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Abstract

Humans can efficiently extract knowledge and learn skills from the videos within
only a few trials and errors. However, it poses a big challenge to replicate this
learning process for autonomous agents, due to the complexity of visual input,
the absence of action or reward signals, and the limitations of interaction steps.
In this paper, we propose a novel, unsupervised, and sample-efficient framework
to achieve imitation learning from videos (ILV), named Behavior Cloning from
Videos via Latent Representations (BCV-LR). BCV-LR extracts action-related la-
tent features from high-dimensional video inputs through self-supervised tasks, and
then leverages a dynamics-based unsupervised objective to predict latent actions
between consecutive frames. The pre-trained latent actions are fine-tuned and
efficiently aligned to the real action space online (with collected interactions) for
policy behavior cloning. The cloned policy in turn enriches the agent experience
for further latent action finetuning, resulting in an iterative policy improvement
that is highly sample-efficient. We conduct extensive experiments on a set of
challenging visual tasks, including both discrete control and continuous control.
BCV-LR enables effective (even expert-level on some tasks) policy performance
with only a few interactions, surpassing state-of-the-art ILV baselines and reinforce-
ment learning methods (provided with environmental rewards) in terms of sample
efficiency across 24/28 tasks. To the best of our knowledge, this work for the first
time demonstrates that videos can support extremely sample-efficient visual policy
learning, without the need to access any other expert supervision.

1 Introduction

Reinforcement learning (RL) [1, 2, 3] has demonstrated powerful capabilities in solving decision-
making tasks across different fields [4, 5, 6, 7]. However, the stringent training conditions, including
well-designed rewards and substantial environmental interactions, have greatly restricted the appli-
cation scenarios of RL [8, 9, 10]. Behavior cloning from action-labeled expert trajectories [11, 12]
or offline RL from exploratory training experience [13, 14] provide solutions for policy learning
without any environmental interactions, which means the highest sample efficiency. Nevertheless, the
required offline supervision of high quality is generally not easily accessible.

Compared with well-designed rewards or qualified offline datasets, videos are a kind of supervisory
information that is much easier to obtain. Imitating skills from expert videos is also a natural and
efficient learning method for humans, e.g., playing games by watching tutorial videos on the Internet.
However, in contrast to humans’ ease in learning from videos, it is no simple feat to replicate this
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efficient watch-and-learn process for autonomous agents, which are mainly attributed to the complex
visual input and missed action labels. Although numerous studies have already utilized videos as a
valuable supplement to boost policy learning from expert rewards [15, 16, 17, 18] or expert actions
[19, 20, 21], imitating entirely from videos without any other supervision is a more natural and ideal
learning mode.
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Figure 1: BCV-LR achieves sample-efficient
video-based imitation learning without access-
ing expert actions or rewards. It achieves expert-
level policy performance on discrete task "Boss-
fight" and continuous task "reacher_hard" with
only 100k interactions allowed, surpassing state-
of-the-art ILV and RL baselines.

Formally, this problem is named Imitation Learn-
ing from Videos (ILV). Currently, the mainstream
approach to solving ILV is inverse RL [22, 23, 24].
They aim to extract reward signals from videos
that are highly consistent with expert policies,
and then perform imitation through RL. However,
training the extra reward prediction network and
the RL value network both necessitate extensive
exploration of the observation space, which in-
evitably leads to lower sample efficiency than tra-
ditional RL methods based on steady expert re-
wards in many cases [25]. Another category of
ILV approaches [26, 27] aims to predict the ex-
pert actions between observations based on envi-
ronment transitions, conducting supervised learn-
ing (i.e., behavioral cloning) to imitate policies
[28, 29]. They require less knowledge of envi-
ronment dynamics [25] and usually can achieve
effective policy learning results with just a small
number of interaction samples [26, 27].However,
when faced with videos, both the difficulty of un-
derstanding input and predicting actions increase
sharply. These supervised ILV methods often encounter performance bottlenecks and are unable to
learn policies close to the expert level [28].

The above discussion naturally leads to a question: Is it possible to balance the effectiveness
and sample efficiency in visual policy learning, where only videos are accessible supervisions?
In this paper, we try to answer this question through Behavior Cloning from Videos via Latent
Representations (BCV-LR), which conducts offline latent pre-training to extract rich knowledge from
videos for efficient adaptation to real environments online. Concretely, BCV-LR contains an offline
pre-training stage and an online finetuning stage. In offline pre-training, BCV-LR first pre-trains a
self-supervised visual encoder over the video, aiming to extract the action-related information from
raw pixels and thus alleviating the learning difficulty in subsequent training. Based on the latent
features, BCV-LR employs another trainable world model, optimizing a dynamics-based objective
in an unsupervised manner, to obtain the latent actions between consecutive video frames. In the
online stage, BCV-LR fine-tunes the latent actions with the pretrained world model over the collected
reward-free transitions, simultaneously aligning these implicit actions to the real action space for
behavior cloning of a policy. The cloned policy in turn enriches the collected experience, leading to
better latent action finetuning and decoding, which finally results in an iterative policy improvement
that is extremely sample-efficient.

We conduct extensive experiments on a set of challenging visual control tasks, including 16 discrete
control tasks from the Procgen benchmark [30] and 12 continuous control tasks from the Deepmind
Control suite (DMControl) [31] and Metaworld [32]. Even with only a few environmental interactions
permitted, BCV-LR can still enable effective and even expert-level policy learning performance on
many tasks, which both recent advanced ILV baselines (provided with expert videos) and RL methods
(provided with expert rewards) cannot achieve, as shown in Figure 1. These indicate the state-of-the-
art sample efficiency of the proposed BCV-LR. To the best of our knowledge, the proposed BCV-LR
for the first time demonstrates the feasibility of using videos as the only expert supervisory signal to
guide extremely sample-efficient visual policy learning. We provide the implementation of BCV-LR
at https://github.com/liuxin0824/BCV-LR.

We summarize the contributions of this paper as follows:
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• We propose a novel framework for sample-efficient ILV, named Behavior Cloning from
Videos via Latent Representations (BCV-LR). To the best of our knowledge, our work for
the first time demonstrates that videos can support extremely sample-efficient visual policy
learning, without the need for expert actions or rewards.

• BCV-LR extracts action-related latent features from high-dimensional video frames through
self-supervised tasks, and then leverages a dynamics-based unsupervised objective to predict
latent actions between consecutive images. With online interactions, the pre-trained latent
actions are fine-tuned and aligned to the real action space for behavior cloning. The cloned
policy in turn enriches the agent experience for better latent action finetuning, resulting in
an iterative policy improvement that is highly sample-efficient.

• We conduct extensive experiments on a set of challenging visual control tasks, including
both discrete control and continuous control. The results demonstrate that the proposed
BCV-LR exhibits state-of-the-art sample efficiency, surpassing recent advanced online visual
policy learning baselines, including both ILV methods and RL methods.

2 Related Works

2.1 Sample-Efficient Visual Policy Learning

Interacting with the environment to collect data is an expensive and dangerous process in many
scenarios [33, 8], which makes sample efficiency an important metric for policy learning methods
[34, 28]. Self-supervised RL [35, 36, 37, 38] employs extra auxiliary tasks in addition to the RL
objective, accelerating downstream policy learning by improving visual understanding capabilities in
a target manner. Model-based RL methods [39, 40, 41, 42, 43] train extra world models that augment
the RL experience, thereby reducing the requirement of real interactions [44]. These methods indeed
achieve higher sample efficiency, but they are inherently limited by the non-trivial hand-craft rewards
[45]. At the same time, some approaches try to completely avoid accessing environments, such as
conducting offline RL over the training experience [14, 13, 15] and behavior cloning with action-
labeled expert demonstrations [12, 11]. However, these offline expert datasets of high quality can be
expensive and even unavailable in many scenarios.

2.2 Utilizing Videos as Supervisions

With the continuous development of the Internet, obtaining a vast number of diverse videos has
become extremely convenient nowadays. Many of these videos contain expert-level demonstrations,
which serve as a valuable source of knowledge for both humans and machines. However, due to the
lack of action information, it poses a significant challenge to well utilize these videos in machine
learning. One popular way is to improve existing strategy learning methods with the help of videos,
such as video-based pre-training for RL [46, 47, 48, 49], video-based intrinsic reward for RL [17, 50],
and video-based behavior cloning with expert actions [19, 20]. In addition, FICC [51] pre-trains
world models on action-free agent experience, accelerating model-based RL on Atari games. JPET
[52] utilizes a mixed dataset containing videos to achieve one-shot visual imitation. Although these
methods have achieved certain success, they still require dependence on other expert supervisions. In
contrast, ILV [22, 45, 50, 28], which aims to acquire skills from only videos in a manner similar to
humans, has a much broader range of application scenarios.

2.3 Imitation Learning from Videos (ILV)

Imitation Learning from Observations (ILO) [23, 26, 27] is proposed to recover the expert policies
hidden in the action-free demonstrations. As an extension of ILO to the visual domain, ILV poses
a greater challenge due to the more complex visual inputs. The mainstream approaches to solving
the ILV problem are inverse RL [50, 45, 53, 54, 55], which tries to extract and optimize the reward
signals contained in the videos. They achieve considerable results on imitation performance but
usually can’t well balance sample efficiency [25, 28]. This conforms to our intuition, because
both reward prediction and RL require advanced understanding of the environments, which cannot
be achieved without sufficient interactions. At the same time, some researchers give up reward
engineering, trying to predict expert actions from videos [26, 56, 27] for supervised ILO. They
achieve considerable success but suffer from severe performance drops when transferred into more
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complex visual continuous control [29, 28]. In this situation, BCV-LR for the first time (i) taps into
the potential of supervised ILV and (ii) exhibits the feasibility of using videos as the only supervisory
signal to guide highly sample-efficient visual policy learning.

3 Behavior Cloning from Videos via Latent Representations

Problem Definition of ILV The goal of ILV is to imitate the policy contained in the expert videos
by interacting with a reward-free environment. Concretely, the expert videos can be regarded as
a dataset containing action-free expert transitions {(ovi , ovi+1)}. The observation o can represent
a single frame or stacked historical frames, depending on the partial observability of the specific
task. The interactive environment can be denoted as a reward-free Markov Decision Process (MDP)
M = (O,A,P, d0), where O is the visual observation space, A is the action space, P is the
observation transition function, and d0 is the distribution of the initial observation. Based on the
reward-free environmental transitions {(oet , aet , oet+1)} and the videos {(ovi , ovi+1)}, the ILV agents
can achieve policy learning by estimating the expert rewards or expert actions [28, 50].

Framework of BCV-LR BCV-LR addresses ILV problem by estimating the expert actions con-
tained in the videos. The predicted actions are used to obtain a policy through behavior cloning.
BCV-LR contains two stages: an offline pre-training stage and an online finetuning stage.

In offline pre-training, BCV-LR first pre-trains a self-supervised visual encoder f over the videos,
aiming to extract the action-related information from raw pixels and thus alleviating the learning
difficulty for both action prediction and policy cloning. Based on the pre-trained latent features, BCV-
LR employs another trainable world model w along with the latent action predictor p, optimizing
a dynamics-based objective in an unsupervised manner. This aims to obtain the latent actions
between consecutive video frames. In the online stage, BCV-LR fine-tunes the latent actions with
the pretrained world model w over the collected reward-free transitions, efficiently aligning these
pseudo actions to the real action space via a latent action decoder d. The transitions are collected
by imitating a latent policy π that clones the latent actions based on latent features from expert
videos. π is combined with latent feature encoder f and latent action decoder d to interact with the
environment. As latent actions are finetuned, the cloned latent policy improves simultaneously, which
in turn collects transitions at a higher performance level for better latent action finetuning, resulting
in an iterative policy improvement. After the online stage, f , π, and d together form the final policy
of BCV-LR. We provide a diagram in Figure 2 and pseudocode in Appendix A.

3.1 Offline Pretraining on Action-free Videos

To facilitate the utilization of environmental interactions in online learning, BCV-LR firstly extracts
knowledge from videos offline. We describe how to pre-train a feature encoder f to extract useful
information from high-dimension videos in Section 3.1.1, and how to train a latent action predictor p
and a world model w jointly through an unsupervised dynamics-based objective in Section 3.1.2.

3.1.1 Learning Latent Features through Self-Supervised Tasks

To accurately predict the missed actions from the expert videos and support effective downstream
policy, the feature encoder f should be able to extract information related to decision-making from
complex high-dimensional visual inputs, which is consistent with the requirements in visual RL.
Inspired by the recent success of self-supervised RL [35, 57, 34], BCV-LR learns its feature encoder
f by optimizing self-supervised objectives defined on the expert videos. Note that the proposed BCV-
LR is compatible with any action-free self-supervised tasks. By choosing appropriate self-supervised
objectives, it can adapt to different types of visual control tasks easily. In addition, BCV-LR can also
be combined with a well-trained, off-the-shelf encoder, which enables it to retain the potential for
handling tasks with much more complex visual inputs.

For tasks with relatively simple dynamics but involving complex visual information (e.g., Procgen
video games [30]), BCV-LR optimizes a contrastive learning objective to align two different randomly
shifted images of the same observation together. This makes f focus more on relative position differ-
ence that is highly related to actions. In practice, we empirically find that letting f simultaneously
achieve a self-reconstruction task yields further improvement in Procgen. Concretely, a batch of
observations {ovi }Ni=1 are sampled from videos. Each ovi is randomly shifted twice to obtain two
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Figure 2: The training objectives of different stages. BCV-LR first pre-trains a self-supervised
feature encoder f over the videos. Based on the latent features, BCV-LR employs another trainable
world model w along with the latent action predictor p, optimizing a dynamics-based objective in an
unsupervised manner to obtain the latent actions between consecutive video frames. In the online
stage, BCV-LR fine-tunes the latent actions with the pretrained world model w over the collected
reward-free transitions, aligning latent actions to the real action space via a latent action decoder
d. Simultaneously, BCV-LR trains a latent policy π that clones the latent actions, which shares the
latent feature encoder f and latent action decoder d to interact with the environment. This enriches
collected data for further latent action finetuning, resulting in an iterative improvement. Note that f ,
π, and d together form the final policy of BCV-LR.

augmented images aug(ovi ) and aug′(ovi ). They are then separately encoded by f and its momentum
encoder f ′ (updated via Exponential Moving Average (EMA) [58]) to obtain two latent features, svi
and svi

′. The self-supervised target contains a contrastive learning loss and a self-reconstruction loss:

Llf = − log
exp(u(svi )

⊤Wsvi
′)∑N

j=1 exp(u(s
v
i )

⊤Wsvj
′)

+ α||v(svi )− aug(ovi )||2, (1)

where W is a trainable matrix employed in contrastive learning, α is a coefficient scaling two losses,
u(·) is a Multi-Layer Perceptron (MLP) set to introduce asymmetry for avoiding collapse to trivial
solutions, and v(·) is a trainable reconstruction decoder.

As previously mentioned, BCV-LR can select self-supervised tasks tailored to different domains to
achieve better latent feature extraction. For partially observable domains with complex dynamics
(e.g., continuous DMControl [31]), understanding the temporal information is proven crucial for the
representation module to support effective downstream policy learning [59, 34, 60]. This motivates
us to employ a recent advanced prototype-based temporal association task [57, 43] based on the
Sinkhorn-Knopp [61] algorithm, which aligns two temporally neighboring observations together in
the latent space. For the sake of fluency of the main text, we put the details of this self-supervised
temporal association task in Appendix A.

3.1.2 Extracting Latent Actions over Latent Features

With the pre-trained encoder f , each pixel observation ovi is encoded into the latent feature svi . BCV-
LR then trains a predictor p to extract the latent action zvi between neighboring feature pairs (svi , s

v
i+1).

To obtain zvi in an unsupervised manner, another world model w is employed to reconstruct the next
feature svi+1 based on the current feature svi and the predicted zvi . The motivation is intuitive: the
latent action should contain information that describes the changes between frames. To avoid the
trivial solution that p learns to naively copy the next latent features into latent actions, the continuous
zvi is discretized via vector quantization (VQ) [62] before entering the world model w [28, 19].
Concretely, zvi is mapped to its nearest vector zvqi defined in a limited codebook, which forces the
model to find commonalities among numerous transition pairs. The zvqi will replace zvi to achieve
forward propagation in world model w, and the reconstruction loss can be defined as the following:

Lla = ||w(svi , z
vq
i )− svi+1||2. (2)

In backpropagation, the gradient of zvqi is copied to zvi directly. p and w are optimized jointly by Lla.
In addition, p is also updated along with the codebook in the VQ training process [21].
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3.2 Online Finetuning with Reward-free Interactions

In the online learning stage, BCV-LR is able to quickly adapt the pre-trained knowledge to the real
environment, thus achieving sample-efficient policy learning. In Section 3.2.1, we describe how
to finetune and align the latent actions to real action space with the latent action decoder d, based
on agent experience. By sharing f and d, BCV-LR clones the latent actions via a latent policy π
to interact with the environments, shown in Section 3.2.2. This policy in turn enriches the agent
experience, resulting in an iterative improvement of both latent action predictor p and latent policy π.
After the online stage, f , π, and d together form the final policy of BCV-LR.

3.2.1 Finetuning and Decoding Latent Actions with Pre-trained World Model

BCV-LR interacts with the environment to collect environmental transitions with real actions
{(oet , aet , oet+1)}. By letting latent action predictor p and decoder d predict real actions over these
environmental transitions, BCV-LR further finetunes p, while aligning the predicted latent actions
to the real action space with decoder d. Considering that there are distribution differences between
the collected transitions and expert videos, BCV-LR simultaneously utilizes the pre-trained world
model w to provide expert dynamics constraints. This forces the prediction model p to maintain its
understanding of environmental dynamics during adaptation to non-expert action labels, enhancing
the finetuning robustness and achieving better results in practice. Concretely, each environmental
observation pair (oet , o

e
t+1) is encoded by the pre-trained f into the latent features (set , s

e
t+1). They

are further passed into p to generate the predicted latent action zet . The learning objective contains (i)
the action prediction loss and (ii) the future reconstruction loss over the collected transitions:

Lft = −aet
T log(softmax[d(zet )]) + β||w(set , z

vq
t )− set+1||2, (3)

where the β is a coefficient scaling two losses and zvqt is the codebook vector nearest to zet . BCV-LR
finetunes p and learns d simultaneously through backpropagation. p and the codebook are also
updated through VQ training. Finetuning w is optional, leading to better performance on some tasks
in practice. The cross-entropy loss is replaced with Mean Square Error (MSE) in continuous control.

3.2.2 Learning Latent Policy via Behavior Cloning

With the predicted actions aligned into the real action space, BCV-LR can imitate a policy directly
executed in the environment from expert videos. By sharing the pre-trained feature encoder f and the
latent action decoder d, BCV-LR only needs to train a latent policy π that maps the latent features
into the latent actions. Concretely, an expert video transition (ovi , o

v
i+1) is successively fed into the

feature encoder f to produce (svi , s
v
i+1), and the latent action predictor p to produce the predicted

latent action zvi as the label. The behavior cloning objective is correspondingly defined as:

Lbc = ||π(svi )− zvi ||2. (4)

The π-output latent action is then decoded to the real action space by d for execution. After the online
stage, f , π, and d together form the final policy of BCV-LR.

4 Experiments

In this section, we provide a comprehensive evaluation of the proposed BCV-LR.We first briefly
introduce the experimental settings (Section 4.1), then provide the results of discrete control and
continuous control (Section 4.2 & 4.3), conduct ablation studies (Section 4.4), and provide analytical
experiments on video data efficiency and multi-task adaptation (Section 4.5 & 4.6). You can refer to
Appendix B for more results and analysis, and Appendix C for detailed experimental settings.

4.1 Experimental Settings

4.1.1 Environments

We test the performance of BCV-LR in a set of challenging domains with complex visual inputs
and environment dynamics, including 16 discrete control tasks from Procgen benchmark [30] and 8
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Table 1: The interaction-limited policy learning in Procgen. Italics indicate using expert videos,
and underlines denote using environmental rewards. Bold text indicates the highest score excluding
video experts. BCV-LR exhibits the highest sample efficiency, utilizing only videos.

Task BCV-LR (ours) UPESV [28] BCO [26] ILPO [27] LAIFO [50] LAPO [21] PPO [63] Expert Videos

Bigfish 35.9 ± 2.0 30.5 ± 1.6 3.6 ± 3.7 0.8 ± 0.1 0.8 ±0.0 20.6 ± 0.7 0.9 ± 0.1 36.3
Maze 9.9 ± 0.1 9.7 ± 0.2 7.4 ± 2.4 4.2 ± 0.3 4.3 ± 0.4 9.6 ± 0.1 5.0 ± 0.7 10.0
Heist 9.3 ± 0.1 9.4 ± 0.3 7.6 ± 1.9 6.7 ± 0.5 5.4 ± 0.6 9.4 ± 0.3 3.7 ± 0.2 9.7

Coinrun 8.9 ± 0.0 7.4 ± 0.2 6.7 ± 0.9 3.7 ± 1.3 4.7 ± 0.1 6.2 ± 0.4 4.1 ± 0.5 9.9
Plunder 4.4 ± 0.2 3.5 ± 0.7 4.2 ± 0.3 2.2 ± 1.3 3.2 ± 0.9 4.8 ± 0.1 4.4 ± 0.4 11.5

Dodgeball 12.4 ± 0.8 9.1 ± 0.8 5.4 ± 1.1 0.6 ± 0.1 0.8 ± 0.2 5.9 ± 1.1 1.1 ± 0.2 13.5
Jumper 7.5 ± 0.3 6.6 ± 0.2 6.4 ± 0.3 3.1 ± 0.6 3.9 ± 0.4 7.3 ± 0.2 3.5 ± 0.7 8.5
Climber 9.4 ± 0.6 6.8 ± 0.6 3.3 ± 0.2 3.4 ± 0.5 2.7 ± 0.9 4.7 ± 0.3 2.2 ± 0.2 10.2
Fruitbot 27.5 ± 1.5 20.6 ± 1.6 3.5 ± 0.5 -2.0 ± 0.7 -2.5 ± 0.1 0.5 ± 0.3 -1.9 ± 1.0 29.9
Starpilot 54.8 ± 1.4 15.0 ± 0.8 12.8 ± 13.9 0.5 ± 0.7 2.0 ± 0.7 20.3 ± 1.6 2.6 ± 0.9 67.0

Ninja 7.2 ± 0.3 6.3 ± 0.3 4.2 ± 1.1 2.2 ± 1.1 3.0 ± 0.1 5.2 ± 0.1 3.4 ± 0.3 9.5
Miner 11.6 ± 0.2 9.3 ± 1.2 5.8 ± 1.3 1.2 ± 0.4 1.2 ± 0.2 6.7 ± 0.6 1.2 ± 0.2 11.9

Caveflyer 4.6 ± 0.2 3.5 ± 0.6 2.8 ± 1.1 3.2 ± 0.3 2.4 ± 0.9 3.9 ± 0.1 3.0 ± 0.4 9.2
Leaper 4.0 ± 0.2 2.9 ± 0.3 2.5 ± 0.5 2.6 ± 0.2 1.9 ± 0.2 2.7 ± 0.2 2.6 ± 0.3 7.4
Chaser 3.1 ± 0.5 0.8 ± 0.1 0.8 ± 0.0 0.7 ± 0.0 0.6 ± 0.1 0.8 ± 0.0 0.4 ± 0.2 10.0

Bossfight 10.3 ± 0.3 2.0 ± 0.4 0.4 ± 0.3 0.1 ± 0.0 0.3 ± 0.0 0.3 ± 0.3 0.1 ± 0.1 11.6

Mean 13.8 9.0 4.8 2.1 2.2 6.8 2.3 16.6
Video-norm Mean 0.79 0.58 0.38 0.22 0.22 0.48 0.22 1.00

continuous control tasks from Deepmind Control suite (DMControl) [31]. Procgen [30] provides a
diverse set of procedurally generated video game environments, each with unique challenges, different
dynamics, and especially changing visual styles. DMControl [31] provides a series of challenging
robot control tasks. Although the visual changes are not as complex as those in Procgen, the
continuity of the observation and action spaces, as well as the partial observability of the states, greatly
increase the difficulty of understanding the environmental dynamics. The complex visual inputs and
environmental dynamics make these two benchmarks extremely challenging for ILV problems, which
is recognized and widely employed by recent advanced studies [21, 50, 54, 28, 45]. In addition, we
also provide results on 4 robotic manipulation tasks from Metaworld [32] to demonstrate a wider
application of BCV-LR, which is detailed in Appendix B.

4.1.2 Baselines

We employ several popular and advanced ILV baselines: UPESV [28], LAIFO [50], ILPO [27],
and BCO [26]. LAIFO is a recent advanced inverse RL approach that derives rewards from the
expert videos through adversarial imitation techniques. The other three methods all try to recover the
missed actions from the expert observations (videos) and obtain the imitated policies via behavior
cloning, which is similar to the proposed BCV-LR. Among them, UPESV and LAIFO have achieved
state-of-the-art ILV performance in discrete Procgen and continuous DMControl, respectively.

To provide a comprehensive comparison, we further employ several online RL baselines provided
with environmental rewards. The advanced RL algorithms vary across different benchmarks. For
discrete tasks, LAPO [21] and PPO [63] are employed. PPO is the most popular RL baseline in
Procgen, while LAPO further leverages expert videos to improve PPO by pre-training latent policy.
For continuous tasks, we employ DrQv2 [3] and TACO [60]. DrQv2, which combines several
image-oriented tricks with DDPG, is currently the most popular RL method for continuous visual
control. TACO is a state-of-the-art self-supervised RL method, which improves DrQv2 via several
visual auxiliary objectives. All of these baselines are recognized as leading RL methods in the
corresponding benchmarks.

Note that the ILV methods, including the proposed BCV-LR and four baselines (UPESV, BCO,
ILPO, and LAIFO), can only access expert videos. We directly compare the RL methods and the
ILV methods in terms of online sample efficiency, but in fact, they rely on different supervisory
information.

4.2 Discrete Control

In this section, we test the proposed BCV-LR in 16 discrete control tasks from Procgen. We choose
"easy" mode and "full" distributions of levels across all tasks. On each task, only 100k environmental
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Figure 3: Online training curves of ILV methods in DMControl. BCV-LR can efficiently utilize
environmental samples and learn effective strategies at 50k steps (even 20k on some tasks).

Table 2: Comparison with both ILV and RL baselines on DMControl. Italics indicate using expert
videos, and underlines denote using environmental rewards. Bold text indicates the highest score
excluding video experts. BCV-LR exhibits the leading sample efficiency under supervisions of only
videos.

Task BCV-LR (ours) LAIFO [50] BCO [26] UPESV [28] TACO [60] DrQv2 [3] Expert Videos

point_mass_easy 800 ± 25 0 ± 0 8 ± 12 0 ± 0 712 ± 96 525 ± 189 885
reacher_hard 900 ± 31 110 ± 71 262 ± 83 8 ± 5 154 ± 68 92 ± 98 967

jaco_reach_top_right 76 ± 6 70 ± 41 1 ± 2 22 ± 17 80 ± 12 37 ± 9 198
finger_spin 942 ± 48 108 ± 96 881 ± 39 0 ± 0 618 ± 69 374 ± 264 981

ball_in_up_catch 807 ± 57 350 ± 271 404 ± 363 100 ± 81 321 ± 166 246 ± 137 986
jaco_reach_bottom_left 123 ± 39 93 ± 54 7 ± 10 12 ± 16 46 ± 9 23 ± 10 203
cheetah_run_backward 285 ± 6 0 ± 0 253 ± 18 0 ± 0 304 ± 175 332 ± 12 389

reacher_easy 897 ± 38 215 ± 47 198 ± 189 0 ± 0 244 ± 98 225 ± 91 975

Mean 604 158 336 18 310 232 698
Video-norm Mean 0.78 0.20 0.31 0.03 0.45 0.34 1.00

steps are allowed. This number is much smaller than 4M or 25M employed by advanced RL works
[30, 64, 21], requiring extremely high sample efficiency. The expert video dataset containing 8M
steps is generated by well-trained RL agents, provided by [21]. For RL methods, we allow them to
access the expert reward provided by Procgen environments. These all follow recent advanced works
[21, 28]. Refer to Appendix C for detailed hyper-parameter settings.

The results are shown in Table 1. Compared with ILV methods based on behavior cloning (UPESV,
BCO, and ILPO), the proposed BCV-LR achieves consistent leadership across all 16 tasks, indicating
a more accurate and robust action prediction for better behavior cloning. By contrast, the inverse
RL method LAIFO shows less satisfactory performance. Given that the diverse visual styles of the
Procgen pose significant challenges for reward prediction [54, 53], we directly make comparisons
with state-of-the-art RL methods accessing ground-truth environmental rewards, and BCV-LR still
demonstrates a clear advantage. The results fully demonstrate the superiority of BCV-LR in terms of
sample efficiency, against different kinds of online policy learning approaches. Additionally, BCV-LR
achieved an average of 79% of expert performance across all tasks, reaching expert levels in many
tasks such as "Maze", "Bigfish", "Fruitbot", and "Starpilot". These for the first time demonstrate that
videos can support extremely sample-efficient visual policy learning, without the need of accessing
expert actions or rewards.

4.3 Continuous Control

In this section, we provide the comparison on 8 continuous visual tasks from DMControl. On each
task, only 100k environmental steps (50k interactions with action repeat set to 2) are allowed. For
ILV methods, we employed a well-trained RL agent (1M steps) to collect 100k transitions as expert
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Figure 4: Ablation study on both discrete control and continuous control.

videos. The RL methods are permitted to access the environmental rewards. Refer to Appendix C for
detailed hyper-parameter settings.

We first provide the comparison between ILV methods and show their training curves in Figure 3.
For the inverse RL method LAIFO, both reward prediction and value estimation require advanced
understanding of the environments. It can deal well with continuous control when given enough
interactions but can’t perform well with limited samples. Compared with the other supervised ILV
methods, BCV-LR still exhibits huge advantages, which is similar to results in discrete control. In
Table 5, we further provide the numerical evaluation results of sample-efficient visual RL baselines
that are provided with ground-truth rewards. Compared with these advanced RL methods, BCV-LR is
still better on 6/8 tasks at 100 steps. In addition, BCV-LR is able to learn effective policies across all
tasks at only 50k environmental steps (even 20k for some tasks), which RL baselines cannot achieve
(refer to Appendix B). In summary, the results in this section further verify (i) the superiority of the
proposed BCV-LR and (ii) the potential of videos as solitary supervision.

In addition to DMControl, we also conduct experiments on 4 continuous manipulation tasks from the
Metaworld benchmark. Refer to Appendix B for results and details.

4.4 Ablation Study

In this section, we ablate each key component of BCV-LR to show the effect on the ILV perfor-
mance, as shown in Figure 4. In "BCV-LR w/o lf", we give up self-supervised visual pre-training
(corresponding to Section 3.1.1), unfreezing the feature encoder f and updating it via substantial
training objectives. This leads to consistent performance drops, especially in continuous control,
demonstrating that a steady visual representation is crucial for understanding complex dynamics.
In "BCV-LR w/o la", we don’t pre-train latent actions (corresponding to Section 3.1.2) but learn
predictor p and world model w in the online stage, observing clear sample efficiency differences.
Particularly for "point_mass_easy", effective learning was unattainable without latent actions, high-
lighting the significance of pre-trained knowledge. Finally, we fix the pre-trained latent actions, only
updating the decoder d to align the latent action space and real action space online (corresponding to
Section 3.2.1), denoted as "BCV-LR w/o ft". The drops are not large in Procgen but extremely huge
in continuous control with more complex dynamics, which is consistent with the failure of baseline
UPESV that freezes the pre-trained knowledge. In conclusion, the results demonstrate that each
module is necessary for BCV-LR to achieve sample-efficient ILV performance in both discrete control
and continuous control. In Appendix B, we further provide more ablation results about different
sub-optimization objectives introduced in Section 3.1.1 and 3.2.1.

4.5 Video Data Efficiency

In this chapter, we give BCV-LR different numbers of demonstration videos to explore its data
efficiency, and the results are shown in Figure 5. 50k transitions are enough for BCV-LR to achieve
performance next to the expert level across both tasks. When given only 20k transitions, BCV-LR can
still learn the expert-level policy on "finger_spin" and an effective policy on "reacher_hard". While
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BCV-LR has demonstrated a certain degree of data efficiency, it exhibits performance bottlenecks
when the amount of video data is further reduced to 5k. On the basis of high sample efficiency, how
to further improve the video data efficiency of BCV-LR is another issue worthy of research.

4.6 Multi-task Pre-training and Adaptation
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Figure 5: The training curves of BCV-LR when given
different numbers of action-free video transitions. 50k
video transitions are enough for BCV-LR to learn an
effective policy.

In previous experiments, BCV-LR’s work-
flow is completed on a single task: offline
pre-training on expert videos of one single
task, followed by online finetuning and pol-
icy cloning in the reward-free environment
corresponding to the task. In this chapter,
we attempt to explore the multi-task poten-
tial of BCV-LR. Following the multi-task
pre-training settings employed in previous
works [51, 34], we pre-train one BCV-LR
model on mixed videos of three diverse
tasks (’Bigfish’, ’Maze’, and ’Starpilot’)
and then achieve online finetuning in these
tasks and two unseen tasks (’Bossfight’ and
’Dodgeball’) separately. The results in Ta-
ble 3 demonstrate that the multi-task BCV-
LR enables effective policy imitation on all
tasks, achieving robust multi-task pre-training and cross-domain adaptation. The pre-trained knowl-
edge can be shared across both seen and unseen domains, demonstrating the potential of BCV-LR to
leverage large-scale cross-domain video data from the internet.

5 Limitation & Insight

Table 3: Multi-task pre-training and adaptation of BCV-
LR. BCV-LR-M denotes the variant of BCV-LR with
multi-task pre-training. PPO-S and BCV-LR-S denote
training under the default single-task setting, i.e., they
are the same as those in Section 4.2.

Task BCV-LR-M BCV-LR-S PPO-S[63] Expert Videos

Bigfish 32.2 ± 2.0 35.9 ± 2.0 0.9 ± 0.1 36.3
Maze 9.6 ± 0.1 9.9 ± 0.1 5.0 ± 0.7 10.0

Starpilot 44.3 ± 1.9 54.8 ± 1.4 2.6 ± 0.9 67.0

Bossfight 5.5 ± 0.3 10.3 ± 0.3 0.1 ± 0.1 11.6
Dodgeball 9.5 ± 0.3 12.4 ± 0.8 1.1 ± 0.2 13.5

Despite the remarkable results across sev-
eral challenging tasks, BCV-LR faces the
same issues as all methods based on be-
havior cloning: covariate shift [25]. This
issue restricts the ability to handle sequen-
tial decision-making tasks, such as com-
plex robot locomotion. We provide addi-
tional experimental analysis in Appendix B.
Some recent works have demonstrated the
feasibility of combining inverse RL and be-
havior cloning to address state-based ILO
problems [65]. To this end, integrating
BCV-LR with existing inverse rewards or
designing inverse rewards based on BCV-
LR latent representations are both viable improvement directions, which we leave for future work.
Additionally, directions such as attempting to further improve BCV-LR’s video data efficiency or
exploring its ability to leverage large-scale videos from the internet also represent future research
avenues.

6 Conclusion

In this paper, we propose a novel framework, named BCV-LR, to efficiently derive policies from
action-free videos without accessing rewards or any other expert supervision. Extensive experiments
demonstrate the huge efficiency advantages of BCV-LR against both advanced ILV methods and RL
methods. BCV-LR for the first time demonstrates the feasibility of using videos as the only expert
supervisory signal to guide extremely sample-efficient policy learning, and we believe this work can
serve as a key stepping stone towards sample-efficient ILV in more scenarios (e.g., real-world robot
manipulation) where both traditional supervision and environmental interactions are expensive.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details in Appendix and will release the implementation after
acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release the data (videos) and codes after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These information is provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results include error bars in experiments, except the expert videos.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We’ve reviewed it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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APPENDIX

A Supplemented Details of BCV-LR Methodology

A.1 Pseudo Code

Algorithm 1 The pseudo code of the proposed BCV-LR.
Require: The action-free video dataset Bv , the reward-free environment E, the latent feature pre-training
update times Ulf , latent action pre-training steps Ula, the online environmental interaction steps Ift, the online
finetuning frequency Fft, the finetuning update times Uft, the behavior cloning update times Ubc.
Initialize: The latent feature encoder f , the latent action predictor p, the world model w, the latent action
decoder d, the latent policy π, and the environmental replay buffer Be.
1: # Offline stage #
2: ## Pre-training latent features ##
3: for index = 1, ..., Ulf do
4: Sample a batch of video observations from video dataset Bv .
5: Calculate the self-supervised objective Llf via Equation (1).
6: Update the latent feature encoder f by backpropagation.
7: ## Pre-training latent actions ##
8: for index = 1, ..., Ula do
9: Sample a batch of video observations from video dataset Bv .

10: Calculate the dynamics-based objective Lla via Equation (2).
11: Update the latent action predictor p and the world model w by backpropagation.
12: # Online stage #
13: for index = 1, ..., Ift/Fft do
14: ## Optional preparations ##
15: (Optional, letting latent policy π fully imitate the pre-trained latent actions before interactions.)
16: if index == 1 :
17: Conduct latent behavior cloning via Equation (4) until convergence.
18: ## Collect environmental interactions ##
19: for index′ = 1, ..., Fft do
20: if index == 1 :
21: Interact with environment E to collect data with random policy.
22: Save the data into the buffer Be

23: else:
24: Interact with environment E to collect data with the learned policy (consisting of f ,π, and d).
25: Save the data into the buffer Be

26: ## Finetuning and decoding the latent actions ##
27: for index′ = 1, ..., Uft do
28: Sample a batch of environmental transitions from buffer Be.
29: Calculate the latent action finetuning objective Lft via Equation (3).
30: Update the latent action predictor p and the latent action decoder d by backpropagation.
31: ## Behavior cloning the latent policy ##
32: for index′ = 1, ..., Ubc do
33: Sample a batch of action-free observations from videos Bv .
34: Obtain the predicted latent actions through f and p.
35: Calculate the latent behavior cloning objective Lbc via Equation (4).
36: Update the latent policy π.
Output: The well-trained visual control policy (f ,π,and d).
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A.2 Prototype-based Temporal Association Task

As shown in Section 3.1.1, for partially observable domains with complex dynamics, such as
DMControl benchmark [31] in this paper, we employ a recent advanced prototype-based temporal
association task [57, 43, 34], which aligns two temporally neighboring observations together in the
latent space. For the sake of fluency, we put the details of this self-supervised task here instead of in
the main text.

Concretely, M observation pairs {(ovi , ovi+1)} are sampled from videos, augmented by the random
shift, and encoded by f and f ′ to obtain latent features {svi } and {svi+1}. Each current latent feature
svi is further processed by an MLP u, which is set to introduce asymmetry for avoiding collapse
to trivial solutions. Then, we take a softmax over the dot product between u(svi ) and M trainable
prototypes {cj}Mj=1:

xv
i = softmax

(
u(svi ) · c1

τ
, ...,

u(svi ) · cM
τ

)
, (5)

where τ denotes a temperature hyper-parameter. To calculate the association target, the Sinkhorn-
Knopp [61] algorithm is employed on the whole batch {svi+1} and prototypes {cj} to obtain batch-
clustering target labels {yvi+1} for all training feature pairs. Concretely, the Sinkhorn-Knopp algorithm
begins with the square matrix C, whose elements are computed by the dot product over each svi+1
and prototype cj :

Cij = svi+1 · cj . (6)

Then it employs several times of doubly-normalization on the matrix C to obtain the clustering target
matrix T , constraining every column and row to have the same sum with as little change of original C
as possible. One doubly-normalization consists of a row normalization and a column normalization.
The row normalization and column normalization are formulated as the following:

NormRow(C) =
1

M
diag(SumRow(C)−1) · C, (7)

NormColumn(C) =
1

M
C · diag(SumColumn(C)−1), (8)

where SumRow(·) denotes the row addition, SumColumn(·) denotes the column addition, and
diag(·) denotes the diagonalization of a matrix. The doubly-normalization, NormDouble(·), is
correspondingly defined as:

NormDouble(C) = NormColumn(NormRow(C)). (9)

Several times of doubly-normalization are applied to C to obtain the clustering target matrix T . The
i-th row of T is the clustering-based target yvi+1 of the xv

i . The self-supervised objective is formulated
as:

Llf = −yvi+1
⊤ log xv

i . (10)

The clustering-based temporal association task actually makes each observation access its own tem-
porally neighboring observation in the self-supervised latent space, thus enabling the representation
module f to obtain the temporal information.
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B Additional Results

B.1 Numerical Results at Fewer Steps in DMControl

In Section 4.3, we provide the results at 100k environmental steps, where the proposed BCV-LR
leads across 6/8 tasks. Here we demonstrate the advantages of BCV-LR when interactions are further
constrained (50k and 20k steps). As shown in Table 8 and Table 9, BCV-LR performs much better
than both ILV and RL baselines, enabling effective policy learning given only 20k steps.

Table 4: Numerical results at 50k environmental steps. Italics indicate using expert videos, and
underlines denote using environmental rewards. Bold text indicates the highest score excluding video
experts.

Task (50k steps) BCV-LR (ours) LAIFO [50] BCO [26] UPESV [28] TACO [60] DrQv2 [3] Expert Videos

point_mass_easy 743 ± 76 1 ± 0 3 ± 4 3 ± 4 529 ± 85 107 ± 143 885
reacher_hard 860 ± 64 22 ± 33 261 ± 142 14 ± 6 41 ± 44 4 ± 3 967

jaco_reach_top_right 73 ± 13 14 ± 14 0 ± 0 3 ± 3 10 ± 8 22 ± 16 198
finger_spin 912 ± 38 166 ± 122 855 ± 28 0 ± 0 416 ± 41 165 ± 121 981

ball_in_up_catch 683 ± 106 25 ± 43 208 ± 227 33 ± 47 126 ± 115 176 ± 120 986
jaco_reach_bottom_left 101 ± 32 20 ± 22 0 ± 0 8 ± 4 8 ± 6 12 ± 10 203
cheetah_run_backward 268 ± 8 1 ± 0 207 ± 27 3 ± 1 272 ± 157 220 ± 158 389

reacher_easy 747 ± 101 80 ± 17 110 ± 123 3 ± 4 110 ± 15 202 ± 152 975

Table 5: Numerical results at 20k environmental steps. Italics indicate using expert videos, and
underlines denote using environmental rewards. Bold text indicates the highest score excluding video
experts.

Task (20k steps) BCV-LR (ours) LAIFO [50] BCO [26] UPESV [28] TACO [60] DrQv2 [3] Expert Videos

point_mass_easy 318 ± 219 1 ± 1 0 ± 0 0 ± 0 1 ± 0 1 ± 1 885
reacher_hard 714 ± 46 22 ± 36 69 ± 85 20 ± 14 26 ± 35 8 ± 8 967

jaco_reach_top_right 70 ± 22 5 ± 5 6 ± 8 4 ± 3 2 ± 1 3 ± 2 198
finger_spin 944 ± 25 84 ± 84 799 ± 82 0 ± 0 51 ± 68 43 ± 59 981

ball_in_up_catch 459 ± 139 96 ± 121 196 ± 215 99 ± 81 99 ± 81 33 ± 47 986
jaco_reach_bottom_left 45 ± 28 1 ± 1 0 ± 1 8 ± 6 3 ± 3 2 ± 2 203
cheetah_run_backward 226 ± 11 1 ± 0 188 ± 14 5 ± 1 150 ± 94 67 ± 48 389

reacher_easy 569 ± 206 77 ± 32 131 ± 92 0 ± 0 136 ± 59 38 ± 31 975
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B.2 Experiments in Metaworld Manipulation

In this section, we further conduct some extra experiments in the Metaworld manipulation benchmark
[32], which may demonstrate a wider application of BCV-LR. For each Metaworld task, only 50k
environmental steps are allowed. The remaining settings are similar to that of DMControl experiments,
except for the self-supervised latent feature objective Llf employed in BCV-LR. Concretely, we
employ only contrastive learning loss (described in Section 3.1.1) in this benchmark because it seems
to perform better than other objectives used in this paper. Results (success rate) are shown in Table
6. In this interaction-limited situation, BCV-LR can still derive effective manipulation skills from
expert videos without accessing expert actions and rewards, which demonstrates its wider range of
applications and potential for generalizing to real-world manipulation tasks.

Table 6: The results (success rate) on 4 manipulation tasks from Metaworld. Italics indicate using
expert videos, and underlines denote using environmental rewards. Bold text indicates the highest
score excluding video experts.

Metaworld-50k BCV-LR (ours) BCO [26] DrQv2 [3] Expert Videos

Faucet-open 0.82 ± 0.20 0.13 ± 0.19 0.00 ± 0.00 1.00
Reach 0.63 ± 0.25 0.03 ± 0.05 0.13 ± 0.12 1.00

Drawer-open 0.92 ± 0.12 0.13 ± 0.09 0.00 ± 0.00 1.00
Faucet-close 0.98 ± 0.04 0.00 ± 0.00 0.50 ± 0.28 1.00

Mean Success Rate 0.84 0.07 0.16 1.00

B.3 Additional Comparison with LAPO’s BC Variant

In Section 4, we use LAPO [21] as a reinforcement learning baseline, which follows its original paper
and official implementation. In this section, we replace LAPO’s online RL loss with behavior cloning
(BC) loss, obtaining its reward-free BC variant, and then compare it with BCV-LR. The results in
Table 7 show that LAPO-BC works well in some tasks, but our BCV-LR still performs better.

Table 7: The comparison between BCV-LR and LAPO’s BC variant. Italics indicate using expert
videos, and underlines denote using environmental rewards. Bold text indicates the highest success
rate excluding video experts.

Task BCV-LR (ours) LAPO-BC [21] PPO [63] Expert Videos

Fruitbot 27.5 ± 1.5 6.2 ± 1.9 -1.9 ± 1.0 29.9
Heist 9.3 ± 0.1 9.2 ± 0.3 3.7 ± 0.2 9.7

Bossfight 10.3 ± 0.3 0.0 ± 0.0 0.1 ± 0.1 11.6
Chaser 3.1 ± 0.5 0.6 ± 0.0 0.4 ± 0.2 10.0
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B.4 Ablation&Hyper-parameter Sensitivity: Self-supervised Reconstruction Loss

In this section, we further provide the ablation study of the extra reconstruction loss employed in
Section 3.1.1. In video games, useful visual information is abundant and scattered. Unlike contrastive
learning, which understands the image as a whole, the reconstruction task forces the feature encoder
to focus on these key pixels. The results demonstrate that this extra objective can indeed improve the
performance, as long as it is not set too large, which is shown in Figure 6.
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Figure 6: Ablation and hyper-parameter sensitivity analysis of the extra reconstruction loss in self-
supervised latent feature pre-training.

B.5 Ablation&Hyper-parameter Sensitivity: Finetuning Latent Actions with World Model

In this section, we demonstrate whether finetuning the latent actions online with the world model
yields better performance. The results in Figure 7 indicate that constraining the latent action finetuning
with the pre-trained world model is helpful. It is consistent with our intuition, because we aim to
extract the expert actions for policy cloning, while the online collection is not expert-level in most of
the time. The pre-trained world model can provide the expert dynamics-based knowledge to alleviate
the effect of the distribution difference.
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Figure 7: Ablation and hyper-parameter sensitivity analysis of the dynamics-constrained loss in
online latent action finetuning.
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B.6 Ablation: Freezing Latent Features

In this section, we provide ablation experiments to demonstrate whether it is necessary to further fine-
tune the pre-trained self-supervised latent features with the other objectives in BCV-LR. We finetune
the self-supervised encoder with Lla and Lft, respectively. The results in Table 8 demonstrate
that whether finetuning self-supervised visual features doesn’t yield an apparent effect on policy
performance. This phenomenon has also been observed in self-supervised RL [59, 57], leading some
works to fine-tune self-supervised features while others opt to freeze them.

Table 8: Comparison of policy learning performance between freezing and fine-tuning BCV-LR
self-supervised latent features.

Task Finetuned via Lla Finetuned via Lft Frozen Expert videos

reacher_hard 876 ± 15 906 ± 65 900 ± 31 967
finger_spin 937 ± 26 920 ± 57 942 ± 48 981

B.7 Schedule of Environment Interactions

In the online stage of BCV-LR, a) we allow the agent to interact with the environment for a fixed
number of times using its policy and collect transitions to enrich the experience buffer. Immediately
after that, b) we perform finetuning of the latent action and training of the action decoder on the
experience buffer. Then, c) we train the latent policy to imitate the finetuned latent action predicted
from expert videos. After this, the BCV-LR policy is improved, and we return to part a) to collect
better training data, which forms a cyclic online policy learning. Under the default experimental
settings, we set the number of interactions for each cycle at a relatively large value from start to finish
(for example, we fixed the number of collected transitions in part a) as 1000 in DMControl). In this
section, we try a much smaller interaction number (set to 2) and correspondingly reduce the number
of update times for latent actions (set to 1) and latent policies (set to 2) in each cycle. We denote
this variant as ’BCV-LR(1000->2)’. The results in Table 9 show that our approach can still achieve
effective policy learning, demonstrating its robustness to the schedule of environment interactions.

Table 9: Comparison of BCV-LR’s performance under different schedules of environment interactions.
Task BCV-LR (1000->2) BCV-LR DrQv2[3] Expert videos

reacher_hard 875 ± 65 900 ± 31 92 ± 98 967
finger_spin 956 ± 20 942 ± 48 374 ± 264 981

B.8 Offline Latent Action Decoding

In this section, we let BCV-LR perform latent action finetuning and policy imitation with a few offline
action-labeled expert transitions, in a fashion akin to LAPA [19]. Concretely, we maintain the original
pre-training stage and use 10k offline action-labeled expert transitions to achieve offline latent action
finetuning and policy cloning with the original losses. The results in Table 10 (RL denotes DrQv2 [3]
for DMControl tasks and PPO [63] for Procgen tasks) demonstrate that BCV-LR can also achieve
offline imitation learning well if expert actions are provided.

Table 10: BCV-LR can also accomplish latent action decoding and fine-tuning using offline action-
labeled expert data.

Task BCV-LR-offline BCV-LR RL Expert videos

reacher_hard 938 ± 44 900 ± 31 92 ± 98 967
finger_spin 978 ± 7 942 ± 48 374 ± 264 981

Fruitbot 27.7 ± 0.4 27.5 ± 1.5 -1.9 ± 1.0 29.9
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B.9 Limitation Analysis

Despite the remarkable results across different kinds of control tasks (including both discrete control
and continuous control), BCV-LR faces covariate shift [25], the same issues as all methods based on
behavior cloning. This issue restricts the ability to handle sequential decision-making tasks, such
as complex robot locomotion. In this section, we provide the comparison between the IRL method
LAIFO [50] and our BCV-LR on two continuous tasks: the balance control "reacher_hard" and the
locomotion task "walker_walk". As shown in Figure 8, when the environmental interactions are
limited (only 100k steps), BCV-LR exhibits significant advantages on both tasks.
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Figure 8: The training curves of BCV-LR and LAIFO when 100k steps are allowed. BCV-LR exhibits
advantages on both locomotion and balance control.

However, if enough environmental steps (500k) are permitted, behavior cloning-based BCV-
LR’s performance growth stagnates after efficient learning in the sequential decision-making task
"walker_walk", while RL-based LAIFO can continue to improve.
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Figure 9: The training curves of BCV-LR and LAIFO when 500k steps are allowed. BCV-LR is
limited in sequential decision-making task, which is due to the covariate shift of the behavior cloning.

Some recent works have demonstrated the feasibility of combining inverse RL and behavior cloning to
address state-based ILO problems [65]. To this end, integrating BCV-LR with existing inverse rewards
or designing inverse rewards based on BCV-LR latent representations are both viable improvement
directions, which we leave for future work.
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C Experimental Details

C.1 Introductions of Environments

In this paper, we employ diverse and challenging visual control tasks to provide a comprehensive
evaluation of the proposed BCV-LR, as shown in Figure 10. The top two rows are discrete Procgen
tasks [30], the third row contains continuous DMControl tasks [31], while the bottom row contains
Metaworld manipulation tasks [32].

The first row from left to right is Coinrun, Starpilot, Caveflyer, Dodgeball, Leaper, Maze, Bigfish,
and Heist.

The second row from left to right is Fruitbot, Chaser, Miner, Jumper, Climber, Plunder, Ninja, and
Bossfight.

The third row from left to right is jaco_reach_bottom_left, point_mass_easy, finger_spin, reacher_easy,
cheetah_run_backward, ball_in_cup_catch, jaco_reach_top_right, and reacher_hard.

The bottom row from left to right is Faucet-open, Reach, Drawer-open, and Faucet-close.

See their paper for the detailed task description.

Figure 10: Screenshot of diverse and challenging visual control tasks employed in this paper.
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C.2 Hyper-parameter Settings

Table 11: Default hyper-parameter settings in discrete Procgen. The "lr" denotes "learning rate",
while the "ft" denotes "finetuning". There are additionally 60k latent behavior cloning update times
before the first round of the online stage to ensure that the latent policy fully imitates the pre-trained
latent actions. For Miner, Climber, and Chaser, the "online latent action predictor ft lr" is 1e-3 and
the β is set to 1. For Plunder, the α is 1.

Hyper-parameter Setting
Frame shape 64× 64× 3

Frame stack 1

Action repeat 1

Action type Discrete
Action dimension 15

Video steps 8M
Video expert training steps 50M
Latent feature pt times 20000

Feature encoder lr 3e− 5

Random shift padding upper bound 1

Reconstruction coefficient α 1e− 1

EMA update frequency 2

EMA Momentum 0.05
VQ codebook number 2

VQ dicrete latent number 4

VQ latent embedding dimension 16

VQ latent embedding number 64

Latent action dimension 128

Latent action pt times 10000

Latent action predictor pt lr 3e− 4

World model pt lr 3e− 4

Online steps 100000

Online env numbers 64

Online update frequency 64

Latent action ft update times 60

Latent action decoder lr 1e− 3

Latent action predictor ft lr 2e− 5

World model loss coefficient β 15

World model ft Frozen
Behavior cloning update times 500

Latent policy lr 2e− 4
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Table 12: Default hyper-parameter settings in DMControl. The "lr" denotes "learning rate", while
the "ft" denotes "finetuning". There are additionally 60k latent behavior cloning update times before
the first round of the online stage to ensure that the latent policy fully imitates the pre-trained latent
actions. For ’point_mass_easy’, the random shift padding is up to 1. For the domain jaco and reacher,
the update time of latent action is set to the fixed value of 100 while the β and the world model
finetuning learning rate are both 1e − 3. For Metaworld tasks, they share hyper-parameters with
DMControl, except for the action dimension set to 4, the online interaction frames set to 50k, and the
latent feature self-supervised task changed to contrastive learning.

Hyper-parameter Setting
Frame shape 64× 64× 3

Frame stack 3

Action repeat 2

Action type Continuous
Action dimension Refer to [31]
Video frames 200k
Video expert training frames 1M
Temperature hyper-parameter τ 0.1

Latent feature pt times 50000

Feature encoder lr 1e− 4

Random shift padding upper bound 4

Numbers of doubly-normalization 3

EMA update frequency 2

EMA Momentum 0.05
VQ codebook number 2

VQ dicrete latent number 4

VQ latent embedding dimension 16

VQ latent embedding number 64

Latent action dimension 128

Latent action pt times 50000

Latent action predictor pt lr 3e− 4

World model pt lr 3e− 4

Online interaction frames 100000

Online env numbers 1

Online update frequency 1000

Latent action ft update epoch 2

Latent action decoder lr 1e− 3

Latent action predictor ft lr 1e− 3

World model loss coefficient β 1e− 5

World model ft lr 1e− 5

Behavior cloning update times 1000

Latent policy lr 1e− 3
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