Prompt Type Prompt
System You are a programming model translation expert which will

translate functions written in CUDA C++ to equivalent
functions using SYCL. For every piece of code, produce: 1. A
translated code block surrounded with “‘ that preserves the
semantics and parallelism. 2. A description section explaining
your thought process for the translation. Rigorous checks will
determine if your translation attempt is successful.

Initial Generation Please perform translation of the following CUDA code to
SYCL maintaining the SYCL function interface: “‘+SRC
CODE+“‘

Missing Codeblock Your generation attempt was missing the codeblock surrounded
by “‘. Please retry generation. Here is the original code to
translate to SYCL: “‘+SRC CODE+“‘

No SYCL Kernel Your generation attempt did not use the SYCL capabilities.
Please retry generation. Here is the original code to translate to
SYCL: “‘+SRC CODE+“‘

SYNTACTIC REPAIR

Prompt Type Prompt
System You are a code syntax repair expert. You will be provided the

code and the error message. Use the error information to repair
the code and fix the error.

Compiler Error The following SYCL code is uncompilable. Please repair the
code to compile correctly. Code: +GENERATION+ Compiler
Output: +FEEDBACK+

SEMANTIC REPAIR

Prompt Type Prompt
System You are an expert at fixing logical errors in code. You will be

provided the original code written in CUDA C++ and the
attempt at recreating the code using SYCL. Identify any logical
issues and correct the SYCL code.

Test Error The following SYCL code fails tests that ensure that the
behavior of the code is equivalent to a correct implementation
written in CUDA C++. Original Code: +SRC CODE+ SYCL
Code: +GENERATION+ Feedback: +FEEDBACK+

E VERBOSE BENCHMARK RESULTS

E.1 CUDA TO OPENMP

Test B.1 B.2 B.3 B.4 B.5 C.1 C.2 C.3
ace::boundaryConditionsPhi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ace::swapGrid ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
adam::adam ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

aidw::AIDW_Kernel ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
aop::generate_paths_kernel ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
aop::update_cashflow_kernel ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
assert::perfKernel ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
atomicCost::woAtomicOnGlobalMem ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
atomicPerf::SingleRangeAtomicOnGlobalMem ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
attention::attention_kernel1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
attention::attention_kernel2 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓
attention::attention_kernel3 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓
axhelm::axhelm_n3 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
background-subtract::findMovingPixels ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓
background-subtract::merge ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
background-subtract::updateBackground ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
background-subtract::updateThreshold ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
backprop::kernel_adjust_weights ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
burger::core ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗
bwt::reconstruct_sequence ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
channelShuffle::ChannelShuffleNCHWKernel ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
channelSum::ChannelSumNCHW ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
channelSum::ChannelSumNHWC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
chemv::chemv_kernel0 ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗
chi2::chi_kernel ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗
clink::lstm_inference ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗
cmp::compute_semblances ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
cmp::init_c ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓
cmp::init_half ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓
concat::concat ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
convolution3D::conv3d_s3 ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
cross::cross3_kernel ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
dense-embedding::dense_esuhm ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
fdtd3d::finite_difference ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
flip::flip_kernel ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
gd::compute ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
glu::glu_kernel ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓
goulash::gate ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓
haccmk::haccmk_kernel ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
heat::initial_value ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
hotspot3D::hotspot3d ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓
hwt1d::dwtHaar1D ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
ising::update_lattice ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓
iso2dfd::iso_2dfd_kernel ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
laplace::red_kernel ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
lif::lif ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
mcpr::compute_probs_unitStrides ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
mrc::MRCGradient2 ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
nbody::accelerate_particles ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
nlll::nll_loss_forward_reduce2d_kernel ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
overlay::DetectionOverlayBox ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
p4::postprocess ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
page-rank::reduce ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
particle-diffusion::Simulation ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
permute::permute_kernel ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓
projectile::CalculateRange ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
softmax::softMax ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗
swish::SwishGradientKernel ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
tqs::TaskQueue_gpu ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

vanGenuchten::vanGenuchten ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗
vol2col::vol2col_kernel ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
winograd::winograd_conv2d ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓

E.2 CUDA TO SYCL

Test B.1 B.2
ace::boundaryConditionsPhi ✓ ✓
ace::swapGrid ✓ ✓
adam::adam ✓ ✗
aidw::AIDW_Kernel ✓ ✓
aop::generate_paths_kernel ✗ ✗
aop::update_cashflow_kernel ✗ ✗
assert::perfKernel ✗ ✗
atomicCost::woAtomicOnGlobalMem ✗ ✗
atomicPerf::SingleRangeAtomicOnGlobalMem ✗ ✗
attention::attention_kernel1 ✓ ✓
attention::attention_kernel2 ✓ ✓
attention::attention_kernel3 ✓ ✓
axhelm::axhelm_n3 ✗ ✗
background-subtract::findMovingPixels ✗ ✗
background-subtract::merge ✓ ✓
background-subtract::updateBackground ✓ ✓
background-subtract::updateThreshold ✗ ✓
backprop::kernel_adjust_weights ✓ ✓
burger::core ✓ ✓
bwt::reconstruct_sequence ✓ ✓
channelShuffle::ChannelShuffleNCHWKernel ✗ ✗
channelSum::ChannelSumNCHW ✓ ✗
channelSum::ChannelSumNHWC ✓ ✗
chemv::chemv_kernel0 ✗ ✗
chi2::chi_kernel ✓ ✓
clink::lstm_inference ✗ ✗
cmp::compute_semblances ✓ ✓
cmp::init_c ✓ ✓
cmp::init_half ✓ ✓
concat::concat ✓ ✗
convolution3D::conv3d_s3 ✓ ✗
cross::cross3_kernel ✓ ✗
dense-embedding::dense_esuhm ✓ ✗
fdtd3d::finite_difference ✗ ✗
flip::flip_kernel ✓ ✓
gd::compute ✓ ✓
glu::glu_kernel ✓ ✓
goulash::gate ✓ ✓
haccmk::haccmk_kernel ✓ ✓
heat::initial_value ✓ ✓
hotspot3D::hotspot3d ✓ ✓
hwt1d::dwtHaar1D ✓ ✓
ising::update_lattice ✓ ✓
iso2dfd::iso_2dfd_kernel ✓ ✓
laplace::red_kernel ✓ ✓
lif::lif ✓ ✓

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

mcpr::compute_probs_unitStrides ✓ ✓
mrc::MRCGradient2 ✓ ✓
nbody::accelerate_particles ✓ ✗
nlll::nll_loss_forward_reduce2d_kernel ✗ ✓
overlay::DetectionOverlayBox ✓ ✗
p4::postprocess ✓ ✓
page-rank::reduce ✓ ✓
particle-diffusion::Simulation ✓ ✓
permute::permute_kernel ✓ ✓
projectile::CalculateRange ✓ ✗
softmax::softMax ✓ ✓
swish::SwishGradientKernel ✗ ✗
tqs::TaskQueue_gpu ✗ ✓
vanGenuchten::vanGenuchten ✓ ✓
vol2col::vol2col_kernel ✓ ✗
winograd::winograd_conv2d ✗ ✗

18


	Introduction
	Our Approach
	Contributions

	Related Work
	TRI-anslate Design and Architecture
	Overview
	Preprocessor
	Generation Loop
	Syntactic Repair Loop
	Semantic Repair Loop

	Experimental Evaluation
	Evaluation Setup
	RQ1: Comparison Against SOTA
	RQ2: Design Flexibility

	Discussion
	Limitations
	Future Work

	Conclusions
	Usage of LLMs in Paper Preparation
	TRI-anslate LLM Info
	LLM Triple #1 : Single Code LLM
	LLM Triple #2 : Fine-Tuned LLM
	LLM Triple #3 : Smaller Syntactic Repair
	LLM Triple #4 : Fine-Tuned Generation & Smaller Syntactic Repair
	LLM Triple #5 : Fine-Tuned Generation & Smaller Syntactic Repair & Chain-Of-Thought Semantic Repair

	LASSI LLM Info
	Model #1
	Model #2
	Model #3

	Prompts
	CUDA to OpenMP Prompts
	CUDA to SYCL Prompts

	Verbose Benchmark Results
	CUDA to OpenMP
	CUDA to SYCL


