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Abstract

Causal reasoning and discovery, two fundamental tasks of causal analysis,
often face challenges in applications due to the complexity, noisiness, and high-
dimensionality of real-world data. Despite recent progress in identifying latent
causal structures using causal representation learning (CRL), what makes learned
representations useful for causal downstream tasks and how to evaluate them are
still not well understood. In this paper, we reinterpret CRL using a measurement
model framework, where the learned representations are viewed as proxy measure-
ments of the latent causal variables. Our approach clarifies the conditions under
which learned representations support downstream causal reasoning and provides
a principled basis for quantitatively assessing the quality of representations using
a new Test-based Measurement EXclusivity (T-MEX) score. We validate T-MEX
across diverse causal inference scenarios, including numerical simulations and
real-world ecological video analysis, demonstrating that the proposed framework
and corresponding score effectively assess the identification of learned represen-
tations and their usefulness for causal downstream tasks. Reproducible code can
be found at https://github.com/shimenghuang/a-measurement-perspective-of-crl.

1 Introduction

Causal analysis rests on two foundational pillars: causal reasoning and causal discovery. Causal
reasoning operates under the assumption that the causal structure is known or can be assumed, and
leverages data to make quantitative causal statements, for example, about the average effect of one
variable on another. As causal structures are often unknown, causal discovery aims to uncover this
structure, assuming that the causal variables of interest are readily observed. In many real-world
settings, however, the causal variables may not be directly observable. While originally formulated
mostly to enable causal capabilities in machine learning models, Causal Representation Learning
(CRL, Scholkopf et al., 2021) has the potential to serve as a third pillar of causal analysis: enabling
applications of causality involving unstructured data. For this, we reinterpret causal representation
learning using the formalism of “measurement models” (Silva et al., 2006), wherein the learned
representations serve as proxy measurements for latent causal variables. This perspective of CRL
allows us to better characterize when a representation supports downstream causal reasoning, and
it also provides a principled basis for quantitatively evaluating the quality of identification.

Methodologically, CRL tackles a more challenging task compared to independent component
analysis (ICA) and disentanglement, where the latent variables are assumed to be independent of
each other (Hyvérinen and Pajunen, 1999; Hyvarinen et al., 2019; Higgins et al., 2017; Locatello
et al., 2019). Instead, CRL aims to unmix a set of causally related latent variables. Many recent
causal representation learning works have provided different theoretical results for causal variable
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identification compiling various problem settings (von Kiigelgen et al., 2021, 2024; Zhang et al.,
2024b; Ahuja et al., 2024, 2022; Varici et al., 2024; Zhang et al., 2024a; Yao et al., 2024b; Kong
et al., 2022; Lippe et al., 2022b; Xie et al., 2024; Dong et al., 2024; Lachapelle et al., 2022, 2023;
Yao et al., 2022; Zhang et al., 2024a; Squires et al., 2023; Buchholz et al., 2024; Kong et al., 2023),
recently unified by (Yao et al., 2025) into a single general methodology. Although most of the
results have been theoretical in nature, machine learning models explicitly empowered with identified
causal structure have been shown to be more robust under distributional shifts and provide better
out-of-distribution generalization (Fumero et al., 2024; Ahuja et al., 2021; Bareinboim and Pearl,
20165 Zhang et al., 2020; Rojas-Carulla et al., 2018). From an Al for science perspective, CRL
has shown its potential in understanding climate physics from raw measurement data (Yao et al.,
2024a), answering causal questions in the scope of ecology experiments (Cadei et al., 2024, 2025;
Yao et al., 2025), psychometric studies (Dong et al., 2024), and countless more applications related
to biomedicine (Zhang et al., 2024a; Sun et al., 2025; Ravuri et al., 2025; Jain et al., 2024).

Despite recent progress in identifying latent causal structures within causal representation learning,
it remains unclear what makes learned representations useful for downstream causal tasks and
how to best evaluate them. Building on the proposed measurement model framework, we
introduce a new evaluation metric, the Test-based Measurement EXclusivity (T-MEX) Score,
which effectively quantifies how well the learned representation aligns with the underlying
measurement model. This underlying measurement model can be specified by, for instance,
identifiability theory of a CRL algorithm (Fig. 1), assumptions for a particular causal reasoning
task (Figs. 2 and 4), or ground truth knowledge. In contrast to commonly used CRL evaluation
metrics, which suffer from clear limitations (§ 4), we demonstrate that T-MEX reliably assesses
both the identifiability (Defn. B.1) and causal validity (Defn. 2.2) of learned representations, as
shown in a wide range of causal reasoning tasks across numerical simulations and real-world
ecological video analysis (§ 5). We summarize the main contributions of this paper as follows:

* We reinterpret CRL using a measurement model
framework, wherein the learned representations
serve as proxy measurements for latent causal
variables (§ 2). This formalism provides a clearer
characterization of both the identification quality
of learned representation and its usefulness for
causal downstream tasks.

* We propose a new evaluation metric (T-MEX) that
quantifies the alignment of the representations
and the underlying measurement model (§ 3), and
we demonstrate its advantages over widely used
CRL evaluation metrics that suffer from notable variables. X is often termed the observables

limitations (§ 4). in CRL literature, representing the observed
* Supported by theoretical analysis, our empirical  data. (Right) Two measurement models speci-
evaluations confirm that T-MEX maintains fied by different CRL identification algorithms:
validity and effectiveness across diverse causal (a) Algorithm 1 guarantees one-to-one corre-
reasoning scenarios, including treatment effect Spondence between the learned representation

estimation and covariate adjustment in both gand causal variables; (b) Algor]thm 2 guaran-
numerical simulations and real-world ecological  (.oq that Z 4, corresponds to Z; while Z 4,

experiments (§ 5). represents a mixing of Zy and Zs.

Figure 1: (Left) A measurement model where
X is a fully mixed measurement of the causal

2 CRL from A Measurement Model Perspective

Notation. Throughout, we write [IN] as shorthand for the set {1,..., N}. Random vectors are
denoted by bold uppercase letters (e.g. Z) and their realizations by bold lowercase (e.g., z), indexed by
superscripts. For instance, n samples of Z are written as {z*} ke[N]- A vector Z can be sliced either
by a single index ¢ € [dim(Z)] via Z; or a index subset A C [dim(Z)] with Z4 := {Z; : i € A}.
Py denotes the probability distribution of the random vector Z and pz(z) denotes the associated
probability density function (We omit the subscription and write p(z) when the context is clear).
By default, a “measurable” function is measurable w.r.t. the Borel sigma algebras and is defined
w.r.t. the Lebesgue measure. A more comprehensive summary of notations is provided in App. A.



2.1 The Measurement Model Framework

We formulate causal representation learning using a measurement model framework inspired by the
formalism of (Silva et al., 2006).

Definition 2.1 (Measurement model). Let V = (Z, 2) be a collection of variables that can be
partitioned into two sets: a set of latent causal variables Z = {Zl, RN / N} with Z; taking values
in R for all i € [N], and a set of observed measurement variables 7= {Z Ays- o5 Za,, } where for
all j € [M], ZA takes values in R/ with D; € N, and it holds that ZNZ=0.

A measurement model M = (Z,7Z, {h;}}L,) specifies that Z follows a deterministic structural

causal model
M

{ZAj = h; (Zpa(iAj ) }

where pa(zAj) C [N]forall j € [M], and Z , 7

The functions h; for all j € [M] are called the measurement functions. If for some j € [M],

b)
j=1

) C Z are called the causal parents of Z Aj-

|pa(Z 4;)| = 1 and the function h; is the identity map, then the causal variable pa(Z A;) is said to be
measured directly.

Remark 2.1 (Difference from (Silva et al., 2006)). While we borrow the concept of a measurement
model from Silva et al. (2006), our framework differs in two key aspects. First, Silva et al. (2006) aims
to uncover relationships among latent causal variables by searching for pure measurements, i.e., a tree-
structure in which latent nodes have fixed, noisy, low-dimensional observed children (measurements).
In contrast, we interpret a given causal representation produced by a CRL algorithm as measurement
variables and focus on evaluating their usefulness for specific causal tasks, which requires specification
of a causal model. Second, Silva et al. (2006) assumes a linear latent structural causal model, whereas
our framework imposes no parametric structural assumption on the latent causal variables. Rather,
we specify the relationship between the causal variables and their measurements according to certain
hypotheses, such as identification guarantees, prior knowledge, or assumptions for specific causal
downstream tasks. As we will see in § 3, this also allows us to properly evaluate a learned CRL
model. 'y

Remark 2.2. While we treat the measurement variables Z as noise-free nonlinear mixing of their
causal parents, we can easily extend our framework to noisy measurements by considering the noise
variables as additional latent causal variables. [ )

Example 2.1. Assume by the identifiability theory of a specific CRL method that each Z A, block-
identifies (see Defn. B.1 (von Kiigelgen et al., 2021, Defn 4.1)) a subset of latent variables Zg,

(S; C [N]). Then for the measurement model M = (Z, Z, {h; };Viﬁ it holds that: ZAj = h;(Zs,),
with h; : RISl — RDi a diffeomporphism for all j € [M].

The measurement model induces a partial directed acyclic graph (DAG), that is, for any latent variable
q that is block-identified (Defn B.1) by A;, there is an edge from the latent causal variable Z,, to

the measurement variable Z A, » and the measurement function /; is a diffeomorphism. Illustrative
examples are shown in Fig. 1 for different identifiability guarantees ¢

Discussion. Note that a measurement model specified by certain identifiability theory (see Fig. 1)
is a necessary but not sufficient condition for drop-in replacement of a variable with its identified
counterpart in a causal inference engine (Pearl and Mackenzie, 2018) or a downstream causal
estimand like average treatment effect (Robins et al., 1994). To this end, we introduce causally valid
measurement model.

Definition 2.2 (Causally valid measurement model). The measurement model (Defn. 2.1) is “causally
valid" with respect to a statistical estimand g that identifies a target causal estimand, if the measure-

ment Z is a drop-in replacement in g for the true causal variables Z, i.c., g(Z) = g(Z). &

Discussion. Causal validity of a measurement model with respect to a specific estimand boils down
to the estimand being invariant with respect to the measurement function. As (von Kiigelgen et al.,
2024) already pointed out, identification of a latent causal variable up to a non-linear parameterization
(i.e., block-identifiability (Defn. B.1)) does not allow average treatment effect estimation if either
the treatment or outcome is a latent causal variable without additional information. For that, a



direct measurement (see Defn. 2.1) as in (Cadei et al., 2024, 2025) is necessary; alternatively,
one can choose an estimand that is invariant to non-linear invertible parameterizations, e.g.,
(conditional) mutual information (Janzing et al., 2013). As another example, a non-linear invertible
parameterization is enough to model confounding variables (Yao et al., 20242) and instruments, see F
for extended discussions and examples. Finally, note that the causal validity of the measurement
models does not always require one-to-one correspondence between the measurement variables and
latent causal variables: When an estimand concerns a coarse-graining of a subset of variables, then
a measurement model mixing the right subset of variables can still be causally valid. For example,
the valid adjustment set W in Fig. 11 can contaﬂg two or more variables, which can remain entangled
with each other in the learned representation W := h(W) as long as the measurement function h
is invertible, see App. F for detailed derivations.

When is a measurement model “true”? Note that any causal model between learned representation
can always be trivially formulated as a measurement model, with each identified representation
variable corresponding to a latent causal variable (i.e., 21 — 22 implicitly implies a measurement
model Zq <+ Z1 — Zo — 22). Sometimes, by means of other assumptions, the latent causal model
may not match one-to-one with the measurements; for example, see Fig. 1 (b). Our discussion on
the measurement model only specifies the dependency between a learned representation and an
(implicitly) assumed latent causal model. Following (Peters et al., 2014), we intend the latent causal
model to be true if it agrees with the results of randomized studies in practice. If the latent causal
model is true, then a causally valid measurement model is trivially also true.

3 Evaluating Causal Representations using Measurement Models

This section explains how the measurement model formalism we introduced in § 2 serves as a natural
tool to evaluate causal representations. A causal representation is defined as a set of measurement
variables output from an encoder — a parameterized function that maps the observables X to the
measurement variables Z. Each CRL method specifies a measurement model, either through its iden-
tifiability guarantees or the particular causal task it addresses. This measurement model defines which
causal variables a representation should exclusively measure. Given paired samples of the true causal
variables Z and their corresponding measurement variables Z from a trained CRL model, evaluation
boils down to comparing the measurement model against the observed joint distribution P, 5. Before
presenting our proposed evaluation metric, we introduce the following additional notation.

Additional notation. Let Z1, Z5, and Z3 be three absolutely continuous random variables taking
values in R%21 , R22  and R9%s res ectively. We say that Z, and Z, are conditionally independent
given Zs if p(Z1, 2y | Z3) = p(Z1 FZg)p(ZQ | Z3), and it is denoted as Z; 1L Z, | Z3. A statistical
test ¢ is a function that maps data to {0, 1}, e.g., ¢ : R"*421 x R"*dz; x R**dz5 — [() 1}, where
n denotes the number of samples. The test ¢ rejects a null hypothesis Ho if ©(Z1, Z2,Z3) = 1 and
does not reject it if p(Z1, Zy, Z3) = 0. Given a significance level a € (0, 1), a test is said to be valid
if it holds that sup pc4,, P(0(Z1, Z2,Z3) = 1) < , and it is said to have power 3 € (0, 1) against
an alternative distribution P & H if P(p(Z1,Z2,Z3) = 1) = .

Exclusivity of measurements. A measurement model describes the relationship between the causal
and the measurement variables. Specifically, it tell us for each measurement variable, which causal
variables it should exclusively measure. We formally define this concept below.

Definition 3.1 (Exclusivity of a measurement variable). Let M = (Z, 2, {hj}jern) be a measure-
ment model, if a measurement variable Z 4, j € [M] only has one causal parent Z; for some i € [N],

then we say Z 4, exclusively measures Z;. &

Given samples of the causal and measurement variables {(z",2%)},c(,,), we can check whether the
measurement variables do satisfy the exclusivity property in the data by testing the following null
hypotheses:

Holi,j) : Za, L Z; | Zinp iy (3.1

forall i € [N] and j € [M]. For a numerical summary of the overall exclusivity of the measurement
variables, we propose the following 7est-based Measurement EXclusivity (T-MEX) score.



Definition 3.2 (Test-based measurement exclusivity score). Let V' € {0, 1}V *M be the adjacency
matrix corresponding to the conditional independencies according to a measurement model M, such
that for all j € [M] and i € [N], V;; = 1if a causal variable Z; is a causal parent of a measurement

variable Z A, according to the measurement model, and Vj; = 0 otherwise. Let W e {0, 1}VxM
be the matrix constructed according to the test results of the conditional independencies in eq. (3.1)
based on the samples of (Z, Z), such that for all j € [M]and ¢ € [N], W;; = 1if Ho (i, j) is rejected,
and W;; = 0 otherwise. Then the test-based measurement exclusivity (T-MEX) score is defined as

the hamming distance between V' and W

M N
T-MEX(V, W) ZZ]I Vii
Jj=11i=1

where 1 denotes the indicator function. &

Details for computing T-MEX is given in Alg. 1. As T-MEX score is based on conditional indepen-
dence testing, its value depends on the randomness in the samples, and the properties of the statistical
tests being used. In Prop. 3.1, we show the upper bound of the expected T-MEX score when the joint
distribution PZ,Z of the causal variables Z and output measurement variables Z from a CRL model
does align with a measurement model.

Proposition 3.1. Let {©;;}ic|n),je[ar) be a family of tests for eq. (3.1) where for all i € [N] and
J € [M], @sj is valid with level o € (0,1) and has power at least B € (0, 1). Given an adjacency ma-
trix V€ RN*M based on a measurement model, if the joint distribution P, 5 of the causal and mea-

surement variables does align with the measurement model, and each entry in W is computed based
on an independent set of samples {(z",2")} ke[ni,)» Nij € Ny, then the expected T-MEX satisfies

E[-MEX(V,W)] < o (MN —[[V|ly) + (1= 8) - [V},

where ||V||1 = Zivil Ejle Vij is the Li-norm of V.

Remark 3.1. Prop. 3.1 assumes that each null hypothesis in eq. (3.1) is tested using an independent
set of samples. When there is only one set of samples available for a large number of tests, using the
same sample set can lead to inflation of the false positive rate, and may inflate the T-MEX score. In

this case, we recommend doing a multiple comparison adjustment when constructing W, for example,
the Bonferroni-Holm correction (Holm, 1979), which controls the family-wise error rate while it does
not make assumptions on the dependencies of the multiple p-values. [ )

Remark 3.2. In this section, we focus on the exclusivity perspective of a measurement model via
an approach similar to the idea of falsification of causal graphs (e.g., Kook, 2025; Faller et al., 2024).
This is a non-parametric approach which is agnostic to the measurement functions. In certain cases,
however, a measurement model may contain not only the conditional independence structure, but
also other parametric assumptions through specifications of the measurement functions {/;} je[ar)-
Then, one may extend T-MEX to also take these constraints into account.

4 Related Work: Flaws of Existing Evaluation Metrics for CRL

In this section, we cover the metrics that have been used by most papers proposing causal represen-
tation learning approaches (von Kiigelgen et al., 2021, 2024; Zheng et al., 2022; Ahuja et al., 2024,
2022; Varici et al., 2024; Zhang et al., 2024a,b; Yao et al., 2024b; Lippe et al., 2022a,b; Lachapelle
et al., 2022, 2023; Yao et al., 2022; Zhang et al., 2024a; Squires et al., 2023; Buchholz et al., 2024;

Yao et al., 2025) to name a few. We highlight how these metrics are not 1mmed1ately suitable to
evaluate identification results in the presence of causal relations, making it difficult to compare models
and requiring great care in the interpretation of the results that is often missed (Gamella et al., 2025).

Standard evaluation for latent variable identification in existing CRL works employs coefficient
of determination R? (Defn. 4.1), and mean correlation coefficient (Defn. 4.2). However, when the
latent variables are causally related, a high score of these two metrics does not indicate that the
learned representations align with the measurement model we expect from the identifiability theory.
Example 4.1 illustrates this limitation of these two metrics under the presence of causal dependencies.



Example 4.1. Assume that the latent causal variables Z in Fig. 1 (b) follow a linear Gaussian additive
noise model. Specifically, the latent variables Z; and Z, are generated based on the following
structural equation:

Zo =a-Z1+e “.1)
with e ~ P,, E[e] = 0 and e 1L Z;. Suppose that the measurement model which induces Fig. 1 (b)
specifies that the measurement function » : R — R is a diffeomorphism such that Z A, = h(Zy), that
is, Z A, identifies Z;, while VA 4, should not contain any additional information about Zs. ¢

Coefficient of determination. R2 measures the proportion of the variation in the dependent variables
explained by the regression model (Draper and Smith, 1998), formally defined as
Definition 4.1 (Population R? score). Let (Z;, Z 4, ) be a pair of random variables both taking values

inR,i € [N],j € [M]. The coefficient of determination R? score for predicting Z; from Z A, is
defined as

V(E[Zi | Za,])
V(Z;) ’
where [E and V denote the expectation and variance operators, respectively. )

RQ(ZZ', ZA].) =

Problem of 1 in Example 4.1: Let R?(Z,, Z 4, ) denote the R? score as defined in Defn. 4.1.
Following the linear mechanism in eq. (4.1), R?(Za,Z 4, ) can be expressed as

V(E[Zs | Z4,)) _ V(E[aZ: +¢| Za,))
V(Zg) V(aZl + 6)
a®V(E[Z1 | Z4,)) a?V(Zy)

= V@) T V() BVE) v BB

R¥(Z3,Z4,) =
“4.2)

Depending on the noise level V(e), R%(Zy,Z.4,) can be either close to R%(Zy,Z.4,) when
V(e) < a?V(Z1) or close to 0 when V(e) is significantly higher than a?V(Z ); in either case it does

not reflect whether Z 4, identifies Zs or not, in the sense of Defn. B.1. Ultimately, R? is a metric
for predictability, not for identifiability. Using it as an identifiability metric under causal dependency
can lead to misinterpretation (Gamella et al., 2025).

Remark 4.1 (Other problems of R? score). R? is designed to measure how well a linear model fits
between two random variables. When the fitted model is nonlinear, R? can yield values outside [0, 1],
which can be misleading. See also Cameron and Windmeijer (1997) for more details.

Mean correlation coefficient (MCC). Intuitively, MCC measures the component-wise correspon-

dence between the learned representation Z and the ground truth latent variables Z. When using
MCQ, it is required to have the same latent and encoding dimensions. We restate the definition of the
MCC as follows.

Definition 4.2 (Mean correlation coefficient).

1
MCC = — Cort(Z;, Z
7 n B Z Corr(Zi, Za(s)1;

where Corr(+, -) refers to the Pearson correlation under linear relationship and Spearman correlation
in the nonlinear case. &

However, we notice that MCC cannot capture how well the representations are disentangled, mis-
ahgmng with its 0r1g1na1 purpose ¢ of measurlng component-wise correspondence Assume in Fig. 1

(b) that Z A, = Z1 and Z Ay = [Zg, Zg] The learned representations v/ A, are linear mappings of
their causal parents Z pa(Zia )’

2128'21; ZQZG'Z2+b'Z3; 2520Z2+dZ5,

where s, a, b, ¢, d # 0. In this case, the MCC would obtain the highest value 1, although Zs, Z3 are

still entangled in the learned representation Z, demonstrating that MCC is inadequate in evaluating
element-wise identification under causal relations.



Evaluation of causal relations. Causal relations are usually evaluated with the standard metrics
Structural Hamming distance (SHD). We remark that evaluating causal discovery on the learned rep-
resentations should always be done in conjunction with latent variable identification, as it is possible
to achieve a perfect SHD (i.e, zero) with entangled representations, using e.g., LINGAM (Shimizu
et al., 2006), as shown numerically in App. D.3.

Evaluation of disentangled representation. Evaluating disentangled representations (where the
ground truth latent variables are assumed to be mutually independent) is comparatively easier. In the
disentangled case, the main objective is to assess how well the learned representation aligns one-to-
one with the ground truth latents. Commonly used evaluation metrics for disentangled representations
include the BetaVAE Score (Higgins et al., 2017), FactorVAE Score (Kim and Mnih, 2018), Mutual
Information Gap (MIG Chen et al. (2018)), DCI-disentanglement (Eastwood and Williams, 2018),
Modularity (Ridgeway and Mozer, 2018) and SAP (Kumar et al., 2017). Broadly, evaluating learned
representations can be viewed as a two-stage procedure, first estimating the relationship between latent
variables and representations, and then aggregating this information into a single score (l.ocatello
et al., 2020). In some way, our test can be seen as following the same strategy, although evaluating
variable-level correspondence is less straightforward given underlying causal relationships, making it
a fundamentally more challenging and understudied problem.

5 Experiments

This section demonstrates the validity of the proposed T-MEX score in various causal reasoning set-
tings. We first focus on covariate adjustment in numerical simulations, using T-MEX to evaluate both
identifiability (Defn. B.1) and causal validity (Defn. 2.2) of the representations (§ 5.1). Next, we move
on to treatment effect estimation in high-dimensional ecological video analysis, where we demonstrate
that T-MEX effectively characterizes how well the learned representation supports answering down-
stream causal questions (§ 5.2). For both experiments, we estimate T-MEX based on the projected
covariance measure (PCM) test (Lundborg et al., 2024) implemented in the python package pycomets
(Huang and Kook, 2025), which is an algorithm-agnostic test for conditional independence (see App. E
for more explanations). Further experiment details and additional results are deferred to App. D.

5.1 Numerical Simulation

This experiment validates our proposed T-MEX evaluation metric through a controlled numerical
simulation. We leverage CRL to model confounders and perform backdoor adjustment to estimate
the average treatment effect (ATE). We report both R? and the ATE bias, demonstrating that T-MEX
closely aligns with the absolute ATE bias and provides a reliable measure of representation quality,
whereas R? fails to yield consistent or meaningful conclusions.

o o
— )
%) S

|ATE Bias|
(=]
=

=] =]

= =]

S S

b'.
iyl J

Figure 2: Measurement model containing the
latent causal variables Z1, Zo, and Z3 (white 0 I 2
nodes) and observed (also termed “directly mea-
sured" in Defn. 2.1) causal variables Z, and Zs
(gray nodes). The entangled observable X is

shown as a dashed oval. Z 4, denotes the exclu-
sive measurement (Defn. 3.1) of Z;.

Figure 3: T-MEX tracks the absolute bias of

the ATE estimates of Z4 on Zs where Z; is
conditioned on as the back door adjustment.

Experiment settings. We generate five causal variables, Z; for i € [5] according to a linear structural
causal model (see App. D.1), where two of the causal variables, Z4 and Zs, are observed (also
termed “directly measured" in Defn. 2.1). The entangled observations X := f(Z,Zs,Z3) are



generated by applying a diffeomorphism f : R? — R3, implemented as an invertible MLP, on
the causal variables. Our target causal task is to estimate the ATE of Z4 on Zs. As the true causal
relationship between Z, and Zj5 is linear, we can construct a consistent causal estimator where Z1
is adjusted using linear regression, which is invariant up to bijective transformations of Z, (App. F).
Although Z; is latent and cannot be directly adjusted for, one can measure it through a bijective
transformation Z A, := h(Z;) which is obtained from the entangled observation X. Note that in this

case, 7 A, exclusively measures (Defn. 3.1) the confounder Z, as depicted in Fig. 2. We train three
different CRL models based on the identifiable learning algorithm proposed by Yao et al. (2024b)

and obtain samples of the measurement variable Z 4, :

* Model A: a sufficiently trained model from which we expect the learned representation

th (where by a slight abuse of notation, the superscript represents the model indicator) to
exclusively measure Z;

* Model B: an insufficiently trained model with unclear latent-measurement correspondence;

* Model C: a corrupted version of Model A where the representation igl is defined as a

linear mixing of the identified representation Zﬁl and Zy, Zs.

Results. Tab. | summarizes the T-MEX scores together with the coefficient of determination R? for
all three models A, B and C, presented as mean+sd. For statistical validity, we compute the results
using 50 simulated datasets from each model, with each dataset containing 4096 observations. Further
details about the test results are provided in App. D.1. Tab. 1 shows that a sufﬁcientl/}\/ trained model

(Model A) achieves a low T-MEX score, indicating that the learned representation Z 4, exclusively
measures the latent variable Z,. In contrast, the insufficiently trained and corrupted models (Models
B and C) exhibit high T-MEX scores, demonstrating misalignment between the learned representation
and the hypothesized measurement model (Fig. 2). Fig. 3 presents the absolute ATE bias estimated
from the learned representations of all three models. We observe a strong correlation between T-MEX
and the absolute bias of the ATE, validating T-MEX as a reliable indicator of the causal validity of
the learned representation (Defn. 2.2). In contrast, as shown in Tab. 1, R? is relatively high for all
three latent variables, failing to show a clear correspondence with the ATE bias.

Table 1: T-MEX, R? scores, and Spearman correlation coefficients of the learned representations

(presented as mean+std) of model A (sufficiently trained, i.e., Z; exclusively measures Z; ), model
B (insufficiently trained model with unclear latent-measurement correspondence) and model C
(manually corrupted representation by linearly mixing Z», Z3 with the representation of model A)
based on 50 simulated datasets, where each dataset contains 4096 observations.

R2 Spearman Cor. Coef.
Zy Zy Zs Z, Zy Zs
A 0.1200+0.3283  0.9984 £+ 0.0001  0.7516 + 0.0064  0.8001 & 0.0006  1.0000 £ 0.0000 0.8568 4+ 0.0044  0.8864 £ 0.0040

B 1.1800 4 0.3881 0.6665 4 0.0078 0.8305 £ 0.0032  0.8707 4+ 0.0027  0.8434 £ 0.0061  0.9602 £ 0.0017  0.9908 4 0.0004
C  2.0000 £ 0.0000 0.9394 £0.0016  0.5421 £ 0.0096 0.6627 & 0.0084  0.9673 £0.0013  0.7215 4 0.0076  0.8016 £ 0.0062

Model  T-MEX (})

5.2 Real-world Ecological Experiment: ISTAnt

This experiment validates the T-MEX score on
ISTAnt (Cadei et al., 2024), a real-world ecological bench-
mark designed for treatment effect estimation. We show
a strong correlation between T-MEX and the absolute
bias of the ATE, demonstrating that T-MEX can reliably ~Figure 4: Measurement Model for the
evaluate the causal validity of learned representations causal task in ISTAnt. T denotes
under the challenge of high-dimensional real-world data.  the treatment (chemical exposure) and
the latent outcome Y represents the
ant’s grooming behavior. Observable X
(video recordings) is represented using a

Experiment settings. ISTAnt consists of video recordings
of ant triplets with occasional grooming behavior. The

goal is to extract a per-frame representation for supervised
behavior classification (grooming or not) to estimate the d?‘Shed oval. The measurement Y exclu-
ATE of an intervention (exposure to a certain pathogen). Sively measures (Defn. 3.1) Y.



Retrieving causally valid representations in this case is challenging as we have more non-annotated
than annotated data, as described by (Cadei et al., 2024). Fig. 4 depicts the hypothesized measurement
model for this particular causal task, note that the treatment T and outcome Y are unconfounded
because the data is collected through a randomized controlled trial (RCT), meaning that the binary
treatment T is randomly assigned.

Results. We compute the T-MEX score for 2,400 different models at a significance level of o« = 0.05,
and compare both classification accuracy and absolute ATE bias against T-MEX. A full description of
the considered models and training details is reported in App. D.2. We only focus on the models that
yield an accuracy over 80% for meaningful statements. We observe that models with T-MEX = 0
achieve higher mean and lower variance for both accuracy and absolute ATE bias, demonstrating
that T-MEX effectively and reliably evaluates the quality of learned representations in terms of both
classification performance and causal validity (Defn. 2.2).

Statistical validation. To further assess the statistical significance between the T"TMEX = 0 and
T-MEX = 1 groups, we conduct a Mann-Whitney U test (Mann and Whitney, 1947) with the null
hypothesis

Ho - E[|ATE Bias| | T-MEX = 1} < IE[|ATE Bias| | T-MEX = 0].

The resulting p-value of 0.0047 leads us to reject H, providing strong evidence that the average
absolute bias of the ATE for models with T-MEX = 1 is significantly higher than for those with
T-MEX = 0. Overall, T-MEX shows a strong correlation with the absolute bias of the ATE, validating
its reliability as an evaluation metric for the causal validity of learned representations (Defn. 2.2).

Real-world implications of T-MEX. We emphasize that the proposed T-MEX score can be computed
using only observational data, possibly with selection bias, as long as this selection bias does not
change the conditional independence between measurements and causal variables. Instead, calculating
the ATE bias as in (Cadei et al., 2024) requires a validation set that closely approximates the underlying
population of the randomized controlled trial, a significantly stronger assumption that is often difficult
to satisfy in real-world settings. Overall, T-MEX offers a convenient and accessible evaluation metric
that reliably quantifies the usefulness of the learned representation for a causal downstream task,
without the need for additional identifying assumptions.
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Figure 5: T-MEX reflects model performance in terms of both classification accuracy and causal
validity (Defn. 2.2). Compared to their counterparts, models with lower T-MEX achieve consistently
high accuracy (Left) and low absolute ATE bias with reduced variance (Right).

5.3 Evaluation of T-MEX Properties using Synthetic Data

In this section, we outline additional experiments designed to assess specific properties of T-MEX,
including its scalability, robustness across different test choices, and behavior under weak or nonlinear
causal relations as well as noisy measurements. The corresponding experimental details and results
are provided in App. D.4.

Reliability and scalability with higher-dimensional latent variables. It is well known that the
statistical power of conditional independence (CI) tests deteriorates as the dimensionality of the
conditioning set increases—a limitation shared by most CI methods (e.g., Shah and Peters, 2020;
Strobl et al., 2019; Zhang et al., 2012). We examine the reliability and scalability of T-MEX given
data generated from a non-linear location-scale SCM with up to 50 latent nodes in Tab. 3 in App. D.4.



Since our proposed framework is agnostic to CI test choices, T-MEX can be easily scaled to larger
dimensions by adapting more powerful and scalable test methods as they are developed.

Consistency of T-MEX under different test choices. CI testing is an important component in our
framework, and choosing a valid and powerful test is essential. We chose PCM test in our experiments
for its theoretical guarantees on the validity (type I error control) and power of the test, making it
a reliable choice of test for the exclusivity claim. We also compare T-MEX scores using different
conditional independence tests in Tab. 4 in App. D.4, based on the same experimental setup as in
§ 5.1. In this experiment, we see that T-MEX remains consistent across different test choices.

Consistency of T-MEX under noisy measurements. As discussed in Remark 2.2, noise in the
measurement functions can be treated as additional independent latent variables. This means that if
the noise is independent of the existing causal variables, the conditional independencies required for
T-MEX remain intact. In such cases, one can safely compute T-MEX without explicitly modeling the
noise; the score will remain valid. The empirical T-MEX value is shown to be robust under noise, as
shown in Tab. 7 in App. D.4.

T-MEX under weak causal relations. Building on the experiment in § 5.1, we also examine how
T-MEX behaves when the causal relationships between the latent causal variables are weak and
compare it with the commonly used CRL identifiability metrics R? and MCC. See Tab. 5 in App. D.4.
In this case, T-MEX correctly reflects the entanglement in the representation, while both R? and
MCC give a misleading score suggesting perfect element-wise identification.

Alignment between T-MEX and ATE under nonlinear SCM. Extending the results in § 5.1, we
further examine the correspondence between T-MEX and ATE under a nonlinear setting. As shown
in Tab. 6 in App. D.4, the results are highly similar to the linear case § 5.1, T-MEX closely aligns
with the absolute ATE bias, effectively evaluating causal representations for downstream inference
tasks with nonlinear causal relations.

6 Conclusion and Limitations

This paper introduces a novel perspective on Causal Representation Learning (CRL) based on a
measurement model framework, in which causal representations are treated as proxy measurements
of latent causal variables (§ 2). This perspective provides a flexible framework that unites CRL
identification theory with downstream task assumptions via measurement functions, yielding a
principled way to evaluate representation quality. More specifically, we propose a new evaluation
metric, Test-based Measurement EXclusivity (T-MEX) score, which quantifies the discrepancy
between a given measurement model (specified by a CRL algorithm, a causal task, or ground truth
knowledge) and the joint distribution of causal and measurement variables (representation outputs
of a CRL model) using conditional independence tests (§ 3). Because these conditional independence
tests impose no parametric assumptions, our T-MEX score remains broadly applicable. However,
like any statistical procedure, these tests are subject to sampling variability and potential statistical
errors, so the reliability of T-MEX depends on which test is chosen. By remaining agnostic about
the specific test, we empower practitioners to tailor the score to whatever assumptions they are
willing to make (e.g., parametric or non-parametric). We demonstrate, using both simulations (§ 5.1)
and real-world video analysis (§ 5.2), that our proposed T-MEX score effectively quantifies the
identification and causal validity of the learned representation (Defn. 2.2). This provides a convenient
and practical evaluation scheme for representation quality in real-world scenarios, especially when
the true treatment effect bias is unavailable, such as in the absence of randomized studies.
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A Notation and Terminology

This section summarizes the symbols used throughout the paper.

Z Causal variables

X Observables

D; Dimension of the representation y/ A,

N Dimension of the causal variables Z

n Number of samples for the statistical tests for T-MEX
P(-)  Probability operator

E(-)  Expectation operator

1(-)  Indicator function

B Preliminaries

Definition B.1 (Block-identifiability (von Kiigelgen et al., 2021)). A set of latent variables Z € R%
is block-identified by a representation Z € R? if there exists a bijection h : R% — R% such that

Z=h(Z). &

C Proofs and Algorithms

This section includes the proof for Prop. 3.1 and the algorithm to compute the T-MEX score.

Proposition 3.1. Let {¢;;}icn),je[nm be a family of tests for eq. (3.1) where for all i € [N] and
J € [M], pij is valid with level o € (0, 1) and has power at least 5 € (0,1). Given an adjacency ma-
trix V€ RN*M based on a measurement model, if the joint distribution P, 5 of the causal and mea-

surement variables does align with the measurement model, and each entry in W is computed based
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Algorithm 1: Compute T-MEX score from one set of samples

Input: Paired samples of causal variables and measurement variables {z,Z 4, ,...,%4,, } Where
z € RN andz,, € R"*Pi for j € [M], adjacency matrix of the measurement model
V € {0,1}V*M " set of statistical tests for {(p;; }Yie[N),jeqm) for (3.1), where for all
i € [N],j € [M], g : RM*1 x R Di 5 Rnx(N=1) — {0, 1}
Output: T-MEX score of the given sample
W < oNxM
fori € [N] do
for j € [M] do
| Wij < 9i(2i,24;, 2080\ 1))
end
end

return Zi\; Z?il 1(Vi; # Wz])

on an independent set of samples {(z",2")} j.cin,,), nij € Ny, then the expected T-MEX satisfies
E[F-MEX(V, W) < a- (MN = |[V]}1) + (1= 8) - |V},

where ||V || = ZZV:I E;\il Vij is the Li-norm of V.

Proof. Suppose the joint distribution of (Z, 2) aligns with the conditional independencies indi-
cated by the adjacency matrix V, that is, for all ¢ € [N] and j € [M], if V;; = 0, it holds that

Za, LZ; | Zyp a5 if Vij = 1, itholds that Za, A Z; | Ziny 4y

Fix a significance level o € (0,1). Suppose for all ¢ € [N] and all j € [M], the statistical test
@ij R R Pi o Rrx(N=1) 5 £0 1} is valid at level o and has power at least 3 € [0, 1]
against the alternative distribution where Z 4, /I Z; ] Zin\ {4y -

Then given independent sets of samples {zkﬁk}ke[mg‘] for i € [N] and j € [M], and Wij =
©ij(Zi,ZA;,Z[N)\{i})» it holds that

« if Vi; =0, then P(W;; = 1) < a;

—

« if Vi; = 1, then P(W;; =0) < 1— 8.

Therefore, the expected value of T-MEX score is given by

E[T-MEX(V,W) = a- > 1(Vij =0)+(1-8)Y_ 1V =1)

Sa-(MN—|[V]1)+ 1 =8)-[[VIh

where ||V||; is the 1-norm of V. The second inequality is implied by the that each test ¢;; is valid
with level a and has power > f.

Remark C.1. Proposition 3.1 tells us that if the measurement model does hold for the joint distribution
of the causal variables and the output representations from a trained CRL model, we would expect to
see a “low" T-MEX score given that we employ valid statistical tests that are also powerful enough
to reject the null under alternatives. A “low" T-MEX score does not in general refer to a 0 score,
as it depends on V/, the chosen significance level a, and the power of the test 8. For example, let
«a = 0.05, we consider a valid statistical test that has the highest power, i.e., § = 1, additionally,
assume the number of Os in V is 2, then the expected value of the T-MEX score is no larger than
0.05 x 2 =0.1. o
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D Experiment Details and Additional Results

This section elaborates on the experiment settings of § 5. We include further information regarding
the data-generating process for the simulated experiment (§ 5.1) and the ISTAnt dataset (Cadei et al.,
2024) used in the ecological case study (§ 5.2), as well as additional experimental results.

D.1 Numerical Simulation

Experiment setting. We consider five causal variables (Z1, - - - , Zs5) generated based on a linear
structural causal model (Peters et al., 2017)
Z =BZ +¢,

0 00 0O

1 0 0 01
where Z = (Z1,Z2,Z3,Z4,Z5), Z takes values in R, ¢ ~ N5(0,I),and B= |1 1 0 0 0],

1 0 0 0 O

10 01 0

which induces the partial DAG depicted in Fig. 2. Two of the causal variables (Z4 and Zs5) are
observed (i.e., directly measured as in Defn. 2.1), and the other three (Z;, Z5, and Z3) are latent and
we observe only a bijective mixing X of them.

For the purpose of latent variable identification, we consider the multiview scenario in (Yao et al.,
2024b) where two views X1, X are generated from different subsets of latent variables. Formally,
we have
Xy = f1(Z1,Zy)
Xy = fo(Z1,Z3),

where f1, fo : R? — R? are diffeomorphisms, implemented using invertible MLPs as suggested
by Yao et al. (2024b).

(D.1)

Implementation details. We employ the latent variable identification algorithm proposed by Yao et al.
(2024b), which guarantees that the shared latent variables among different views can be identified up
to a diffeomorphism in the sense of Defn. B.1. Thus, by utilizing X, X5, we can obtain a nonlinear
bijective transformation of their shared latent variable Z;. This allows us to construct a measurement

model M = (Z,Z4,,{h1}) (see Fig. 2), where Z = {Z1,--- ,Zs} and Z,, = h(Z;) for some
(unknown) smooth invertible map ~ : R — R.

We train three CRL models following the implementation settings in (Yao et al., 2024b, Tab. 4).

* Model A: a sufficiently trained model (trained for 50001 steps) from which we expect the
learned representation Zﬁl (where by a slight abuse of notation, the superscript represents
the model indicator) to exclusively measure Z;

* Model B: an insufficiently trained model (trained for 51 steps) with unclear latent-
measurement correspondence;

* Model C: a corrupted version of Model A where the representation 2%1 = 2‘21 +0.2Z5 —
0.1Zs, i.e., a linear mixing of the representation 21‘31 from Model A, and Zs, Z3.

For each of the three trained models, we generate 50 independent datasets, each containing 4096

paired samples of Z, zZ A, We compute the respective T-MEX scores based on these generated
datasets for all three models, using the the projected covariance measure (PCM, Lundborg et al.,
2024) implemented in pycomets (Huang and Kook, 2025) using linear regression models to estimate
the conditional means (see App. E).

Additional results. Since T-MEX relies on statistical testing, we further assess its statistical validity
by examining the underlying p-values that lead to the test results and the T-MEX score. Fig. 6 shows
the p-values resulted from testing each of the three null hypotheses:

Ho(i) : Za, AL Z; | Zyg); fori € [3].

We omit Z, and Zj5 since they are not involved in generating the two views X; and Xs.
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Figure 6: Violin plots of p-values from testing the conditional independencies zZ Ay WL Z; | Zps)\; for
i € [3] based on the PCM tests (Lundborg et al., 2024). The black dashed line is at the significance

level o = 0.05. A p-value < « for Z; means there is an edge from Z; to the measurement Z 4, .

Fig. 6 shows that Model A aligns with the measurement model in Fig. 2, evidenced by (i) small
p-values for H(1) and (ii) approximately uniformly distributed p-values for both H(2) and Ho(3),
given a valid test (see App. E for further explanations). In contrast, for Models B and C, nearly all
p-values are smaller thE/l\Il a, leading to rejections of the null hypotheses, which indicates that the
learned representation Z 4, is a mixture of all three causal variables Zi, Zs, Z3, and thus fails to
exclusively measure Z;.

Computational resources. We train the CRL models (model A, B, C) using a single node GPU
(NVIDIA GeForce RTX1080Ti) with 10GB of RAM, 4 CPU cores for less than one GPU hour.
ATE estimation and T-MEX computation take less than one minute on a standard CPU.

D.2 Real-World Ecological Experiment: ISTAnt

Experiment Setting. ISTAnt is a real-world ecological benchmark designed to evaluate learned
representations on downstream causal inference tasks from high-dimensional observational data.
It comprises 44 ant-triplet video recordings collected through a randomized controlled trial. This
benchmark adopts the problem formulation introduced by Cadei et al. (2024), aiming to estimate the
causal effect of specific treatments (e.g., chemical exposure) on ants’ social behavior, particularly
grooming events. The experimental design and recording setup are shown in Fig. 7; for further details,
refer to (Cadei et al., 2024, App. C).

In ISTAnt, each observation (video recording) : is associated with a treatment assignment T'; and
a set of experimental covariates W (including experiment day, time of the day, batch, position
within the batch, and annotator). However, only a subset of videos is annotated with the outcome
of interest Y; (i.e., grooming events), which hinders reliable causal inference at a population level,
such as treatment effect estimation. To address this challenge, Cadei et al. (2024) proposes to train
a classifier on top of a pre-trained feature extractor (e.g., DINOv2, Oquab et al., 2023) using this
limited set of annotated samples, to impute missing labels while still enabling valid causal inference
at the population level; specifically, for estimating the Average Treatment Effect (ATE).

Implementation details. Following (Cadei et al., 2024), we train 2,400 classification heads on top of
DINOV2 (Oquab et al., 2023), varying the architecture and training settings, and estimate the causal

effect using all video samples together with the predicted labels Ys by AIPW estimator (Robins et al.,
1994). The hyperparameter configurations are summarized in Tab. 2, with all other implementation
details following (Cadei et al., 2024, App. C).

By contrasting with the measurement model depicted in Fig. 4, we compute the T-MEX scores for all
2,400 models. Since we focus on models with more than 80% prediction accuracy (§ 5.2), the null

hypothesis YUY | T is rejected in all cases, consistently indicating Y — Y. Thus, we only focus
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Table 2: Hyperparameters for the real-world ecological experiment (§ 5.2 and App. D.2), giving rise
to 2,400 model configurations in total. All other settings follow (Cadei et al., 2024, App. C).

Hyperparameter Value(s)
Input Preprocessing YES / NO
Number of Hidden Layers 1,2
Batch Size 64, 128, 256
Adam: learning rate Se-2, le-2, 5e-3, 1e-3, Se-4
Training objective Empirical Risk, Invariant Risk (Arjovsky et al., 2020),
VREx (Krueger et al., 2021), Deconfounded Risk (Cadei et al., 2025)
# Seeds 0,1,..,9

on the following null hypothesis:
Ho: Y LT|Y,

where Y denotes the predicted label and Y the ground truth one. A misalignment with the mea-
surement model in Fig. 4 leads to rejecting Hg, resulting T-"MEX=1, whereas as a causally valid
representation Y that exclusively measures Y gives rise to T-MEX=0. We summarize all results
in Fig. 5 and provide extended discussions in § 5.2.

Computational resources. We run all the analyses in § 5.2 using 48GB of RAM, 20 CPU cores,
and a single node GPU (NVIDIA GeForce RTX2080Ti) for 24 GPU hours. Data preprocessing
and feature extraction using DINOv2 account for the majority of the computational time, whereas
classifier training, AIPW estimation, and the T-MEX test contribute negligibly by comparison.

(a) Filming box (b) Batch example

Figure 7: Visualization of ISTAnt recording set-up (Cadei et al., 2024).

D.3 Caveats of Using SHD to Evaluate Causal Representations

Experiment Setting. This experiment explores the poten-
tial pitfalls when directly using SHD to evaluate causal rep-
resentations without properly evaluating the element-wise a
latent variable identification. Specifically, we consider a
set of causal variables generated through the following
structural equations: @

7, =¢
Zy =aip-Zi+ B2 € (D.2)
Z3 = 132y + o3 - 2o + B3 - €3,

Figure 8: Example measurement model,
where Z 4, block-identifies Zy, Zo, Z 4,
and Z 4, identifies Zy, Z3 respectively.
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Figure 9: Structural Hamming Distance Values (SHD) of 100 structure and measurement models
following eqs. (D.2) and (D.3), where the measurement Z 4, is a mixing of the ground truth latent
Z,,7Z5. SHDs are computed between the discovered graph on Z and the ground truth one.

Assume the learned representation corresponds to the ground truth causal variable as follows:

2A1 =121+ 21 Lo
Za, =2 Zo (D.3)
2Ag =343

where Z 4, remains a mixing of Z; and Zs. The corresponding measurement model is shown
in Fig. 8.

Implementation details. We generate 100 different structure and measurement models follow-
ing eqs. (D.2) and (D.3), with all coefficients as and s sampled from Unif[1, 10] and the 8s sampled
from Unif[0.005,0.02]. We run LINGAM (Shimizu et al., 2006) from causal-learn (Zheng et al.,

2024) to discover the causal relationships between the measurements Z 4,,Z 4, , Z 4,.

Results. Fig. 9 shows the structural hamming distance of between the discovered graph on Z and the

ground truth one. Despite being entangled between Z1, Zs, Z still yield the correct causal graph in
most of the cases (77%), as shown by the first bar in the plot. Hence, causal relations between the
measurement variables should always be evaluated in conjunction with the variable identification.
Otherwise, it can lead to misinterpretations as showcased by Fig. 9.

Computational resources. Data generating and causal discovery for App. D.3 in total takes less than
10 minutes on a standard CPU.

D.4 Additional Numerical Experiments Showcasing the Properties of T-MEX.

In the following, -MEX Oracle is computed based on an oracle CI test with zero type I error and
power 1. We compute the oracle T-MEX score to demonstrate desirable properties of the metric—such
as its consistency and robustness across different conditional independence tests. This is feasible
in the simulated setting, where the measurement functions are known by design. In contrast, for
empirical representations learned by a CRL model, the true measurement functions are unknown,
making oracle computation infeasible in practice.

Scalability given higher-dimensional latent variables. We simulate the causal variables based
on a nonlinear SCM — a location-scale SCM as implemented by Wendong et al. (2024). Then, the
measurement variables are simulated as a direct copy of each of the corresponding causal variables.
For different numbers of latents (n-latent), we report the T-MEX score based on the Generalized
Covariance Measure (GCM) test with linear regression (see App. E for more details about GCM),
along with their standard error based on 20 random causal DAGs for the latent causal variables, each
with 30 repetitions and 1000 observations. In Tab. 3, we see that T-MEX remains closely aligned with
the T-MEX oracle in all cases, and can be efficiently computed up to 50 latents within a reasonable
time, validating its applicability in moderate to high dimensions.
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Table 3: T-MEX for higher-dimensional latents generated from nonlinear SCM

n-latent T-MEX T-MEX Oracle time (sec)

5 0.0483 £ 0.2223 0 0.0359 £ 0.0011
10 0.0033 £ 0.0577 0 0.1559 £+ 0.0017
20 0.0550 £ 0.5187 0 0.8080 = 0.0094
50 0.0917 + 0.9582 0 10.8450 + 0.1004

Consistent results when using different CI tests. Following the same settings in § 5.1, we consider
PCM test (see App. E) with random forest (RF) and Kernel Conditional Independence (KCI) test
(Zhang et al., 2012). We see that T-MEX ranks the models consistently with the results in § 5.1.

Table 4: T-MEX under different CI Tests

CI test Model T-MEX

PCM (RF) A 0.0000 + 0.0000
PCM (RF) B 0.8000 £ 0.7559
PCM (RF) C 2.0000 4 0.0000
KCI A 0.0400 + 0.1979
KCI B 0.1600 = 0.4218
KCI C 2.0000 4 0.0000

T-MEX under weak causal relations. Building on the experiment in § 5.1, we next examine how
T-MEX behaves under weak causal relations, and compare it with the previous CRL identifiability
metrics such as R? and MCC. The data is generated from a linear SCM with three latent causal
variables following the measurement model described in Fig. 9. The linear coefficients between the
causal variables are sampled uniformly between 0.01 and 0.1.

Table 5: T-MEX under weak causal relations

T-MEX Oracle T-MEX R?2 MCC
1 1.0100 £ 0.0995 1.0000 #+ 0.0000  1.0000 =+ 0.0000

Under identifiability assumptions that guarantee element-wise correspondence, T-MEX correctly
detects the mixing effect and gives a score near one (note that T-MEX = 0 indicates perfect alignment).

In contrast, both R and MCC fail to reflect this violation. Despite the entanglement in Zy, they
still assign the maximum score of 1, misleadingly suggesting perfect element-wise identification
(see Tab. 5).

Alignment between T-MEX and ATE under nonlinear SCM. Extending § 5.1, we further examine
the correspondence between T-MEX and ATE under the more general nonlinear setting. We consider
the same causal graph as given in § 5.1, where Z; confounds Zs and Z3, and needs to be adjusted for

a valid treatment effect estimation. A “perfect” model means 21 exclusively measures Z1, whereas a
mixed model indicates an entangled representation, i.e., Z; mixes Z; and Zs.

Table 6: T-MEX v.s. ATE bias under nonlinear SCM

Model T-MEX abs(ATE bias)

Perfect 0.0100 £ 0.1000  0.1532 £+ 0.0283
Mixed 1.0000 £ 0.0000 0.5357 £ 0.0540
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As shown in Tab. 6, the results are highly similar to the linear case § 5.1, T-"MEX closely aligns with
the absolute values of the ATE bias, effectively evaluating causal representations for downstream
inference tasks with nonlinear causal relations.

Consistency of T-MEX under noisy measurements. We compare the empirical T-MEX value
with/without noise. The noisy measurements are generated by adding Gaussian noise to the original
latents. I.e., the measurement function writes

h(z)=z+e

with e independent Gaussian noise. Results are evaluated over 100 datasets with 1000 samples each.
Tab. 7 shows that the empirical T-MEX score largely remains consistent under noisy measurements,
validating its practical usability.

Table 7: T-MEX w/wo noise

T-MEX Oracle without noise with noise
0 0.0100 & 0.0100 0.3900 £ 0.6497

E Background on Conditional Independence Testing

Testing conditional independence of two random variables X and Y given a third random variable Z
is known to be a difficult problem if Z is a continuous variable (Shah and Peters, 2020). The goal of
conditional independence test is to test the null hypothesis

Ho: X LY|Z.

Shah and Peters (2020) have shown that there is no valid test (i.e., a test that guarantees a Type I error
rate to be no larger than the given significance level «) that has power against all alternatives.

Consider univariate variables X, Y, Z, the generalized covariance measure (GCM) test proposed in
Shah and Peters (2020) aims to test an implication of conditional independence which can be written
as the following null hypothesis:

HEM E[(Y —E[Y | Z])(X — E[X | Z])] =0.

The validity of the GCM test thus relies on that the conditional means E[Y | Z] and E[X | Z] can be
learned at sufficiently fast rates. It turns out that GCM does not have power against any alternative
for which E[Cov(X,Y ‘ Z)]=0butX 1Y ’ Z (Lundborg et al., 2024).

The projected covariance measure (PCM) proposed by Lundborg et al. (2024) improves the power
issue of GCM by testing a different implication of conditional independence:

HME[Y | X, Z] = E[Y | Z].

Similar to GCM, to ensure its validity, PCM also requires that the conditional means can be learned
sufficiently fast, which is satisfied in our experiments (§ 5).

There are other conditional independence tests such as mutual information based methods (Ai et al.,
2024; Runge, 2018) and kernel-based methods (Fernandez and Rivera, 2024; Strobl et al., 2019;
Zhang et al., 2012). We opted for PCM in our experiments for its computational advantage and
theoretical guarantees on its validity under a flexible, model-agnostic framework. More discussions
on the usage of PCM and GCM can be found in Kook and Lundborg (2024). Notably, -MEX is a
general evaluation metric for causal representations that does not specify any particular type of tests,
allowing practitioners to choose other testing methods that are more suitable for their problem settings.

F Extended Discussion

This section elaborates on the implications of learned representations for downstream causal tasks. As
briefly discussed in the main paper (following Defn. 2.2), a representation is causally valid (Defn. 2.2)
with respect to a statistical estimand if and only if the statistical estimand remains unchanged when
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plugging in the measurement variables correspond to the causal variables. More concretely, we
illustrate the implications of nonlinear invertible reparameterizations of causal variables in two
commonly encountered scenarios: when representations serve as proxies of (i) the treatment or
outcome variables, and (ii) the confounders or instrumental variables.

F.1 Representations of Treatment and Outcome

Assume in Fig. 10 that Z Ays Z A, are element-wise non-
linear invertible reparametrization of Z1, Zs respectively;
ie., Vie {1,2}, 2141‘ = h;(Z;) for some diffeomorphism
h; : R — R. We aim to estimate the treatment effecAt of
Z, — Z, vsing the learned representations Z 4, and Z 4,.
Assume the Zs is generated following eq. (4.1), i.e.,

Zo=a-7Z1+e¢

with e ~ P, E[e] = 0 and e 1L Z. Given there is no un- Figure 10: iAi measures Z; through a
observed confounding, the ground truth average treatment nonlinear bijection for both i = 1, 2.
effect is written as

o

8]E[Z2 | dO(Zl = Zl)] _ 81E[Z2 | Zl = Zl] 8E[GZ1 + 6]

ATE(Z, — Z5) = = =a. F.1
( ! 2) 8z1 621 621 “ ( )
We assume measurement function h; for all ¢ € {1, 2} to be linear, i.e.,
zAl =aq - 2y, 2,42 =qg-2Zo, and a«g,as #0. F2)
The ATE estimand from the learned representations yields:
- - ElZa, | Za, =2
ATE(Z A, = Za,) = OBZ s | Za, = 24)]
aZA1
_ aE[a2Z2 ‘ a1Z1 = alzl] (F3)
8a1z1
- OZQ(?E[ZQ ‘ Zl = Zl} o (%)
= = —aq.
a18z1 a7

As shown by eq. (F.3), the ATE estimand using the learned representation Z 4, and Z 4, can be arbi-
trarily scaled by the factor of @2/a,. Thus, measurements that bijectively transform the causal latent
variables cannot naively support estimating the treatment effect, violating causal validity (Defn. 2.2);
it requires direct supervision or observation on both treatment and outcome variables, as also pointed
out by (von Kiigelgen et al., 2024, Sec. 4).

On the other hand, information-theoretic measures for quantifying causal influence remain invariant

under bijective transformation, such as the mutual information [iy(Z1; Z2) = im(i Al Z A,), @s
shown by Janzing et al. (2013).

F.2 Representations of Confounders or Instruments

Measuring confounding. We first show an example where an observed treatment T and an observed
outcome Y is confounded by a third variable W which is measured by W = h(W) through a
deterministic invertible function h.

Formally, the measurement model is defined as M = (Z, Z, {h}) with Z = {T,Y, W} and

7= {\/7\\/'}, where T',Y are directly measured (Defn. 2.1). The corresponding DAG is given in Fig. 11.
We show in the following that this measurement model is indeed causally valid (Defn. 2.2) with
respect to the statistical estimand for the Average Treatment Effect (ATE) of Ton Y.
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Figure 11: ATE remains invariant under bijective  Figure 12: ATE remains invariant under bijective
transformation of confounders. The treatment  sransformation of instruments. T measures the in-

T and outcome Y are directly measured (i..,  strument variable I through a nonlinear bijection.
observed) whereas confounder W is measured  The treatment T and outcome Y are directly
by W through a nonlinear bijection. measured (i.e., observed), and U denotes unob-

served confounding.

Under the standard assumptions for backdoor adjustment, it follows that

E(Y|do(T = t)) = Ey [E(Y | W, T = t)]
- /IE(Y | W, T = t)P(W)dw

— . dh7t (W)
- _ -1 -
_ /IE (Y | 171 W), T = ) P(h~ (W) = (Ed)
:/IEY|W Tft)P(W)dvAv
— Ey [ (Y |W,T=0)],
where we used the change of variable formula and the fact that E(Y | V/\\/,T =t =

E(Y|h~Y(W), T = t). This is because (W) is a sufficient statistic for W (Casclla and Berger,
2024, Ch. 6.2) following h is invertible.

Under the same assumptions, the ATE for binary treatment can then be identified by the following
statistical estimand
ATE(T — Y) = E[Y|do(T = 1)] — E[Y | do(T = 0)]
=Es [E(Y | W, T=1)-E(Y | W, T =0)].

(F5)

Following eq. (F.4), we have
ATE(T - Y) = Eg [E(Y |W,T=1)-EY|W,T=0)],

indicating that the identified statistical estimand ATE(T — Y) remains invariant for the measurement
W. Similarly, ATE also remains invariant when the treatment is continuous:

OE[Y | do(T =t)] OELE[Y | W, T=t] OJERE[Y|W,T=¢
dt dt dt ’

(F.6)
where the last equality holds because of eq. (F.4). Therefore, we have shown that invertible reparame-
terizations of the confounders can be a drop-in replacement of the true confounding variables in the
statistical estimand for ATE, for both discrete and continuous treatments, and thus this measurement
model M is indeed causally valid for ATE.

Measuring instrumental variables. We now give a second example of ATE estimation under an

instrumental variable setup. We assume that the instrument I is measured by I= h(I) through a
bijective transformation h. We show that under certain assumptions, the statistical estimand does not

change when using/I\ as a drop-in replacement of the true instrument I. We focus on the case where the

ATE(T - Y) =
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instrument I, the treatment T, and the response Y are all univariate continuous variables; further dis-
cussion on multivariate and discrete valued variables is beyond the scope of this paper. Formally, the

measurement model is defined as M"Y = (Z, Z, {h}) with causal variables Z = {I, T, Y } and mea-
surement variables Z = {I}. The treatment T and outcome Y are directly measured (Defn. 2.1) and
confounded by unknown hidden confounders U. Fig. 12 shows the DAG of this measurement model.
We show in the following that the instrument I remains a valid instrumental variable under a bijective

transformation, i.e., the measurement variable I = h(I) also satisfies the standard IV assumptions,
which are listed as follows:

* Relevancy: 1 L T|U
¢ Unconfoundedness: I 1. U

¢ Exclusion restriction criteria: I 1LY ‘ T, U

Following standard probability theory (see e.g., Billingsley, 2008), if h is a bijective function, all
three conditions still hold when replacing I by i (I). This means that if the ATE is identified by a

statistical estimand when using I as an instrument, it is also identified when using T as an instrument.
In other words, the measurement model M"Y is causally valid with respect to an identified statistical

estimand because I can serve as a drop-in replacement for I (Defn. 2.2).

As a specific example, consider the case where the causal mechanism of Y is partially linear (a
commonly studied setup in the semi-parametric inference literature, see e.g., Chernozhukov et al.
(2018)),1.e., Y = TS + ¢g(U, ¢), for some measurable function g where E[g(U, €)] = 0 and where
€ ~ P, is an independent noise variable, the ATE

OE[Y | do(T =t)] _ OE[t3+ g(U,e)]

ot - ot =8

ATE(T > Y) =

can be identified by the statistical estimand

Cov(Y,T
ATE(T - Y) = CZ:/ETI; (E7)

We show in the following that the statistical estimand ATE(T — Y) in eq. (F.7) remains invariant
when using I as a drop-in replacement for I. Plugging in I in the numerator

-~ -~ A~ -~

Cov(Y, T) = E[Y1] - E[Y]E[T) =  (E[TT] - E[T]E[]) = 3Cov(T. 1),

Cov(Y,T) Cov(Y,I)
we have ————- = 8 = ———
Cov(T,I) Cov(T,I)

measurement I can serve as a drop-in replacement for the latent instrumental variable I for downstream
causal inference tasks.

. Therefore, we have shown another example where the
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