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Abstract

Causal reasoning and discovery, two fundamental tasks of causal analysis,
often face challenges in applications due to the complexity, noisiness, and
high-dimensionality of real-world data. Despite recent progress in identifying
latent causal structures using causal representation learning (CRL), what makes
learned representations useful for causal downstream tasks and how to evaluate
them are still not well understood. In this paper, we reinterpret CRL using a
measurement model framework, where the learned representations are viewed
as proxy measurements of the latent causal variables. Our approach clarifies the
conditions under which learned representations support downstream causal rea-
soning and provides a principled basis for quantitatively assessing the quality of
representations using a new Test-based Measurement EXclusivity (T-MEX) score.
We validate T-MEX across diverse causal inference scenarios, including numeri-
cal simulations and real-world ecological video analysis, demonstrating that the
proposed framework and corresponding score effectively assess the identification
of learned representations and their usefulness for causal downstream tasks.

1 Introduction

Causal analysis rests on two foundational pillars: causal reasoning and causal discovery. Causal
reasoning operates under the assumption that the causal structure is known or can be assumed, and
leverages data to make quantitative causal statements, for example, about the average effect of one
variable on another. As causal structures are often unknown, causal discovery aims to uncover this
structure, assuming that the causal variables of interest are readily observed. In many real-world
settings, however, the causal variables may not be directly observable. While originally formulated
mostly to enable causal capabilities in machine learning models, Causal Representation Learning
(CRL, Scholkopf et al., 2021) has the potential to serve as a third pillar of causal analysis: enabling
applications of causality involving unstructured data. For this, we reinterpret causal representation
learning using the formalism of “measurement models™ (Silva et al., 2006), wherein the learned
representations serve as proxy measurements for latent causal variables. This perspective of CRL
allows us to better characterize when a representation supports downstream causal reasoning, and
it also provides a principled basis for quantitatively evaluating the quality of identification.

Methodologically, CRL tackles a more challenging task compared to independent component
analysis (ICA) and disentanglement, where the latent variables are assumed to be independent of
each other (Hyvirinen and Pajunen, 1999; Hyvarinen et al., 2019; Higgins et al., 2017; Locatello
et al., 2019). Instead, CRL aims to unmix a set of causally related latent variables. Many recent
causal representation learning works have provided different theoretical results for causal variable
identification compiling various problem settings (von Kiigelgen et al., 2021, 2024; Zhang et al.,
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2024b; Ahuja et al., 2024, 2022; Varici et al., 2024; Zhang et al., 2024a; Yao et al., 2024b; Kong
et al., 2022; Lippe et al., 2022b; Xie et al., 2024; Dong et al., 2024; Lachapelle et al., 2022, 2023;
Yao et al., 2022; Zhang et al., 2024a; Squires et al., 2023; Buchholz et al., 2024; Kong et al.,
2023), recently unified by (Yao et al., 2025) into a single general methodology. Although most
of the results have been theoretical in nature, machine learning models explicitly empowered with
identified causal structure have been shown to be more robust under distributional shifts and provide
better out-of-distribution generalization (Fumero et al., 2024; Ahuja et al., 2021; Bareinboim and
Pearl, 2016; Zhang et al., 2020; Rojas-Carulla et al., 2018). From an Al for science perspective,
CRL has shown its potential in understanding climate physics from raw measurement data (Yao
et al., 2024a), answering causal questions in the scope of ecology experiments (Cadei et al., 2024,
2025; Yao et al., 2025), psychometric studies (Dong et al., 2024), and countless more applications
related to biomedicine (Zhang et al., 2024a; Sun et al., 2025; Ravuri et al., 2025; Jain et al., 2024).

Despite recent progress in identifying latent causal structures within causal representation learn-
ing, it remains unclear what makes learned representations useful for downstream causal tasks
and how to best evaluate them. Building on the proposed measurement model framework, we
introduce a new evaluation metric, the Test-based Measurement EXclusivity (T-MEX) Score,
which effectively quantifies how well the learned representation aligns with the underlying
measurement model. This underlying measurement model can be specified by, for instance,
identifiability theory of a CRL algorithm (Fig. 1), assumptions for a particular causal reasoning
task (Figs. 2 and 4), or ground truth knowledge. In contrast to commonly used CRL evaluation
metrics, which suffer from clear limitations (§ 4), we demonstrate that T-MEX reliably assesses
both the identifiability (Defn. B.1) and causal validity (Defn. 2.2) of learned representations, as
shown in a wide range of causal reasoning tasks across numerical simulations and real-world
ecological video analysis (§ 5). We summarize the main contributions of this paper as follows:

* We reinterpret CRL using a measurement model
framework, wherein the learned representations
serve as proxy measurements for latent causal
variables (§ 2). This formalism provides a clearer
characterization of both the identification quality
of learned representation and its usefulness for
causal downstream tasks.

* We propose a new evaluation metric (T-MEX)
that quantifies the alignment of the repre-

sentations and the underlying measurement
model (§ 3), and we demonstrate its advantages
over widely used CRL evaluation metrics that
suffer from notable limitations (§ 4).

Supported by theoretical analysis, our empirical
evaluations confirm that T-MEX maintains
validity and effectiveness across diverse causal
reasoning scenarios, including treatment effect
estimation and covariate adjustment in both
numerical simulations and real-world ecological
experiments (§ 5).

Figure 1: (Left) A measurement model where
X is a fully mixed measurement of the causal
variables. X is often termed the observ-
ables in CRL literature, representing the ob-
served data. (Right) Two measurement mod-
els specified by different CRL identification
algorithms: (a) Algorithm 1 guarantees one-
to-one correspondence between the learned
representation and causal variables; (b) Algo-

rithm 2 guarantees that Z 4, corresponds to Z;
while Z 4, represents a mixing of Zy and Zs.

2 CRL from A Measurement Model Perspective

Notation. Throughout, we write [N] as shorthand for the set {1,..., N}. Random vectors are de-
noted by bold uppercase letters (e.g. Z) and their realizations by bold lowercase (e.g., z), indexed by
superscripts. For instance, n samples of Z are written as {z*} ke[N]- A vector Z can be sliced either
by a single index ¢ € [dim(Z)] via Z; or a index subset A C [dim(Z)] with Z4 := {Z; : i € A}.
Py denotes the probability distribution of the random vector Z and pz(z) denotes the associated
probability density function (We omit the subscription and write p(z) when the context is clear). By
default, a “measurable” function is measurable w.r.t. the Borel sigma algebras and is defined w.r.t.
the Lebesgue measure. A more comprehensive summary of notations is provided in App. A.



2.1 The Measurement Model Framework

We formulate causal representation learning using a measurement model framework inspired by the
formalism of (Silva et al., 2006).

Definition 2.1 (Measurement model). Let V = (Z, 2) be a collection of variables that can be
partitioned into two sets: a set of latent causal variables Z. = {Zl, N/ N} with Z; taking values

inR forall i € [N], and a set of observed measurement variables Z. = {Z Aysc 5 La,, } where for
all j € [M], ZA takes values in R with D; € N, and it holds that ZNZ=0.

A measurement model M = (Z,Z, {h;}L,) specifies that Z follows a deterministic structural

causal model
M

{ZA] = hj(zpa(zAj))}jzl )
where pa(Z 4;) € [N]forall j € [M], and Z, 5 ) C Z are called the causal parents of Z A
The functions h; for all j € [M] are called the measurement Sunctions. If for some j € [M],
pa(Z 4;)| = 1 and the function h; is the identity map, then the causal variable pa(Z A;) is said to
be measured directly. &

Remark 2.1 (Difference from (Silva et al., 2006)). While we borrow the concept of a measurement
model from Silva et al. (2006), our framework differs in two key aspects. First, Silva et al. (20006)
aims to uncover relationships among latent causal variables by searching for pure measurements,
i.e., a tree-structure in which latent nodes have fixed, noisy, low-dimensional observed children
(measurements). In contrast, we interpret a given causal representation produced by a CRL algo-
rithm as measurement variables and focus on evaluating their usefulness for specific causal tasks,
which requires specification of a causal model. Second, Silva et al. (2006) assumes a linear latent
structural causal model, whereas our framework imposes no parametric structural assumption on the
latent causal variables. Rather, we specify the relationship between the causal variables and their
measurements according to certain hypotheses, such as identification guarantees, prior knowledge,
or assumptions for specific causal downstream tasks. As we will see in § 3, this also allows us to
properly evaluate a learned CRL model. [ )

Remark 2.2. While we treat the measurement variables Z as noise-free nonlinear mixing of their
causal parents, we can easily extend our framework to noisy measurements by considering the noise
variables as additional latent causal variables. [ )

Example 2.1. Assume by the identifiability theory of a specific CRL method that each y/ A, block-
identifies (see Defn. B.1 (von Kiigelgen et al., 2021, Defn 4.1)) a subset of latent variables Zg,

(S; C [N]). Then for the measurement model M = (Z, 2, {hj}jM:l> it holds that: ZAJ, = h;(Zs,),
with h; : RISl — RPi a diffeomporphism for all j € [M].

The measurement model induces a partial directed acyclic graph (DAG), that is, for any latent vari-
able g that is block-identified (Defn. B.1) by A, there is an edge from the latent causal variable Z,

to the measurement variable Z Ajs and the measurement function h; is a diffeomorphism. Illustrative
examples are shown in Fig. 1 for different identifiability guarantees. ¢

Discussion. Note that a measurement model specified by certain identifiability theory (see Fig. 1)
is a necessary but not sufficient condition for drop-in replacement of a variable with its identified
counterpart in a causal inference engine (Pearl and Mackenzie, 2018) or a downstream causal esti-
mand like average treatment effect (Robins et al., 1994). To this end, we introduce causally valid
measurement model.

Definition 2.2 (Causally valid measurement model). The measurement model (Defn. 2.1) is
“causally valld " with respect to a statistical estimand g that identifies a target causal estimand, if the

measurement Z is a drop-in replacement in g for the true causal variables Z, i.c., g(Z) = g(Z). &

Discussion. Causal validity of a measurement model with respect to a specific estimand boils
down to the estimand being invariant with respect to the measurement function. As (von Kiigelgen
et al., 2024) already pointed out, identification of a latent causal variable up to a non-linear
parameterization (i.e., block-identifiability (Defn. B.1)) does not allow average treatment effect
estimation if either the treatment or outcome is a latent causal variable without additional informa-
tion. For that, a direct measurement (see Defn. 2.1) as in (Cadei et al., 2024, 2025) is necessary;



alternatively, one can choose an estimand that is invariant to non-linear invertible parameterizations,
e.g., (conditional) mutual information (Janzing et al., 2013). As another example, a non-linear
invertible parameterization is enough to model confounding variables (Yao et al.,, 2024a) and
instruments, see F for extended discussions and examples. Finally, note that the causal validity
of the measurement models does not always require one-to-one correspondence between the
measurement variables and latent causal variables: When an estimand concerns a coarse-graining
of a subset of variables, then a measurement model mixing the right subset of variables can still
be causally valid. For example, the valid adjustment set W in Fig. 11 can contain two or more

variables, which can remain entangled with each other in the learned representation W := h(W)
as long as the measurement function A is invertible, see App. F for detailed derivations.

When is a measurement model “true”? Note that any causal model between learned representa-
tion can always be trivially formulated as a measurement model with each identified representation
variable correspondmg toal latent causal variable (i.e., Z1 — Z2 implicitly implies a measurement
model Z1 — 71— 71y — Zg) Sometimes, by means of other assumptions, the latent causal model
may not match one-to-one with the measurements; for example, see Fig. 1 (b). Our discussion on
the measurement model only specifies the dependency between a learned representation and an
(implicitly) assumed latent causal model. Following (Peters et al., 2014), we intend the latent causal
model to be true if it agrees with the results of randomized studies in practice. If the latent causal
model is true, then a causally valid measurement model is trivially also true.

3 Evaluating Causal Representations using Measurement Models

This section explains how the measurement model formalism we introduced in § 2 serves as a
natural tool to evaluate causal representations. A causal representation is defined as a set of measure-
ment variables output from an encoder — a parameterized function that maps the observables X to
the measurement variables Z. Each CRL method specifies a measurement model, either through its
identifiability guarantees or the particular causal task it addresses. This measurement model defines
which causal variables a representation should exclusively measure. Given paired samples of the true
causal variables Z and their corresponding measurement variables Z from a trained CRL model, eval-
uation boils down to comparing the measurement model against the observed joint distribution PZ,Z
Before presenting our proposed evaluation metric, we introduce the following additional notation.

Additional notation. Let Z,, Z,, and Z3 be three absolutely continuous random variables taking
values in R?%21, R922, and R%%s respectively. We say that Z and Z, are conditionally independent
given Z3 if p(Z1, Z2 | Zs) = p(Z1 FZg)p(Zg | Z3), and it is denoted as Z1 1l Zy | Z3. A statistical
test ¢ is a function that maps data to {0, 1}, e.g., ¢ : R?*921 x R"Xd22 x R"*dz5 — {0 1}, where
n denotes the number of samples. The test ¢ rejects a null hypothesis Hg if ©(Z1, Z2,Z3) = 1 and
does not reject it if ¢(Z1, Z2,7Z3) = 0. Given a significance level a € (0, 1), a test is said to be
valid if it holds that sup py, P(¢(Z1,Z2,Z3) = 1) < «, and it is said to have power 3 € (0, 1)
against an alternative distribution P & Hg if P(¢(Z1,Z2,Z3) = 1) = .

Exclusivity of measurements. A measurement model describes the relationship between the causal
and the measurement variables. Specifically, it tell us for each measurement variable, which causal
variables it should exclusively measure. We formally define this concept below.

Definition 3.1 (Exclusivity of a measurement variable). Let M = (Z, Z, {hj}jen) be a mea-
surement model, if a measurement variable Z A;>J € [M] only has one causal parent Z; for some
i € [N], then we say Z 4, exclusively measures Z;. &

Given samples of the causal and measurement variables {(z",2")}c[,,), we can check whether the
measurement variables do satisfy the exclusivity property in the data by testing the following null
hypotheses:

Ho(i, ) : Za, AL Z; | Ziny iy » (3.1

forall i € [N]and j € [M]. For a numerical summary of the overall exclusivity of the measurement
variables, we propose the following Test-based Measurement EXclusivity (T-MEX) score.

Definition 3.2 (Test-based measurement exclusivity score). Let V' € {0,1}V*M be the adjacency
matrix corresponding to the conditional independencies according to a measurement model M, such



that for all j € [M] and i € [N], V;; = 1 if a causal variable Z; is a causal parent of a measurement

variable Z 4, according to the measurement model, and Vj; = 0 otherwise. Let W e {0, 1}V xM
be the matrix constructed according to the test results of the conditional independencies in eq. (3.1)
based on the samples of (Z,Z), such that for all j € [M] and i € [N], Wy = 1if Ho(i,7) is
rejected, and W;; = 0 otherwise. Then the test-based measurement exclusivity (T-MEX) score is
defined as the hamming distance between V and W
M

TMEX(V, W) = > 1(Vyi # W),

j=11i=1
where 1 denotes the indicator function. &

Details for computing T-MEX is given in Alg. 1. As T-MEX score is based on conditional inde-
pendence testing, its value depends on the randomness in the samples, and the properties of the
statistical tests being used. In Prop. 3.1, we show the upper bound of the expected T-MEX score
when the joint distribution P, 5 of the causal variables Z and output measurement variables Z from
a CRL model does align with a measurement model.

Proposition 3.1. Let {;;}iciny,jem] be a family of tests for eq. (3.1) where for all i € [N] and
J € [M], @;j is valid with level a € (0,1) and has power at least 8 € (0,1). Given an adjacency ma-
trix Ve RVXM pased on a measurement model, if the joint distribution Pz, 5 of the causal and mea-

surement variables does align with the measurement model, and each entry in W is computed based
on an independent set of samples {(z*,2*)} ke[ni,)» Nij € Ny, then the expected T-MEX satisfies

E[FMEX(V,W)] < a - (MN = |[V[}1) + (1= ) - [V]]1,
where ||V||1 = Zfil Zjle Vij is the Li-norm of V.

Remark 3.1. Prop. 3.1 assumes that each null hypothesis in eq. (3.1) is tested using an independent
set of samples. When there is only one set of samples available for a large number of tests, using
the same sample set can lead to inflation of the false positive rate, and may inflate the T-MEX score.

In this case, we recommend doing a multiple comparison adjustment when constructing W, for
example, the Bonferroni-Holm correction (Holm, 1979), which controls the family-wise error rate
while it does not make assumptions on the dependencies of the multiple p-values. [
Remark 3.2. In this section, we focus on the exclusivity perspective of a measurement model via an
approach similar to the idea of falsification of causal graphs (e.g., Kook, 2025; Faller et al., 2024).
This is a non-parametric approach which is agnostic to the measurement functions. In certain cases,
however, a measurement model may contain not only the conditional independence structure, but
also other parametric assumptions through specifications of the measurement functions {/;} je[as)-
Then, one may extend T-MEX to also take these constraints into account.

4 Related Work: Flaws of Existing Evaluation Metrics for CRL

In this section, we cover the metrics that have been used by most papers proposing causal represen-
tation learning approaches (von Kiigelgen et al., 2021, 2024; Zheng et al., 2022; Ahuja et al., 2024,
2022; Varici et al., 2024; Zhang et al., 2024a,b; Yao et al., 2024b; Lippe et al., 2022a,b; Lachapelle
et al., 2022, 2023; Yao et al., 2022; Zhang et al., 2024a; Squires et al., 2023; Buchholz et al., 2024,
Yao et al., 2025) to name a few. We highlight how these metrics are not immediately suitable to eval-
uate identification results in the presence of causal relations, making it difficult to compare models
and requiring great care in the interpretation of the results that is often missed (Gamella et al., 2025).

Standard evaluation for latent variable identification in existing CRL works employs coefficient of
determination R? (Defn. 4.1), and mean correlation coefficient (Defn. 4.2). However, when the la-
tent variables are causally related, a high score of these two metrics does not indicate that the learned
representations align with the measurement model we expect from the identifiability theory. Exam-
ple 4.1 illustrates this limitation of these two metrics under the presence of causal dependencies.

Example 4.1. Assume that the latent causal variables Z in Fig. 1 (b) follow a linear Gaussian addi-
tive noise model. Specifically, the latent variables Z; and Zs are generated based on the following
structural equation:

Zg ::a~Z1+e (41)



with e ~ P,, E[e] = 0 and e Ll Z;. Suppose that the measurement model which induces Fig. 1 (b)
specifies that the measurement function & : R — R is a diffeomorphism such that Z 4, = h(Z,),
that is, Z 4, identifies Z,, while Z 4, should not contain any additional information about Zs. ¢

Coefficient of determination. R? measures the proportion of the variation in the dependent vari-
ables explained by the regression model (Draper and Smith, 1998), formally defined as
Definition 4.1 (Population R? score). Let (Z;, Z 4,) be apair of random variables both taking values

inR, i € [N],j € [M]. The coefficient of determination R? score for predicting Z; from Z A, is
defined as N
V(E[Zi | Z4,])

v(Z;)

where [E and V denote the expectation and variance operators, respectively. &

R*(Zi,Za,) =

Problem of R? in Example 4.1: Let R%(Zy,Z4,) denote the R? score as defined in Defn. 4.1.
Following the linear mechanism in eq. (4.1), R?(Z2,Z 4, ) can be expressed as

V(E[Z2 | Za,)  V(E[aZ: +e|Z4,))
V(Zg) o V(aZ1 -+ 6)

C@®V(E[Zy|Za])  a®V(Z)

T aV(Zy) +V(e)  a?V(Zy) + V(e)

R*(Zy,Z4,) =
4.2)

R%(Zy,Z4,).

Depending on the noise level V(e), R2(ZQ,2 4,) can be either close to R2(Z1,2 4,) when
V(e) < a*V(Zy) or close to 0 when V(e) is significantly higher than a?V(Z); in either case it
does not reflect whether Z 4, identifies Zs or not, in the sense of Defn. B.1. Ultimately, R?isa
metric for predictability, not for identifiability. Using it as an identifiability metric under causal
dependency can lead to misinterpretation (Gamella et al., 2025).

Remark 4.1 (Other problems of R? score). R? is designed to measure how well a linear model fits
between two random variables. When the fitted model is nonlinear, R? can yield values outside
[0, 1], which can be misleading. See also Cameron and Windmeijer (1997) for more details. '

Mean correlation coefficient (MCC). Intuitively, MCC measures the component-wise correspon-

dence between the learned representation Z and the ground truth latent variables Z. When using
MCQC, it is required to have the same latent and encoding dimensions. We restate the definition of
the MCC as follows.

Definition 4.2 (Mean correlation coefficient).

N
1 ~
MCC= ¥ «dithi & 100 Zrco)

where Corr(+, -) refers to the Pearson correlation under linear relationship and Spearman correlation
in the nonlinear case. L)

However, we notice that MCC cannot capture how well the representations are disentangled, mis-
aligning with its original purpose of measuring component-wise correspondence. Assume in Fig. 1

(b)that Zy, = Z; and Z 4, = [22, 23] The learned representations Z 4, are linear mappings of
their causal parents Zpa(ZA )
j

2128'21; 22:a'Z2+b'Z3; 23:C'ZQ+d'Zg,

where s, a, b, ¢, d # 0. In this case, the MCC would obtain the highest value 1, although Zs, Z3 are

still entangled in the learned representation Z, demonstrating that MCC is inadequate in evaluating
element-wise identification under causal relations.

Evaluation of causal relations. Causal relations are usually evaluated with the standard metrics
Structural Hamming distance (SHD). We remark that evaluating causal discovery on the learned rep-
resentations should always be done in conjunction with latent variable identification, as it is possible



to achieve a perfect SHD (i.e, zero) with entangled representations, using e.g., LINGAM (Shimizu
et al., 2006), as shown numerically in App. D.3.

Evaluation of disentangled representation. Evaluating disentangled representations (where the
ground truth latent variables are assumed to be mutually independent) is comparatively easier. In
the disentangled case, the main objective is to assess how well the learned representation aligns
one-to-one with the ground truth latents. Commonly used evaluation metrics for disentangled rep-
resentations include the BetaVAE Score (Higgins et al., 2017), FactorVAE Score (Kim and Mnih,
2018), Mutual Information Gap (MIG Chen et al. (2018)), DCI-disentanglement (Eastwood and
Williams, 2018), Modularity (Ridgeway and Mozer, 2018) and SAP (Kumar et al., 2017). Broadly,
evaluating learned representations can be viewed as a two-stage procedure, first estimating the re-
lationship between latent variables and representations, and then aggregating this information into
a single score (Locatello et al., 2020). In some way, our test can be seen as following the same
strategy, although evaluating variable-level correspondence is less straightforward given underlying
causal relationships, making it a fundamentally more challenging and understudied problem.

S Experiments

This section demonstrates the validity of the proposed T-MEX score in various causal reasoning
settings. We first focus on covariate adjustment in numerical simulations, using T-MEX to evaluate
both identifiability (Defn. B.1) and causal validity (Defn. 2.2) of the representations (§ 5.1). Next,
we move on to freatment effect estimation in high-dimensional ecological video analysis, where
we demonstrate that T-MEX effectively characterizes how well the learned representation supports
answering downstream causal questions (§ 5.2). For both experiments, we estimate T-MEX based
on the projected covariance measure (PCM) test (Lundborg et al., 2024) implemented in the python
package pycomets (Huang and Kook, 2025), which is an algorithm-agnostic test for conditional
independence (see App. E for more explanations). Further experiment details and additional results
are deferred to App. D.

5.1 Numerical Simulation

This experiment validates our proposed T-MEX evaluation metric through a controlled numerical
simulation. We leverage CRL to model confounders and perform backdoor adjustment to estimate
the average treatment effect (ATE). We report both R? and the ATE bias, demonstrating that T-MEX
closely tracks the ATE bias and provides a reliable measure of representation quality, whereas R?
fails to yield consistent or meaningful conclusions.

ATE Bias

Figure 2: Measurement model containing the
latent causal variables Zi, Zs, and Zs3 (white
nodes) and observed (also termed “directly mea-
sured" in Defn. 2.1) causal variables Z4 and Zs
(gray nodes). The entangled observable X is

shown as a dashed oval. Z 4, denotes the ex-
clusive measurement (Defn. 3.1) of Z;.

A B C

Figure 3: T-MEX tracks the absolute bias of

the ATE estimates of Z4 on Zs where Z is
conditioned on as the back door adjustment.

Experiment settings. We generate five causal variables, Z; for ¢ € [5] according to a linear
structural causal model (see App. D.1), where two of the causal variables, Z4 and Zs, are observed
(also termed “directly measured" in Defn. 2.1). The entangled observations X := f(Z1, Z2,Z3)
are generated by applying a diffeomorphism f : R3 — R?, implemented as an invertible MLP, on
the causal variables. Our farget causal task is to estimate the ATE of Z4 on Zs. As the true causal



relationship between Z4 and Zj is linear, we can construct a consistent causal estimator where Z;
is adjusted using linear regression, which is invariant up to bijective transformations of Z, (App. F).
Although Z; is latent and cannot be directly adjusted for, one can measure it through a bijective

transformation Z 4, := h(Zy) which is obtained from the entangled observation X. Note that in

this case, Z 4, exclusively measures (Defn. 3.1) the confounder Z;, as depicted in Fig. 2. We train
three different CRL models based on the identifiable learning algorithm proposed by Yao et al.

(2024b) and obtain samples of the measurement variable Z 4, :

* Model A: a sufficiently trained model from which we expect the learned representation

iﬁl (where by a slight abuse of notation, the superscript represents the model indicator) to
exclusively measure Z;

* Model B: an insufficiently trained model with unclear latent-measurement correspondence;

* Model C: a corrupted version of Model A where the representation igl is defined as a

linear mixing of the identified representation iﬁl and Zy, Zs.

Results. Tab. | summarizes the T-MEX scores together with the coefficient of determination R? for
all three models A, B and C, presented as mean+sd. For statistical validity, we compute the results
using 50 simulated datasets from each model, with each dataset containing 4096 observations. Fur-
ther details about the test results are provided in App. D.1. Tab. | shows that a sufficiently trained
model (Model A) achieves a low T-MEX score, indicating that the learned representation y/ A, exclu-
sively measures the latent variable Z;. In contrast, the insufficiently trained and corrupted models
(Models B and C) exhibit high T-MEX scores, demonstrating misalignment between the learned
representation and the hypothesized measurement model (Fig. 2). Fig. 3 presents the ATE bias esti-
mated from the learned representations of all three models. We observe a strong correlation between
T-MEX and the absolute bias of the ATE, validating T-MEX as a reliable indicator of the causal
validity of the learned representation (Defn. 2.2), whereas R? fails to show a clear correspondence
with the ATE bias because R? was relatively high for all three latent variables as shown in Tab. 1.

Table 1: T-MEX, R? scores, and Spearman correlation coefficients of the learned representations

(presented as mean+tstd) of model A (sufficiently trained, i.e., Z; exclusively measures Z),
model B (insufficiently trained model with unclear latent-measurement correspondence) and model
C (manually corrupted representation by linearly mixing Z5, Z35 with the representation of model
A) based on 50 simulated datasets, where each dataset contains 4096 observations.

R? Spearman Cor. Coef.
YA Zy Zs Zy Z; Z3

A 0.1200 £0.3283  0.9984 £ 0.0001  0.7516 4+ 0.0064  0.8001 £ 0.0006  1.0000 & 0.0000 0.8568 £ 0.0044  0.8864 £ 0.0040
B 1.1800+0.3881 0.6665 4 0.0078 0.8305 £ 0.0032  0.8707 4+ 0.0027 0.8434 £ 0.0061  0.9602 £ 0.0017  0.9908 & 0.0004
C  2.0000 £ 0.0000 0.9394 £0.0016  0.5421 £ 0.0096 0.6627 & 0.0084  0.9673 £0.0013  0.7215 4 0.0076  0.8016 £ 0.0062

Model T-MEX (|)

5.2 Real-world Ecological Experiment: ISTAnt

This experiment validates the T-MEX score on IS-
TAnt (Cadei et al., 2024), a real-world ecological bench-
mark designed for treatment effect estimation. We show
a strong correlation between T-MEX and the absolute
bias of the ATE, demonstrating that T-MEX can reliably Figure 4: Measurement Model for the
evaluate the causal validity of learned representations ., <o task in ISTAnt. T denotes
under the challenge of high-dimensional real-world data.  (ha treatment (chemical exposure) and

Experiment settings. ISTAnt consists of video record- the latent outcome Y represents the
ings of ant triplets with occasional grooming behavior. ant’s grooming behavior. Observable X
The goal is to extract a per-frame representation for su- (video recordings) is represented gsing
pervised behavior classification (grooming or not) to es- a dashed oval. The measurement Y ex-
timate the ATE of an intervention (exposure to a certain clusively measures (Defn. 3.1) Y.
pathogen). Retrieving causally valid representations in

this case is challenging as we have more non-annotated than annotated data, as described by (Cadei




et al,, 2024). Fig. 4 depicts the hypothesized measurement model for this particular causal task,
note that the treatment T and outcome Y are unconfounded because the data is collected through a
randomized controlled trial (RCT), meaning that the binary treatment T is randomly assigned.

Results. We compute the T-MEX score for 2,400 different models at a significance level of
o = 0.05, and compare both classification accuracy and ATE bias against T-MEX. A full descrip-
tion of the considered models and training details is reported in App. D.2. We only focus on the
models that yield an accuracy over 80% for meaningful statements. We observe that models with
T-MEX = 0 achieve higher mean and lower variance for both accuracy and ATE bias, demonstrating
that T-MEX effectively and reliably evaluates the quality of learned representations in terms of both
classification performance and causal validity (Defn. 2.2).

Statistical validation. To further assess the statistical significance between the T-MEX = 0 and
T-MEX = 1 groups, we conduct a Mann-Whitney U test (Mann and Whitney, 1947) with the null
hypothesis

Ho : E[\ATE Bias| | T-MEX = 1] < ]E[|ATE Bias| | T-MEX = o]

The resulting p-value of 0.0047 leads us to reject Hg, providing strong evidence that the average
absolute bias of the ATE for models with T-MEX = 1 is significantly higher than for those with T-
MEX = 0. Overall, T-MEX shows a strong correlation with the absolute bias of the ATE, validating
its reliability as an evaluation metric for the causal validity of learned representations (Defn. 2.2).

Real-world implications of T-MEX. We emphasize that the proposed T-MEX score can be com-
puted using only observational data, possibly with selection bias, as long as this selection bias does
not change the conditional independence between measurements and causal variables. Instead, cal-
culating the ATE bias as in (Cadei et al., 2024) requires a validation set that closely approximates the
underlying population of the randomized controlled trial, a significantly stronger assumption that is
often difficult to satisfy in real-world settings. Overall, T-MEX offers a convenient and accessible
evaluation metric that reliably quantifies the usefulness of the learned representation for a causal
downstream task, without the need for additional identifying assumptions.
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Figure 5: T-MEX reflects model performance in terms of both classification accuracy and causal
validity (Defn. 2.2). Compared to their counterparts, models with lower T-MEX achieve consistently
high accuracy (Left) and center their ATE bias near zero with reduced variance (Right).

5.3 Evaluation of T-MEX Properties using Synthetic Data

In this section, we outline additional experiments designed to assess specific properties of T-MEX,
including its scalability, robustness across different test choices, and behavior under weak or non-
linear causal relations as well as noisy measurements. The corresponding experimental details and
results are provided in App. D.4.

Reliability and scalability with higher-dimensional latent variables. It is well known that the
statistical power of conditional independence (CI) tests deteriorates as the dimensionality of the
conditioning set increases—a limitation shared by most CI methods (e.g., Shah and Peters, 2020;
Strobl et al., 2019; Zhang et al., 2012). We examine the reliability and scalability of T-MEX given
data generated from a non-linear location-scale SCM with up to 50 latent nodes in Tab. 3 in App. D.4.
Since our proposed framework is agnostic to CI test choices, T-MEX can be easily scaled to larger
dimensions by adapting more powerful and scalable test methods as they are developed.



Consistency of T-MEX under different test choices. CI testing is an important component in
our framework, and choosing a valid and powerful test is essential. We chose PCM test in our
experiments for its theoretical guarantees on the validity (type I error control) and power of the test,
making it a reliable choice of test for the exclusivity claim. We also compare T-MEX scores using
different conditional independence tests in Tab. 4 in App. D.4, based on the same experimental setup
asin § 5.1. In this experiment, we see that T-MEX remains consistent across different test choices.

Consistency of T-MEX under noisy measurements. As discussed in Remark 2.2, noise in the
measurement functions can be treated as additional independent latent variables. This means that if
the noise is independent of the existing causal variables, the conditional independencies required for
T-MEX remain intact. In such cases, one can safely compute T-MEX without explicitly modeling
the noise; the score will remain valid. The empirical T-MEX value is shown to be robust under noise,
as shown in Tab. 7 in App. D.4.

T-MEX under weak causal relations. Building on the experiment in § 5.1, we also examine how
T-MEX behaves when the causal relationships between the latent causal variables are weak and
compare it with the commonly used CRL identifiability metrics R? and MCC. See Tab. 5 in App. D.4.
In this case, T-MEX correctly reflects the entanglement in the representation, while both R? and
MCC give a misleading score suggesting perfect element-wise identification.

Alignment between T-MEX and ATE under nonlinear SCM. Extending the results in § 5.1, we
further examine the correspondence between T-MEX and ATE under a nonlinear setting. As shown
in Tab. 6 in App. D.4, the results are highly similar to the linear case § 5.1, T-MEX closely aligns with
the absolute values of the ATE bias, effectively evaluating causal representations for downstream
inference tasks with nonlinear causal relations.

6 Conclusion and Limitations

This paper introduces a novel perspective on Causal Representation Learning (CRL) based on a
measurement model framework, in which causal representations are treated as proxy measurements
of latent causal variables (§ 2). This perspective provides a flexible framework that unites CRL
identification theory with downstream task assumptions via measurement functions, yielding a prin-
cipled way to evaluate representation quality. More specifically, we propose a new evaluation metric,
Test-based Measurement EXclusivity (T-MEX) score, which quantifies the discrepancy between a
given measurement model (specified by a CRL algorithm, a causal task, or ground truth knowledge)
and the joint distribution of causal and measurement variables (representation outputs of a CRL
model) using conditional independence tests (§ 3). Because these conditional independence tests
impose no parametric assumptions, our T-MEX score remains broadly applicable. However, like any
statistical procedure, these tests are subject to sampling variability and potential statistical errors, so
the reliability of T-MEX depends on which test is chosen. By remaining agnostic about the specific
test, we empower practitioners to tailor the score to whatever assumptions they are willing to make
(e.g., parametric or non-parametric). We demonstrate, using both simulations (§ 5.1) and real-world
video analysis (§ 5.2), that our proposed T-MEX score effectively quantifies the identification and
causal validity of the learned representation (Defn. 2.2). This provides a convenient and practical
evaluation scheme for representation quality in real-world scenarios, especially when the true
treatment effect bias is unavailable, such as in the absence of randomized studies.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We formalize the measurement framework in § 2, define the evaluation metric
T-MEX in § 3 and show its effectiveness in § 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work is discussed in § 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We summarize the property of the proposed T-MEX score in Prop. 3.1 and
provide the proof in App. C.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details about data generating pipeline, model architecture and training setup
are provided in App. D for all experiments. Experimental results can be reproduced follow-
ing the Readme . md file provided in the supplementary materials.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the experimental and implementation details for both ex-
periments (§ 5) in App. D. The dataset we used in § 5.2 is publicly available at
https://doi.org/10.6084/m9.figshare.26484934.v2. Code for generating the numerical
datasets (§ 5.1), training, and evaluation for both experiments is all included in the sup-
plementary material, following NeurIPS code and data submission guidelines. Curated
code will be published upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

e Please see the Neur[PS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details (including experiment setup, training, and testing de-
tails) for both experiments are specified in App. D.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat our numerical simulations across multiple datasets to showcase
the statistical validity of our proposed T-MEX score (see § 5.1). In real-world scenarios
where additional simulated datasets are unavailable, we apply additional statistical tests to
demonstrate that our experimental findings are statistically significant, see § 5.2.
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10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute-related information is provided in App. D.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors carefully reviewed the NeurIPS Code of Ethics and believe none
of the concerns from NeurIPS Code of Ethics applies to this work.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: This paper proposes a new theoretical perspective on causal representation
learning; thus, there is no immediate positive or negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not release a new dataset or propose new models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We carefully cited all datasets and works that were used in this paper. Also,
the causal representation learning algorithm we used in App. D.1 and the statistical testing
software (pycomets) are open-sourced under an MIT license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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14.

15.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: This work focuses on a new formalism and evaluation scheme of causal rep-
resentation learning. Thus, we do not release new assets other than the source code to
reproduce the experimental results. This code is attached to the submission, and all corre-
sponding training details are documented in App. D for reproducing.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve human subjects or crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]

Justification: This work does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Notation and Terminology

This section summarizes the symbols used throughout the paper.

Z Causal variables

X Observables

D; Dimension of the representation y/ A,

N Dimension of the causal variables Z

n Number of samples for the statistical tests for T-MEX
P(-)  Probability operator

E(-)  Expectation operator

1(-)  Indicator function

B Preliminaries

Definition B.1 (Block-identifiability (von Kiigelgen et al., 2021)). A set of latent variables Z € R
is block-identified by a representation Z € R? if there exists a bijection h : R% — R? such that

Z =h(Z). &

C Proofs and Algorithms

This section includes the proof for Prop. 3.1 and the algorithm to compute the T-MEX score.

Proposition 3.1. Let {;;}iciny,jem] be a family of tests for eq. (3.1) where for all i € [N] and
J € [M], @;j is valid with level o € (0, 1) and has power at least 8 € (0, 1). Given an adjacency ma-
trix V€ RN *M based on a measurement model, if the joint distribution P, 5 of the causal and mea-

surement variables does align with the measurement model, and each entry in W is computed based
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Algorithm 1: Compute T-MEX score from one set of samples

Input: Paired samples of causal variables and measurement variables {z,Z 4, ,...,Z4,, }
where z € R"*N and 2,4, € R"*Pi for j € [M], adjacency matrix of the measurement
model V € {0, 1}V XM a set of statistical tests for {wijYiciny,jern for (3.1), where for
alli € [N],j € [M], gij : R™* x R Pi x R (V=1 5 £ 1}

Output: T-MEX score of the given sample

W < oNxM

fori € [N] do

for j € [M] do
| Wi i (20,24, 280\ (1))
end

end

return Zil Z?il 1(Vi; # Wz])

on an independent set of samples {(z",2")} .cin,,). nij € Ny, then the expected T-MEX satisfies
E[F-MEX(V, W) < a- (MN = |[V]}1) + (1= 8) - IV},

where ||V || = ZZV:I E;\il Vij is the Ly-norm of V.

Proof. Suppose the joint distribution of (Z, 2) aligns with the conditional independencies indi-
cated by the adjacency matrix V/, that is, for all ¢ € [N] and j € [M], if Vj; = 0, it holds that

Za, L Z; | Zyp a5 if Vij = 1, itholds that Za, A Z; | Ziny 4y

Fix a significance level a € (0,1). Suppose for all i € [N] and all j € [M], the statistical test
@ij + R x RPXDs o RP<(N=1) 5 £0 1} is valid at level o and has power at least 3 € [0, 1]
against the alternative distribution where Z 4, /I Z; ] Zinp\ {4y -

Then given independent sets of samples {z*, 2"}, €[n,;) fori € [N] and j € [M], and WZ—J— =
©ij(Zi,ZA;,Z[N])\{i})» it holds that

e if Vi; =0, then P(W;; = 1) < a;

—

« if Vi; =1, then P(W;; =0) < 1— 8.

Therefore, the expected value of T-MEX score is given by

E[T-MEX(V,W) = a- > 1(Vij =0)+ (1-8) Y 1(Viy =1)

Sa-(MN—|[V]1)+ 1 =8)-[[VIL

where ||V||; is the 1-norm of V. The second inequality is implied by the that each test ¢;; is valid
with level a and has power > f.

Remark C.1. Proposition 3.1 tells us that if the measurement model does hold for the joint distri-
bution of the causal variables and the output representations from a trained CRL model, we would
expect to see a “low" T-MEX score given that we employ valid statistical tests that are also powerful
enough to reject the null under alternatives. A “low" T-MEX score does not in general refer to a 0
score, as it depends on V/, the chosen significance level «, and the power of the test 5. For example,
let o = 0.05, we consider a valid statistical test that has the highest power, i.e., 8 = 1, additionally,
assume the number of Os in V' is 2, then the expected value of the T-MEX score is no larger than
0.05 x 2 =0.1. o

23



D Experiment Details and Additional Results

This section elaborates on the experiment settings of § 5. We include further information regarding
the data-generating process for the simulated experiment (§ 5.1) and the ISTAnt dataset (Cadei et al.,
2024) used in the ecological case study (§ 5.2), as well as additional experimental results.

D.1 Numerical Simulation

Experiment setting. We consider five causal variables (Z1, - - , Z5) generated based on a linear
structural causal model (Peters et al., 2017)
Z = BZ + ¢,

0 00 0O

1 0 0 0 1
where Z = (Z1,Zs,Z3,Z4, Zs), Z takes values in R%, ¢ ~ N5(0,I),and B= |1 1 0 0 0],

1 0 0 0 O

10 0 1 0

which induces the partial DAG depicted in Fig. 2. Two of the causal variables (Z4 and Zs5) are
observed (i.e., directly measured as in Defn. 2.1), and the other three (Z1, Z5, and Z3) are latent and
we observe only a bijective mixing X of them.

For the purpose of latent variable identification, we consider the multiview scenario in (Yao et al.,
2024b) where two views X1, X are generated from different subsets of latent variables. Formally,
we have
X1 = f1(Z1,Zy)
Xy = fo(Z1,Z3),

where f1, fo : R? — R? are diffeomorphisms, implemented using invertible MLPs as suggested
by Yao et al. (2024b).

(D.1)

Implementation details. We employ the latent variable identification algorithm proposed by Yao
et al. (2024b), which guarantees that the shared latent variables among different views can be iden-
tified up to a diffeomorphism in the sense of Defn. B.1. Thus, by utilizing X;, X5, we can obtain
a nonlinear bijective transformation of their shared latent variable Z;. This allows us to construct a

measurement model M = (Z,Z 4, {h1}) (see Fig. 2), where Z = {Z1, -+ ,Zs} and Z 4, = h(Z,)
for some (unknown) smooth invertible map i : R — R.

We train three CRL models following the implementation settings in (Yao et al., 2024b, Tab. 4).

* Model A: a sufficiently trained model (trained for 50001 steps) from which we expect the
learned representation Zﬁl (where by a slight abuse of notation, the superscript represents
the model indicator) to exclusively measure Z;

* Model B: an insufficiently trained model (trained for 51 steps) with unclear latent-
measurement correspondence;

* Model C: a corrupted version of Model A where the representation 221 = 2‘21 +0.2Z5—
0.1Zs, i.e., a linear mixing of the representation 21‘31 from Model A, and Zs, Z3.

For each of the three trained models, we generate 50 independent datasets, each containing 4096

paired samples of Z,Z4,. We compute the respective T-MEX scores based on these generated
datasets for all three models, using the the projected covariance measure (PCM, Lundborg et al.,
2024) implemented in pycomets (Huang and Kook, 2025) using linear regression models to esti-
mate the conditional means (see App. E).

Additional results. Since T-MEX relies on statistical testing, we further assess its statistical validity
by examining the underlying p-values that lead to the test results and the T-MEX score. Fig. 6 shows
the p-values resulted from testing each of the three null hypotheses:

Ho(i) : Za, AL Z; | Zygp; fori € [3].

We omit Z, and Zj5 since they are not involved in generating the two views X; and Xs.
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Figure 6: Violin plots of p-values from testing the conditional independencies zZ A, WL Z; | Zs)\; for
i € [3] based on the PCM tests (Lundborg et al., 2024). The black dashed line is at the significance

level o = 0.05. A p-value < « for Z; means there is an edge from Z; to the measurement Z 4, .

Fig. 6 shows that Model A aligns with the measurement model in Fig. 2, evidenced by (i) small
p-values for H(1) and (ii) approximately uniformly distributed p-values for both H((2) and H(3),
given a valid test (see App. E for further explanations). In contrast, for Models B and C, nearly all
p-values are smaller thz/l\n a, leading to rejections of the null hypotheses, which indicates that the
learned representation Z 4, is a mixture of all three causal variables Z1, Zo, Z3, and thus fails to
exclusively measure Z;.

Computational resources. We train the CRL models (model A, B, C) using a single node GPU
(NVIDIA GeForce RTX1080Ti) with 10GB of RAM, 4 CPU cores for less than one GPU hour.
ATE estimation and T-MEX computation take less than one minute on a standard CPU.

D.2 Real-World Ecological Experiment: ISTAnt

Experiment Setting. ISTAnt is a real-world ecological benchmark designed to evaluate learned
representations on downstream causal inference tasks from high-dimensional observational data. It
comprises 44 ant-triplet video recordings collected through a randomized controlled trial. This
benchmark adopts the problem formulation introduced by Cadei et al. (2024), aiming to estimate
the causal effect of specific treatments (e.g., chemical exposure) on ants social behavior, particularly
grooming events. The experimental design and recording setup are shown in Fig. 7; for further
details, refer to (Cadei et al., 2024, App. C).

In ISTAnt, each observation (video recording) ¢ is associated with a treatment assignment T'; and
a set of experimental covariates W (including experiment day, time of the day, batch, position
within the batch, and annotator). However, only a subset of videos is annotated with the outcome
of interest Y; (i.e., grooming events), which hinders reliable causal inference at a population level,
such as treatment effect estimation. To address this challenge, Cadei et al. (2024) proposes to train
a classifier on top of a pre-trained feature extractor (e.g., DINOv2, Oquab et al., 2023) using this
limited set of annotated samples, to impute missing labels while still enabling valid causal inference
at the population level; specifically, for estimating the Average Treatment Effect (ATE).

Implementation details. Following (Cadei et al., 2024), we train 2,400 classification heads on
top of DINOv2 (Oquab et al., 2023), varying the archltecture and training settmgs and estimate

the causal effect using all v1de0 samples together with the predicted labels Ys by AIPW estima-
tor (Robins et al., 1994). The hyperparameter configurations are summarized in Tab. 2, with all
other implementation details following (Cadei et al., 2024, App. C).

By contrasting with the measurement model depicted in Fig. 4, we compute the T-MEX scores for
all 2,400 models. Since we focus on models with more than 80% prediction accuracy (§ 5.2), the

null hypothesis YLY|Tis rejected in all cases, consistently indicating Y — Y. Thus, we only
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Table 2: Hyperparameters for the real-world ecological experiment (§ 5.2 and App. D.2), giving rise
to 2,400 model configurations in total. All other settings follow (Cadei et al., 2024, App. C).

Hyperparameter Value(s)

Input Preprocessing YES /NO

Number of Hidden Layers 1,2

Batch Size 64, 128, 256

Adam: learning rate Se-2, le-2, 5e-3, 1e-3, Se-4

Empirical Risk, Invariant Risk (Arjovsky et al., 2020),
VREx (Krueger et al., 2021), Deconfounded Risk (Cadei et al., 2025)
# Seeds 0,1,..,9

Training objective

focus on the following null hypothesis:
Ho:YLUT|Y,

where Y denotes the predicted label and Y the ground truth one. A misalignment with the mea-
surement modeLin Fig. 4 leads to rejecting Hg, resulting T-MEX=1, whereas as a causally valid
representation Y that exclusively measures Y gives rise to T-MEX=0. We summarize all results
in Fig. 5 and provide extended discussions in § 5.2.

Computational resources. We run all the analyses in § 5.2 using 48GB of RAM, 20 CPU cores,
and a single node GPU (NVIDIA GeForce RTX2080Ti) for 24 GPU hours. Data preprocessing
and feature extraction using DINOv2 account for the majority of the computational time, whereas
classifier training, AIPW estimation, and the T-MEX test contribute negligibly by comparison.

(a) Filming box (b) Batch example

Figure 7: Visualization of ISTAnt recording set-up (Cadei et al., 2024).

D.3 Caveats of Using SHD to Evaluate Causal Representations

Experiment Setting. This experiment explores the poten-
tial pitfalls when directly using SHD to evaluate causal
representations without properly evaluating the element- a a @
wise latent variable identification. Specifically, we con-
sider a set of causal variables generated through the fol-

lowing structural equations:

7, =¢
Zy=aip-Zi+ B2 € (D.2)
Z3 = 132y + o3 - 2o + B3 - €3,

Figure 8: Example measurement model,
where Z 4, block-identifies Z1,Z3, Z 4,
and Z 4, identifies Z, Z3 respectively.
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Figure 9: Structural Hamming Distance Values (SHD) of 100 structure and measurement models
following eqgs. (D.2) and (D.3), where the measurement Z 4, is a mixing of the ground truth latent
Z,,7Z-. SHDs are computed between the discovered graph on Z and the ground truth one.

Assume the learned representation corresponds to the ground truth causal variable as follows:

2A1 =121+ 21 2L
Za, =2 Zo (D.3)
2Ag =343

where Z 4, remains a mixing of Z; and Zy. The corresponding measurement model is shown
in Fig. 8.

Implementation details. We generate 100 different structure and measurement models follow-
ing eqs. (D.2) and (D.3), with all coefficients as and «ys sampled from Unif[1, 10] and the /s sam-
pled from Unif[0.005, 0.02]. We run LINGAM (Shimizu et al., 2006) from causal-learn (Zheng et al.,

2024) to discover the causal relationships between the measurements Z 4,,Z 4, , Z 4,.

Results. Fig. 9 shows the structural hamming distance of between the discovered graph on Z and

the ground truth one. Despite being entangled between Z, Zo, Z still yield the correct causal graph
in most of the cases (77%), as shown by the first bar in the plot. Hence, causal relations between the
measurement variables should always be evaluated in conjunction with the variable identification.
Otherwise, it can lead to misinterpretations as showcased by Fig. 9.

Computational resources. Data generating and causal discovery for App. D.3 in total takes less
than 10 minutes on a standard CPU.

D.4 Additional Numerical Experiments Showcasing the Properties of T-MEX.

In the following, T-MEX Oracle is computed based on an oracle CI test with zero type I error and
power 1. We compute the oracle T-MEX score to demonstrate desirable properties of the metricsuch
as its consistency and robustness across different conditional independence tests. This is feasible
in the simulated setting, where the measurement functions are known by design. In contrast, for
empirical representations learned by a CRL model, the true measurement functions are unknown,
making oracle computation infeasible in practice.

Scalability given higher-dimensional latent variables. We simulate the causal variables based
on a nonlinear SCM a location-scale SCM as implemented by Wendong et al. (2024). Then, the
measurement variables are simulated as a direct copy of each of the corresponding causal variables.
For different numbers of latents (n-latent), we report the T-MEX score based on the Generalized
Covariance Measure (GCM) test with linear regression (see App. E for more details about GCM),
along with their standard error based on 20 random causal DAGs for the latent causal variables,
each with 30 repetitions and 1000 observations. In Tab. 3, we see that T-MEX remains closely
aligned with the T-MEX oracle in all cases, and can be efficiently computed up to 50 latents within
a reasonable time, validating its applicability in moderate to high dimensions.
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Table 3: T-MEX for higher-dimensional latents generated from nonlinear SCM

n-latent T-MEX T-MEX Oracle time (sec)

5 0.0483 £ 0.2223 0 0.0359 &£ 0.0011
10 0.0033 £ 0.0577 0 0.1559 + 0.0017
20 0.0550 £ 0.5187 0 0.8080 = 0.0094
50 0.0917 + 0.9582 0 10.8450 + 0.1004

Consistent results when using different CI tests. Following the same settings in § 5.1, we consider
PCM test (see App. E) with random forest (RF) and Kernel Conditional Independence (KCI) test
(Zhang et al., 2012). We see that T-MEX ranks the models consistently with the results in § 5.1.

Table 4: T-MEX under different CI Tests

CI test Model T-MEX

PCM (RF) A 0.0000 + 0.0000
PCM (RF) B 0.8000 £ 0.7559
PCM (RF) C 2.0000 4 0.0000
KCI A 0.0400 + 0.1979
KCI B 0.1600 + 0.4218
KCI C 2.0000 4 0.0000

T-MEX under weak causal relations. Building on the experiment in § 5.1, we next examine how
T-MEX behaves under weak causal relations, and compare it with the previous CRL identifiability
metrics such as R? and MCC. The data is generated from a linear SCM with three latent causal
variables following the measurement model described in Fig. 9. The linear coefficients between the
causal variables are sampled uniformly between 0.01 and 0.1.

Table 5: T-MEX under weak causal relations

T-MEX Oracle T-MEX R?2 MCC
1 1.0100 £ 0.0995 1.0000 #+ 0.0000 1.0000 =+ 0.0000

Under identifiability assumptions that guarantee element-wise correspondence, T-MEX correctly de-
tects the mixing effect and gives a score near one (note that T-"MEX = 0 indicates perfect alignment).

In contrast, both B2 and MCC fail to reflect this violation. Despite the entanglement in Zi, they
still assign the maximum score of 1, misleadingly suggesting perfect element-wise identification
(see Tab. 5).

Alignment between T-MEX and ATE under nonlinear SCM. Extending § 5.1, we further exam-
ine the correspondence between T-MEX and ATE under the more general nonlinear setting. We
consider the same causal graph as given in § 5.1, where Z; confounds Z, and Z3, and needs to be

adjusted for a valid treatment effect estimation. A “perfect” model means 21 exclusively measures
Z,, whereas a mixed model indicates an entangled representation, i.e., Z; mixes Z; and Z.

Table 6: T-MEX v.s. ATE bias under nonlinear SCM

Model T-MEX abs(ATE bias)

Perfect 0.0100 £ 0.1000  0.1532 4+ 0.0283
Mixed 1.0000 £ 0.0000 0.5357 £ 0.0540
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As shown in Tab. 6, the results are highly similar to the linear case § 5.1, T-MEX closely aligns with
the absolute values of the ATE bias, effectively evaluating causal representations for downstream
inference tasks with nonlinear causal relations.

Consistency of T-MEX under noisy measurements. We compare the empirical T-MEX value
with/without noise. The noisy measurements are generated by adding Gaussian noise to the original
latents. I.e., the measurement function writes

h(z)=z+e

with e independent Gaussian noise. Results are evaluated over 100 datasets with 1000 samples each.
Tab. 7 shows that the empirical T-MEX score largely remains consistent under noisy measurements,
validating its practical usability.

Table 7: T-MEX w/wo noise

T-MEX Oracle without noise with noise
0 0.0100 & 0.0100 0.3900 £ 0.6497

E Background on Conditional Independence Testing

Testing conditional independence of two random variables X and Y given a third random variable
Z is known to be a difficult problem if Z is a continuous variable (Shah and Peters, 2020). The goal
of conditional independence test is to test the null hypothesis

Ho: X 1LY |Z

Shah and Peters (2020) have shown that there is no valid test (i.e., a test that guarantees a Type I
error rate to be no larger than the given significance level o) that has power against all alternatives.

Consider univariate variables X, Y, Z, the generalized covariance measure (GCM) test proposed in
Shah and Peters (2020) aims to test an implication of conditional independence which can be written
as the following null hypothesis:

HEM E[(Y —E[Y | Z])(X —E[X | Z])] = 0.

The validity of the GCM test thus relies on that the conditional means E[Y | Z] and E[X | Z] can be
learned at sufficiently fast rates. It turns out that GCM does not have power against any alternative
for which E[Cov(X,Y | Z)] = 0but X /L Y | Z (Lundborg et al., 2024).

The projected covariance measure (PCM) proposed by Lundborg et al. (2024) improves the power
issue of GCM by testing a different implication of conditional independence:

HeME[Y | X, Z] = E[Y | Z].

Similar to GCM, to ensure its validity, PCM also requires that the conditional means can be learned
sufficiently fast, which is satisfied in our experiments (§ 5).

There are other conditional independence tests such as mutual information based methods (Ai et al.,
2024; Runge, 2018) and kernel-based methods (Fernandez and Rivera, 2024; Strobl et al., 2019;
Zhang et al., 2012). We opted for PCM in our experiments for its computational advantage and the-
oretical guarantees on its validity under a flexible, model-agnostic framework. More discussions on
the usage of PCM and GCM can be found in Kook and Lundborg (2024). Notably, T-MEX is a gen-
eral evaluation metric for causal representations that does not specify any particular type of tests, al-
lowing practitioners to choose other testing methods that are more suitable for their problem settings.

F Extended Discussion

This section elaborates on the implications of learned representations for downstream causal tasks.
As briefly discussed in the main paper (following Defn. 2.2), a representation is causally valid
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(Defn. 2.2) with respect to a statistical estimand if and only if the statistical estimand remains un-
changed when plugging in the measurement variables correspond to the causal variables. More con-
cretely, we illustrate the implications of nonlinear invertible reparameterizations of causal variables
in two commonly encountered scenarios: when representations serve as proxies of (i) the treatment
or outcome variables, and (ii) the confounders or instrumental variables.

F.1 Representations of Treatment and Outcome

Assume in Fig. 10 that Z Ays Z A, are element-wise non-
linear invertible reparametrization of Z1, Zs respectively;
ie., Vie {1,2},Z4, = hi(Z;) for some diffeomorphism
h; : R — R. We aim to estimate the treatment effect of

Z, — Z5 using the learned representations Z 4, and Z Ay
Assume the Zs is generated following eq. (4.1), i.e.,

Zo =a-7Z1+e

with e ~ P, Ele] = 0 and e 1L Z;. Given there is no  Fjgyre 10: Z 4, measures Z; through a
unobserved confounding, the ground truth average treat- ponlinear bijection for both i = 1, 2.
ment effect is written as

o

ATE(Z, — 7,) = 22422 daoilzl =z _ OE(Z; lazzll =l _ 8“‘3[“;;1“} —a (D)

We assume measurement function h; for all ¢ € {1, 2} to be linear, i.e.,
Za,=o1-Z1, Za,=az-Zy, and araz#0. (F2)
The ATE estimand from the learned representations yields:

8E[2A2 | 2Al = 2141]

ATE(ZAI — ZAz) =

0%z 4,
_ OE[asZs | a1Zy = ay24] (F.3)
80[1Z1
_ 0E[Zy | Zy =21]
— = —aq.
1021 aq

As shown by eq. (F.3), the ATE estimand using the learned representation y/ A, and y/ A, can be arbi-
trarily scaled by the factor of @2/a;. Thus, measurements that bijectively transform the causal latent
variables cannot naively support estimating the treatment effect, violating causal validity (Defn. 2.2);
it requires direct supervision or observation on both treatment and outcome variables, as also pointed
out by (von Kiigelgen et al., 2024, Sec. 4).

On the other hand, information-theoretic measures for quantifying causal influence remain invariant

under bijective transformation, such as the mutual information iy (Z1; Z2) = im(i Ay Z A,), @s
shown by Janzing et al. (2013).

F.2 Representations of Confounders or Instruments

Measuring confounding. We first show an example where an observed treatment T and an observed

o~

outcome Y is confounded by a third variable W which is measured by W = h(W) through a
deterministic invertible function h.
Formally, the measurement model is defined as M = (Z, Z, {h})withZ = {T, Y, W}and 7=

{W}, where T, Y are directly measured (Defn. 2.1). The corresponding DAG is given in Fig. 11.
We show in the following that this measurement model is indeed causally valid (Defn. 2.2) with
respect to the statistical estimand for the Average Treatment Effect (ATE) of TonY.
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Figure 11: ATE remains invariant under bijec-  Figure 12: ATE remains invariant under bijec-

tive transformation of confounders. The treat-  five transformation of instruments. T measures

ment T and outcome Y are directly measured  the instrument variable I through a nonlinear bi-

(i.e., observed) whereas confounder W' is mea-  jection. The treatment T and outcome Y are di-

sured by W through a nonlinear bijection. rectly measured (i.e., observed), and U denotes
unobserved confounding.

Under the standard assumptions for backdoor adjustment, it follows that

E(Y|do(T = 1)) = E [E(Y | W, T = 1)]
_ /IE(Y |'W,T = t)P(W)dw

—dh~ (W)
_ _ —1 -
_ /IE (Y | 171 (W), T = ) P(h~ (W) = (Ed)
:/IEY|W T = t)P(W)dw
= Ey, [ (Y| W, T=1t)],
where we used the change of variable formula and the fact that E(Y | W, T = t) =

E(Y|h~Y(W), T = t). This is because (W) is a sufficient statistic for W (Casclla and Berger,
2024, Ch. 6.2) following h is invertible.

Under the same assumptions, the ATE for binary treatment can then be identified by the following
statistical estimand

ATE(T = Y) = E[Y]do(T = 1)] — E[Y | do(T = 0)]

=Ey [E(Y |W,T=1)-E(Y | W, T =0)]. )

Following eq. (F.4), we have
ATE(T - Y) = Ey, [E(Y |W,T=1)-EY|W,T=0)],

indicating that the identified statistical estimand ATE(T — Y') remains invariant for the measure-
ment W. Similarly, ATE also remains invariant when the treatment is continuous:

OE[Y | do(T =t)] OJEKE[Y | W, T=t] OJEE[Y|W,T=¢
dt dt dt ’

(F.6)
where the last equality holds because of eq. (F.4). Therefore, we have shown that invertible reparam-
eterizations of the confounders can be a drop-in replacement of the true confounding variables in the
statistical estimand for ATE, for both discrete and continuous treatments, and thus this measurement
model M is indeed causally valid for ATE.

ATE(T - Y) =

Measuring instrumental variables. We now give a second example of ATE estimation under an

instrumental variable setup. We assume that the instrument I is measured by I-= h(I) through
a bijective transformation h. We show that under certain assumptions, the statistical estimand

does not change when using Tasa drop-in replacement of the true instrument I. We focus on the

31



case where the instrument I, the treatment T, and the response Y are all univariate continuous
variables; further discussion on multivariate and discrete valued variables is beyond the scope of this

paper. Formally, the measurement model is defined as M"Y = (Z, Z, {h}) with causal variables
Z = {1, T,Y} and measurement variables Z = {I}. The treatment T and outcome Y are directly
measured (Defn. 2.1) and confounded by unknown hidden confounders U. Fig. 12 shows the DAG
of this measurement model.

We show in the following that the instrument I remains a valid instrumental variable under a bijective

transformation, i.e., the measurement variable 1= h(I) also satisfies the standard IV assumptions,
which are listed as follows:

* Relevancy: I /LT | U
* Unconfoundedness: I Ll U
¢ Exclusion restriction criteria: I 1LY ‘ T, U

Following standard probability theory (see e.g., Billingsley, 2008), if h is a bijective function, all
three conditions still hold when replacing I by i (I). This means that if the ATE is identified by a

statistical estimand when using I as an instrument, it is also identified when using T as an instrument.
In other words, the measurement model MV is causally valid with respect to an identified statistical

estimand because I can serve as a drop-in replacement for I (Defn. 2.2).
As a specific example, consider the case where the causal mechanism of Y is partially linear (a
commonly studied setup in the semi-parametric inference literature, see e.g., Chernozhukov et al.

(2018)),1.e., Y = TS + ¢g(U, ¢), for some measurable function g where E[g(U, ¢)] = 0 and where
€ ~ P is an independent noise variable, the ATE

SEY | do(T =t)]  JE[tS + g(U,e)]
ot N ot

ATE(T - Y) = =p

can be identified by the statistical estimand

Cov(Y,I)

FE7

We show in the following that the statistical estimand ATE(T — Y) in eq. (F.7) remains invariant
when using Tasa drop-in replacement for I. Plugging in T in the numerator

Cov(Y,T) = E[YI] — E[Y]E[]] = 8 (E[Ti] - E[T}E[f]) — BCov(T,T),

Cov(Y,I) _p= Cov(Y,I)
COV(T,T) Cov(T,I)

surement I can serve as a drop-in replacement for the latent instrumental variable I for downstream
causal inference tasks.

we have . Therefore, we have shown another example where the mea-
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