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ABSTRACT

The increasing complexity of modern very-large-scale integration (VLSI) design
highlights the significance of Electronic Design Automation (EDA) technologies.
Chip placement is a critical step in the EDA workflow, which positions chip mod-
ules on the canvas with the goal of optimizing performance, power, and area (PPA)
metrics of final chip designs. Recent advances have demonstrated the great poten-
tial of AI-based algorithms in enhancing chip placement. However, due to the
lengthy workflow of chip design, the evaluations of these algorithms often fo-
cus on intermediate surrogate metrics, which are easy to compute but frequently
reveal a substantial misalignment with the end-to-end performance (i.e., the final
design PPA). To address this challenge, we introduce ChiPBench, which can effec-
tively facilitate research in chip placement within the AI community. ChiPBench
is a comprehensive benchmark specifically designed to evaluate the effectiveness
of existing AI-based chip placement algorithms in improving final design PPA
metrics. Specifically, we have gathered 20 circuits from various domains (e.g.,
CPU, GPU, and microcontrollers). These designs are compiled by executing the
workflow from the verilog source code, which preserves necessary physical imple-
mentation kits, enabling evaluations for the placement algorithms on their impacts
on the final design PPA. We executed six state-of-the-art AI-based chip placement
algorithms on these designs and plugged the results of each single-point algorithm
into the physical implementation workflow to obtain the final PPA results. Exper-
imental results show that even if intermediate metric of a single-point algorithm is
dominant, while the final PPA results are unsatisfactory. This suggests that the AI
community should concentrate more on enhancing end-to-end performance rather
than those intermediate surrogates. We believe that our benchmark will serve as an
effective evaluation framework to bridge the gap between academia and industry.

1 INTRODUCTION

The exponential growth in the scale of integrated circuits (ICs), in accordance with Moore’s law, has
posed significant challenges to chip design (Huang et al., 2021; Lopera et al., 2021). To handle the
increasing complexity, many electronic design automation (EDA) tools have been developed to assist
hardware engineers. As shown in Figure 1, EDA tools automate various steps in the chip design
workflow, including high-level synthesis, logic synthesis, physical design, testing and verification
(Huang et al., 2021; Sánchez et al., 2023).

Chip placement is a critical step in the chip design workflow, which aims to position chip modules on
the canvas, with the goal of optimizing the performance, power, and area (PPA) metrics of final chip
designs (Cheng et al., 2023; Shi et al., 2023; Lin et al., 2019). Traditionally, this is done manually
by human expert designers, which costs much labor and necessitates much expert prior knowledge.
Therefore, a lot of design automation methods, especially those AI-based algorithms, have been de-
veloped to automate this process. These methods mainly fall into two categories: optimization-based
methods and reinforcement learning (RL)-based methods (Geng et al., 2024). Optimization-based
methods employ traditional optimization algorithms, such as simulated annealing (SA) (Vashisht
et al., 2020) and evolutionary algorithms (EA) (Shi et al., 2023) to directly address the large-scale
optimization problem, exploring the design space to identify near-optimal solutions. In recent re-
search, macro placement has been formulated as a Markov Decision Process (MDP), where the
macro positions are determined sequentially (Mirhoseini et al., 2021). Reinforcement learning (RL)
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Figure 1: Illustration of the modern chip design workflow.

has emerged as a promising technique for this task due to its ability to continuously improve perfor-
mance based on feedback from the environment through trial and error (Cheng & Yan, 2021; Cheng
et al., 2022; Lai et al., 2022; 2023).

However, due to the lengthy workflow of chip design, the evaluations of these algorithms often
focus on intermediate surrogate metrics, which are easy to compute but frequently reveal a sub-
stantial misalignment with the end-to-end performance (i.e., the final design PPA). On one hand,
obtaining the end-to-end performance of a given chip placement solution requires a large amount of
engineering efforts due to the lengthy workflow of chip design. In particular, we found that directly
using the existing open-source EDA tools and chip placement datasets even usually fails to obtain
the end-to-end performance. Thus, existing AI-based chip placement algorithms (Lai et al., 2023;
Geng et al., 2024) train and evaluate learned models using intermediate surrogate metrics which are
simple and easy to obtain. On the other hand, as the PPA metrics are reflected by many aspects that
have not been adequately considered in the previous stages, there exhibits a critical gap between the
surrogate metrics and the final PPA objectives. Therefore, this gap significantly limits the use of
existing AI-based placement algorithms in practical industrial scenarios.

To address this challenge, we propose ChiPBench, a comprehensive benchmark specifically de-
signed to evaluate the effectiveness of existing AI-based chip placement algorithms in improving
final design PPA metrics. Appealing features of ChiPBench include its fully open source and repro-
ducible characteristics, covering the entire EDA workflow from the source verilog code, and unify-
ing the evaluation framework of AI-based chip placement methods using end-to-end performance.
Thus, ChiPBench can effectively facilitate research in chip placement within the AI community by
taking the first step towards a fully reproducible unified evaluation framework using the end-to-end
performance. In terms of the dataset, we have gathered 20 circuits from various domains (e.g., CPU,
GPU, and microcontrollers). Then, these designs are compiled by executing the workflow from the
verilog source code, which preserves sufficient physical implementation kits, enabling evaluations
for the placement algorithms on their impacts on the final design PPA. In terms of the evaluated algo-
rithms, we executed six state-of-the-art AI-based chip placement algorithms on the aforementioned
designs and plugged the results of each single-point algorithm into the physical implementation
workflow to obtain the final PPA results.

Experimental results show that even if intermediate metric of a single-point algorithm is dominant,
while the final PPA results are unsatisfactory. Moreover, visualization experiments demonstrate that
intermediate metrics have weak correlation with the final design PPA, emphasizing the importance
of developing algorithms towards optimizing the final design PPA rather than intermediate metrics.
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Table 1: Comparison Between Our Dataset and Existing Datasets

Dataset Complete
Design Suite

Logic Synthesis
Support

Physical Design
Support

Full EDA Flow
Support

Large Scale
&Diversity

ISPD2005 ✗ ✗ ✓ ✗ ✗
ICCAD2015 ✗ ✗ ✓ ✗ ✓

EPFL Benchmarks ✗ ✓ ✗ ✗ ✗
OpenABC-D ✗ ✓ ✗ ✗ ✓

CircuitNet 2.0 ✗ ✗ ✓ ✗ ✓
ChiPBench (Ours) ✓ ✓ ✓ ✓ ✓

This suggests that the AI community should concentrate more on enhancing end-to-end performance
rather than those intermediate metrics. We believe that our benchmark will serve as an effective
evaluation framework to bridge the gap between academia and industry.

We summarize our major contributions as follows. (1) Our proposed ChiPBench is a reproducible
and unified evaluation framework of existing AI-based chip placement algorithms using end-to-end
performance with fully open source EDA tools. This can effectively facilitate research in chip place-
ment within the AI community. (2) We collected 20 circuits from various domains, and construct a
dataset by executing the EDA workflow from the verilog source code, preserving sufficient physical
implementation kits for end-to-end performance evaluation. (3) We evaluate six state-of-the-art AI-
based chip placement algorithms, including most popular AI-based chip placement algorithms. (4)
Experiments demonstrate that intermediate metrics have weak correlation with the final design PPA,
emphasizing the critical importance of developing algorithms towards optimizing the final design
PPA rather than intermediate metrics.

2 RELATED WORK

Datasets Some well-known EDA conferences, such as ISPD and ICCAD, host contests addressing
EDA challenges and offer benchmarks with processed data for researchers. However, in the early
years (e.g., ISPD2005 (Nam et al., 2005) and ICCAD2004 (Adya et al., 2009)), the provided datasets
used overly simplified Bookshelf formats, which are abstracted versions of the actual design kits.
Therefore, we cannot evaluate the final PPA of the placement results on those datasets. Recently,
ISPD2015 (Bustany et al., 2015) and ICCAD2015 (Kim et al., 2015) have offered benchmarks and
datasets closer to real-world applications, including necessary netlist, library, and design exchange
files, broadening their utility slightly. Nevertheless, they still lack the essential information (e.g.,
necessary design kits) to run the open-source EDA tools such as OpenROAD (Kahng & Spyrou,
2021). Beyond these conferences, some other datasets have been developed in various directions.
For example, the EPFL (Amarú et al., 2015) benchmarks and the larger OpenABC-D Chowdhury
et al. (2021) dataset concentrated on synthetic netlists, primarily for testing modern logic optimiza-
tion tools with a focus on logic synthesis. CircuitNet 2.0 (Jiang et al., 2023), on the other hand,
shifted the focus towards providing multi-modal data for prediction tasks, enhancing the capability
for various prediction tasks through the use of diverse data modalities. Compared with previous
efforts, our proposed dataset focuses on the entire EDA workflow. As shown in Table 1, a compar-
ison between our dataset and mainstream datasets highlights the distinctions. It provides complete
files for each case and necessary design kits, such as timing constraints, library files, and LEF files,
offering a comprehensive dataset that supports all stages of physical implementation and fosters a
more integrated approach to chip design and evaluation.

Placement Algorithms Recent advancements in AI technology within the EDA field have led to a
variety of AI-based chip placement algorithms. (1) Black-Box Optimization methods. Simulated
Annealing (Cheng et al., 2023) provides a probabilistic method for finding a good approximation
of the global optimum. Wire-Mask-Guided Black-Box Optimization (Shi et al., 2023) uses a wire-
mask-guided greedy procedure to optimize macro placement efficiently. (2) Analytical methods.
DREAMPlace (Lin et al., 2019) uses deep learning toolkits to achieve over a 30x speedup in place-
ment tasks. AutoDMP (Agnesina et al., 2023) leverages DREAMPlace for the concurrent placement
of macros and standard cells, enhancing macro placement quality. (3) Reinforcement Learning
methods. MaskPlace (Lai et al., 2022) treats chip placement as a visual representation learning
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problem, reducing wirelength and ensuring zero overlaps. ChiPFormer (Lai et al., 2023) employs
offline reinforcement learning, fine-tuning on unseen chips for better efficiency. The evaluation of
these algorithms mainly focuses on intermediate metrics. In contrast, we utilized the end-to-end per-
formance to evaluate six existing AI-based chip placement algorithms, encompassing a significant
portion of mainstream AI-based placement algorithms.

3 BACKGROUND ON ELECTRONIC DESIGN AUTOMATION

Electronic Design Automation (EDA) is a suite of software tools vital for designing and developing
electronic systems, primarily integrated circuits (ICs). These tools enable electrical engineers to effi-
ciently transform innovative concepts into functional products, addressing the increasing complexity
and demands of modern chip design. EDA optimizes the entire design process from schematic cap-
ture to layout and fabrication, reducing time-to-market and enhancing design precision and sophisti-
cation. In the chip design workflow, EDA tools support various functions: they perform simulations
to verify circuit behavior, execute synthesis to convert high-level descriptions to gate-level imple-
mentations, and manage physical layouts to ensure designs can be realized in silicon. As shown in
Figure 1, the EDA design flow includes several key stages: logic synthesis, floorplanning, placement,
Clock Tree Synthesis (CTS), and routing. Below are concise descriptions of each stage, illustrating
their importance in the integrated circuit development process.

Logic Synthesis transforms a high-level circuit description into an optimized gate-level
netlist (Berndt et al., 2022; Wang et al., 2024a;b). Floorplan involves deciding the layout of major
components within an integrated circuit, positioning blocks and core components to balance signal
integrity, power distribution, and area utilization. Placement involves assigning specific locations
to various circuit components within the core area of the chip, following the floorplanning stage.
The primary objective of this stage is to strategically place the components to optimize performance
metrics such as delay and power consumption while ensuring adherence to design rules (Geng et al.,
2024). Clock Tree Synthesis (CTS) creates a clock distribution network within an IC to minimize
those clock effects, and ensure the correct timing synchronization for circuit operation. Routing
involves creating the physical paths for electrical connectivity between various components on the
IC as per the netlist. This stage must handle multiple layers of the chip, avoid obstacles, manage
signal integrity, and meet all electrical and timing constraints (Cheng et al., 2022).

Chip Placement The placement stage is crucially divided into two distinct phases: macro place-
ment and cell placement. (1) Macro placement is a critical very large-scale integration (VLSI) phys-
ical design problem that targets the arrangement of larger components, such as SRAMs and clock
generators—often called macros. This phase significantly impacts the chip’s overall floorplan and
essential design parameters like wirelength, power, and area. (2) Following this, the standard cell
placement phase addresses the arrangement of the more numerous and smaller standard cells, which
serve as the fundamental building blocks of digital designs. This phase typically utilizes analytical
solvers to secure an optimized configuration that not only minimizes wirelength but also enhances
the electrical and timing performance of the chip.

4 DATASET

4.1 DESCRIPTION OF DESIGNS

Due to the oversimplification of datasets in early years, there exists a significant gap between these
datasets and real-world applications. For instance, the usually used Bookshelf format (Nam et al.,
2005; Adya et al., 2009) is overly simplified so that placement results given in such format are in-
applicable for the subsequent stages to obtain a valid final design. Some later datasets (Kim et al.,
2015) provide the LEF/DEF and necessary files for running these stages, but the contained circuits
are still limited and they still lack some information for open-source tools like OpenROAD to work.
For instance, the library file lacks buffer definitions, which is necessary for the clock tree synthe-
sis phase, and the LEF file has incomplete layer definitions, which hinders the routing phase. To
address this issue, we construct a dataset with comprehensive physical implementation information
across the entire flow. Our dataset involves collecting a series of designs spanning various domains,
including components such as CPUs, GPUs, network interfaces, image processing technologies, IoT

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Statistics of designs used in our benchmark.

Id Design #Cells #Nets #Macros #Pins #IOs #Edges
1 8051 (lajanugen) 13865 16424 0 50848 10 16174
2 ariane136 (The-OpenROAD-Project) 175248 191081 136 609834 495 187911
3 ariane133 (The-OpenROAD-Project) 168551 184856 132 592261 495 183142
4 bp (The-OpenROAD-Project) 301030 333364 24 984093 1198 333364
5 bp be (The-OpenROAD-Project) 50881 58428 10 182949 3029 58092
6 bp fe (The-OpenROAD-Project) 33206 36379 11 111510 2511 36203
7 CAN-Bus (Tommydag) 815 935 0 2637 13 935
8 DE2 CCD edge (suntodai) 2333 3270 0 7823 64 3170
9 dft48 Brendon Chetwynd, Kevin Bush, Kyle Ingols 48488 52575 68 125501 132 50654

10 FPGA-CAN (WangXuan95) 140848 178913 0 532024 4 176472
11 iot shield (brmcfarl) 904 1006 0 2995 33 974
12 mor1kx (openrisc, b) 104293 130743 0 374983 576 125979
13 or1200 openrisc (a) 43386 32195 20 97047 383 31958
14 OV7670 i2c (AngeloJacobo) 332 340 0 979 29 316
15 picorv (YosysHQ) 8851 10531 0 32195 409 10470
16 serv (olofk) 1291 1482 0 3915 306 1403
17 sha256 (secworks) 10120 12283 0 38758 77 12176
18 subrisc (Hara-Laboratory) 859382 1103295 0 3359066 34 1092653
19 swerv wrapper (The-OpenROAD-Project) 96435 105026 28 354652 1416 104565
20 toygpu (matt-kimball) 368081 466513 0 1399167 11 461675

devices, cryptographic units, and microcontrollers. Additionally, the dataset features a diverse array
of sizes, with cell ranges from thousands to nearly a million. Our dataset features a complete design
suite that supports the full EDA flow and includes a diverse range of sizes and domains, as illustrated
in Table 1. The statistics for each case is detailed in Table 2, and we defer more details to Table 7 in
Appendix C.2.

4.2 DATASET GENERATION PIPELINE

We use OpenROAD (Kahng & Spyrou, 2021), an open-source EDA tool, for generating our
dataset. OpenROAD integrates various tools, such as Yosys (Wolf, 2016) for logic synthesis, Tri-
tonMacroPlacer for macro placement, RePlAce (Cheng et al., 2018) for cell placement, TritonCTS
for clock tree synthesis, and TritonRoute for detailed routing. The choice of open-source tool allows
for full reproducibility of our results and supports the promotion of the open-source community,
ensuring that all generated data and methodologies are open-source. The initial dataset generation
starts with Verilog files as raw data. OpenROAD performs logical synthesis to convert these high-
level descriptions into a netlist, detailing the electrical connections among circuit components. This
netlist is then used by OpenROAD’s integrated floorplanning tool to configure the physical layout of
the circuit on silicon. The resulting design from the floorplanning stage is converted into LEF/DEF
files by OpenROAD, facilitating the application of subsequent placement algorithms. Simultane-
ously, we complete the EDA design flow through OpenROAD, generating data at subsequent stages,
including placement, CTS, and routing.

5 ALGORITHMS

AI-based chip placement algorithms can be roughly grouped into three categories: black-box opti-
mization (BBO) methods, analytical methods (gradient-based methods), and reinforcement learning
(RL) methods. Each category frames the placement task as an optimization problem but adopts
distinct objectives and methodologies. We present details as follows.

5.1 BLACK-BOX-OPTIMIZATION (BBO) METHODS

A straightforward intuition is to view the chip placement task as a black-box-optimization (BBO)
problem, where the inner workings of the objective functions are inaccessible, and solutions are
evaluated only based on the output metrics.

Simulated Annealing (SA) is a heuristic BBO optimization algorithm favored for its simplicity
in implementation. Specifically, the SA algorithm generates solutions by perturbing the solution

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

space and then assessing the resulting representation. Different methods have been developed to
effectively map representations to placement solutions (Kirkpatrick et al., 1983; Sherwani, 2012; Ho
et al., 2004; Shunmugathammal et al., 2020; Vashisht et al., 2020), such as sequence pair (Murata
et al., 1996) and B∗-tree (Chang et al., 2000). Solutions are probabilistically accepted based on an
annealing temperature to escape local optima in pursuit of a global optimum. Due to its simplicity in
implementation, the SA algorithm often serves as a strong baseline in previous studies. In this work,
we incorporate a specific SA implementation (Cheng et al., 2023) utilizing operations like swaps,
shifts, and shuffles, and a cost function that balances wirelength, density, and congestion.

WireMask-EA (Shi et al., 2023) is a BBO framework that was recently introduced at the NeurIPS
2023 conference, positioning itself as an innovative approach in the intersection of AI and EDA.
The framework utilizes a novel concept called wiremask, which plays a crucial role in guiding the
mapping process from genotypes to phenotypes in a greedy manner. The wiremask concept was
originally introduced by Lai et al. (2022), where it is defined as a matrix that predicts the potential
increase in Half-Perimeter Wirelength (HPWL) for each subsequent macro placement on the design
canvas. By estimating the wirelength increase, the wiremask helps in making informed decisions
during the placement process, thereby potentially improving the quality of the layout. Building
upon this concept, Shi et al. (2023) extended the framework to integrate several types of Black-
Box Optimization (BBO) algorithms, including random search (RS), evolutionary algorithm (EA),
and Bayesian optimization (BO), demonstrating the versatility of the approach in handling complex
optimization tasks in chip design.

5.2 ANALYTICAL (GRADIENT-BASED) METHODS

Analytical methods formulate the optimization objective as an analytical function of module co-
ordinates. This formulation enables efficient solutions through techniques like quadratic program-
ming (Kahng et al., 2005; Viswanathan et al., 2007a;b; Spindler et al., 2008; Chen et al., 2008; Kim
et al., 2012; Kim & Markov, 2012) and direct gradient descent (Lu et al., 2014; Cheng et al., 2018;
Lin et al., 2019; 2020; Gu et al., 2020; Liao et al., 2022). This work focuses on the gradient-based
algorithms, which are by far the more mainstream algorithms.

DREAMPlace (Liao et al., 2022) is a GPU-accelerated framework that leverages differentiable
proxies, such as approximate HPWL, as optimization objectives. It was built upon the previous
analytical placement algorithms, ePlace (Lu et al., 2014) and RePlAce (Cheng et al., 2018), yet sig-
nificantly speeding up the placement process by using GPUs for acceleration. The series of versions
of DREAMPlace introduces diverse differentiable proxies to better align the PPA improvement.

AutoDMP (Agnesina et al., 2023) extends DREAMPlace by automating hyperparameter tuning
through multi-objective Bayesian optimization. It further accelerates the optimization process and
reduces manual tuning efforts. At that time, this work showcased the promising potential of inte-
grating GPU-accelerated algorithms with machine learning techniques for automating VLSI design.

5.3 REINFORCEMENT LEARNING (RL) METHODS

As VLSI systems grow in complexity, RL methods are being explored to enhance placement quality.
GraphPlace (Mirhoseini et al., 2021) first models macro placement as a RL problem. Subsequently,
DeepPR (Cheng & Yan, 2021) and PRNet (Cheng et al., 2022) establish a streamlined pipeline
encompassing macro placement, cell placement, and routing. However, they treat density as a soft
constraint, which may violate non-overlap constraint during training. Therefore, in this work, we
mainly focus on MaskPlace and ChiPFormer, which are recent SOTA algorithms with hard non-
overlapping constraints.

MaskPlace (Lai et al., 2022) represents the chip states as pixel-level visual inputs, including a
wiremask (recording the HPWL increment for each grid), the viewmask (a global observation of the
canvas), and the positionmask (to ensure non-overlapping constraint). Furthermore, it uses dense
reward to boost the sample efficiency.

ChiPFormer (Lai et al., 2023) represents the first offline RL method. It is pretrained on various
chips via offline RL and then fine-tuned on unseen chips for better efficiency. As a result, the time
for placement is significantly reduced.
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6 EVALUATION

6.1 EVALUATION METRICS

6.1.1 FINAL DESIGN PPA METRICS

The primary goal of the entire Electronic Design Automation (EDA) workflow is to optimize the
final PPA metrics. PPA stands for performance, power, and area—three crucial dimensions used to
evaluate the quality of a chip product. These dimensions are assessed using several critical metrics,
including worst negative slack (WNS), total negative slack (TNS), number of violating paths (NVP),
power, and area. Optimizing these PPA metrics has been a major focus in the industry, approached
through expert-designed heuristics. However, the challenge of PPA optimization has not been fully
recognized within the AI community. Bridging this gap and improving the incorporation of AI
strategies into PPA optimization are key goals of this benchmark.

In terms of specific metrics, Worst Negative Slack (WNS) and Total Negative Slack (TNS) are
essential for assessing the timing performance of a chip circuit. Slack is the discrepancy between
the expected and required arrival times of a signal, with negative slack indicating a timing violation.
WNS pinpoints the most severe negative slack within a circuit, thus identifying the most critical
timing issue. Conversely, TNS aggregates all negative slacks, providing a comprehensive view of
the circuit’s overall timing challenges. Moreover, the number of violating paths (NVP) counts the
paths that fail to meet the timing constraints, further illustrating the timing performance issues.

6.1.2 INTERMEDIATE METRICS

Commonly used intermediate surrogate metrics include Congestion, Wire Length (WL), Half
Perimeter Wire Length (HPWL), and Macro HPWL (mHPWL). Congestion evaluates the density
of wires in different chip regions. High congestion in certain areas can pose substantial challenges
during the routing stage. While not a direct component of the PPA metrics, managing congestion
effectively is essential to ensure that the chip can be successfully manufactured. Therefore, it is also
considered as an evaluation metric in this paper. Congestion is typically estimated after the Clock
Tree Synthesis (CTS) stages but before the detailed routing stage, allowing for adjusting macro
placement and routing strategies to mitigate potential issues.

Wire Length (WL) is the total length of all wires connecting all modules in a chip. Half Perimeter
Wire Length (HPWL) is the sum of half perimeters of bounding boxes that encompass all pins in
each net. It is widely used as an estimation of WL and is obtained after cell placement. Macro
HPWL (mHPWL) further simplifies HPWL by only considering the macros. It is favored in recent
studies as it can be immediately obtained after macro placement. These metrics are thought to
correlate with the final PPA, but they do not directly reflect the chip quality.

6.2 END-TO-END EVALUATION WORKFLOW

Placement

Floorplan

Routing

Report final 
metrics

Design Flow

CTS

MaskPlace

ChiPFormer

WireMask-EA

SA

DREAMPlace

AutoDMP

FormatChange

FormatChange

Macro Placement

Cell Placement

LEF/DEF

Bookshelf

Bookshelf

Bookshelf

LEF/DEF

Figure 2: Illustration of our end-to-end
evaluation workflow.

We present an end-to-end evaluation workflow utilizing
OpenROAD-flow-scripts (Kahng & Spyrou, 2021) for the
various stages of the EDA design flow, as illustrated in
Figure 2. All tools used in this workflow are open-source,
providing a significant advantage over other workflows
that rely on commercial software. This workflow is de-
signed to offer a comprehensive assessment of optimiza-
tion algorithms at any stage of the design flow.

Our dataset comprises design kits needed for each stage
of the physical design flow. For evaluating any stage-
specific algorithm, the output file from the preceding
stage serves as the input for the algorithm under eval-
uation. The algorithm processes this input to generate
its output, which is subsequently plugged into the Open-
ROAD design flow. Ultimately, final performance metrics
such as TNS, WNS, Area, and Power are reported, providing a comprehensive end-to-end perfor-
mance assessment.This method offers a holistic set of metrics that can evaluate the optimization
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Table 3: The evaluation results of AI-based macro placement algorithms. MacroHPWL, HPWL,
Congestion are intermediate metrics, and the other metrics evaluate the end-to-end performance.

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↓ TNS ↓ NVP ↓ Area ↓

WireMask-EA 0.647 1.027 1.105 1.099 1.015 1.085 0.995 0.967 1.004
SA 0.836 1.044 1.099 1.097 1.062 1.121 1.311 1.109 1.013

DREAMPlace 0.857 0.974 1.049 1.059 1.015 1.112 1.025 1.038 0.999
AutoDMP 0.698 0.892 0.950 0.950 1.013 1.196 1.540 1.176 1.002
MaskPlace 1.681 1.119 1.148 1.148 1.051 1.014 0.978 0.903 1.014

ChiPFormer 0.681 0.976 1.027 1.024 1.015 1.031 1.355 1.223 0.981
OpenROAD 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: The evaluation results of AI-based standard cell placement algorithms.

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↓ TNS ↓ NVP ↓ Area ↓

DREAMPlace 0.981 0.999 1.008 0.987 1.321 4.678 5.313 0.996
AutoDMP 1.124 1.123 1.138 1.011 1.540 1.916 1.119 0.995

OpenROAD 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

effects of any stage-specific algorithm on the final chip design, providing consistency of metrics
and avoiding the limitations of overly simplified metrics confined to a single stage.It is particularly
beneficial for the optimization and development of various algorithms, ensuring their improvements
translate to practical enhancements in chip design and foster the development of more efficient and
effective open-source EDA tools through a robust framework for testing and improvement.

6.3 EXPERIMENTAL SETUP

We apply the aforementioned workflow to evaluate six macro placement algorithms: SA, WireMask-
EA, DREAMPlace, AutoDMP, MaskPlace, ChiPFormer, and the default algorithm in OpenROAD.
Additionally, we also assess cell placement algorithms for DREAMPlace and AutoDMP. As most of
these methods only support the circuit data in a BookShelf format, while the circuits in our used
dataset are in a standard LEF/DEF, we start by converting the LEF/DEF files from the floorplan
stage of our dataset to BookShelf format to serve as the input for the placement algorithms. After
finishing the macro placement stage, the resulting placement files are then converted back to DEF
format and reintroduced into the original flow. The resulting placement files in BookShelf format
are then converted back to DEF and reintroduced into the original flow. Finally, we report the final
metrics, obtaining end-to-end evaluation results. Additionally, we perform global placement and
detailed placement using OpenRoad’s native Place method and complete the entire flow to obtain
the final metrics for comparison with other algorithms. Our project is open-sourced on GitHub.

7 RESULTS AND DISCUSSIONS

7.1 MAIN RESULTS

Macro Placement We evaluate the AI-based chip placement algorithms, including SA, WireMask-
EA, DREAMPlace, AutoDMP, MaskPlace, and ChiPFormer, using both intermediate metrics and
end-to-end performance. The results for macro placement are in Table 3. ChiPFormer and
WireMask-EA demonstrated a significant reduction in MacroHPWL compared to OpenROAD us-
ing TritonMacroPlacer. WireMask-EA achieved the best performance in terms of MacroHPWL.
While these AI-based placement algorithms showed good performance on several intermediate met-
rics, they perform poorly in terms of the end-to-end metrics compared to OpenRoad, particularly in
Power, TNS, and Area. This outcome revealed a significant gap between the originally optimized
MacroHPWL intermediate metrics and the final design PPA.

Cell Placement As shown in Table 4, DREAMPlace achieved the best results in the intermediate
metrics of HPWL, and performed well in terms of Power. However, OpenROAD achieved the
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Figure 3: Correlations Between Wirelength and TNS/WNS, In the visualizations, points that share
the same color represent data from (a) same method or (b) same case, respectively.

best results in WNS, TNS, and NVP, further demonstrating the inconsistency between intermediate
metrics and final PPA results.

7.2 CORRELATION ANALYSIS

In this section, we conduct compute and discuss the correlation between the core optimization indi-
cator MacroHPWL, used in existing placement algorithms, and the final chip performance metrics
such as WNS, TNS, and wirelength, obtained through the OpenROAD process.

We use the Pearson correlation coefficient (Cohen et al., 2009) to evaluate the strength of linear
correlation between pairs of metrics. The formula for calculating the Pearson correlation coefficient
takes the form of

r =

∑
(Xi −X)(Yi − Y )√∑

(Xi −X)2
∑

(Yi − Y )2
, (1)

where Xi and Yi are the observations, and X and Y are the respective means.

The results are shown in Figure 4. To calculate the correlation, the signs of all values are adjusted so
that for all metrics the lower indicates the better. The results show that MacroHPWL only has a weak
correlation with the Wirelength, which indicates that existing algorithms that optimize MacroHPWL
do not lead to an optimization on the Wirelength. In contrast, HPWL shows a very strong positive
correlation with actual Wirelength, indicating that HPWL works as an effective surrogate for ap-
proximating the Wirelength.
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Figure 4: Correlation Between Metrics

In addition to Wirelength, the final PPA metrics of the
chip are associated with WNS/TNS, Area, and Power.
The analyses shows that the correlation between MacroH-
PWL and these metrics is weak, indicating that optimiza-
tion of MacroHPWL has minimal impact on these perfor-
mance indicators. Moreover, the results in Figure 3 show
that Wirelength exhibits weak correlations with WNS and
TNS as well. This implies that even if a single-point algo-
rithm successfully optimizes metrics such as Wirelength,
the ultimate physical implementation might only enhance
one aspect of the PPA metrics and may not effectively op-
timize the other dimensions. Therefore, more appropriate
intermediate metrics are needed to better correlate with
the actual PPA objectives.

7.3 FURTHER ANALYSIS

In this section, we analyze specific cases to assess the im-
pact of different methods on PPA using ariane133 as the
benchmark. Table 5 presents the experimental data, while Figure 5 shows the performance varia-
tions on the worst path caused by different placement algorithms. The AutoDMP method reduces
wirelength but worsens timing, with smaller area and lower power. This is due to fewer buffers
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Table 5: The evaluation results of ariane133 under AI-based macro placement algorithms.

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 1124169 5065453.5 0.226 6583143 0.369 -0.417 -329.353 1970 349228
SA 1683330 5187015.8 0.230 6699484 0.365 -0.512 -650.399 2317 347043

MaskPlace 4444289 6253554.3 0.265 7853892 0.373 -0.349 -244.936 1636 357322
ChiPFormer 1253799 5019138.5 0.226 6581086 0.370 -0.553 -860.952 2703 349005

DREAMPlace 1111023 4826654.0 0.214 6348638 0.367 -0.540 -690.266 2307 348180
AutoDMP 828592 4250870.4 0.192 5694373 0.350 -0.982 -1913.660 3310 344091

OpenROAD 2685856 5260791.9 0.235 6825071 0.359 -0.498 -596.718 2274 352706

SA AutoDMP Wiremask-EA

ChiPFormer DREAMPlace MaskPlace

Slack=-0.511 Slack= -0.982 Slack=-0.417

Slack=-0.349Slack=-0.540Slack=-0.553

Figure 5: The image of the worst path for each method in ariane133.

being added during timing repair, leading to degraded timing despite the reduced area and power.
Moreover, wirelength and timing are not always proportional—critical paths still experience de-
lays, indicating that global wirelength optimization may miss timing-sensitive paths, especially in
worst-case scenarios. For more details, see Appendix C.1.

7.4 DISCUSSION

Our benchmark comprises design kits essential for each stage of the physical design flow, including
netlists, libraries, rules, and constraints needed during the physical implementation stage. This
thorough inclusion allows for a convenient and detailed evaluation of algorithms at specific stages of
the physical design flow, enabling researchers and practitioners to test and compare the effectiveness
of their solutions in a realistic, end-to-end environment. We call on the AI researchers to pay more
attention on the “shift-left” challenge from the real-world industrial scenarios, keeping towards the
mission of bridging the huge gap between academic research and industrial applications.

8 CONCLUSION

This paper presents a comprehensive dataset that spans the entire spectrum of the EDA design pro-
cess and an end-to-end evaluation method, which we used to assess several placement algorithms:
SA, WireMask-EA, DREAMPlace, AutoDMP, MaskPlace, and ChiPFormer. Our evaluation re-
vealed inconsistencies between the metrics currently emphasized by mainstream placement algo-
rithms and the final performance outcomes. These findings highlight the need for a new perspective
in the development of placement algorithms.
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Augusto André Souza Berndt, Mateus Fogaça, and Cristina Meinhardt. A review of machine learn-
ing in logic synthesis. Journal of Integrated Circuits and Systems, 17(3):1–12, 2022.

Brendon Chetwynd, Kevin Bush, Kyle Ingols. Common evaluation platform. https://github.
com/mit-ll/CEP.

brmcfarl. Iot shield. https://github.com/brmcfarl/iot_shield.

Ismail S Bustany, David Chinnery, Joseph R Shinnerl, and Vladimir Yutsis. Ispd 2015 benchmarks
with fence regions and routing blockages for detailed-routing-driven placement. In Proceedings
of the 2015 Symposium on International Symposium on Physical Design, pp. 157–164, 2015.

Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. B*-trees: A new representa-
tion for non-slicing floorplans. In Proceedings of the 37th Annual Design Automation Conference,
pp. 458–463, 2000.

Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang. Ntu-
place3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density
constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(7):1228–1240, 2008.

Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Replace: Advancing
solution quality and routability validation in global placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(9):1717–1730, 2018.

Chung-Kuan Cheng, Andrew B Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang. Assess-
ment of reinforcement learning for macro placement. In Proceedings of the 2023 International
Symposium on Physical Design, pp. 158–166, 2023.

Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip design.
Advances in Neural Information Processing Systems, 34:16508–16519, 2021.

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. Advances in Neural Informa-
tion Processing Systems, 35:26350–26362, 2022.

Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d: A
large-scale dataset for machine learning guided integrated circuit synthesis. arXiv preprint
arXiv:2110.11292, 2021.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech processing,
pp. 1–4, 2009.

Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Mingxuan Yuan, Jianye HAO, Yong-
dong Zhang, and Feng Wu. Reinforcement learning within tree search for fast macro place-
ment. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=AJGwSx0RUV.

11

https://github.com/AngeloJacobo/FPGA_OV7670_Camera_Interface.git
https://github.com/AngeloJacobo/FPGA_OV7670_Camera_Interface.git
https://github.com/mit-ll/CEP 
https://github.com/mit-ll/CEP 
https://github.com/brmcfarl/iot_shield
https://openreview.net/forum?id=AJGwSx0RUV
https://openreview.net/forum?id=AJGwSx0RUV


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z Pan. Dreamplace 3.0: Multi-electrostatics based
robust vlsi placement with region constraints. In Proceedings of the 39th International Conference
on Computer-Aided Design, pp. 1–9, 2020.

Hara-Laboratory. Subrisc. https://github.com/Hara-Laboratory/subrisc.git.

Shinn-Ying Ho, Shinn-Jang Ho, Yi-Kuang Lin, and WC-C Chu. An orthogonal simulated annealing
algorithm for large floorplanning problems. IEEE transactions on very large scale integration
(VLSI) systems, 12(8):874–877, 2004.

Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuan-
fan Xu, Hengrui Zhang, Kai Zhong, et al. Machine learning for electronic design automation: A
survey. ACM Transactions on Design Automation of Electronic Systems (TODAES), 26(5):1–46,
2021.

Xun Jiang, Yuxiang Zhao, Yibo Lin, Runsheng Wang, Ru Huang, et al. Circuitnet 2.0: An advanced
dataset for promoting machine learning innovations in realistic chip design environment. In The
Twelfth International Conference on Learning Representations, 2023.

Andrew B Kahng and Tom Spyrou. The openroad project: Unleashing hardware innovation. In
Proc. GOMAC, 2021.

Andrew B Kahng, Sherief Reda, and Qinke Wang. Aplace: A general analytic placement framework.
In Proceedings of the 2005 international symposium on Physical design, pp. 233–235, 2005.

Myung-Chul Kim and Igor L Markov. Complx: A competitive primal-dual lagrange optimization
for global placement. In Proceedings of the 49th Annual Design Automation Conference, pp.
747–752, 2012.

Myung-Chul Kim, Natarajan Viswanathan, Charles J Alpert, Igor L Markov, and Shyam Ramji.
Maple: Multilevel adaptive placement for mixed-size designs. In Proceedings of the 2012 ACM
international symposium on International Symposium on Physical Design, pp. 193–200, 2012.

Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. Iccad-2015 cad contest in incre-
mental timing-driven placement and benchmark suite. In 2015 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), pp. 921–926, 2015. doi: 10.1109/ICCAD.2015.
7372671.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual representa-
tion learning. Advances in Neural Information Processing Systems, 35:24019–24030, 2022.

Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. Chipformer: Transferable
chip placement via offline decision transformer. arXiv preprint arXiv:2306.14744, 2023.

lajanugen. 8051. https://github.com/lajanugen/8051.git.

Peiyu Liao, Siting Liu, Zhitang Chen, Wenlong Lv, Yibo Lin, and Bei Yu. Dreamplace 4.0: Timing-
driven global placement with momentum-based net weighting. In 2022 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 939–944. IEEE, 2022.

Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z Pan. Dreamplace:
Deep learning toolkit-enabled gpu acceleration for modern vlsi placement. In Proceedings of the
56th Annual Design Automation Conference 2019, pp. 1–6, 2019.

Yibo Lin, David Z Pan, Haoxing Ren, and Brucek Khailany. Dreamplace 2.0: Open-source gpu-
accelerated global and detailed placement for large-scale vlsi designs. In 2020 China Semicon-
ductor Technology International Conference (CSTIC), pp. 1–4. IEEE, 2020.

Daniela Sánchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, Robert Wille, and
Wolfgang Ecker. A survey of graph neural networks for electronic design automation. In 2021
ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), pp. 1–6. IEEE, 2021.

12

https://github.com/Hara-Laboratory/subrisc.git
https://github.com/lajanugen/8051.git


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis J-H Huang, Chin-Chi Teng, and
Chung-Kuan Cheng. eplace: Electrostatics based placement using nesterov’s method. In Pro-
ceedings of the 51st Annual Design Automation Conference, pp. 1–6, 2014.

matt-kimball. toygpu. https://github.com/matt-kimball/toygpu.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Vlsi module placement
based on rectangle-packing by the sequence-pair. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 15(12):1518–1524, 1996.

Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Bruce Winter, and Mehmet Yildiz. The ispd2005
placement contest and benchmark suite. In Proceedings of the 2005 international symposium on
Physical design, pp. 216–220, 2005.

olofk. Serv. https://github.com/olofk/serv.git.

openrisc. or1200. https://github.com/openrisc/or1200.git, a.

openrisc. mor1kx. https://github.com/openrisc/mor1kx.git, b.

Daniela Sánchez, Lorenzo Servadei, Gamze Naz Kiprit, Robert Wille, and Wolfgang Ecker. A
comprehensive survey on electronic design automation and graph neural networks: Theory and
applications. ACM Transactions on Design Automation of Electronic Systems, 28(2):1–27, 2023.

secworks. Sha256. https://github.com/secworks/sha256.git.

Naveed A Sherwani. Algorithms for VLSI physical design automation. Springer Science & Business
Media, 2012.

Yunqi Shi, Ke Xue, Lei Song, and Chao Qian. Macro placement by wire-mask-guided black-box
optimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

M Shunmugathammal, C Christopher Columbus, and S Anand. A novel b* tree crossover-based
simulated annealing algorithm for combinatorial optimization in vlsi fixed-outline floorplans. Cir-
cuits, Systems, and Signal Processing, 39:900–918, 2020.

Peter Spindler, Ulf Schlichtmann, and Frank M Johannes. Kraftwerk2—a fast force-directed
quadratic placement approach using an accurate net model. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(8):1398–1411, 2008.

suntodai. Fpga image processing. https://github.com/suntodai/FPGA_image_
processing.

The-OpenROAD-Project. Openroad flow scripts. https://github.com/
The-OpenROAD-Project/OpenROAD-flow-scripts.

Tommydag. Can bus controller. https://github.com/Tommydag/
CAN-Bus-Controller.

Dhruv Vashisht, Harshit Rampal, Haiguang Liao, Yang Lu, Devika Shanbhag, Elias Fallon, and
Levent Burak Kara. Placement in integrated circuits using cyclic reinforcement learning and
simulated annealing. arXiv preprint arXiv:2011.07577, 2020.

Natarajan Viswanathan, Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Haoxing Ren, and Chris
Chu. Rql: Global placement via relaxed quadratic spreading and linearization. In Proceedings of
the 44th annual Design Automation Conference, pp. 453–458, 2007a.

Natarajan Viswanathan, Min Pan, and Chris Chu. Fastplace 3.0: A fast multilevel quadratic place-
ment algorithm with placement congestion control. In 2007 Asia and South Pacific Design Au-
tomation Conference, pp. 135–140. IEEE, 2007b.

13

https://github.com/matt-kimball/toygpu 
https://github.com/olofk/serv.git
https://github.com/openrisc/or1200.git 
https://github.com/openrisc/mor1kx.git 
https://github.com/secworks/sha256.git
https://github.com/suntodai/FPGA_image_processing
https://github.com/suntodai/FPGA_image_processing
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/Tommydag/CAN-Bus-Controller
https://github.com/Tommydag/CAN-Bus-Controller


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhihai Wang, Lei Chen, Jie Wang, Yinqi Bai, Xing Li, Xijun Li, Mingxuan Yuan, Jianye HAO,
Yongdong Zhang, and Feng Wu. A circuit domain generalization framework for efficient logic
synthesis in chip design. In Forty-first International Conference on Machine Learning, 2024a.
URL https://openreview.net/forum?id=1KemC8DNa0.

Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye HAO, Mingxuan
Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement learn-
ing framework for multiplier circuit design. In Forty-first International Conference on Machine
Learning, 2024b. URL https://openreview.net/forum?id=LGz7GaUSEB.

WangXuan95. Fpga can. https://github.com/WangXuan95/FPGA-CAN.

Clifford Wolf. Yosys open synthesis suite. 2016.

YosysHQ. Picorv32. https://github.com/YosysHQ/picorv32.

14

https://openreview.net/forum?id=1KemC8DNa0
https://openreview.net/forum?id=LGz7GaUSEB
https://github.com/WangXuan95/FPGA-CAN
https://github.com/YosysHQ/picorv32


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A TECHNICAL DETAILS

A.1 EXPERIMENTAL DETAILS

In our workflow, it starts with OpenROAD. The file format for physical design in OpenROAD is
OpenDB database (.odb), which contains LEF/DEF information. OpenROAD can be used to con-
vert ODB to LEF/DEF, or LEF/DEF to ODB. Initially, the ODB after macro placement in the
OpenROAD flow is converted to LEF/DEF files, serving as inputs for other macro placement al-
gorithms. Since most existing macro placement algorithms only support bookshelf format input,
DREAMPlace’s code is used to convert LEF/DEF to bookshelf (.nodes, .pl, .nets) format. It is im-
portant to note that when DREAMPlace reads the DEF file, it treats the blockages in the BLOCK-
AGES part as virtual macros, so when using DREAMPlace’s PlaceDB in Python to read macro
information, the virtual macros must be excluded.

For ChiPFormer, use the default model and perform 100 online iterations to fine-tune the macro
layout.For MaskPlace, run 3000 epochs.Other settings use the defaults.

In the method of ChipFormer and MaskPlace, the experiments were run on an NVIDIA GeForce
RTX 2080 Ti, taking one day for all cases.For the other algorithms, we used 32 CPUs (Intel(R)
Xeon(R) CPU E5-2667 v4 @ 3.20GHz), with a total time expenditure of two days.

Next, the macro layout (.pl) files are obtained after running ChiPFormer, MaskPlace, WireMask-EA,
and SA, and then DREAMPlace is used to write the macro layout into DEF files. Since DREAM-
Place does not modify the blockages in the DEF file, if blockages are defined in the DEF file,
additional script modifications may be required.

After obtaining the macro-placed DEF files, they are converted to ODB using OpenROAD, fol-
lowed by Tapcell and Welltie insertion, PDN generation, IO place, global place, detail place, and
subsequent CTS and routing.

The performance of OpenROAD is limited; in the future, other global placement tools and detailed
placement tools can be used to run the entire workflow.

A.2 ENCOUNTERED ERRORS

Due to certain parsing bugs in OpenROAD, when converting DEF files to ODB files, it is necessary
to ensure that no object names in the DEF file contain ”/”, otherwise, there will be issues during
timing tests (issues will occur when writing and reading SPEF file).

Since various algorithms are academic and cannot directly set the minimum spacing between macros
(which can be set in OpenROAD), the optimization of macro positions by these algorithms may
result in macros being placed too closely. When integrating back into OpenROAD, the following
errors might occur:

OpenROAD’s limited capabilities in various stages also contribute to these errors. During PDN,
”Unable to repair all channels.” might be encountered. During the global place stage, global place-
ment might diverge. During the detail place stage, detailed placement might fail (because the sur-
rounding space of certain cells makes it impossible for OpenROAD to find space for adjustments).

The code of ChiPFormer has certain issues and needs modifications to be applied to other cases.
DREAMPlace directly uses the mixed-size method with LEF/DEF for running macros.

For the ICCAD 2015 dataset, it includes the lib file, LEF/DEF files, netlist file, and sdc file. How-
ever, the lib file lacks buffer definitions, preventing CTS. The lef files have incomplete layer defi-
nitions, hindering routing.Additionaly, OpenRoad does not support the syntax of the ICCAD 2015
sdc file.

B LIMITATION

Our dataset currently has limitations in terms of data volume. In the future, we aim to increase the
dataset’s size and include more cases from various domains. This will enhance its generalizability
and robustness, making it a more comprehensive and valuable resource for researchers . By ex-
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Table 6: Comparison of the worst path wirelength, delay, and slack for various methods on the
ariane133 layout.

Method WireMask-EA SA MaskPlace ChiPFormer DREAMPlace AutoDMP OpenROAD

wirelength 3892 4107 3529 5761 4612 4318 4121
delay 4.36 4.57 4.25 4.49 4.54 4.92 4.44
slack -0.42 -0.54 -0.35 -0.55 -0.54 -0.98 -0.51

panding the dataset, we will improve its applicability across different areas of chip design and EDA,
further refining and perfecting this important resource.

C MORE RESULTS

C.1 ADDITIONAL ANALYSIS

In this section, we provide a detailed analysis of the layout results for the ariane133 benchmark,
focusing on the observed relationship between wirelength, timing, area, and power. The AutoDMP
method shows interesting yet seemingly contradictory outcomes—reduced wirelength with worse
timing, smaller area, and lower power. To understand these results, we explore the factors that
contribute to these trends and propose potential directions for placement algorithm improvements.

A key factor influencing timing in large-scale circuits is buffer insertion. In general, when the wire-
length between two pins is large, signal transmission delay increases. Buffer insertion helps by
breaking long interconnects into smaller segments, reducing the overall transmission delay. Further-
more, buffers enhance driving capacity by reducing the load on the signal driver, which helps lower
signal delay and improve timing. However, fewer buffers result in smaller area and lower power
but also lead to degraded timing performance. In the case of ariane133, the AutoDMP method in-
serts fewer buffers during timing repair, resulting in smaller overall area and power consumption.
However, the lack of sufficient buffers leads to worse timing outcomes, as seen in the experimental
data. This explains why, despite achieving minimized wirelength, the timing performance does not
improve accordingly.

The relationship between wirelength and timing is often assumed to be directly proportional; how-
ever, the analysis of ariane133 demonstrates that this is not always the case. Although the total
wirelength (as indicated by the HPWL) is reduced, the timing performance does not improve pro-
portionally. In fact, congestion is lower and wirelength is minimized, but critical paths still suffer
from significant delays. This suggests that global wirelength optimization does not always lead to
improved timing, particularly for worst-case paths. Table 6 provides insights into this phenomenon
by highlighting the inconsistencies between wirelength and timing slack on the worst paths. Specif-
ically, the data reveals that longer wirelength paths do not always exhibit worse timing, indicating
that the optimization strategy may not have sufficiently accounted for timing-sensitive paths.

To address these issues and improve overall placement quality, several optimization strategies can
be explored. One potential solution to mitigate timing degradation is to apply weighted optimization
that emphasizes critical paths. By giving more weight to timing-sensitive paths during wirelength
reduction, it would be possible to achieve better alignment between wirelength optimization and tim-
ing improvement. Another approach is to adopt mixed-size placement techniques that optimize both
macros and standard cells simultaneously. Since macro wirelength (macro HPWL) has a weaker cor-
relation with backend performance metrics, this approach could lead to a more balanced placement
outcome, particularly for designs where macro placement significantly impacts PPA. Additionally,
machine learning models that predict PPA based on placement features could provide valuable in-
sights during placement optimization. These models would allow the algorithm to dynamically
adjust its strategy based on predicted PPA outcomes, leading to more informed trade-offs between
PPA.

C.2 RAW DATA

All the raw data from the experiment are in Tables 8-27.
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Table 7: Detailed descriptions of our collected designs.

Id Design Description
1 8051lajanugen FPGA implementation of the 8051 Microcontroller
2 ariane133 The-OpenROAD-Project Ariane Core
3 ariane136 The-OpenROAD-Project Ariane Core
4 bp The-OpenROAD-Project Full 64-bit RISC-V Core with Cache Coherence Directory
5 bp be The-OpenROAD-Project Back-end of a 64-bit RISC-V Core with Cache Coherence Directory
6 bp fe The-OpenROAD-Project Front-end of a 64-bit RISC-V Core with Cache Coherence Directory
7 CAN-BusTommydag A CAN bus Controller
8 DE2 CCD edge suntodai Image processing
9 dft48Brendon Chetwynd, Kevin Bush, Kyle Ingols DFT design
10 FPGA-CANWangXuan95 A lightweight CAN bus controller
11 iot shieldbrmcfarl IoT Shield for the Intel Galileo Development Board
12 mor1kx openrisc (b) an OpenRISC processor IP core
13 or1200openrisc (a) OpenRISC 1200 implementation
14 OV7670 i2c AngeloJacobo Camera interface
15 picorv YosysHQ A Size-Optimized RISC-V CPU
16 serv olofk An award-winning bit-serial RISC-V core
17 sha256secworks Hardware implementation of the SHA-256 cryptographic hash function
18 subriscHara-Laboratory Simple Instruction-Set Computer for IoT edge devices
19 swerv wrapper The-OpenROAD-Project SweRV RISC-V Core 1.1 from Western Digital
20 toygpu matt-kimball A simple GPU on a TinyFPGA BX

Table 8: The results of ariane133

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 1124169 5065453.5 0.226 6583143 0.369 -0.417 -329.353 1970 349228
SA 1683330 5187015.8 0.230 6699484 0.365 -0.512 -650.399 2317 347043

MaskPlace 4444289 6253554.3 0.265 7853892 0.373 -0.349 -244.936 1636 357322
ChiPFormer 1253799 5019138.5 0.226 6581086 0.370 -0.553 -860.952 2703 349005

DREAMPlace 1111023 4826654.0 0.214 6348638 0.367 -0.540 -690.266 2307 348180
AutoDMP 828592 4250870.4 0.192 5694373 0.350 -0.982 -1913.660 3310 344091

OpenROAD 2685856 5260791.9 0.235 6825071 0.359 -0.498 -596.718 2274 352706

D LICENSE

The code and propose dataset will be publicly accessible. We include the following licenses for the
raw data we used in this paper.

• CAN-Bus : MIT
• FPGA-CAN :GPL-3.0
• sha256:BSD-2-Clause
• DE2 CCD edge:MIT
• picorv:ISC
• serv:ISC
• mor1kx:CERN-OHL-W
• ariane133:SOLDERPAD HARDWARE
• ariane136:SOLDERPAD HARDWARE
• bp:BSD-3-Clause
• bp be:BSD-3-Clause
• bp fe:BSD-3-Clause
• swerv wrapper:Apache
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Table 9: The results of ariane136

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 1181404 5278467.4 0.239 6945252 0.570 -1.726 -4268.610 3628 358740
SA 1693986 5608216.9 0.248 7208805 0.571 -1.620 -3917.960 3487 359532

MaskPlace 4586233 6544926.4 0.285 8245218 0.583 -1.508 -3677.480 3966 363704
ChiPFormer 1269027 5244085.2 0.237 6869186 0.566 -1.385 -3603.530 3609 358773

DREAMPlace 1067974 5202240.5 0.231 6831531 0.571 -1.358 -3269.220 4350 356706
AutoDMP 870515 4993936.2 0.228 6590972 0.562 -1.553 -4236.020 4431 356714

OpenROAD 3067334 5561870.0 0.246 7124942 0.546 -1.420 -3707.930 3473 360120

Table 10: The results of bp

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 112560 7526021.6 0.437 10002159 0.254 -1.936 -21.812 326 490622
SA 151696 6927899.3 0.398 9113560 0.253 -1.965 -143.317 969 489850

MaskPlace 324368 7135790.7 0.407 9307133 0.253 -1.625 -44.217 478 489867
ChiPFormer 138943 6857073.6 0.392 8970666 0.250 -1.752 -502.977 2179 490305

DREAMPlace 161581 6989990.7 0.409 9347541 0.250 -2.108 -14.609 192 489693
AutoDMP 135090 6568910.6 0.376 8610145 0.247 -1.791 -254.786 1821 486445

OpenROAD 119123 6389902.6 0.365 8365647 0.247 -1.674 -219.229 1095 484494

Table 11: The results of bp be

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 66729 2678100.1 0.524 3574875 0.467 -2.142 -4093.970 5131 123966
SA 85984 2568796.6 0.557 3788559 0.459 -2.494 -5510.140 5381 124667

MaskPlace 114314 2548230.4 0.513 3522611 0.456 -2.439 -4459.870 5173 124938
ChiPFormer 62168 2525703.6 0.524 3572070 0.425 -2.169 -3541.820 5100 110904

DREAMPlace 87304 2533359.4 0.516 3518916 0.458 -2.163 -3648.020 6026 125221
AutoDMP 86263 2539005.8 0.468 3227167 0.453 -1.948 -3351.120 5045 125471

OpenROAD 76561 2370091.6 0.409 2835542 0.409 -1.862 -2343.290 5013 118786

Table 12: The results of bp fe

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 45985 1863651.1 0.510 2783740 0.309 -1.666 -777.420 2628 77648.300
SA 59872 1603778.9 0.404 2218668 0.310 -1.179 -1236.880 2990 81919.500

MaskPlace 64024 1540944.3 0.355 1965209 0.309 -1.318 -771.363 2582 77881.100
ChiPFormer 45754 1544281.0 0.375 2073376 0.299 -1.197 -1000.190 2714 72723.900

DREAMPlace 60279 1975681.6 0.508 2823861 0.294 -1.117 -473.261 1849 77427.800
AutoDMP 56107 1560612.6 0.365 2023847 0.312 -1.253 -1198.430 2626 81294.400

OpenROAD 53842 1468799.8 0.319 1770176 0.285 -1.092 -491.698 1870 75884.500

Table 13: The results of dft48

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 335246296 1039236.4 0.114 1330932 0.239 -0.510 -439.378 2035 81353.700
SA 339003863 1815564.2 0.198 2305190 0.304 -0.882 -422.568 1546 84170.100

MaskPlace 1409226442 2117408.1 0.223 2552954 0.258 -0.381 -98.916 548 83185.400
ChiPFormer 431188529 1094111.0 0.119 1366989 0.242 -0.561 -235.601 974 80770.400

DREAMPlace 267700115 800165.5 0.112 1308094 0.234 -1.034 -801.257 2274 79407.400
AutoDMP 270017585 774418.4 0.091 1051008 0.232 -0.453 -125.948 797 80201.100

OpenROAD 752297935 1981412.2 0.198 2267002 0.257 -0.660 -393.111 1411 84300.200

Table 14: The results of or1200

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 102261063 1196931.6 0.035 1432301 0.049 -1.417 -1530.180 1754 66547.600
SA 113496323 1200696.8 0.034 1420640 0.059 -1.294 -1613.410 2674 66937.300

MaskPlace 208736767 1166784.1 0.033 1350820 0.059 -1.505 -2198.370 2684 66953.500
ChiPFormer 95035903 1089714.1 0.030 1262132 0.057 -1.208 -1415.960 2669 66256.900

DREAMPlace 153596940 1099937.2 0.031 1288746 0.057 -1.151 -1380.980 2670 65981.000
AutoDMP 122473700 1058807.4 0.033 1373410 0.058 -2.025 -3119.280 2760 65756.800

OpenROAD 187077195 1223792.9 0.034 1405193 0.060 -1.278 -1595.730 2677 67276.500
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Table 15: The results of swerv wrapper

Method Intermediate Metrics PPA Metrics
MacroHPWL ↓ HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

WireMask-EA 474447 3893655.8 0.414 4854661 0.666 -1.027 -873.506 1518 205627
SA 630919 3811960.2 0.368 4310596 0.648 -0.962 -854.737 1811 200280

MaskPlace 1270726 4193788.0 0.452 5286392 0.690 -1.251 -1306.460 1696 206481
ChiPFormer 437638 4060188.1 0.428 5019849 0.674 -1.189 -1282.240 2139 205775

DREAMPlace 865544 3575327.7 0.366 4525348 0.646 -1.061 -780.196 1608 203896
AutoDMP 450662 3213155.0 0.372 4354901 0.648 -1.094 -773.339 1529 200823

OpenROAD 666704 3177043.0 0.339 3997163 0.628 -1.127 -1163.820 1515 202853

Table 16: The results of 8051-master

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 142162.6 0.201 210127 0.075 -0.634 -16.460 35 29484.200
AutoDMP 131174.7 0.186 195536 0.074 -0.633 -15.643 35 29365.600

OpenROAD 141245.3 0.201 207737 0.073 -0.603 -16.664 41 29461.400

Table 17: The results of CAN-Bus

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 3916.8 0.093 5683 0.005 -0.074 -0.074 1 1675.270
AutoDMP 4210.8 0.097 6024 0.005 -0.074 -0.074 1 1668.880

OpenROAD 3955.1 0.092 5623 0.005 -0.079 -0.079 1 1665.430

Table 18: The results of DE2 CCD edge

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 16556.5 0.123 23453 0.201 -0.924 -184.592 736 5797.470
AutoDMP 22203.0 0.160 30745 0.211 -0.930 -200.125 710 5812.630

OpenROAD 16689.0 0.120 22746 0.199 -0.919 -165.009 609 5758.100

Table 19: The results of FPGA-CAN

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 1472841.9 0.181 2437446 0.738 -1.027 -678.865 17688 378643
AutoDMP 1437916.7 0.178 2393640 0.745 -0.892 -108.201 3864 379675

OpenROAD 1483498.8 0.180 2394544 0.742 -0.404 -30.331 1843 379193

Table 20: The results of OV7670 i2c

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 733113.0 0.215 1164763 0.625 -0.579 -82.237 3154 157496
AutoDMP 701777.0 0.201 1091553 0.612 -0.561 -23.030 1053 155624

OpenROAD 723012.1 0.208 1127120 0.617 -0.466 -30.612 2327 156210

Table 21: The results of iot shield

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 5014.3 0.118 7346 0.006 -0.167 -2.457 27 1712.770
AutoDMP 5976.2 0.137 8653 0.006 -0.152 -2.367 29 1730.600

OpenROAD 5067.3 0.119 7349 0.006 -0.152 -2.186 20 1719.420
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Table 22: The results of mor1kx

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 1723145.8 0.366 3421791 0.703 -1.863 -19564.300 26568 289570
AutoDMP 2258941.0 0.524 4893199 0.735 -3.879 -44135.900 26600 285455

OpenROAD 2006747.0 0.393 3661548 0.703 -0.796 -4928.920 25509 313065

Table 23: The results of picorv32

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 88407.3 0.194 135544 0.048 -0.147 -0.521 29 18951.400
AutoDMP 132458.3 0.244 170435 0.050 -0.142 -0.525 37 19039.000

OpenROAD 87168.8 0.195 134211 0.048 -0.107 -0.661 38 18972.700

Table 24: The results of serv

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 7194.0 0.165 11128 0.007 -0.563 -10.333 81 2125.870
AutoDMP 10361.9 0.261 17455 0.008 -0.593 -11.893 120 2193.170

OpenROAD 7165.0 0.163 10638 0.007 -0.565 -10.210 73 2097.940

Table 25: The results of sha256

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 114376.4 0.203 170230 0.161 -0.542 -9.367 40 23476.400
AutoDMP 120832.7 0.206 173822 0.172 -0.573 -9.891 39 23398.700

OpenROAD 113841.8 0.202 168199 0.162 -0.528 -8.667 39 23426.900

Table 26: The results of subrisc

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 13920769.0 0.264 21051063 2.774 -0.847 -5742.680 29283 2341490
AutoDMP 13446106.8 0.238 19114559 2.697 -0.673 -150.178 466 2319150

OpenROAD 14386152.9 0.253 20108941 3.425 -0.782 -305.819 674 2334330

Table 27: The results of toygpu

Method Intermediate Metrics PPA Metrics
HPWL ↓ Congestion ↓ Wirelength ↓ Power ↓ WNS ↑ TNS ↑ NVP ↓ Area ↓

DREAMPlace 4347733.8 0.198 6784639 1.101 -1.503 -131.661 101 979293
AutoDMP 4444860.0 0.194 6595166 1.109 -2.418 -201.797 107 967780

OpenROAD 4657703.6 0.212 7185236 1.108 -1.294 -103.668 101 981911
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