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Abstract

We consider the empirical distribution of the embeddings of a k-layer polynomial
GNN on a semi-supervised node classification task and prove a central limit
theorem for them. Assuming a community based model for the underlying graph,
with growing average degree v,, — 0o, we show that the empirical distribution of

the centered features, when scaled by uﬁfl/ 2 converge in 1-Wasserstein distance to
a centered stable mixture of multivariate normal distributions. In addition, the joint
empirical distribution of uncentered features and labels when normalized by v/*
approach that of mixture of multivariate normal distributions, with stable means and
covariance matrices vanishing as v, 1. We explicitly identify the asymptotic means
and covariances, showing that the mixture collapses towards a 1-D version as k is
increased. Our results provide a precise and nuanced lens on how oversmoothing
presents itself in the large graph limit, in the sparse regime. In particular, we show
that training with cross-entropy on these embeddings is asymptotically equivalent
to training on these nearly collapsed Gaussian mixtures.

1 Introduction

Graph Neural Networks (GNN5s) are now a key tool for machine learning on graphs. Their success
is largely due to the graph convolution operation—also known as message passing or neighbor
aggregation—where node features are updated by gathering information from their graph neighbors
[13L 150 23]]. This process helps GNNs learn powerful embeddings for tasks like node classification
and regression. For graphs with community structure, theory shows that even one aggregation step
can improve feature separation between classes by a factor of ,/v,,, where v, is the average node
degree [2].

Analyzing deep GNNs with multiple aggregation layers (kK > 1) is important but theoretically difficult.
Unlike single aggregations, the resulting features, ¢(*), lose desirable properties such as entry-wise
independence. To study these multi-aggregated features, researchers have used techniques like
walk-based decompositions, which classify feature contributions by underlying graph walk patterns
[7,118]]. For community-based graphs, these methods suggest that while feature cluster centers can
separate at a rate of 1/,";, their standard deviation often grows as Vﬁ_l/ 2,

This paper focuses on Polynomial GNNs (Poly-GNNGs). In these models, features ¢(*) = A¥ X are
created by applying the adjacency matrix A, k times to initial node features X € R™*? without any
non-linear functions in between. These features $(*), when passed through a final linear layer W,
produce classification scores. Poly-GNNs, despite their simplicity, are not just theoretical ideas. They
form the basis of, or are similar to, several practical and effective GNNs like APPNP [16], GPR-
GNN [8]], and models using Chebyshev or Jacobi polynomials [[10,20]. Such models have achieved
strong results, sometimes state-of-the-art, on standard benchmarks [[19]. Therefore, understanding
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Poly-GNN features offers valuable insights into multi-hop aggregation and the behavior of these
common GNN types.

1.1 Overview of Our Contributions

In this paper, we undertake a detailed asymptotic analysis of the embeddings generated by k-layer
Poly-GNNs on community-based graphs as the number of nodes n grows. To stabilize these features,

we consider two types of normalized embeddings: the degree-normalized features 55“ = d)l(.k) JuE,

and the centered and scaled features i(k) = \/Un (EE’“) - ]E[agk)]) Here, v, is the average degree

parameter which we assume tends to infinity. One of our main results is a Central Limit Theorem

(CLT) demonstrating that the empirical distribution of «Ei(k) converges in 1-Wasserstein distance to a
centered mixture of multivariate Gaussian distributions.

Building upon this, we further demonstrate that the joint empirical distribution of the uncentered,

degree-normalized features agk) (which are directly used in downstream classifiers) and their cor-
responding true labels z; also converges in the 1-Wasserstein distance. Specifically, as n — oo
and v,, — oo, this distribution approaches that of a random pair (Z,Y,,) where Z ~ 7 (the limit-
ing class proportions) and Y;, conditioned on Z = ¢ follows a multivariate Gaussian distribution
N (e, X¢/vn). A core contribution of our work is the precise analytical characterization of these
limiting class means p, and class-conditional covariance matrices >, expressed in terms of the
graph’s community structure and initial feature means.

This characterization has profound implications for understanding the training dynamics of GNNs.

We prove that training a linear classifier on these Poly-GNN features qﬁik using the standard cross-
entropy (CE) loss converges to the equivalent optimization problem on this limiting Gaussian mixture.
This convergence holds uniformly for the loss function, the gradient path during optimization, and the
final learned classifier weights (under mild conditions on weight norms), due to the Lipschitz nature
of the CE loss and its gradients with respect to the features. This result provides a strong theoretical
basis for the behavior observed when training linear classifiers on GNN embeddings.

Furthermore, our explicit forms for p, and 3, reveal a clear and precise mechanism behind the
well-known phenomenon of GNN oversmoothing. The mean vectors ji, involve terms of the form
(JEM)T, while the covariance matrices Xy involve (J*~2M)T, where J is a matrix derived from the
graph’s inter-community edge probabilities and class proportions, and M represents the initial class
feature means. As the GNN depth k increases, the repeated matrix exponentiation J* (and J*~1)
acts like a power iteration. This causes both the class means and the dominant eigen-directions of the
class covariances to align with a low-dimensional (often 1-D) subspace determined by the leading
eigenvector(s) of J. Consequently, the feature distributions for different classes, initially potentially
well-separated in d dimensions, collapse onto this common, typically 1-D, subspace. This results
in a degenerate, poorly separated Gaussian mixture, thereby degrading classification performance.
Our analysis, thus, provides a nuanced, quantitative view of oversmoothing in the sparse, large-graph
limit.

Previous Literature The related literature for multi-hop aggregation can be broken into three cate-
gories: distributional characterizations, oversmoothing phenomenon, and performance improvements
on select learning tasks, such as classification or regression.

For distributional characterizations, [22] is closest to our work. In their paper, the author’s rely on the
setting that ¢(¥) is exactly component-wise Gaussian for all 7. We note this cannot be the case as for

¢§1) = >_; Ai; X; with Bernoulli A;; and normal X;, ¢,(;1) is a (scaled) mixture distribution.

In the vein of oversmoothing, works [6} [17, 21]] show how properly normalized aggregations can
still oversmooth in the presence of non-linearities. Oversmoothing in this case can be seen as a
consequence of the power iteration collapsing the range onto the Perron eigenvectors of A. The works
[6}17] show that non-linearities like ReLLU do not help oversmoothing since the ReL.U operator is
also contractive under the operator norm [12]]. In [21] the authors extend these results to also include
attention-based non-linearities. Outside of [17], which considers the effects of oversmoothing on
a L = 1 community graph, all other works assume A is a deterministic graph. Our work differs
fundamentally by analyzing a stochastic graph model in the large-graph limit. While prior work



often explains oversmoothing via power iteration on a fixed adjacency matrix, showing that feature
means collapse, our CLT reveals a more powerful mechanism. Building upon our previous work of
matrix moment analysis for community-based graphs [[18], we prove that the feature covariance also
collapses onto the same unfavorable, low-dimensional subspace as the means. This provides a much
stronger characterization of feature degeneracy.

With respect to improving task performance, works [3|[14]] show how multi-hop features can improve
downstream learning tasks. Between the two works the generative formulation differs, [3] assumes a
(p, ¢)-SBM with mixed mean feature representations while [14] assumes a low rank, latent variable
model which yields dense observed graphs. The losses considered by [3| [14] are Lipschitz, high-
lighting the importance of understanding behavior of multi-hop features under the 1-Wasserstein
metric.

2 Preliminaries and Model Setup

In this section, we formally define the Polynomial GNN (Poly-GNN) architecture, introduce the
normalized features central to our analysis, describe the community-based graph model, state our key
assumptions, and briefly define the Wasserstein distance used to quantify distributional convergence.

2.1 Poly-GNNs and Feature Definitions

We consider a simple yet powerful class of Graph Neural Networks known as Polynomial GNNs (Poly-
GNNs). Given an undirected graph with n nodes, represented by its adjacency matrix A € {0, 1}™*",
and initial node features X € R"*9, a k-layer Poly-GNN computes node embeddings, or features,
#F) € R™*? through k successive aggregations:

p*) = AFX. 1)

The i-th row of ¢(*), denoted gi)gk) € R?, represents the embedding for node 4 after k layers of
aggregation.

For our asymptotic analysis, we work with normalized versions of these features. Let v, be the
average degree parameter of the graph, which we assume grows with n (see Assumption [I)). We
define the degree-normalized features as:

(k)
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These features (;Sl(- ) are often the direct input to a downstream classifier. In practice, the unknown
parameter v, is not required, as it can be reliably replaced by the observed average degree.

To establish a stable limiting distribution under a Central Limit Theorem, we further define the
centered and scaled features:

e = o (6 —E3]), i=1,....m 3)

The empirical distribution of these features, P,, := % Z?:l 1 HOF where J, is a point mass at x, will
be a primary object of study.

2.2 Community-Based Graph Model

We assume the graph and its node features are generated from a community-based model. Let
z = (z;)"_; € [L]"™ be a vector of latent node labels, assigning each node ¢ to one of L communities
or classes. The graph structure and initial feature distributions are conditional on these labels.

Specifically, we adopt the Contextual Stochastic Block Model (CSBM) [11]]. The adjacency matrix A
is generated such that edges are conditionally independent given z, with probabilities:

Aij ~ Bern(unBzizj /n) fori# j, and A;; = 0, 4)

where B € [0,1]1%L is a symmetric matrix of inter-community edge probability scalings. The
parameter v,, /n represents the average edge density scale.



The initial node features X; € R? are assumed to be conditionally independent given z;. Their
expectations are determined by their class membership:

where M € RE*4 js a matrix whose ¢-th row, M, ¢,., is the mean feature vector for class £. This can

be written compactly as E[X] = ZM, where Z € {0,1}"*L is the one-hot encoding matrix of the
labels z, i.e., Z;p = 1{z; = (}.

We define m = (mq,...,7z)7 as the vector of limiting class proportions (see Assumption . Let
IT = diag(my, . . ., 1) be the diagonal matrix of these proportions. A key matrix in our analysis is
J € REXL defined as:

J = BIIL 6)

This matrix captures the interplay between inter-community connectivity B and class sizes II.

2.3 Assumptions

Our theoretical results rely on the following assumptions:

Assumption 1 (Degree Growth). The average degree parameter v, — 00 as n — 00, and By < C
for some constant C, implying that the expected degree of any node i, ot UnB..z, /n, is O(vy).

Assumption 2 (Sparse Graph). The graph is sparse, meaning v, = o(n).
Assumption 3 (Cluster Convergence). For each class £ € [L], let C; = {i € [n] : z; = {} be the set
of nodes in class {. We assume there exist my > 0 such that 7y — |C¢|/n = o(1), and ZeL:1 m = 1.

Assumption 4 (Feature Bounds). The initial node features X; are sub-gaussian. Specifically, for any
unit vector u € RY, (X; — E[X;])u ~ SG(0?) for some o > 0 uniformly for all i,n. Furthermore,
their expected norms are uniformly bounded: limsup,, >, sup; ¢, E[| Xi|2 < x. for some z.. > 0.

Of the listed assumptions, Assumptions[T|and [3|are necessary as, without these, a limiting Gaussian
distribution cannot be obtained. See Figure[I]for more details on the case of L = 1. Assumption[]is
mild and subsumes a large class of feature distributions. Assumption[2]is a simplifying one. Our CLT
framework extends to the dense regime (v,, = 2(n)), but the limiting covariance structure becomes
more complex. As detailed in Appendix the variance of the aggregated features decomposes
into terms driven by graph randomness (A) and initial feature randomness (X). In the sparse setting,
graph randomness dominates, causing the initial feature covariance to be negligible in the limit
(Appendix [A.3)). In the dense case, this feature-related noise term persists, leading to a different
limiting covariance. We focus on the sparse case as it is representative of many large-scale networks.

2.4 Wasserstein Distance

To measure the distance between probability distributions, we use the 1-Wasserstein distance, denoted
W1 (P, Q). For two probability measures P and Q on RY, the Kantorovich-Rubinstein duality provides

a convenient definition:
[ e~ [ sa

where Lip(1) is the class of all 1-Lipschitz functions f : R? — R, i.e., functions satisfying
|f(z) — f(y)| < ||z — yl|2 for all z,y € R% We also write Pf = [ fdP for the expectation of
f under P. Convergence in W implies weak convergence and convergence of first moments. Its
connection to Lipschitz functions makes it particularly relevant for analyzing learning algorithms
with Lipschitz loss functions.

Wl (]P)7 Q) = sup
feLip(1)

; (N

3 Asymptotic Distribution of Poly-GNN Embeddings

In this section, we present our main theoretical results concerning the asymptotic distribution of
Poly-GNN embeddings. We establish Central Limit Theorems (CLTs) for both the degree-normalized

features aik) (jointly with their labels) and the centered-and-scaled features fi(k). We then outline
the key steps involved in proving these theorems, highlighting the key intermediate lemmas and
propositions.



0.75 4
0.54

0.25

0.75 4
0.54
0.25 4

0.4

0.2

0.4

0.24

0.0

0.0

-3 -1.5

0
gk

15

3

0.44

0.2

0.0 -

3

-1.5

0
E(k)

15

3

0.44

3

-1.5

0
E(k)

15

3

Figure 1: Comparison of the £ (%) distribution for k = 3 across different expected degree Erd6s—Réyni graphs.
As graph size increases, the overall histogram resolution is improved but this does not qualitatively change the
shape of the histogram. That is, growing degree v, — 0o, is a neccesary condition for £*) to be Gaussian.

3.1 Main Central Limit Theorems

Our first main result characterizes the joint limiting distribution of the true node labels z; and the
degree-normalized Poly-GNN features af.’“). These features are typically used for downstream
classification tasks.
Theorem 1 (CLT for Degree-Normalized Features and Labels). Let (A, X') be a community-based
graph satisfying Assumptions % Let _z(»k) = qﬁgk) JVF be the degree-normalized k-layer Poly-
GNN features. Define the limiting class means i, € R¢ and class-conditional covariance matrices
Ty € RIxd g

He ‘= (Jk]W)TQ7

¥y = (JFIMNT diag(el ) (JF1 M),

3
9
where ey is the (-th canonical unit vector in RY, J = BIL, and M contains the initial class feature

~ —(k)| =
means. Let PI°" be the empirical distribution of pairs (z;, gbl(- )).' Pjoint — % Srd (2,3)" Let

GIet be the probability distribution of a random pair (Z,Y,,) where Z ~ Categorical(ry, ..., 7r)
and, conditioned on Z = €, Y,, ~ N (g, X¢/vy). Then, as n — oo:
E [Wl (Iﬁzfi"t,@g‘”'”t)} 0. (10)

Furthermore, this convergence holds in the stronger class-conditional sense: for any R > 0,
RS B,
lim E sup - Fo@ ) =S mBy Ny s o L] F =0, (11)
nree {flv--'vaGLip(R) Z Z Z (e,Ze/vn)

n 0=11€Cy =1
—(k . .
Theorem shows that for large n and v, the features d)ﬁ ) behave as if drawn from a Gaussian
mixture where each component ¢ is centered at j, and has a covariance Y, /v, that vanishes as
V, — 00.

Our second main result provides a CLT for the centered and scaled features fi(k), showing they
converge to a stable (non-degenerate variance) Gaussian mixture.

Theorem 2 (CLT for Centered and Scaled Features). Under the same conditions as Theorem|[l} let
() (k)]) be the centered and scaled features. Let P, = 37" | 6 ¢ be their

&P = (6 — Elg;

empirical distribution. Let G be the centered Gaussian mixture distribution:

L
G= Z e N(0,%), (12)

{=1



where ¥y is defined in Eq. (9). Then, as n — co:
E [W1(P,,G)] — 0. (13)

Furthermore, this convergence also holds in the stronger class-conditional sense: for any R > 0,
1k L

k
=SSN RE) =S mBy v Lfe(Y))] } =0. (14

" iec, =1
Theorem 2] establishes that after appropriate centering and scaling, the Poly-GNN features converge
to a mixture of Gaussians, each component having a non-vanishing covariance 3.

lim E sup
o f1,-.,fL€Lip(R)

We note that Theorem may be of more interest in practical scenarios, since the uncentered features
. . . —(k) . . .
do not require estimation of the feature mean E[¢" ']. Furthermore, in settings where Assumption |l

andhold, the average degree d becomes a reliable estimate of normalization scale since d < v,.

3.2 Proof Outline and Key Steps

The proofs of Theorems|[I]and [2] share a common foundation and proceed in several steps. We outline
the general strategy here, focusing on the convergence of P,, to G (Theorem[2). The argument for
Theorembuilds on Theorem 2| with adjustments for the non-zero means and the v, ! scaling in the
covariance. The full proofs are provided in Appendix [A]

The overall strategy involves two main parts for establishing E[W; (P, G)] — 0:

1. Show that tlle empirical measure IP,, concentrates around its expectation P, = E[P,], ie.,
E[W;(P,,P,)] — 0.

2. Show that the expected empirical measure P,, converges to the target Gaussian mixture G in
W distance, i.e., W1 (P,,G) — 0.

The argument for class-conditional convergence (e.g., Eq. (TI)) builds upon this by considering
per-class empirical measures and leveraging the convergence of class proportions |C;|/n — .

The key technical steps involve analyzing the moments of the features:

Step 1: Moment Analysis for General Graphs This step characterizes the behavior of feature
moments without yet imposing the full community structure, relying mainly on Assumptions|[I] 2
and@]

» The centered, un-normalized features qﬁgk) — E[qﬁgk)} are decomposed into two terms: A; (due to
graph randomness) and A; (due to initial feature randomness):

") —E[pM] = A, + A, (15)

Normalizing appropriately, gl_(k) = Ai + Az) Vﬁ—l /2'

e Theterm A; := ]\i / 1/571/ % is shown to be asymptotically negligible under our sparsity assumption
(see Propositionin Appendix . Thus, fl-(k) is asymptotically equivalent to A; := Ai / fol/ 2

in terms of its contribution to moments (see Lemma[5|in Appendix [A.3).
* The moments of A; g := (A;, ) for any unit vector § € R are analyzed.
— Odd moments: E[A;,a] — 0 for odd r (this follows from the moment bounds in Proposition

specifically the term V21271121 ohich is v Y2 for odd p=r).
— Even moments: E[A] )] — (r—1)!!-5; , forevenr, where 51-2,9 = |ViE[A/v,)F~E[X]0]|3

(see Lemma([7]in Appendix [A3).

* The expected normalized mean E[@Ek)

(see Lemma [3]in Appendix[A.2).

] is shown to converge to a limit v; = e (E[A/v,,])*E[X]

Step 2: Specialization to Community-Based Graphs Here, the community structure (Assumptions|3]
and the CSBM formulation) is used to refine the limiting moments.



¢ The limiting mean ~y; for a node i € C, converges to i, = (J kg )Teg (as detailed in the proof of
Proposition din Appendix building on Lemma [3).

» The average of the per-node variances 51-2}9 over class ¢ converges to 073,60, where X is defined
in Eq. (O) (this is part of the derivation in the proof of Proposition M.

* Consequently, the r-th moment of the #-projection of P,,, m,.(P,4) = %ZiEKfZW, 0],
converges to m,.(Gy) = ZZLZI TeEy on(0,0T5,0)[Y"] (see Proposition@in Appendix .

Since the Gaussian mixture Gy is determined by its moments, this establishes that P, .0~ Gg. Uni-
form integrability of moments (derived from the ¥,. norm bounds in appendix[C] spe01ﬁcally Lemma[9]
applied to A; ¢ via Proposition [3) then promotes this weak convergence to W1 (P, 9, Gg) — 0. A
discretization argument (Proposition [7] from Appendix [B)) and Proposition [J] (from Appendix [D

extend this to Wy (P,,,G) — 0.

Step 3: Concentration and Convergence of Empirical Measure. To show E[W; (P,,,P,,)] — 0,
we rely on:

« Control over the variance of empirical moments: Var(n=! 37" (A; 9)") Sn™t (see Lemma@
in Appendix which implies similar behavior for §fk) via Lemma . This corresponds to
condition (b) of Proposition[I0]in Appendix

* Tail control for (ffk), 0): The features (gi(’“), 0) are shown to be uniformly ¥, sub-Gaussian for a
growing 7, (see Lemmal(I]in Appendix[A.T)). This corresponds to condition (a) of Proposition [I0}

* Uniform integrability of moments of P,, (the convergence shown in Proposition E]implies that for
any fixed r, sup,, m, (P ) is finite, which by Propositionimplies sup,, M..(P,,) is finite, e.g.
M (P,,) needed for condition (c) of Proposition .

These conditions allow the application of Proposition [10] (from Appendix D)), which establishes the
desired concentration E[W; (PP, P,,)] — 0. The triangle inequality for W; then combines these two
main parts to yield the final convergence result.

4 Implications for Classification and GNN Oversmoothing

The Central Limit Theorems presented in Section [3|not only provide a fundamental understanding of
the distributional properties of Poly-GNN embeddings but also have significant practical implications.
In this section, we explore two key consequences: first, how our results explain the convergence of
linear classifiers trained on these embeddings, and second, how they offer a precise, quantitative
mechanism for the GNN oversmoothing phenomenon [6, [17].

4.1 Convergence of Linear Classification on Poly-GNN Features

In many node classification tasks, GNN embeddings are fed into a final linear layer (often followed
by a softmax activation) that is trained using a cross-entropy (CE) loss. Our results provide a
theoretical basis for understanding this training process in the asymptotic limit. We focus on the

degree-normalized features 57( ¥ , as these are the quantities typically used by the classifier.

Recall from Theoremthat the joint empirical distribution of labels z; and features 55-16) converges to
that of (Z,Y,,), where Z ~ Categorical(r) and Y;, | Z = ¢ ~ N(u¢, X¢/vy). The class means fi,
and covariances ¥, are given by Egs. () and (9, respectively.

Consider a linear classifier with weights W = (wy,...,wz)T € RL*? and biases b =
(by,...,br)T € RL. The empirical cross—entropy loss for a dataset of n nodes is:
ngk) b
Lomp(W,b) 1= — = ZZ 1{z = £} log LeXp(w‘ O 7;) ) (16)
i=1 (=1 D u—1 exp(wi oy + by)

The limiting loss, based on the Gaussian mixture (GM) characterization from Theorem ] is:

exp(wiY + by)
Lom(W, b) TRy N (g8 /1) |108
GM( ez; Y~N(pe,Xe/vn) 25=1 exp(wa i bu)

a7
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Figure 2: Ten gradient steps of cross-entropy optimization problem for (A, X') drawn from a 3-class CSBM.

Shown on the right are gradient paths for samples drawn from empirical and theoretical distributions for $<k).

For any fixed set of weights (W, b) (e.g., within a ball ||(W,b)||r < R for some radius R), the

exp(w? z+bg)
71;:1 cxpe(w%"m—&-bu)
to the feature . This Lipschitz property, combined with the 1-Wasserstein convergence established
in Theorem I] (specifically, the class-conditional form Eq. (TT), leads to the following key result:

individual loss term for class ¢, CE,(x; W, b) = — log > , is Lipschitz with respect

Proposition 1 (Convergence of CE Loss and Gradients). Under the conditions of Theorem[] for any
fixed radius R > 0:

(a) The empirical CE loss converges uniformly to the limiting GM CE loss:

lim E l sup | Lemp(W,b) — Lo (W, b)|| = 0. (18)

o |[(Wb)|p<R

(b) The gradients of the empirical CE loss converge uniformly to the gradients of the limiting

lim E sup V b ngp(W, b) Y b Lom W, b =0. (19)
n—oo H(HYJ)H <R H (W, ) (W ) ( )H

Consequently, the sequence of parameters (W, b;,,,) minimizing £.,,(W, b) within the ball con-
verges in probability to the parameters (W, bE,,) minimizing Lcy (W, b) within the same ball,

assuming uniqueness of the minimizer for the limiting problem.

The proof of (b) relies on the fact that the gradients V,CE,(x; W, b) are also Lipschitz in z for
bounded (W, b). Proposition [1| formalizes the intuition that training a Poly-GNN with CE loss is
asymptotically equivalent to performing CE optimization directly on the identified Gaussian mixture.
This explains why gradient descent paths on the empirical loss track those on the limiting GM loss,
as illustrated in Figure[2]

The stationarity conditions for optimization problem £gy (W, b) reveal a moment-matching structure:

L L
Tofby = Z TuBY N (o, S0 o) [Y - D], and 7w = Z TulBy o N (i, 50 fv) [Pe)s (20)

u=1 u=1

for all £ € [L], where p == pe(Y; W, b) = exp(w/ Y +bg)/ 3, exp(w] Y + b;). It is important to
note that while the GNN training process converges to this CE solution on the GM, this solution is not
necessarily the Bayes optimal classifier for the Gaussian mixture itself (which would be a Quadratic

Discriminant Analysis, QDA, classifier). Figure [3]illustrates this, showing that even for large n where
—(k)

¢ closely follows the GM, the linear CE boundary can differ from the optimal QDA boundary.

4.2 A Precise Mechanism for GNN Oversmoothing

The oversmoothing phenomenon, where GNN performance degrades with depth k, is a well-
documented empirical observation [0, [17]. Existing explanations often invoke a power iteration
argument on a fixed graph matrix, demonstrating that class means collapse towards a common
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Figure 3: Classifier comparison for data which is 2-dimensional CSBM. On the left is the theoretical density of
the 2-class CSBM. The two right plots are the estimated log-likelihood ratios for the QDA and CE estimator
respectively. The slight bend in the data is correctly captured by the QDA estimator.

subspace. Our analysis, grounded in a stochastic graph model, provides a fundamentally deeper
mechanism.

More precisely, we show that in the sparse, large-graph limit, it is not just the means that collapse.
The initial, potentially class-separating covariance of the features vanishes, and is replaced by a purely
graph-induced covariance X, that itself collapses. As our analytical forms show, this new covariance
aligns its principal directions with the very same 1-D subspace occupied by the class means. This
alignment of signal and noise is a much stronger form of oversmoothing, as it guarantees that the
variance concentrates in the same direction as the means, maximally hindering their separability.

To see this, recall the expressions from Egs. (8) and (©):

pe = (J*M) ey,
Yo = (JFIM)T diag(el J)(JF1M).

Consider the symmetric matrix Jy, = IIY/2BIIY/2, which is similar to .J (since J = BII =
Y2 JymIIY?). Let Jym = QAQT be its eigendecomposition, with @ orthogonal and A =
diag(A1,...,Ar) containing the eigenvalues, ordered by magnitude |A;| > |[A\3] > .... Then
JF = TI7Y2QA*QTTIY/2. If there is a dominant eigenvalue \; (i.e., |\;| > |\2|), then for large
k, the matrix A* ~ diag(\},0,...,0). This implies J* ~ \¥(IT~1/2¢,)(¢T T1/2), where ¢, is the
leading eigenvector of Jym. Let u; = I171/2¢; (aright eigenvector of .J) and vi = ¢ TI'/2 (a left
eigenvector of .J). Then J* ~ A\fuyvf.

Substituting this into the expressions for py and Xy:

* Class Means: jip ~ Ay (uyvf M)Te; = Ne(M7Tvy)(ul ep). This shows that for large k, all mean
vectors /y become approximately proportional to the fixed vector MTv; = MTTI'/2¢,. The
specific proportionality constant (u] e;) depends on the class £, but the direction is shared.

* Class Covariances: Similarly, J*~' ~ \¥~1y;0T. Then &, ~ /\?(k_l) (MTvy)(scalary) (v M),
where scalar, = uf diag(el J)u;. This indicates that ¥, (and thus ,/v,,) becomes approxi-
mately rank-one, with its dominant direction also aligned with M7 v, .

This power iteration effect driven by .J¥ and J*~! is the core of the oversmoothing mechanism:

1. Mean Collapse: The mean vectors p, for different classes tend to align along a common
direction MTTI'/2¢,. While their magnitudes might differ (scaled by \¥(ule;)), their
angular separation diminishes. If the initial feature means M projected onto v; do not
maintain sufficient separation, or if ulTeg values are too similar across classes, the means
become indistinguishable.

2. Covariance Collapse and Alignment: The covariance matrices Y, also become rank-
deficient and align their principal direction with the same direction as the means.



Mixture Density for Different Number of Aggregations k
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Figure 4: Estimated kernel density plots of the aggregated features a(k) of a 2-class CSBM at different features
depths k. A feature collapse in the mean vectors and the class covariances is visible by £ = 4 and k£ = 6.

The net effect is that the L Gaussian components N (pi¢, X¢/v,,) of the feature distribution agk)
effectively collapse onto a 1-dimensional subspace. Within this subspace, they become a mixture
of 1-D Gaussians. If the projected means are not well-separated relative to the projected variances
along this single dimension, classification becomes extremely difficult, regardless of the original
dimensionality d or the initial separability of M. This phenomenon is illustrated empirically in
Figure[d where increasing k leads to feature distributions that are elongated along a common axis
and overlap significantly. The parameter v,, helps shrink the variances overall, but does not prevent
this directional collapse induced by k.

5 Conclusion

We conducted a rigorous asymptotic analysis of k-layer Polynomial GNN (Poly-GNN) embeddings
on large, sparse, community-based graphs, establishing Central Limit Theorems that precisely

characterize their limiting distributions. We showed that degree-normalized features agk), jointly with
labels z;, converge in Wi -distance to a Gaussian mixture N (¢, Xp/vy,) per class £. We provided
exact forms for py = (J*M)T e, and 3y = (J¥=1M)T diag(el J)(J*~1 M), determined by initial
means M, layers k, and community interaction matrix J. Centered-and-scaled features §fk) similarly
converge to y_ meN (0, X¢).

These findings have key implications. First, training linear classifiers on gbz(»k) with cross-entropy
loss is asymptotically equivalent to optimizing on this limiting Gaussian mixture, with uniform
convergence of the loss, gradient path, and optimal weights. This theoretically grounds the training
behavior of GNN-based classifiers. Second, our explicit characterization of u, and X, offers a clear
and nuanced understanding of the GNN oversmoothing phenomenon. The repeated multiplication by
the matrix J (to powers k£ and k£ — 1) acts as a power iteration, causing both the mean vectors and the
principal directions of the covariance matrices to align with a low-dimensional (often 1-D) subspace
dictated by the leading eigenvectors of J. This results in a degenerate, poorly separated Gaussian
mixture, thereby diminishing the discriminative power of the GNN embeddings, irrespective of the
initial feature dimensionality.

For future work, our framework suggests several avenues. A direct extension would be to extend
to degree-corrected stochastic block models (DCSBMs), where we expect a similar CLT to hold
provided the normalized degree distribution is stable. Extending the analysis to polynomial filters
of the form 3, ¢x(A/v,,)* X appears feasible, though it would require careful book-keeping of the
cross-correlations between different powers of A. A more significant challenge, likely requiring new
tools beyond our walk-based moment analysis, is the extension to GNNs with non-linear activations
or attention mechanisms. As a potential starting point, one could take inspiration from the loss
landscape analysis of [9], which applies a walk decomposition to the feed-forward architecture of a
fully-connected ReLLU network.
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A Detailed Proofs of Main Theorems

This appendix provides the detailed proofs for Theorem [I]and Theorem 2] presented in Section [3.1}
The general proof strategy follows the outline given in Section[3.2]

Before proceeding with the proofs, we establish some notation used throughout the appendices. For a
probability measure 1 on R? and a vector § € R?, we denote by 1ig the f-projection (or §-section)
of . This is the pushforward measure of y under the map = — (x,0) = 276. If X ~ u, then
Lty is the distribution of the real-valued random variable (X, 6). For a measure v on R, its r-th
moment is denoted by m,.(v) = [ z"dv(x). For a measure y on R, its r-th absolute moment is
M, (p) = [ ||lz||5dp(z). The empirical measure of a set of N points {Y;}Y; is 4 Zf\;l Jdy,. We
denote the expectation of a random empirical measure P, as P,,, defined by its action on test functions
f: P.lf] = E[P,[f]]. We use Lip(R) to denote the class of R-Lipschitz functions f : R? — R.
Other notation, if not standard, will be defined as it appears.

A.1 Proof of Theorem 2] (CLT for Centered and Scaled Features)

The proof of Theorem [2]1argely follows the structure laid out in Section[3.2} First, we define the key
components of the features. Recall the definition of the centered and scaled features from Eq. (3):

(k) (k) (k) (k)
®) ?; ?; _ ¢ —E[g;"]
S= V””( VR "E[ VR ])“ =V

The term qﬁgk) — ]E[gbz(-k)] represents the deviation of the i-th node’s k-layer feature from its expectation.
This deviation can be decomposed as follows. Let ¢(*) be the n x d matrix of all features.

¢ —E[p*F)] = A*X — E[4*X]
= A*X — E[AF|E[X] (since A and X are independent given z)
= (A* —E[A")X + E[A"](X - E[X])
= A+A. 1)
Here, A = (A*—E[A*]) X captures the randomness from the graph structure A, and A = IE[A’“]O(X -
E[X]) captures the randomness from the initial node features X (around their means). Both A and

A are n x d matrices. Let Ai and /o\i denote their ¢-th rows (viewed as d x 1 column vectors for
consistency with fi(k)).
We define the normalized versions:
Ai = Ai/VS—I/Q, Az = /O\i/l/fb_l/2.
With this notation, the centered and scaled feature for node 7 is:
eM = A + A
For any projection vector § € S9!, we denote A; g = (A;,0) = ATOand A; o = (A;,0) = AT0.
1

Now, we aim to show E[W; (P,,,G)] — 0 where P,, = £ > | d¢(r - This is achieved by showing:

1. E[Wy(P,,P,)] — 0, where P,, = E[P,,].

Part 1: Concentration of P,, around P,,. This part relies on Proposition 10| (from Appendix @) To
(k)

g

apply Proposition we need to verify its conditions for Y; , = §

(a) Uniform V,. sub-Gaussianity of projections: For any § € S9!, {<€i(k); 0)}_, are uni-
formly W, sub-Gaussian (see Appendix [C|for the definition):

Lemma 1. sup ||(¢*), 0w, <C(o,a.)forallde 5771

€N
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Proof. Combining Propositions [2]and [3] (from Appendix [A.3), we have

k
1™, 01w, S 1Alle,, +[Asolle,, S Ko+ 0Ben

where k¢ is a constant only dependent on o and x., and ), = o(1). The result follows. [

(b) Variance of empirical moments: We have the following result:

Lemma 2. lim,, ., Var(n_1 Zi@i(k), 9)”") =0forallr € Nand § € S41.

Proof. By Lemma limy, 00 || 2 S gy — LY ATl = 0. Lemma@gives
Var(n=' 37, A7 5) < n~'. The result follows from the inequality var(A) < 6[|A — Bl +
3 var(B) for any random variables A and B in L2 O

(c) Uniformly bounded first moment of Py,: sup,,~; My(P,) < co. This follows since by

Proposition 4] m; (P,,.¢) converge to m; (Gg), which is finite, for all # € S~ The claims
then follows from Proposition [7}

With these conditions met, Proposition (from Appendix @) implies E[W; (P,,,P,,)] — 0.

Part 2: Convergence of P, to G. Proposition (from Appendix shows m,.(Pp, 9) — m,(Gy)
for all 8 and r. Since Gy is a mixture of Gaussians, it is determined by its moments. This implies
weak convergence P,, g ~» Gy. The convergence of moments also implies uniform integrability of all
moments for {P,, g },>1. This, combined with weak convergence, yields W1 (P,, 9, Gg) — 0 for all
6 e 8i-1 (e.g., by [1} Proposition 7.1.5]). To lift this to W3 (@", G) — 0, we use Proposition@(from
Appendix @) Condition (29) for this proposition, sup,,>; (M1 (Pr) + Mi(G)) < oo, is satisfied

because M (P,,) is uniformly bounded (as argued in Part 1c) and M (G) is finite.

The class-conditional convergence statement in Theorem@]follovls from a similar argument by consid-
ering per-class empirical measures PP, , and their expectations IP,, ¢, and showing their convergence
to N (0, X¢). See the proof of Proposition [5|(a restatement of the class-conditional convergence) for
details.

A.2  Proof of Theorem 1| (CLT for Degree-Normalized Features and Labels)

The proof of Theorem [T]closely mirrors that of Theorem [2] with adjustments for the non-zero means

L . =0 . —(k o
and the v, ! scaling in the covariance. Let P/°""*! be the empirical measure of (z;, ¢§ )) and GJ°o"

be its target limit. The convergence in W/} can be established by showing convergence of expectations

—(k)

of Lipschitz functions f(z, ). The core argument involves showing that for ¢ € Cy, ¢, = behaves

like a draw from N (e, X¢ /).

—(k)

1. Mean Convergence: Lemmaestablishes that E[¢, "] converges to a general limit ;.

Lemma 3. Define limiting mean ~y; = el (E[A/v,])*E[X]. Assume Assumptionand suppose
vy, > 1. Then,

—(k _
max NG = AT ]l2 < C (k) zu vy,

Under the specific community-based graph model, this general limit ; further simplifies for
nodes within a class Cy to the class-specific mean iy, as stated in the following lemma.

Lemma 4. Under the conditions of Theorem![I|(which include the CSBM structure and Assump-
tions , let vI' = eI (E[A/v,]))*E[X] be the 1 x d row vector defined in Lemma For any
node i € Cy, its limiting mean ~y converges to ,ug = eeTJ kM. More precisely,

e sup [T — i 12 = o(1)
EE[L] i€Cyp

Proof. The expected adjacency matrix of an undirected, loop-less SBM is E[A] = (v,,/n)(P —
diag(P)), where P = ZBZ" and diag(P) contains the diagonal entries of P. Thus, E[4/v,] =
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(P/n) — (diag(P)/n). The difference between (E[A/v,,])* and (P/n)* can be bounded. Since
matrix exponentiation H ~ HP is locally Lipschitz for matrices with bounded operator norm
(which (P/n) and E[A/v,,] are, as their entries are O(1/n) and norms are O(1)), and

IELA/vn] = P/nllop = [|diag(P)/nllop = max n~ By = 0(n™Y), (22)

it follows that ||(E[A/v,])* — (P/n)*|lop = O(n™'). Given E[X] = ZM has bounded row
norms (from Assumption E[), we can write:

i = e (P/n)E[X] + ef (E[A/va])* — (P/n)*)E[X]
= e (P/n)*ZM +O0(n™") - [le] lop IELX] lop-
Since ||e] ||op = 1 and ||E[X]||op is bounded (e.g., by VL maxy || M;,.||2 < v/Lx.), the error

term is O(n™1). So,
vE=el(P/m)*ZM + O(n™h).

Now consider the main term el (P/n)*ZM. For a node i € Cy, we have el Z = el (where
e; €ER" ey € RE).

el (P/m)*zZM = el (ZBZ" /n)*ZM

=l Z2(B(ZTZ/n))* M
= el (BI)*M (since Z* Z/n = diag(|C,|/n)L_, = T0)
= eeTjkM,

where J = BII and II = diag(7y, ..., 7) with 7, = |C,|/n. We are given ul =elJFM,
where J = BII. The difference is X (J* — J*) M.

From the Assumption Ts = ms + o(1), which implies O=T1+ E,, where E,, is a diagonal
matrix with entries o(1). Thus, |[IT — I||op = o(1). Then, J — J = B(Il — I1) = BE,.
So, [[J = Jllop < IBllopllEnllop = O(1) - 0(1) = o(1). Using the identity A* — B¥ =
S5 AI(A — B)BF~17J, and since || J|lop and [|.7op are O(1) (as || B]lop and ||TI]|op are
o)),

1T = T¥llop < & - max<([|7lop, [|Tllop)* ™" - 17 = Jllop = O(1) - 0(1) = 0(1).
Therefore,
leg (7% = T*)Mllz < [lef [lopll T* = T*llop |1 M [lop = 1 - (1) - O(1) = o(1).
Combining the two error terms:
vE =el JEM + o(1) + O(n™1).

Since v, = o(n) (Assumption[2), n~* = o(v;;!) which is also o(1). Thus, the dominant error
term is o(1). The bounds are uniform over ¢ € C; and ¢ € [L] because the operator norm bounds

on B,II, M and the rate of convergence in Assumption [3|are uniform. O

2 C . o .o (k) —(k) _ (k) . (k)
. Covariance Characterization: The deviation ¢; ' —E[¢; | =&;"’/\/Vn. The analysis for &;
(specifically, the characterization of its moments leading to Propositiond]in Appendix[A-4) shows

. . . . . . — —(k
its asymptotic covariance, conditional on z; = ¢, is 3. Thus, the covariance of ¢§ I ]E[cﬁf )]

(and asymptotically, of af.’“) — pe fori € Cp) is Xp/v,.
3. Moment Matching and Concentration: Similar to Theorem 2} one shows that the moments of

(af.’“) — pue) (for i € C;), when appropriately scaled, match those of N (0, X,/v;,). Concentration

arguments analogous to Part 1 of Theorem [2]'s proof apply.

Steps 2 and 3 above are rigorously formalized during the proof of the class-conditional version of the
statement (Eq. (TT) which is stated and proved as Proposition [6]in Appendix [A-4).
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A.3 Supporting Lemmas for Moment Analysis

We borrow the following two key results from [18]:

Proposition 2. Suppose X; — E[X;] ~ SG(0?) and v,, > 1. Then, for Aig= </D\1-/V7]§_1/2, 0):

Aiolle, SoBkn where fin, = (1/,?’““)1/2 - 1{k is even} + (Vn/n)l/Q.

Tn

Proof. A component-wise version of the above (i.e. with 6 a coordinate basis vector) is proven in [[18}
Section 4.1]. The general case follows by a similar argument. Broadly, this follows from the fact

that A; = E[A*](X — E[X])/ vE~1/% is a linear transformation of sub-Gaussian random vectors
{Xi« — E[Xi.]}:. The rate Sy, is obtained through path counting on E[A*];; foreach j € [n]. O

Proposition 3. Let ¢, = rk—[r/2] and ko = 4 max{C1o, x.} for a distribution-dependent constant
Cy. Assume Assumption @) and suppose v, > 1. For € € [0,1], let

(€)== max{r € 2N : 3(korke®)” < v1=}. (23)
Then, for A; g = ((A¥ — E[A¥)) X, 0) and for all v < r,,(0):
E|A;o|" < 2(v/Tko) vl (24)
/

< K.

As a consequence, for \; g = Ai,g/V571 2 we have 1Aiollw,, <

Proof. This result is proven in [18]. The power v+ arises from counting dominant walk structures
contributing to the r-th moment. O

With these propositions place, we show that, in the sparse setting, the sliced moments of <f§k), 0) are
determined by the moments of graph noise A; 4. That is to say, as n grows large and the graph grows

sparse, the contribution of feature noise A; o to our normalized features (51@, 6) is negligible. This
has important downstream consequences to our limiting aggregated features, as it implies the feature
noise covariance will not appear in the final limiting form of the aggregated feature covariance.

Lemma 5. Assume Assumptions|l| 2] andH| For any r € N:

€M 0 — A7yl =o.

lim max
n—00 {€[n]

L2

Proof. Using the decomposition <£i(k), 0) = Aj 9+ A; g, we have

T I - r r—s S
<f¢(k)v 0)" — Alg= Z (s> Ai,e A g

s=1

By Minkowski inequality (for Ly norm of sums):

T T
r T—SAS r T—SAS
> (0)ateaze| =X (0) anac
L2 s=1

s=1
By Holder inequality, with 1/p = (r — s)/rand 1/q = s/,

L2

2
T—S8 A 2(r—s s T —s/r T\S/T
HAi,e tell = E[Ai,(@ )A?,e] < (EA?Y)* / (EAZY) m.

L2

This is ||Ai79||2L(2178) || Ai 0|32, . For n large enough so 2r < ry,, Proposition(via Lemma@) gives
1A o]l L2 S KoV/2r. Proposition(via Lemma@) gives || AigllLer S 0Br.nV/2r. Take n large
enough so that 8y, < 1. Then, for s > 1, we have ﬂ,%sn < Bk.n, hence HAMH%% < 0% Bk (2r).
Since S, — 0 from Proposition(as vy, — 00, v, = o(n)), and all other terms are bounded, the
sum tends to 0. The convergence is uniform over ¢ as the bounds are uniform. O
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Lemma 6. Under Assumptionand For everyi,i' € [n], r € Nand § € S,
Cov(Aly, AL o) < n~H#D,
In particular, Valr(n_1 Dy Azrﬁ) <n~lforr € Nandf € S 1.

The proof of Lemma [f]is quite involved, using combinatorics of walk sequences, and appears in
Appendix [

Lemma 7. Letr € 2N and 0 < € < 1. Assume Assumption @) and suppose v, > 1. If r < ry,(€),
then

m‘ﬁdE Tol = (r=1N-G7,| < C(r)alv,©
eln
where 51-279 = [|V;E[A /v, ]F T E[X]0]3 and V; = [diag((pi1 (1 — pi1), - - -, Pin(1 — Pin)) /vn] 2

The proof of Lemmaappears in Appendix E| and involves walk-based proxy term Tihi (r) and careful
counting of dominant vs non-dominant walk structures.

Lemma 8 (Odd Moment Control for A; y). Under Assumptions |Z|—E] for any odd integer r > 1 and
any unit vector 0 € R4,
lim max [E[A] o]| = 0.

n—00 {€[n]

More specifically, E[A] o] = O(Vﬁl/z).

Proof. This follows from Proposition [3| For an odd r, the moment bound for A, g is E|A,; g|" <
(\/;KO)TV:;/?*(T/?T _ (\/Fﬁo)rugl/% 0
A.4 Supporting Results for Specialization to Community-Based Graphs
Proposition 4. Under Assumptions 1]
n L
o1 (k) _ k-1 T 3 T k—1 r/2 .
nh_{r;o - ZE(Q L0 = (r—1N Z_Zlﬂ'g (T MO)" diag(e; J)(J*~'MO)) '~ - 1{r is even}.

Stated differently, m, (P, 9) — m,(Gg) where Gy = Zsz1 7N (0,07%,0).

Proof. We proceed in steps:

Step 1: Approximate with moments of A; g. By Lemmal(speciﬁcally, I <§Z-(k), 0)" — Al pllLr — 0

since Lo convergence implies L;), we have E(f(k) 0)" = E[A] ] + o(1), where the o(1) term is
uniform over 4. Thus,
ZEf(k)H ZE Tol +o(1).

Step 2: Handle odd moments. If r is an odd integer, by Lemma 8| E[A] ;] = o(1) uniformly in 4.
Therefore,

1l .
Jn, 7 2 ElAL] =0
This matches the proposition statement, as 1{r is even} = 0 for odd r.

Step 3: Handle even moments using 55 o- If 7 is an even integer, by Lemma
E[Afg] = (r =D 574+ 0(1),
uniformly in i. Here, 074 = [|[ViE[A/v,]" 'E[X]0]]3. So we need to analyze the limit of

& iz (r =157,
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Step 4: Analyze 512,9 under the CSBM structure. We have
07 = (E[A/va] "' E[X]0)T V2 (E[A/v,] T E[X]0).
where V2 = v, tdiag((pi; (1 — pij))j=1) = v, 'diag(e] E[A])(I, — diag(e] E[A])). Since by
assumption v, = o(n), we have e E[A] = O(v,,/n) = o(1) uniformly in 7. It follows that
V2 = v, Hdiag(e] E[A]) + o(1).

Moreover, as shown in the proof of Lemma 4] (specifically Eq. 22)), E[A/v,] = P/n + O(n™1),
where P = ZBZ". Substituting we get

379 = ((P/n)"'E[X]0)" diag(e] P/n)((P/n)*""E[X]0) + o(1).
Under the CSBM structure, we have E[X]6 = ZM§. Similar to the derivation in Lemma Ers proof:
(P/n)*='ZM0O = Z(BI)* ' MO = ZJ*~ 1 M.

Ifnode i € Cy, then el P/n = el (BZ™ /n). The term ZT diag(e! P/n)Z becomes a diagonal L x L
matrix. For i € Cy:

(Zz"diag(el P/n)Z) s = ZZJS (eI P/n); Z;e
j=1
= Z (Pij/n) = Z (Bzizj /n)
j€Cs,5=5" j€Cs,5=5"

=1{s = 5"} - (Bus|Cs|/n) = 1{s = s'} - BysTs.
So, ZTdiag(eT P/n)Z = diag((Bys7s)L,) = diag(el J,,). Therefore, for i € Cy:
52y = (JEMO) diag(ef J,)(JF71MO) + o(1).

Leto? o(J ) = (JF=1M6)T diag(el J,, ) (JE1 M0). This term is the same for all i € C; up to o(1)
errors.

Step 5: Averaging over i and taking limits. For even r:

Ly mia) = T YRS a, o)
=1 1L_1 C
:(r—l)!!Z— > G|+
=1 " [Cel ‘"
L
>

1€Cy

=(r-D"» - (Q%e(jn))r/2 +o(1).

Asn — oo, by Assumption T — mp. Also, Hjn — Jllop — 0 (due to I — TI). Since U?,e(') is
a continuous function of its matrix argument (in terms of matrix entries or operator norm for fixed
M, 0, B, eg, k), we have o7 o(Jn) — 07 o(J). Let 075 = (J¥~1 M) diag(ej J)(J*~' M0). The

limit becomes: .
(r=D m(op) /2.
(=1

This is precisely the r-th moment of Gy = Zngl meN (0, 0229). Note that 0229 = 07%,0 where
¥y = (JF1M)Tdiag(el J)(J*~1M). The proof is complete. O

Proposition 5 (Part of Theorem [2). Consider the setting of Proposition Let Gy = N(0,%) for
¢ € [L]. Then for any R > 0:

E sup
Jis.., fr€Lip(R)

Z 3™ = mEyes, [fz(Y)]‘} o

f 14i€C, =1
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Proof. Let P, , = ﬁ ZiECg 6§(k) be the class-conditional empirical measure for class ¢. Let

fe € Lip(R). We can assume f,(0) = 0 without loss of generality by considering fy(z) — f¢(0), as
this does not change the difference of expectations for centered measures and preserves the Lipschitz
constant. The term we want to show goes to zero is:

L L
C
A, = sup > %Pn,e[fe] — > mGlfi]
(=1 =1

f1,.--,fL €Lip(R)

Using the triangle inequality:

L
|Ce|
A, < sup T]P’n,z[fd — mPr e[ fe]

f1,-- fL€LiP(R) y 4

L

+  osup > |mePg[fe) — mGe[fe]]
f1,- fL€Lip(R) y 4

sup Py e[fe]]
fe€Lip(R)

+ > m sup Py e[fe] — Ge[fe]].
=1 fe€Lip(R)

The second term is 25:1 R - W1 (P, ¢, Gg) by definition of Wy (scaled by R). Let T} ,, and T,
be the two terms.

For Ty, Since f¢(0) = 0 and f; € Lip(R), |Punelfe]l < Puellfe(x)]] < R - Ppofllzll]-

So. Elsups,cripr) [Prelfelll < R EPnclllz]]] = R - Puylllzlll. The term Py of||z[|] =

ﬁ D ice, E[H«ffk) [I]. From the proof of Theorem(speciﬁcally Part Ic, relying on uniform integra-
bility of moments of P,,), sup,, E[||¢*)||] is bounded for all i. Thus, sup,, P, ¢[||||] is bounded (as
|C¢| = 0). By Assumption ‘l%‘ — m‘ — 0. Therefore, E[T} ,,] — 0.

For T,,: We need to show E[W;(P,¢,G¢)] — 0 for each ¢. By the triangle inequality,

Wi (Ppo, Go) < Wi (Ppo, Pro) + Wi (Pp e, Gy). For the two terms on we have:

(@) E[W1(P,, ¢, P,0)] — 0: Py, ¢ is an empirical measure of Ny = |Cy| variables {fi(k) 11 € Cypl.
Since Ny — oo (as my > 0), we can apply Proposition [I0] to this specific subset of
variables. The conditions for Proposition re: (i) Uniform \I/TN’Z sub-Gaussianity of

<§§k), 6) for i € Cy: This holds from Lemma (i1) Variance of their empirical moments
Var(N,* D ice, (fi(k), 6)") — 0 holds from the more general formulation of Lemma@
where Cov(A} 5, Ap 1) < n~Hi#'}_ (i) sup,, M, (P,,¢) < co: This holds as shown for
Tt n. Thus, E[W1 (P, ¢, Pr, ¢)] — 0.

(b) Wy (@nl» Gy) — 0: We analyze the moments of P,, ¢ for a given § € S9~1. mr(@n,gﬂ) =
ﬁ dice, 1E[<§§‘“), 6)"]. From Steps 1, 2, 3 of the proof of Proposition we know that
E[(£,6)"] = EIA ) + o(1). I r is odd, E[A7 4] = o(1) by Lemmalg] So m, (B, ¢.6) =
0 = m,(N(0,07%,0)). If 7 is even, E[A7 4] = (r — 1)1 7]y + o(1), where the o(1) is
uniform in ¢. From Step 4 in the proof of Proposition |4} for any i € Cy, 52 0 — 0229 =

6750. Thus, for i € Co, E[(€",0)7] — (r — 1)!1(032)™/2 - 1{r is even}. This limit is
uniform for all ¢ € C,. Therefore,

e (B0 = ﬁ ; (r = )0o73)/2 - 1{ris even} +0(1))

— (r —1)W(e}3)"/? - 1{r is even}.
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This is m,.(N(0,073,0)). Since Gy g = N(0,07%,0) is determined by its moments, and
its moments are finite, IP’n ¢,0 ~ Gy 9. The uniform integrability of moments for IP’n 0,6
is inherited from the global case (as seen in 717 ,, argument, M, (Pn ¢) is bounded for any
p). This promotes weak convergence to Wl( n.0.0,Geg) — 0. Then, by Proposition EI,
Wi(Pn,e, Ge) — 0.

Since E[W1(Py, ¢, G¢)] — 0 for each ¢, and 7y are constants, E[T5 ,,] — 0. Combining E[T} ,,] — 0
and E[T5 ,,] — 0 completes the proof. O

Proposition 6 (Part of Theorem. Consider the settings of Proposition Let @n 0= N(pe,Xe/vn).
Then for any R > 0:
} — 0.

E sup
f1,.--.fL €Lip(R)

~ .. . . —(k
Proof. Let P, ¢ be the class-conditional emplrlcal measure for ¢( ) for class ¢:

Zf (k)

'LEC(J

L
ZZfe S =SBy, oY)

Z 14€C, (=1

Let A/, be the term inside the overall expectation:
N

Al = sup P el fo] — ZWGnlfz
f1,--,fL ELip(R)

=1
Similar to the proof of Proposition Bl using the triangle mequahty:

Z |Cel

T - m| sup Prelfedll (=T1,)
=

fe€Lip(R)

L

—I—ZM sup
=1 Jfe€Lip(R)

ﬁin,f[fl] - (’Gn,f[.fé] (:: T2/,n)

The second term is 25:1 mR- Wy (fl’mg, @ng) We can assume f;(0) = 0 by replacing f,(x) with
fe(x) — fe(0) and noting that [Py, ¢[f¢(0)] — Gun,e[fe(0)]| = [ fe(0) — fe(0)] = O.

Before bounding the two terms, we first show that

El[6" — yiells — 0 uniformly for i € Cy. (25)

(k)

By Lemmaand Lemma E[p; '] — e fori € Cp. Next,

(2

Var(6y”) = Var(6(") /\/im) = S/ + o),
uniformly over ¢ € Cy, by noting that the convergence in the proof of Proposition@is, in fact, uniform
overi € Cyand 8 € S 1. Since E|[¢.") — puell2 < El[er” —E[6.]|l2 + |E[6."] — 11e]|2, and the
first term is bounded by (‘clr(Vall“@Ek))))l/2 = O(V;l/Q) = 0(1), and the second terms is o(1) for
i € Cy, the claim follows.
For T7 ,: E[supfeeLip(R) @n,e[fem <SR- IE@M[IIJ?H]] = \Tlﬂ ZieCe E[”&Ek)m By eq. ’
IE[H@EIC)H} converges to ||ze|| which is bounded. Thus, sup,, E[sup,, IP,,.¢[f¢]]] is bounded. Since

‘% - m‘ — 0 by Assumption E[T],] — 0.

For T; ,,: We need to show E[W, (P, 2 @n’g)] — 0 for each ¢. Let f € Lip(R) with f(0) = 0. Let
]P’m 0= E[Pn ¢]. We first analyze

P,e[f] - G |ZE|f — G elf]ls

i€Cy
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where ﬁn efl= ICtz\ >ice, Elf(9 (k))] Using the decomposition for a single i € C;:

E|£(3") = Guilf)l S EIF @) = F(e)] +Ef () — Gl f]]-

Let these two terms be A;, B;. (Note B; is actually independent of i for i € Cy). Since f € Lip(R):

o 4 < R-EIBY — uglls = O(vn /?) uniformly for i € Cy. by eq. {23).
e For B;, we have
Bi = [Ey n0,5/vm) [f (te) = f(e + V)| £ R-Eyno,5, /v 1Y ]]2]

and By n (0.5, /o) [ Y 2] < /&St /vm) = O(wi/?). So B; = O(vn /).

Thus, uniformly over ¢ € C; and f € Lip(R), we have E|f(¢ (k)) ~n7g[f]| = O(uﬁl/Q). This
establishes W (ﬁ’mb @mg) — 0.

Now, for the concentration part E[W; (P,, 2 IP’ )] = 0: We will verify the conditions of Proposi-

—(k)

tionfor the variables X; ,, = ¢, ~ fori € Cy:

(i) Uniform W, sub-Gaussianity of @(vk) 0): Since afk) = [gb(k)] 5(“/‘/1/”, we have

17, 0w, < BB, 0w, + 1P /im0,
= (EB), 0] - [llw,., + 1R/ /om, O)lw,,

the first term is bounded in the limit by C({pug, 0) where C' = limsup,,_, . [|1]v,, isa

universal constant, and the second term is O(v,, 1/ 2) by Lemma , both uniformly over

i€Cpandh € S4L,

and p is bounded, and §fk) /+/Vn has vanishing ¥ norm (as «Ei(k) has bounded ¥ norm),
@Z@, 0) will have bounded ¥, norm (dominated by (u, 0) plus a small term).

(k) (k)

(ii) Variance of empirical moments: Var(N,” Zzece< ,0)7). Again, we use ¢, =

(k)

Elp, ']+ g,(k) /+/Vrn. By an argument similar to Lemma we obtain

1@, 07 — &™), 60y 5 <Z()|| €SS 0)n2 - 1P /T, 030 26)

We have H(]Eﬁ 072 = |(Eo (k) ,0)|"~* since the quantity is deterministic. This is
uniformly bounded over i € Cy and 6 € S?1, by eq. (25). Similarly, ||<§( ) ,0)|| 2+ is uni-
formly bounded over i € Cy and § € S, by the argument in the proof of Propos1tion (the
convergence of the moments is uniform over i € Cy). It follows that || <§ng) NZRP
O(V{ %) = O(vn Y %) fors > 1, uniformly over ¢ and 6. The same then applies to LHS
of eq. . This in turn implies || N, ZzGC[< (k) )" — Nt ZieceﬂEEEk),G)THLZ =

0(1). Now, Var(N e, (BR 0

implies (see the inequality in the proof of Lemma Var(N, ZZEC4< (k) ,0)) = o(1)
which is the desired result.

6)") = 0 since this quantity is deterministic. This

(iii) sup,, M, (ﬁng) < oo: This was shown for Ti,n-

Thus, by Proposition E[W, (ifl’n,g, ﬁmg” — 0.

Since E[W; (Py,.¢, Gn.¢)] — 0 for each ¢, it follows that E[T3,,] — 0. Combining E[77 ,,] — 0 and
E[T3,,] — 0 completes the proof. O
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B Moment Characterization in 1V,

In the following {Hl, },,>1 and H are all (Borel) probability measures on Re.
Proposition 7. Assume that {H,, },>1 is a sequence of (Borel) measures on R such that
SI;I;/ 10T 2|"dH,, (z) < oo, forall § € R%.
Then, sup,,, [ ||m|\rdHn(x; < 0.
Proof. Let {01,...,0,,} be a -net of the unit sphere S9! = {# € R? : |0]| = 1}. We

have [|z]| = supgega-1 |07 2] < 2max;e( [0 z|. It follows that [|z||" < 2" max;e(m |07 z]" <
27 " |67 2|, hence

sup/||xwdHn(x) < ZTZsup/wiTdeHn(a:) <00
n>1 i—1 n>1
proving the result. O

C VU, sub-Gaussians

Definition 1 (¥, sub-Gaussian). Letr > 2 be a real number, and ¥, : [0, 00) — [0, o) be defined

by
[r/2] xgj
Uol@) = 3, S 27
j=1
The corresponding Orlicz (or Luxembourg) norm for a random variable X is:
[Xlw, = inf{K > 0:E[¥,(|X|/K)] <1} (28)

Lemma 9 (Norm equivalence). Let X be a random variable and r > 2. The following holds:
(a) Norm implies moments: If || X ||w, < K for some K > 0, then
(E|X|P)YP < C1K\/p forallp e [2,2]r/2]]
where C1 > 0 is a universal constant.
(b) Moments imply norm: If (E|X|P)'/P < C\/p for some C' > 0 and for all p € [2,7], then
[Xlw, < CC
where Cy = 2+/e.

Proof. Part (a) Assume || X ||y, < K. By definition, E[¥,. (| X|/K)] < 1.

Lr/2] 25
(1X1/K)*
gy B2 <
j=1
For any integer jo € [1, [r/2]], let p = 2jo. Since all terms in the sum are non-negative:
p
[ ]
Kpj0'

| <Bw.0xym) <1

So, E|X|P < KPjy! = KP(p/2)!. Taking the p-th root: (E|X[?)1/? < K((p/2)!)'/?. Using the
inequality m! < ey/m(m/e)™ form = p/2 > 1:

(/2007 < (/o B0/ 2772010 = (e/T2) (02007 = (/o2 | L
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The term (ey/p/2)'/P is bounded by a universal constant ¢’ for p > 2. (It tends to 1 as p — 00).

Thus, (E|X|P)'/? < K¢'\/1/(2¢),/p for even integers p € [2,2[r/2]]. Now, let p € [2,2[r/2]]
be any real number. Let ¢ = 2[p/2]. Then q is an even integer, p < ¢ < p+ 1 < p+ 2, and
q < 2[(2|r/2])/2] = 2|r/2]. By Lyapunov’s inequality:

(EIX )P < (E[X[)Y < Kc'/1/(2¢)v/q

Sinceq < p+2andp > 2, wehave g < p+p = 2p. So Vi < V2p = ﬁ\/ﬁ Therefore,
(E|X|P)VP < Kd'\/1/(2¢)V2y/p = (¢'\/1]e) K \/p. Setting C; = ¢’+/1/e (a universal constant)

proves the first part.

Part (b) Assume (E| X |?)Y/? < Cy/pfor p € [2,r]. We want to find & such that E[W¥,.(| X|/k)] < 1.

Lr/2] 2j
E[T,(1X|/k)] = Y E[kXJ',]

j=1
Let p = 2j. Since j € [1, |r/2]], p € [2,2|r/2]]. This range is contained in [2,r]. So we can use
the moment bound: E|X|P < (C/p)P = CPpP/2.

Lr/2]
E[(IX|/R)] < )

Jj=1

C*7(25)
k27 !

Using the bound (25)7 /5! < (2e)7:

Lr/2] ; o /2] j
C?1(2¢) 2eC?
Bl (xi/m) < > SEF = 3 (2
j=1 j=1
This is a geometric series with ratio R = 2¢(C? / k2. If we choose k such that R < 1 /2, the
sum is bounded by >-°°,(1/2)7 = 1. We need 2¢C?/k* < 1/2, which means k* > 4eC”. Let

k = v/4eC = 2,/eC. With this choice of k, we have E[,.(|X|/k)] < 1. By the definition of the
norm, || X ||g, <k = 24/eC. Setting Cy = 24/e proves the second part. O

Lemma 10 (Tail bound). Let Y be a random variable and v > 2. Suppose |Y||w, < K for some
K > 0. Then there exists a universal constant co > 0 such that for all t > coK:

B(Y| > 1) < exp(—c min {Li2 7/21})

where 1 = 1/(4C%e) and C} is the universal constant from Lemma Eka ). The threshold constant is

Co = 201 \/é

Proof. The assumption ||Y |y, < K implies (E|Y|P)Y/P < C1K/p for all p € [2,2[r/2]] by
Lemma[9a). Let r{, = 2|r/2|. This matches the condition (56) of [18, Lemma 25] with A =Y,
n=1/2, Kiem = K, Ciem = 26’12, and r( replaced by r{,. Lemma 25 applies for z > 4C.mne =
4(2C%)(1/2)e = 4C%e. It gives the tail bound:

P(Y] > Kx1/2) < exp ( —rnin{ﬁ7 777"6}) = exp ( —min{%%e, Lr/QJ})

Lett = K2'/2, so x = (t/K)?. The condition on = becomes t > K\/4C?e = 2C;\/eK.
Substituting z in the bound yields:

(Y12 1) < exp (—min { S 1r/21})

Setting ¢; = 1/(4C%¢) and ¢y = 2C1+/e gives the desired result. O
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D Results on Triangular Arrays

Proposition 8. Let p1,, = % > Oy, be the empirical measure of real-valued random variables
Y n fori € [n], and let fi,, = Ep,,. Assume that for some sequence r, = w(1), we have

(a) {Yin}, is uniformly U, sub-Gaussian, that is, there exists ¢ > 0 such that
Uiy [[Yinllw,, <.

(b) var(n=' Y21, Y/,) = 0asn — oo forall v € N,
Then, E[W1(fin, fin)] — 0 asn — .

The full proof of this proposition will be deferred for a next section.
Lemma 11. Wi (ng,,10,) < |01 — 02|| M1 (n), for any probability measure n on R% and 6, 65 € R4

Proof. Let X ~ 7. Using the dual formulation of W, for measures on R:
Wi (g, ,m0,) = ;16112|Ef (07 X) —Ef (02 X)|
< ileuzlE\f(ﬂTX) — f(02 X)| <E0Y X — 03 X| < |61 — 02| Mi(n).
This completes the proof. O

Proposition 9. Let {ji, }n>1 and {ny }n>1 be random probability measures on R?. Let ji, = Epy,
and 0, = En,. Assume that
sup (Ml(ﬂn) + M, (77")) < 0, (29)

n>1

andE[Wl(un79,nn79)] — 0asn — oo forevery§ € S Then, E[Wl (un,nn)] —0asn — oo.

Proof. The map 6 — Wi (g 0, 7n,9) is Lipschitz with constant L,, := M (u,,) + M1(ny,). This is
shown in [4], and we reproduce the argument here for completeness.

The triangle inequality for 1/, gives,
Wl (,unﬂl 5 77n,91) S Wl (Mn,Gl ) Nnﬂg) + Wl (,Ufnﬂm 77n,02) + Wl (nnﬂg s Mn, 0, )
Rearranging yields

Wl (,Ufn,@lunn,@l) - Wl (,U/n,@wnn,@g) < Wl (Nn,@lvﬂn,eg) + Wl (nn,017nn,92)
< 161 — 62| My (pn) + 1161 — 02 M1 (nn)
= Ly |61 — 02

where the second inequality follows from Lemma|[T1] Switching 6; and 6, shows that the inequality
holds with the LHS replaced with its absolute value, proving Lipschitz continuity.

Let F},(0) = W1(itn.0,7n,0). By the result of [4]], there is a constant C'(d) such that
Wi (phn,mn) < C(d F,(0).
1(pin 1) < C(d) max F,(0)

Let 61,602, ...,0N be ac-net of S~1, with N = N(¢) finite. For every § € S?~1, there is a 6; such
that F,,(0) < Lne + F(0;) < Lne + I, F,.(6;). It follows that

N
E Fo.(0) <E[Ly,) - E[F (6
o, Fo6) < BLo] - + DB, (00)
Bounding E[L,,] further by sup,,; E[L,] and noting that E[L,,] = M (fi,) + M1 (7,), we have
N
E[Wl (,una nn)] < C(d) {E 611>p1 (Ml (ﬁm) + Ml (ﬁm)) + Z EWl (ﬂnﬂia Wn,,ei)}-
mz i=1
The sum goes to zero by assumption as 7 — 00, and the first term goes to zero taking € | 0 and

using (29).
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Proposition 10. Let p,, = % Dy dy,.,, be the empirical measure of vector-valued random variables
Yin € R fori € [n), and let ji,, = Ep,,. Assume that for some sequence r,, = w(1) and for any
g€ Si1,

(a) {(0,Y; )}, is uniformly U, sub-Gaussian, that is, there exists ((8) > 0, such that
sup;eqy 10, Yin) v, <C(0).

(b) V?Ll"(n_l S8, Ym>’”) —0asn — oo forallr € N.

(c) sup,,>1 M (jin) < <.
Then, E[Wl(,un, ﬂn)] — 0asn — oo.

Proof. First, note that Ep,, o = jiy, 6. By Proposition@ and assumptions (a) and (b), we have that
E[W1(pin,0, fin,0)] — 0asn — oo for every § € S?~1. Next, applying Propositi0n|§|with M = fin
and noting that v,, = [i,,, the result follows. O

E Proof of Proposition

Proof. Let us write Lip(f) = SUDP g2y % for the Lipschitz constant of f. Consider the set of

functions
L={f:R=R[Lip(f) <1,f(0) =0}, Lp={fl<pl|fecL, B>0}
Let w,, := Wy, — jin- By the dual characterization of W7, we have

Wl(,uny /jn) < sup |wnf|'
feL

By breaking f = f1|;<p + f12/> B, We have
Wi(pn, i) < sup @, f| + sup [@n (£l 8)|- (30)
feLs fec

Fix ¢ € (0,1) and consider the second term first. For any integrable f, we have

| (fLjz)>B)| < [ (fLlig)>B)] + |An(flj2>B)]
SNn(|f|1|z\>B)+ﬁn(|f‘1|r\>3)~ (31)
For f € L, we have |f(x)| = |f(z) — f(0)| < |x — 0.

Then, we have

|@n (fLiz)>B)] < pin(|21jz)>B) + Bn(|2[1)2)>B)

Taking the supremum over f € £ and then expectation, we have

_ 2
E?ulzlwn(flmw)\ < 2fn (2|l 2> ) = 5Z]E(|Yi,n|1{|yi,n| > B}).
€ i=1

Take n large enough so that
2

B
> 2(?2 + 1) (32)
which we will verify at the end. Also, take B > By({) := ¢o( where ¢y is the constant in Lemma
Then, by this lemma, we have P(|Y; ,| > B) < exp(—c;B?/¢?), and by Lemma |10, we have
E[Y?,] < 2CF¢?. Then, by Cauchy-Schwarz, we have

E(|Y;n|1]Yin| > BY) < /E[[Yin[?]- B(|Yin| > B) < VZOIC - exp(~eB?/2(%).
Taking B > Bj(¢) for By (() large enough, the RHS can be made < &, which gives

Esup |, (f1ljz>8)| < 2.
fer
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Consider now the first term in (30). Viewing L as a subspace of (Cy,([—B, B]), ||*||oc ), by restricting
o [—B, B], Lp is uniformly bounded and equicontinuous, hence by Arzela—Ascoli, it is relatively
compact in the sup-norm topology. This, in turn, implies £p is totally bounded. Then, there exists
fis--+, fm € Lp that form an e-net for £ g in sup-norm, for some M = M (e, B) < co. That is, for
any f € Lp, there is fy such that || f — f¢||cc < €, hence

< ”wn”TV : ||f - fl“oo + |wnf€| < 2+ ‘wnfd
Taking supremum over f € Lp, we have

sup |wnf| < 2+ S | fl-
feLp Le[M

Take B > 3. By Lemma|[I3] each f; admits a (truncated) polynomial Q,(z) = 1{|z| < B} -
doio cjer?, withm = 4[023/5] € 4N (can take Cy = 18) such that
1fe = Qell < e,
and |cjo| < 6B -3m77 =:q; forall j > 0and ¢ € [M]. We have
[ fel < ll@nllty - [|fe = Qelloo + [@nQel-

It follows that
sup |wnf12| < 2e + Sup |anll
Le[M] Le[M

and we have

sup |wnQe| < sup ’Z%/wn(w 1|;|<B)‘

te[M] e =
m m

Z sup, lejel) - [on (2 1ay<p)] < aj [wn (27 1141<5)]
—o telM =0

We have
| (271131 p)| < lwn(2?)] + @ (271125 )]
Then, for the second term, using @, we have, for all j € [m],
| (271015 B)| < pin (|27 11125 8) + fin (|27 121 5)
< (|21 B) + fn([2™ 12> B)-

Taking maximum over j € [m], followed by expectation, we have

E sup |wn(2/ 145 5)| < 2fin(j2|™ o> 5) = ZE Yin|™H{|Yinl > B}).

Jj€[m] i=1

Take n large enough so that
rn > 2m = 8[CyB/e], (33)

which we will verify at the end. Then, by Lemma [10] we have E[|Y; ,[*™] < (C1¢)*™(2m)™ =
(2C%¢%m)™. Then, by Cauchy-Schwarz, we have

E(|Y; " 1{[Yin| > BY) < \/E[Y; nl*] - B(|¥; 0| > B)
< (2C7¢°m)™ - exp(—cB?/2¢?)
Using a; = 6B - 3™~7, we have ZT:O a; < 9B -3™. It follows that

E[Y ajlmn@1psn)l] < (3o a;) - E sup [wa@/ 1)l
j=0

§j=0 JEIM]

<9B-3™-2(2C%¢*m)™ - exp(—cB?/2¢?)
< 18exp (logB + mlog(6C2¢%*m) — cB2/2C2>

< 18exp (logB +4[CyB/¢] 10g(24012C2 (C’gB/d) - CB2/2C2>.
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Since B? grows faster than B log B, the RHS can be made < ¢ for B > By((, €) for some Bz ((, )
large enough. For this choice of B, we have

m
E sup |@,Qe] < Z%E\wn(l‘j)\ +e
]

Le[M =0

m

< Z a; var(% z”: Yljn) +e.
j=0

i=1
By assumption
1 n ) m
Ogagxmvar(ﬁ Zan) < 5/(2 a;j) (34)
=1 7=0
for sufficiently large n. This gives Esup,c(, |wn Q| < 2¢. Putting the pieces together, we have

E sup |w,f| <2+ 2+ 2 = 6e.
f€Lipg

Allin all, taking B = max{3, By(¢), B1(¢), B2(¢,¢)}, and n large enough so that (32)) and (33) are
satisfied for the chosen B, and @ holds, we obtain EW7 (uy,, fin) < 8c. The proof is complete. [J

Lemma 12. Let T}, be the kth Chebyshev polynomial, and let [T}]; be the coefficient of 27 in Ty ().
Then, |[Tx]o| < 1 and

max |[T%);| < (1 +Vv2)* < 3k
1<j<k

Proof. The first part is clear, since [T}]o € {0, 1}. For the second part, from the recurrence relation
Tipi1(z) = 22Ty (x) — Ti—1(x), we have
[Tl < 2/[Thlja ]+ |[Th-15l-

Assuming the result holds as maxi << |[Tk];| < c* for some constant ¢ and for all T}, r < k, we
have |[Ti+1];] < 2 c¥ + cF~1. Then, if 2¢* + =1 < ¢**+1, the result follows by induction. But
this holds for ¢ > 1 4 v/2. The proof is complete. O

Lemma 13 (Chebyshev—Jackson approximation). Let B > 3. Then, for any f : [-B,B] — R
1-Lipschitz with f(0) = 0, there exists a polynomial P(x) = Z;n:o c;jz?, withm € 4N, such that
18B

sup [f(x) = P(z)| < —, lg| < 6B -3™79, forallj > 0.
z € [-B,B] m

Proof. Consider an L-Lipschitz function g on [—1, 1] with g(0) = 0. Then, for each m € 4N, there
is a polynomial of the form

Qm(z) = Z Aem@k (9) Tk ()
k=0

where A\, are derived from a Jackson kernel, satisfying 0 < Ay ,, < 1 and ax(g) are the Chebyshev
coefficients of g, such that

18L 8/mL
wp l9(e) — Qu() < o lan() < YITE k.
z€[—1,1] m

See Facts 3.2 and 3.3 in [5]]. The Chebyshev coefficients are given by

2 (1 g(x)Ty(x
al) = > [ LB
™ J_1 1—2x
and for & = 0, the same fomrula holds with 2/7 replaced with 1/7. For k = 0, using g(0) = 0 so

that |g(x)| < L|z| for all z € [—1, 1], and Ty (z) = 1, we have

aote) < L [ HEL gy 2L
olg S P -

de, k>1,
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Thus a crude upper bound that works for all & > 0 is |ax(g)| < 2L.

Let a,m = Ai.mar(g) and note that |ay ,,,| < 2L for all k£ > 0, by the above discussion. Rewriting
Qm(z) = Y1 bja’, one has bj = Y7 - ag m[Tk]; where [T}]; is the coefficient of 27 in T} ().
It follows that
bl <> 2L-3¥<2L-3m) 3™ <or.3m
k=j k=j

<6L-3M

g1 =03

forall 7 > 0.

If fis 1-Lipschitz on [ B, B] with f(0) = 0, then g(x) = f(Bx) is B-Lipschitz on [-1, 1] with
g(0) = 0. Let Q,, be the above polynomial for g, and let P(x) = Q.,(x/B) = Z;nzo(bj /B3)z? =:
Z;"’:O cjz?. Then,

3m e
assuming B > 3. We also have sup,¢[_p p| |f(z) — P(x)] = SUP,c(-1,1] lg(z) — Qm(x)] < %.
The proof is complete. O

F Remaining proofs

F.1 Proof of Lemmal6]

Let W (4) be the set of directed, length & walks starting at node ¢ € [n]. We consider r-tuples
of walks called walk sequences where w € Wy (i) gives w = (w®),_; with w® € W;(i). We

define the last vertex projection p : Wy (i) — [n] and walk products A, = ng:l A;,j, with
w* = ((ig, je))f1-
Relating back to A, o, let

with z := X 6. Then
weWJ (i)

Further let [w] and [w] be the set of unique edges and vertices, respectively, found on a walk w. A
walk sequence w is said to be overlapping if for every s € [r] there exists a distinct s" € [r] such that
[w*] N [w*'] # @. Walk sequence which are not overlapping have p(w) = 0. For this reason we
define the following walk sets

Nto(i) = {w € W] (i) : w overlapping, |[w]| =¢, |[w]| = v} (35)
where [w] := J,_, [w*] and [w] = J_, [w*].

The walk sets {N;.+ (i) }+,, form a partition for W} (i) with2 < v <t + land 1 <t < ¢, where
t. <rk — [r/2]. This gives the sum equivalence

te t+1
Yooow)=> > > o(w),
weWy (1) t=1 v=2wWEN, 1 (i)

which gives fine-grained control of p(w) for the specific walk sets NV, ¢ , (7).

To prove the result, start by expanding the variance of the r-empirical moment of ~,

var (2 > Ag) = S EIALAG o] ~ BIALJE[A o] (36)
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By the n~2 scaling over i, 4’ € [n], it suffices to show
Cov (AL, Aj) = EIAT4A o] — E[ATJE[A) 0] S 17,
for every i,4' € [n].

Introduce the new notation for walk-sequence pairs (w, w)
o(w, @) = ]E{ ( ] (Aw - E[Aws})zp(ws)) ( [[Aa - E[A,T,S])xp(m) }
s=1 s=1

Then, the walk-linearized covariance expansion is

r T 1 ~ ~
Cov(A] g, Ay ) = S ko1) Z o(w,w) — o(w)o(w). 37
Yn (w, @)W (i) x Wi (i)

We are interested in the case o(w, w) does not factorize as o(w,w) = o(w)o(w). Collect walk

pairs under the concatenation notation w|w = (w?,... , w", w', ..., w") and define the walk set

Mt = {(w,w) € Wi (i)xW (i) : w|w overlapping, |[w|w]| =t, |[w|w]| = v, |[w]ﬂ[1(773]2\3)> 0}.

The last condition of (38) filters out walk pairs (w, w) which factorize as o(w, w) = o(w)o(w).
Similarly, if w|w is not overlapping o(w, w) = 0 and, consequently, o(w)o(w) = 0.

Let’s start with the case ¢ = ¢’. By the set construction in (38), M, ; ,(i,7) C Nayr.(i). So
|IM,. ¢ (2,7)] < |Nayt(7)] and by the counting result [18, Lemma 13]

.. n—1
Moalivi)] < (0= 1217 1), (39)
A similar argument can be made when 7 and 7’ are distinct. By fixing ¢ and ¢/, we are left selecting
("~2) unique vertices with a walk selection factor of (v — 1)>. Altogether,

M) < 0= 02 (1 22). 0)

For bounds on v and ¢, we note that u := w|w is an overlapping walk sequence, which by the partition
result [[18} Lemma 12], means it must have, at most, |[u]| < 2rk — r unique edges. Similarly, the
number of unique vertices bounds as |[u]]| < |[u]| + 1 since the discrete graph ([u], [u]) associated
with w is necessarily connected by the rooted nature of the walks in the sequence w (walks must start
at ¢ or i’) and the last condition of (38).

Next, we consider the bound |o(w, w)| < 2 max{|o(w, w)|, |o(w)o(w)|}. Introduce the notation,
o1(w) = E[[]._;(Aws — E[Aw:])] and o2(w) = E[[]._; Zp(ws)]. We analogously define,
01(w,w) = g1 (w|w) and g2 (w, w) = go(w|w). From [18, Lemma 10],
|01 (w) o1 (w)] < 2% (v /n) PIHIF < 220 (1, /)19 and [y (w, )| < 2% (v /) 1]
and

|02(w)02(W)| < (2Vrk0)*" and  [oa(w, w)| < (2v/7ho)*"

where £ is defined as in Proposition Let t, = r(2k — 1) then

t t+1
Cov (Al 4, Af ) < e 3D (WVrEe) - I Mo (6, 8)| (v /n)' 41)
t=1 v=2
For the case i = i/, cardinality and | M,.; ,(i,1)| < n*~! < nf by (39).
t t+1
Cov(Afy, 7(2k ) ZZ (4V/rrko)™" - v,
t=1v=2
vk
N k1)

29



where the last line follows from the fact r and k are fixed relative to n. Similarly for the off-diagonal
case of i # ', |M,¢,(i,7')] Sn?=2 < n'~! by @0) and

te t+1 pt=

. 1 Z
o 35 (4R - m,v(z,Z’)l(Vn/n)tﬁm'*'
n

t=1v=2 n

Noting ¢, = r(2k — 1), this proofs the claim that Cov (A7 ,, Aj ) < n~ 7},

F.2 Proof of Lemmal/7|

Shown in [[18] the dominant term in a walk-based for Ai,g is given by the proxy term

r/2
i—hi(r) = (’I’ — 1)” Z le]p pz]e eE[A]k_lE[X]9)2

q=
(Jz)eepw\{ 0

where P[Tn/]i (i} 1s the set of coordinate distinct (r/2)-tuples on [n] \ {i}. Specifically, it was shown
for r € 2N and v, sufficiently large

|E[A] o] — v, TR/ TR (r)| < O (r)al (n ™ + v, °) (42)

where € can be used to parameterize the separation of higher- and lower-order terms Ai,g [18, Lemma
14 and Lemma 18].

To obtain the limiting closed form, we utilize |[n]"/? \P[T/]i{ I <C(r) n"/2=1 and

r/2

Z Hpuz = Pij)( CE[A]k_lE ( Z Pij (1 — pij)( E[A]k_lE[X]9)2>

(Je)e€ln]m/2 ¢=1 j€ln]

((E[A]*EX]0)T (v V) (E[A]*E[X]0))

r/2

r/2

For brevity, let f;(j) = (pij/vn)(1 — pij)(e] E[A/vn]*~TE[X]0)?. Then, noting P[:L/K{i} C [n]"/2,

v, TR TR () — (= 1)1 |[VE[A]F T E[X]6]5]

r/2 r/2
oo S Tlew- x> e
(32)267’[,{]\{ ) (je)e€[n]7/2 a=1

< (= DU\ PR | (e £:(5))772

Let Wy_1(j) be the set of k — 1 walks on [n] starting at j. Then, with W2, (j) = Wj_1(j) %
Wi-1(3)

k—1

5iG) = s /va) (1 =) Y H( (X0)p(ae)] [T (s /)

wewzfl(J)s 1 /=1

Recall that E|(X6);| < z. by assumption. Since [Wj_1(j)| < |[n]*~1| = n*~Land p;; /v, < 1/n
we have
f:(j) < 2%/n for every i, j € [n].

Altogether, this yields the inequality
vy AT = (r = DU VE[A]FTEIX]O)3] < O(r)ain
where constants not depending on r or x, have been absorbed in C. Noting that n=! < ¢ for

0 < € < 1 and piecing together with (@2) produces the desired bound. "
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F.3 Proof of Lemma[3

Similar to the proof Lemmal6|we begin with a walk analysis. Define the simple walk partition element
Niw(i) == {w € Wi(i) : |[w]| =t, [[w]| = v}. Note that, in this case, Ny ,(¢) no longer has an
overlapping constraint. As such,

k t+1

E[(3(".0)] = kZZ D E[ALJE[(X0)yw)]

- 2 weN; o (i)

where notation 4,, = Hif:l A;,j,. Similarly define (E[A]),, = Hif:l E[A;,;,] for walks on the
expected matrix E[A]. Note that, when t = v — 1 = k, the edges of w are all unique and the
expectation factorizes as

Yo EAEXOyw] = D (EADWE[(X0)pwuw)].
wWEN k41 (1) wWEN k41 (1)

Therefore,

o~
T
A

k
= (k) 1
E[(6; .00 — (v 0)=— > Y (ElA] — (E[ADW)E[(XO)pw)] - 1o # k+1}.
" =1 v=2 wEN; . (4)
Setting » = 1 in Lemma 13 of [[18]] gives the counting bound 22112 IV (i)] < b*°(en)’. Finally,
noting that E[A,,] — (E[A])w < 2(v,,/n)1*!,
ko1

vk ZZ New (D) (v /)" - W # k + 1}

" ot=1v=2

IELG,",6)] — (v, 0)]]

\ /\

-1

1 1 k t+1
== Z N ()l /) 2 + = Z 3 NG ()] (v /1) 2
noy=2 n

t=1 v=2

IN

< Clk)zay, .
Since the above holds for any i € [n] and any § € S9~1,

—(k) (k) _
max [E(] ~ 77 || = max max |(BF{"] ~17),6)ll2 < Clkar; .
i€[n] €[n] esd—1

G Joint Wasserstein Distance and the Class-Conditional Supremum

In Theorem|[I] we state that the joint empirical distribution converges in 1-Wasserstein distance and
then provide a related, stronger-looking class-conditional convergence statement (T1). This note
formalizes the relationship between these two quantities, showing that the latter is a tractable upper
bound on the former.

Consider the joint space [L] x R? with the metric d((z1, 1), (22,y2)) 1= 1{z1 # 22} + |ly1 — y2||2.
The true joint 1-Wasserstein distance is the supremum of the difference in expectations over all
1-Lipschitz functions F : [L] x R? — R.

A function F' is 1-Lipschitz with respect to this metric if and only if its component functions,
fe(y) := F(£,y), satisfy two conditions: (1) Each f; : RY — R is 1-Lipschitz. (2) The collection
{fe}£_, is jointly coupled by the constraint | fo, (y1) — fe, (y2)| < 1+ |ly1 — yal|2 for any ¢4 # £o.

In contrast, the class-conditional expression in Eq. (TT) takes its supremum over all possible collec-
tions of 1-Lipschitz functions { f;} without enforcing the second joint constraint.

The set of test functions for the true joint W; distance is therefore a strict subset of the test functions
for the class-conditional expression. Consequently, the class-conditional expression provides a valid
upper bound on the joint 1-Wasserstein distance. This justifies our proof strategy: showing that this
upper bound converges to zero is a sufficient condition to prove the desired joint convergence.
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Distribution of Poly-GNN Features for 2-Class SBM

0.30 1 I Empirical
—— Theoretical

—10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
f(k)

Figure 5: Empirical distribution of a two-class CSBM with exaggerated class proportions and edge probabilities.
Both mixture components are centered at zero with a visible difference between the peak widths and heights of
each component.

H Simulation Details for Figures

This appendix details the experimental setups for the figures presented in the main text. Specific
parameters for these and all other figures are provided in the subsequent subsections.

H.1 Details for Figure[l]

The plots in Figure[I] were simulated from a 1-class SBM, commonly referred to as an Erd6s—Réyni
graph, with probability parameter p = v,,/n. Depth k = 3 was used with unit, univariate features
X; = 1foralli € [n]. A grid search was performed on graph sizes n € {300, 3000, 30000} with
expected degrees v, € {2,4,16}. These graph are very sparse, yet they approach Gaussianity fairly
quickly. Particularly, the plot associated with v,, = 16 has nearly symmetrical tails and a bell curve
shape.

H.2 Details for Figure[2]

The plots in Figure 2] were generated using a 3-class CSBM with n = 8192 nodes. Class proportions
were m; = 0.25,m9 = 0.45, 13 = 0.30, average degree parameter was v,, = /8192, and the inter-
04 1 1
community probability scaling matrix was B = (v, /n)- < 1 04 1 > Initial features X; where
1 1 04

d = 2 dimensional and generated as X; ~ N(M,, .,0%I5) with 02 = 0.25 and M; . = [2,2]%,
My, = [-1,-3]T, and M3 . = [-1,0]7.

Cross entropy training was run for a single linear classifier layer for 10 epochs with learning rate 10
on the SGD optimization. Although small differences are expected at later time steps, Figure 2] still
shows good agreement between the empirical and theoretical gradient average.

H.3 Details for Figure[3]

The plots in Figure [3| were generated using a 2-class SBM with n = 32000 nodes. Class proportions
were m1 = 0.4,m = 0.6, average degree parameter was v, = 30, and the inter-community

probability scaling matrix was B = (v, /n)- (Of) 015). Initial features X; were d = 2 dimensional

drawn from mean vectors M; . = [2,2]T and M3, = [-1, —2]. Quadratic discriminant analysis
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was performed using the sample statistics of Egk) with k = 2. Cross-entropy training consisted of
single linear layer trained for 5000 epochs at learning rate 0.5 with a SGD optimizer

H.4 Details for Figure

The plots in Figure [d] were generated in the same setting as Section [H.3| with the exception of a higher

average degree v,, = 35. The plots show Kernel Density Estimates (KDEs) of the 85“ features for
k € {2,4,6}. The KDEs were computed using Gaussian kernels with bandwidth selected by Scott’s
rule.

H.5 Details for Figure 5]

The plot of Figure [5] was generated from a 2-class SBM with 32000 nodes. Class proportions
were m; = 0.9, m = 0.1, average degree parameter was v,, = /32000, and the inter-community

probability scaling matrix was B = (v, /n)- 01 (i 201 ) . Initial features X; were d = 1 dimensional

and generated as X; ~ N (M,,,0?) for M; = 1072, My = =102 and 0% = 10~*.

For the plot of Figure [5| we simulate 100 CSBM graphs each at 32000 nodes. From these 100
replicates, we obtain an estimate for E[¢(*)] with k& = 3. The final figure is a 100 bin histogram of
the 3200000 empirical elements with a theoretical density given by our theory drawn on top.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In our abstract we highlight a feature CLT and a potential explanation for GNN
oversmoothing. Both points are addressed in Sections [3|and 4]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: Limitations were not discussed but could revolve around the question of
generative model. It remains an open question whether Poly-GNN feature CLTs hold for
non-community-based graphs.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Proofs are deferred in the main text and provided in full in the supplement of
the paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Simulation settings and parameters necessary to reproduce the plotted figures
are provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Code is not instrumental to understanding our result. Plots are supplementary
to the theoretical results shown in this paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: No benchmarking was done for this paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Figures provided are for visual aid. No tables or statistical tests were provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Computer resources included one local machine with 64Gb of RAM and a
Nvidia 4090 GPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our theoretical results do no have direct causes for harm or ethical concerns.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: This did not seem relevant to the work we presented.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No model is released as part of this paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: No external models or assets were used for this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There are no new assets introduced by this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing was used for this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No participants were studied.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: Core methodology and proofs were not changed due to an LLM
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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