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Abstract

We consider the empirical distribution of the embeddings of a k-layer polynomial
GNN on a semi-supervised node classification task and prove a central limit
theorem for them. Assuming a community based model for the underlying graph,
with growing average degree νn → ∞, we show that the empirical distribution of
the centered features, when scaled by ν

k−1/2
n converge in 1-Wasserstein distance to

a centered stable mixture of multivariate normal distributions. In addition, the joint
empirical distribution of uncentered features and labels when normalized by νkn
approach that of mixture of multivariate normal distributions, with stable means and
covariance matrices vanishing as ν−1

n . We explicitly identify the asymptotic means
and covariances, showing that the mixture collapses towards a 1-D version as k is
increased. Our results provide a precise and nuanced lens on how oversmoothing
presents itself in the large graph limit, in the sparse regime. In particular, we show
that training with cross-entropy on these embeddings is asymptotically equivalent
to training on these nearly collapsed Gaussian mixtures.

1 Introduction

Graph Neural Networks (GNNs) are now a key tool for machine learning on graphs. Their success
is largely due to the graph convolution operation—also known as message passing or neighbor
aggregation—where node features are updated by gathering information from their graph neighbors
[13, 15, 23]. This process helps GNNs learn powerful embeddings for tasks like node classification
and regression. For graphs with community structure, theory shows that even one aggregation step
can improve feature separation between classes by a factor of

√
νn, where νn is the average node

degree [2].

Analyzing deep GNNs with multiple aggregation layers (k > 1) is important but theoretically difficult.
Unlike single aggregations, the resulting features, ϕ(k), lose desirable properties such as entry-wise
independence. To study these multi-aggregated features, researchers have used techniques like
walk-based decompositions, which classify feature contributions by underlying graph walk patterns
[7, 18]. For community-based graphs, these methods suggest that while feature cluster centers can
separate at a rate of νkn, their standard deviation often grows as νk−1/2

n .

This paper focuses on Polynomial GNNs (Poly-GNNs). In these models, features ϕ(k) = AkX are
created by applying the adjacency matrix A, k times to initial node features X ∈ Rn×d, without any
non-linear functions in between. These features ϕ(k), when passed through a final linear layer W ,
produce classification scores. Poly-GNNs, despite their simplicity, are not just theoretical ideas. They
form the basis of, or are similar to, several practical and effective GNNs like APPNP [16], GPR-
GNN [8], and models using Chebyshev or Jacobi polynomials [10, 20]. Such models have achieved
strong results, sometimes state-of-the-art, on standard benchmarks [19]. Therefore, understanding
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Poly-GNN features offers valuable insights into multi-hop aggregation and the behavior of these
common GNN types.

1.1 Overview of Our Contributions

In this paper, we undertake a detailed asymptotic analysis of the embeddings generated by k-layer
Poly-GNNs on community-based graphs as the number of nodes n grows. To stabilize these features,
we consider two types of normalized embeddings: the degree-normalized features ϕ

(k)

i := ϕ
(k)
i /νkn,

and the centered and scaled features ξ(k)i :=
√
νn(ϕ

(k)

i − E[ϕ(k)

i ]). Here, νn is the average degree
parameter which we assume tends to infinity. One of our main results is a Central Limit Theorem
(CLT) demonstrating that the empirical distribution of ξ(k)i converges in 1-Wasserstein distance to a
centered mixture of multivariate Gaussian distributions.

Building upon this, we further demonstrate that the joint empirical distribution of the uncentered,
degree-normalized features ϕ

(k)

i (which are directly used in downstream classifiers) and their cor-
responding true labels zi also converges in the 1-Wasserstein distance. Specifically, as n → ∞
and νn → ∞, this distribution approaches that of a random pair (Z, Yn) where Z ∼ π (the limit-
ing class proportions) and Yn conditioned on Z = ℓ follows a multivariate Gaussian distribution
N(µℓ,Σℓ/νn). A core contribution of our work is the precise analytical characterization of these
limiting class means µℓ and class-conditional covariance matrices Σℓ, expressed in terms of the
graph’s community structure and initial feature means.

This characterization has profound implications for understanding the training dynamics of GNNs.
We prove that training a linear classifier on these Poly-GNN features ϕ

(k)

i using the standard cross-
entropy (CE) loss converges to the equivalent optimization problem on this limiting Gaussian mixture.
This convergence holds uniformly for the loss function, the gradient path during optimization, and the
final learned classifier weights (under mild conditions on weight norms), due to the Lipschitz nature
of the CE loss and its gradients with respect to the features. This result provides a strong theoretical
basis for the behavior observed when training linear classifiers on GNN embeddings.

Furthermore, our explicit forms for µℓ and Σℓ reveal a clear and precise mechanism behind the
well-known phenomenon of GNN oversmoothing. The mean vectors µℓ involve terms of the form
(JkM)T , while the covariance matrices Σℓ involve (Jk−1M)T , where J is a matrix derived from the
graph’s inter-community edge probabilities and class proportions, and M represents the initial class
feature means. As the GNN depth k increases, the repeated matrix exponentiation Jk (and Jk−1)
acts like a power iteration. This causes both the class means and the dominant eigen-directions of the
class covariances to align with a low-dimensional (often 1-D) subspace determined by the leading
eigenvector(s) of J . Consequently, the feature distributions for different classes, initially potentially
well-separated in d dimensions, collapse onto this common, typically 1-D, subspace. This results
in a degenerate, poorly separated Gaussian mixture, thereby degrading classification performance.
Our analysis, thus, provides a nuanced, quantitative view of oversmoothing in the sparse, large-graph
limit.

Previous Literature The related literature for multi-hop aggregation can be broken into three cate-
gories: distributional characterizations, oversmoothing phenomenon, and performance improvements
on select learning tasks, such as classification or regression.

For distributional characterizations, [22] is closest to our work. In their paper, the author’s rely on the
setting that ϕ(k) is exactly component-wise Gaussian for all n. We note this cannot be the case as for
ϕ
(1)
i =

∑
j AijXj with Bernoulli Aij and normal Xj , ϕ(1)

i is a (scaled) mixture distribution.

In the vein of oversmoothing, works [6, 17, 21] show how properly normalized aggregations can
still oversmooth in the presence of non-linearities. Oversmoothing in this case can be seen as a
consequence of the power iteration collapsing the range onto the Perron eigenvectors of A. The works
[6, 17] show that non-linearities like ReLU do not help oversmoothing since the ReLU operator is
also contractive under the operator norm [12]. In [21] the authors extend these results to also include
attention-based non-linearities. Outside of [17], which considers the effects of oversmoothing on
a L = 1 community graph, all other works assume A is a deterministic graph. Our work differs
fundamentally by analyzing a stochastic graph model in the large-graph limit. While prior work
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often explains oversmoothing via power iteration on a fixed adjacency matrix, showing that feature
means collapse, our CLT reveals a more powerful mechanism. Building upon our previous work of
matrix moment analysis for community-based graphs [18], we prove that the feature covariance also
collapses onto the same unfavorable, low-dimensional subspace as the means. This provides a much
stronger characterization of feature degeneracy.

With respect to improving task performance, works [3, 14] show how multi-hop features can improve
downstream learning tasks. Between the two works the generative formulation differs, [3] assumes a
(p, q)-SBM with mixed mean feature representations while [14] assumes a low rank, latent variable
model which yields dense observed graphs. The losses considered by [3, 14] are Lipschitz, high-
lighting the importance of understanding behavior of multi-hop features under the 1-Wasserstein
metric.

2 Preliminaries and Model Setup

In this section, we formally define the Polynomial GNN (Poly-GNN) architecture, introduce the
normalized features central to our analysis, describe the community-based graph model, state our key
assumptions, and briefly define the Wasserstein distance used to quantify distributional convergence.

2.1 Poly-GNNs and Feature Definitions

We consider a simple yet powerful class of Graph Neural Networks known as Polynomial GNNs (Poly-
GNNs). Given an undirected graph with n nodes, represented by its adjacency matrix A ∈ {0, 1}n×n,
and initial node features X ∈ Rn×d, a k-layer Poly-GNN computes node embeddings, or features,
ϕ(k) ∈ Rn×d through k successive aggregations:

ϕ(k) = AkX. (1)

The i-th row of ϕ(k), denoted ϕ
(k)
i ∈ Rd, represents the embedding for node i after k layers of

aggregation.

For our asymptotic analysis, we work with normalized versions of these features. Let νn be the
average degree parameter of the graph, which we assume grows with n (see Assumption 1). We
define the degree-normalized features as:

ϕ
(k)

i :=
ϕ
(k)
i

νkn
, i = 1, . . . , n. (2)

These features ϕ
(k)

i are often the direct input to a downstream classifier. In practice, the unknown
parameter νn is not required, as it can be reliably replaced by the observed average degree.

To establish a stable limiting distribution under a Central Limit Theorem, we further define the
centered and scaled features:

ξ
(k)
i :=

√
νn

(
ϕ
(k)

i − E[ϕ(k)

i ]
)
, i = 1, . . . , n. (3)

The empirical distribution of these features, Pn := 1
n

∑n
i=1 δξ(k)

i
, where δx is a point mass at x, will

be a primary object of study.

2.2 Community-Based Graph Model

We assume the graph and its node features are generated from a community-based model. Let
z = (zi)

n
i=1 ∈ [L]n be a vector of latent node labels, assigning each node i to one of L communities

or classes. The graph structure and initial feature distributions are conditional on these labels.

Specifically, we adopt the Contextual Stochastic Block Model (CSBM) [11]. The adjacency matrix A
is generated such that edges are conditionally independent given z, with probabilities:

Aij ∼ Bern(νnBzizj/n) for i ̸= j, and Aii = 0, (4)

where B ∈ [0, 1]L×L is a symmetric matrix of inter-community edge probability scalings. The
parameter νn/n represents the average edge density scale.
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The initial node features Xi ∈ Rd are assumed to be conditionally independent given zi. Their
expectations are determined by their class membership:

E[Xi | zi = ℓ] = Mℓ,·, (5)

where M ∈ RL×d is a matrix whose ℓ-th row, Mℓ,·, is the mean feature vector for class ℓ. This can
be written compactly as E[X] = ZM , where Z ∈ {0, 1}n×L is the one-hot encoding matrix of the
labels z, i.e., Ziℓ = 1{zi = ℓ}.

We define π = (π1, . . . , πL)
T as the vector of limiting class proportions (see Assumption 3). Let

Π = diag(π1, . . . , πL) be the diagonal matrix of these proportions. A key matrix in our analysis is
J ∈ RL×L, defined as:

J = BΠ. (6)
This matrix captures the interplay between inter-community connectivity B and class sizes Π.

2.3 Assumptions

Our theoretical results rely on the following assumptions:
Assumption 1 (Degree Growth). The average degree parameter νn → ∞ as n → ∞, and Bℓℓ′ ≤ C
for some constant C, implying that the expected degree of any node i,

∑
j ̸=i νnBzizj/n, is O(νn).

Assumption 2 (Sparse Graph). The graph is sparse, meaning νn = o(n).
Assumption 3 (Cluster Convergence). For each class ℓ ∈ [L], let Cℓ = {i ∈ [n] : zi = ℓ} be the set
of nodes in class ℓ. We assume there exist πℓ > 0 such that πℓ − |Cℓ|/n = o(1), and

∑L
ℓ=1 πℓ = 1.

Assumption 4 (Feature Bounds). The initial node features Xi are sub-gaussian. Specifically, for any
unit vector u ∈ Rd, (Xi − E[Xi])u ∼ SG(σ2) for some σ2 > 0 uniformly for all i, n. Furthermore,
their expected norms are uniformly bounded: lim supn≥1 supi∈[n] E∥Xi∥2 ≤ x∗ for some x∗ ≥ 0.

Of the listed assumptions, Assumptions 1 and 3 are necessary as, without these, a limiting Gaussian
distribution cannot be obtained. See Figure 1 for more details on the case of L = 1. Assumption 4 is
mild and subsumes a large class of feature distributions. Assumption 2 is a simplifying one. Our CLT
framework extends to the dense regime (νn = Ω(n)), but the limiting covariance structure becomes
more complex. As detailed in Appendix A.1, the variance of the aggregated features decomposes
into terms driven by graph randomness (A) and initial feature randomness (X). In the sparse setting,
graph randomness dominates, causing the initial feature covariance to be negligible in the limit
(Appendix A.3). In the dense case, this feature-related noise term persists, leading to a different
limiting covariance. We focus on the sparse case as it is representative of many large-scale networks.

2.4 Wasserstein Distance

To measure the distance between probability distributions, we use the 1-Wasserstein distance, denoted
W1(P,Q). For two probability measures P and Q on Rd, the Kantorovich-Rubinstein duality provides
a convenient definition:

W1(P,Q) = sup
f∈Lip(1)

∣∣∣∣∫ fdP−
∫

fdQ
∣∣∣∣ , (7)

where Lip(1) is the class of all 1-Lipschitz functions f : Rd → R, i.e., functions satisfying
|f(x) − f(y)| ≤ ∥x − y∥2 for all x, y ∈ Rd. We also write Pf =

∫
fdP for the expectation of

f under P. Convergence in W1 implies weak convergence and convergence of first moments. Its
connection to Lipschitz functions makes it particularly relevant for analyzing learning algorithms
with Lipschitz loss functions.

3 Asymptotic Distribution of Poly-GNN Embeddings

In this section, we present our main theoretical results concerning the asymptotic distribution of
Poly-GNN embeddings. We establish Central Limit Theorems (CLTs) for both the degree-normalized
features ϕ

(k)

i (jointly with their labels) and the centered-and-scaled features ξ(k)i . We then outline
the key steps involved in proving these theorems, highlighting the key intermediate lemmas and
propositions.
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Figure 1: Comparison of the ξ(k) distribution for k = 3 across different expected degree Erdős–Réyni graphs.
As graph size increases, the overall histogram resolution is improved but this does not qualitatively change the
shape of the histogram. That is, growing degree νn → ∞, is a neccesary condition for ξ(k) to be Gaussian.

3.1 Main Central Limit Theorems

Our first main result characterizes the joint limiting distribution of the true node labels zi and the
degree-normalized Poly-GNN features ϕ

(k)

i . These features are typically used for downstream
classification tasks.
Theorem 1 (CLT for Degree-Normalized Features and Labels). Let (A,X) be a community-based

graph satisfying Assumptions 1–4. Let ϕ
(k)

i = ϕ
(k)
i /νkn be the degree-normalized k-layer Poly-

GNN features. Define the limiting class means µℓ ∈ Rd and class-conditional covariance matrices
Σℓ ∈ Rd×d as:

µℓ := (JkM)T eℓ, (8)

Σℓ := (Jk−1M)T diag(eTℓ J)(J
k−1M), (9)

where eℓ is the ℓ-th canonical unit vector in RL, J = BΠ, and M contains the initial class feature
means. Let P̃joint

n be the empirical distribution of pairs (zi, ϕ
(k)

i ): P̃joint
n = 1

n

∑n
i=1 δ(zi,ϕ

(k)
i )

. Let

Gjoint
n be the probability distribution of a random pair (Z, Yn) where Z ∼ Categorical(π1, . . . , πL)

and, conditioned on Z = ℓ, Yn ∼ N(µℓ,Σℓ/νn). Then, as n → ∞:

E
[
W1

(
P̃joint
n ,Gjoint

n

)]
→ 0. (10)

Furthermore, this convergence holds in the stronger class-conditional sense: for any R > 0,

lim
n→∞

E

{
sup

f1,...,fL∈Lip(R)

∣∣∣∣∣ 1n
L∑

ℓ=1

∑
i∈Cℓ

fℓ(ϕ
(k)

i )−
L∑

ℓ=1

πℓEY∼N(µℓ,Σℓ/νn)[fℓ(Y )]

∣∣∣∣∣
}

= 0. (11)

Theorem 1 shows that for large n and νn, the features ϕ
(k)

i behave as if drawn from a Gaussian
mixture where each component ℓ is centered at µℓ and has a covariance Σℓ/νn that vanishes as
νn → ∞.

Our second main result provides a CLT for the centered and scaled features ξ
(k)
i , showing they

converge to a stable (non-degenerate variance) Gaussian mixture.
Theorem 2 (CLT for Centered and Scaled Features). Under the same conditions as Theorem 1, let
ξ
(k)
i =

√
νn(ϕ

(k)

i − E[ϕ(k)

i ]) be the centered and scaled features. Let Pn = 1
n

∑n
i=1 δξ(k)

i
be their

empirical distribution. Let G be the centered Gaussian mixture distribution:

G =

L∑
ℓ=1

πℓ N(0,Σℓ), (12)
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where Σℓ is defined in Eq. (9). Then, as n → ∞:

E [W1(Pn,G)] → 0. (13)

Furthermore, this convergence also holds in the stronger class-conditional sense: for any R > 0,

lim
n→∞

E

{
sup

f1,...,fL∈Lip(R)

∣∣∣∣∣ 1n
L∑

ℓ=1

∑
i∈Cℓ

fℓ(ξ
(k)
i )−

L∑
ℓ=1

πℓEY∼N(0,Σℓ)[fℓ(Y )]

∣∣∣∣∣
}

= 0. (14)

Theorem 2 establishes that after appropriate centering and scaling, the Poly-GNN features converge
to a mixture of Gaussians, each component having a non-vanishing covariance Σℓ.

We note that Theorem 1 may be of more interest in practical scenarios, since the uncentered features
do not require estimation of the feature mean E[ϕ(k)

]. Furthermore, in settings where Assumption 1
and 3 hold, the average degree d becomes a reliable estimate of normalization scale since d ≍ νn.

3.2 Proof Outline and Key Steps

The proofs of Theorems 1 and 2 share a common foundation and proceed in several steps. We outline
the general strategy here, focusing on the convergence of Pn to G (Theorem 2). The argument for
Theorem 1 builds on Theorem 2 with adjustments for the non-zero means and the ν−1

n scaling in the
covariance. The full proofs are provided in Appendix A.

The overall strategy involves two main parts for establishing E[W1(Pn,G)] → 0:

1. Show that the empirical measure Pn concentrates around its expectation Pn := E[Pn], i.e.,
E[W1(Pn,Pn)] → 0.

2. Show that the expected empirical measure Pn converges to the target Gaussian mixture G in
W1 distance, i.e., W1(Pn,G) → 0.

The argument for class-conditional convergence (e.g., Eq. (11)) builds upon this by considering
per-class empirical measures and leveraging the convergence of class proportions |Cℓ|/n → πℓ.

The key technical steps involve analyzing the moments of the features:

Step 1: Moment Analysis for General Graphs This step characterizes the behavior of feature
moments without yet imposing the full community structure, relying mainly on Assumptions 1, 2,
and 4.

• The centered, un-normalized features ϕ(k)
i − E[ϕ(k)

i ] are decomposed into two terms: ∆̊i (due to
graph randomness) and Λ̊i (due to initial feature randomness):

ϕ
(k)
i − E[ϕ(k)

i ] = ∆̊i + Λ̊i. (15)

Normalizing appropriately, ξ(k)i = (∆̊i + Λ̊i)/ν
k−1/2
n .

• The term Λi := Λ̊i/ν
k−1/2
n is shown to be asymptotically negligible under our sparsity assumption

(see Proposition 2 in Appendix A.3). Thus, ξ(k)i is asymptotically equivalent to ∆i := ∆̊i/ν
k−1/2
n

in terms of its contribution to moments (see Lemma 5 in Appendix A.3).
• The moments of ∆i,θ := ⟨∆i, θ⟩ for any unit vector θ ∈ Rd are analyzed.

– Odd moments: E[∆r
i,θ] → 0 for odd r (this follows from the moment bounds in Proposition 3,

specifically the term ν
p/2−⌈p/2⌉
n , which is ν−1/2

n for odd p = r).
– Even moments: E[∆r

i,θ] → (r−1)!!·σ̃r
i,θ for even r, where σ̃2

i,θ := ∥ViE[A/νn]
k−1E[X]θ∥22

(see Lemma 7 in Appendix A.3).

• The expected normalized mean E[ϕ(k)

i ] is shown to converge to a limit γi = eTi (E[A/νn])
kE[X]

(see Lemma 3 in Appendix A.2).

Step 2: Specialization to Community-Based Graphs Here, the community structure (Assumptions 3
and the CSBM formulation) is used to refine the limiting moments.
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• The limiting mean γi for a node i ∈ Cℓ converges to µℓ = (JkM)T eℓ (as detailed in the proof of
Proposition 4 in Appendix A.4, building on Lemma 3).

• The average of the per-node variances σ̃2
i,θ over class ℓ converges to θTΣℓθ, where Σℓ is defined

in Eq. (9) (this is part of the derivation in the proof of Proposition 4).

• Consequently, the r-th moment of the θ-projection of Pn, mr(Pn,θ) = 1
n

∑
i E[⟨ξ

(k)
i , θ⟩r],

converges to mr(Gθ) =
∑L

ℓ=1 πℓEY∼N(0,θTΣℓθ)[Y
r] (see Proposition 4 in Appendix A.4).

Since the Gaussian mixture Gθ is determined by its moments, this establishes that Pn,θ ⇝ Gθ. Uni-
form integrability of moments (derived from the Ψr norm bounds in appendix C, specifically Lemma 9,
applied to ∆i,θ via Proposition 3) then promotes this weak convergence to W1(Pn,θ,Gθ) → 0. A
discretization argument (Proposition 7 from Appendix B) and Proposition 9 (from Appendix D)
extend this to W1(Pn,G) → 0.

Step 3: Concentration and Convergence of Empirical Measure. To show E[W1(Pn,Pn)] → 0,
we rely on:

• Control over the variance of empirical moments: Var(n−1
∑n

i=1⟨∆i,θ⟩r) ≲ n−1 (see Lemma 6
in Appendix A.3, which implies similar behavior for ξ(k)i via Lemma 5). This corresponds to
condition (b) of Proposition 10 in Appendix D.

• Tail control for ⟨ξ(k)i , θ⟩: The features ⟨ξ(k)i , θ⟩ are shown to be uniformly Ψrn sub-Gaussian for a
growing rn (see Lemma 1 in Appendix A.1). This corresponds to condition (a) of Proposition 10.

• Uniform integrability of moments of Pn (the convergence shown in Proposition 4 implies that for
any fixed r, supn mr(Pn,θ) is finite, which by Proposition 7 implies supn Mr(Pn) is finite, e.g.
M1(Pn) needed for condition (c) of Proposition 10).

These conditions allow the application of Proposition 10 (from Appendix D), which establishes the
desired concentration E[W1(Pn,Pn)] → 0. The triangle inequality for W1 then combines these two
main parts to yield the final convergence result.

4 Implications for Classification and GNN Oversmoothing

The Central Limit Theorems presented in Section 3 not only provide a fundamental understanding of
the distributional properties of Poly-GNN embeddings but also have significant practical implications.
In this section, we explore two key consequences: first, how our results explain the convergence of
linear classifiers trained on these embeddings, and second, how they offer a precise, quantitative
mechanism for the GNN oversmoothing phenomenon [6, 17].

4.1 Convergence of Linear Classification on Poly-GNN Features

In many node classification tasks, GNN embeddings are fed into a final linear layer (often followed
by a softmax activation) that is trained using a cross-entropy (CE) loss. Our results provide a
theoretical basis for understanding this training process in the asymptotic limit. We focus on the
degree-normalized features ϕ

(k)

i , as these are the quantities typically used by the classifier.

Recall from Theorem 1 that the joint empirical distribution of labels zi and features ϕ
(k)

i converges to
that of (Z, Yn), where Z ∼ Categorical(π) and Yn | Z = ℓ ∼ N(µℓ,Σℓ/νn). The class means µℓ

and covariances Σℓ are given by Eqs. (8) and (9), respectively.

Consider a linear classifier with weights W = (w1, . . . , wL)
T ∈ RL×d and biases b =

(b1, . . . , bL)
T ∈ RL. The empirical cross-entropy loss for a dataset of n nodes is:

Lemp(W, b) := − 1

n

n∑
i=1

L∑
ℓ=1

1{zi = ℓ} log exp(wT
ℓ ϕ

(k)

i + bℓ)∑L
u=1 exp(w

T
u ϕ

(k)

i + bu)
. (16)

The limiting loss, based on the Gaussian mixture (GM) characterization from Theorem 1, is:

LGM(W, b) := −
L∑

ℓ=1

πℓEY∼N(µℓ,Σℓ/νn)

[
log

exp(wT
ℓ Y + bℓ)∑L

u=1 exp(w
T
u Y + bu)

]
. (17)

7



Figure 2: Ten gradient steps of cross-entropy optimization problem for (A,X) drawn from a 3-class CSBM.
Shown on the right are gradient paths for samples drawn from empirical and theoretical distributions for ϕ

(k)
.

For any fixed set of weights (W, b) (e.g., within a ball ∥(W, b)∥F ≤ R for some radius R), the
individual loss term for class ℓ, CEℓ(x;W, b) = − log

exp(wT
ℓ x+bℓ)∑L

u=1 exp(wT
u x+bu)

, is Lipschitz with respect
to the feature x. This Lipschitz property, combined with the 1-Wasserstein convergence established
in Theorem 1 (specifically, the class-conditional form Eq. (11), leads to the following key result:
Proposition 1 (Convergence of CE Loss and Gradients). Under the conditions of Theorem 1, for any
fixed radius R > 0:

(a) The empirical CE loss converges uniformly to the limiting GM CE loss:

lim
n→∞

E

[
sup

∥(W,b)∥F≤R
|Lemp(W, b)− LGM(W, b)|

]
= 0. (18)

(b) The gradients of the empirical CE loss converge uniformly to the gradients of the limiting
GM CE loss:

lim
n→∞

E

[
sup

∥(W,b)∥F≤R

∥∥∇(W,b)Lemp(W, b)−∇(W,b)LGM(W, b)
∥∥
F

]
= 0. (19)

Consequently, the sequence of parameters (W ∗
emp, b

∗
emp) minimizing Lemp(W, b) within the ball con-

verges in probability to the parameters (W ∗
GM, b

∗
GM) minimizing LGM(W, b) within the same ball,

assuming uniqueness of the minimizer for the limiting problem.

The proof of (b) relies on the fact that the gradients ∇xCEℓ(x;W, b) are also Lipschitz in x for
bounded (W, b). Proposition 1 formalizes the intuition that training a Poly-GNN with CE loss is
asymptotically equivalent to performing CE optimization directly on the identified Gaussian mixture.
This explains why gradient descent paths on the empirical loss track those on the limiting GM loss,
as illustrated in Figure 2.

The stationarity conditions for optimization problem LGM(W, b) reveal a moment-matching structure:

πℓµℓ =

L∑
u=1

πuEY∼N(µu,Σu/νn)[Y · p̂ℓ], and πℓ =

L∑
u=1

πuEY∼N(µu,Σu/νn)[p̂ℓ], (20)

for all ℓ ∈ [L], where p̂ℓ := p̂ℓ(Y ;W, b) = exp(wT
ℓ Y + bℓ)/

∑
j exp(w

T
j Y + bj). It is important to

note that while the GNN training process converges to this CE solution on the GM, this solution is not
necessarily the Bayes optimal classifier for the Gaussian mixture itself (which would be a Quadratic
Discriminant Analysis, QDA, classifier). Figure 3 illustrates this, showing that even for large n where
ϕ
(k)

closely follows the GM, the linear CE boundary can differ from the optimal QDA boundary.

4.2 A Precise Mechanism for GNN Oversmoothing

The oversmoothing phenomenon, where GNN performance degrades with depth k, is a well-
documented empirical observation [6, 17]. Existing explanations often invoke a power iteration
argument on a fixed graph matrix, demonstrating that class means collapse towards a common

8



Figure 3: Classifier comparison for data which is 2-dimensional CSBM. On the left is the theoretical density of
the 2-class CSBM. The two right plots are the estimated log-likelihood ratios for the QDA and CE estimator
respectively. The slight bend in the data is correctly captured by the QDA estimator.

subspace. Our analysis, grounded in a stochastic graph model, provides a fundamentally deeper
mechanism.

More precisely, we show that in the sparse, large-graph limit, it is not just the means that collapse.
The initial, potentially class-separating covariance of the features vanishes, and is replaced by a purely
graph-induced covariance Σℓ that itself collapses. As our analytical forms show, this new covariance
aligns its principal directions with the very same 1-D subspace occupied by the class means. This
alignment of signal and noise is a much stronger form of oversmoothing, as it guarantees that the
variance concentrates in the same direction as the means, maximally hindering their separability.

To see this, recall the expressions from Eqs. (8) and (9):

µℓ = (JkM)T eℓ,

Σℓ = (Jk−1M)T diag(eTℓ J)(J
k−1M).

Consider the symmetric matrix Jsym = Π1/2BΠ1/2, which is similar to J (since J = BΠ =

Π−1/2JsymΠ
1/2). Let Jsym = QΛQT be its eigendecomposition, with Q orthogonal and Λ =

diag(λ1, . . . , λL) containing the eigenvalues, ordered by magnitude |λ1| ≥ |λ2| ≥ . . . . Then
Jk = Π−1/2QΛkQTΠ1/2. If there is a dominant eigenvalue λ1 (i.e., |λ1| > |λ2|), then for large
k, the matrix Λk ≈ diag(λk

1 , 0, . . . , 0). This implies Jk ≈ λk
1(Π

−1/2q1)(q
T
1 Π

1/2), where q1 is the
leading eigenvector of Jsym. Let u1 = Π−1/2q1 (a right eigenvector of J) and vT1 = qT1 Π

1/2 (a left
eigenvector of J). Then Jk ≈ λk

1u1v
T
1 .

Substituting this into the expressions for µℓ and Σℓ:

• Class Means: µℓ ≈ λk
1(u1v

T
1 M)T eℓ = λk

1(M
T v1)(u

T
1 eℓ). This shows that for large k, all mean

vectors µℓ become approximately proportional to the fixed vector MT v1 = MTΠ1/2q1. The
specific proportionality constant (uT

1 eℓ) depends on the class ℓ, but the direction is shared.

• Class Covariances: Similarly, Jk−1 ≈ λk−1
1 u1v

T
1 . Then Σℓ ≈ λ

2(k−1)
1 (MT v1)(scalarℓ)(vT1 M),

where scalarℓ = uT
1 diag(eTℓ J)u1. This indicates that Σℓ (and thus Σℓ/νn) becomes approxi-

mately rank-one, with its dominant direction also aligned with MT v1.

This power iteration effect driven by Jk and Jk−1 is the core of the oversmoothing mechanism:

1. Mean Collapse: The mean vectors µℓ for different classes tend to align along a common
direction MTΠ1/2q1. While their magnitudes might differ (scaled by λk

1(u
T
1 eℓ)), their

angular separation diminishes. If the initial feature means M projected onto v1 do not
maintain sufficient separation, or if uT

1 eℓ values are too similar across classes, the means
become indistinguishable.

2. Covariance Collapse and Alignment: The covariance matrices Σℓ also become rank-
deficient and align their principal direction with the same direction as the means.

9



Figure 4: Estimated kernel density plots of the aggregated features ϕ
(k)

of a 2-class CSBM at different features
depths k. A feature collapse in the mean vectors and the class covariances is visible by k = 4 and k = 6.

The net effect is that the L Gaussian components N(µℓ,Σℓ/νn) of the feature distribution ϕ
(k)

i
effectively collapse onto a 1-dimensional subspace. Within this subspace, they become a mixture
of 1-D Gaussians. If the projected means are not well-separated relative to the projected variances
along this single dimension, classification becomes extremely difficult, regardless of the original
dimensionality d or the initial separability of M . This phenomenon is illustrated empirically in
Figure 4, where increasing k leads to feature distributions that are elongated along a common axis
and overlap significantly. The parameter νn helps shrink the variances overall, but does not prevent
this directional collapse induced by k.

5 Conclusion

We conducted a rigorous asymptotic analysis of k-layer Polynomial GNN (Poly-GNN) embeddings
on large, sparse, community-based graphs, establishing Central Limit Theorems that precisely
characterize their limiting distributions. We showed that degree-normalized features ϕ

(k)

i , jointly with
labels zi, converge in W1-distance to a Gaussian mixture N(µℓ,Σℓ/νn) per class ℓ. We provided
exact forms for µℓ = (JkM)T eℓ and Σℓ = (Jk−1M)T diag(eTℓ J)(J

k−1M), determined by initial
means M , layers k, and community interaction matrix J . Centered-and-scaled features ξ(k)i similarly
converge to

∑
πℓN(0,Σℓ).

These findings have key implications. First, training linear classifiers on ϕ
(k)

i with cross-entropy
loss is asymptotically equivalent to optimizing on this limiting Gaussian mixture, with uniform
convergence of the loss, gradient path, and optimal weights. This theoretically grounds the training
behavior of GNN-based classifiers. Second, our explicit characterization of µℓ and Σℓ offers a clear
and nuanced understanding of the GNN oversmoothing phenomenon. The repeated multiplication by
the matrix J (to powers k and k − 1) acts as a power iteration, causing both the mean vectors and the
principal directions of the covariance matrices to align with a low-dimensional (often 1-D) subspace
dictated by the leading eigenvectors of J . This results in a degenerate, poorly separated Gaussian
mixture, thereby diminishing the discriminative power of the GNN embeddings, irrespective of the
initial feature dimensionality.

For future work, our framework suggests several avenues. A direct extension would be to extend
to degree-corrected stochastic block models (DCSBMs), where we expect a similar CLT to hold
provided the normalized degree distribution is stable. Extending the analysis to polynomial filters
of the form

∑
k ck(A/νn)

kX appears feasible, though it would require careful book-keeping of the
cross-correlations between different powers of A. A more significant challenge, likely requiring new
tools beyond our walk-based moment analysis, is the extension to GNNs with non-linear activations
or attention mechanisms. As a potential starting point, one could take inspiration from the loss
landscape analysis of [9], which applies a walk decomposition to the feed-forward architecture of a
fully-connected ReLU network.
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A Detailed Proofs of Main Theorems

This appendix provides the detailed proofs for Theorem 1 and Theorem 2 presented in Section 3.1.
The general proof strategy follows the outline given in Section 3.2.

Before proceeding with the proofs, we establish some notation used throughout the appendices. For a
probability measure µ on Rd and a vector θ ∈ Rd, we denote by µθ the θ-projection (or θ-section)
of µ. This is the pushforward measure of µ under the map x 7→ ⟨x, θ⟩ = xT θ. If X ∼ µ, then
µθ is the distribution of the real-valued random variable ⟨X, θ⟩. For a measure ν on R, its r-th
moment is denoted by mr(ν) =

∫
xrdν(x). For a measure µ on Rd, its r-th absolute moment is

Mr(µ) =
∫
∥x∥r2dµ(x). The empirical measure of a set of N points {Yi}Ni=1 is 1

N

∑N
i=1 δYi

. We
denote the expectation of a random empirical measure Pn as Pn, defined by its action on test functions
f : Pn[f ] = E[Pn[f ]]. We use Lip(R) to denote the class of R-Lipschitz functions f : Rd → R.
Other notation, if not standard, will be defined as it appears.

A.1 Proof of Theorem 2 (CLT for Centered and Scaled Features)

The proof of Theorem 2 largely follows the structure laid out in Section 3.2. First, we define the key
components of the features. Recall the definition of the centered and scaled features from Eq. (3):

ξ
(k)
i =

√
νn

(ϕ(k)
i

νkn
− E

[ϕ(k)
i

νkn

])
=

ϕ
(k)
i − E[ϕ(k)

i ]

ν
k−1/2
n

.

The term ϕ
(k)
i −E[ϕ(k)

i ] represents the deviation of the i-th node’s k-layer feature from its expectation.
This deviation can be decomposed as follows. Let ϕ(k) be the n× d matrix of all features.

ϕ(k) − E[ϕ(k)] = AkX − E[AkX]

= AkX − E[Ak]E[X] (since A and X are independent given z)

= (Ak − E[Ak])X + E[Ak](X − E[X])

=: ∆̊ + Λ̊. (21)

Here, ∆̊ = (Ak−E[Ak])X captures the randomness from the graph structure A, and Λ̊ = E[Ak](X−
E[X]) captures the randomness from the initial node features X (around their means). Both ∆̊ and
Λ̊ are n × d matrices. Let ∆̊i and Λ̊i denote their i-th rows (viewed as d × 1 column vectors for
consistency with ξ

(k)
i ).

We define the normalized versions:

∆i := ∆̊i/ν
k−1/2
n , Λi := Λ̊i/ν

k−1/2
n .

With this notation, the centered and scaled feature for node i is:

ξ
(k)
i = ∆i + Λi.

For any projection vector θ ∈ Sd−1, we denote ∆i,θ = ⟨∆i, θ⟩ = ∆T
i θ and Λi,θ = ⟨Λi, θ⟩ = ΛT

i θ.

Now, we aim to show E[W1(Pn,G)] → 0 where Pn = 1
n

∑n
i=1 δξ(k)

i
. This is achieved by showing:

1. E[W1(Pn,Pn)] → 0, where Pn = E[Pn].

2. W1(Pn,G) → 0.

Part 1: Concentration of Pn around Pn. This part relies on Proposition 10 (from Appendix D). To
apply Proposition 10, we need to verify its conditions for Yi,n = ξ

(k)
i :

(a) Uniform Ψrn sub-Gaussianity of projections: For any θ ∈ Sd−1, {⟨ξ(k)i , θ⟩}ni=1 are uni-
formly Ψrn sub-Gaussian (see Appendix C for the definition):

Lemma 1. sup
i∈[n]

∥⟨ξ(k)i , θ⟩∥Ψrn
≲ C(σ, x∗) for all θ ∈ Sd−1.
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Proof. Combining Propositions 2 and 3 (from Appendix A.3), we have

∥⟨ξ(k)i , θ⟩∥Ψrn
≲ ∥∆i,θ∥Ψrn

+ ∥Λi,θ∥Ψrn
≲ κ0 + σβk,n

where κ0 is a constant only dependent on σ and x∗, and βk,n = o(1). The result follows.

(b) Variance of empirical moments: We have the following result:

Lemma 2. limn→∞ Var
(
n−1

∑
i⟨ξ

(k)
i , θ⟩r

)
= 0 for all r ∈ N and θ ∈ Sd−1.

Proof. By Lemma 5, limn→∞ ∥ 1
n

∑
i⟨ξ

(k)
i , θ⟩r − 1

n

∑n
i=1 ∆

r
i,θ∥L2 = 0. Lemma 6 gives

Var(n−1
∑

i ∆
r
i,θ) ≲ n−1. The result follows from the inequality var(A) ≤ 6∥A−B∥2L2 +

3var(B) for any random variables A and B in L2.

(c) Uniformly bounded first moment of Pn: supn≥1 M1(Pn) < ∞. This follows since by
Proposition 4 m1(Pn,θ) converge to m1(Gθ), which is finite, for all θ ∈ Sd−1. The claims
then follows from Proposition 7.

With these conditions met, Proposition 10 (from Appendix D) implies E[W1(Pn,Pn)] → 0.

Part 2: Convergence of Pn to G. Proposition 4 (from Appendix A.4) shows mr(Pn,θ) → mr(Gθ)
for all θ and r. Since Gθ is a mixture of Gaussians, it is determined by its moments. This implies
weak convergence Pn,θ ⇝ Gθ. The convergence of moments also implies uniform integrability of all
moments for {Pn,θ}n≥1. This, combined with weak convergence, yields W1(Pn,θ,Gθ) → 0 for all
θ ∈ Sd−1 (e.g., by [1, Proposition 7.1.5]). To lift this to W1(Pn,G) → 0, we use Proposition 9 (from
Appendix D). Condition (29) for this proposition, supn≥1(M1(Pn) + M1(G)) < ∞, is satisfied
because M1(Pn) is uniformly bounded (as argued in Part 1c) and M1(G) is finite.

The class-conditional convergence statement in Theorem 2 follows from a similar argument by consid-
ering per-class empirical measures Pn,ℓ and their expectations Pn,ℓ, and showing their convergence
to N(0,Σℓ). See the proof of Proposition 5 (a restatement of the class-conditional convergence) for
details.

A.2 Proof of Theorem 1 (CLT for Degree-Normalized Features and Labels)

The proof of Theorem 1 closely mirrors that of Theorem 2, with adjustments for the non-zero means
and the ν−1

n scaling in the covariance. Let P̃joint
n be the empirical measure of (zi, ϕ

(k)

i ) and Gjoint
n

be its target limit. The convergence in W1 can be established by showing convergence of expectations
of Lipschitz functions f(z, x). The core argument involves showing that for i ∈ Cℓ, ϕ

(k)

i behaves
like a draw from N(µℓ,Σℓ/νn).

1. Mean Convergence: Lemma 3 establishes that E[ϕ(k)

i ] converges to a general limit γi.

Lemma 3. Define limiting mean γi = eTi (E[A/νn])
kE[X]. Assume Assumption 4 and suppose

νn ≥ 1. Then,
max
i∈[n]

∥E[ϕ(k)

i ]− γT
i ∥2 ≤ C(k)x∗ ν

−1
n .

Under the specific community-based graph model, this general limit γi further simplifies for
nodes within a class Cℓ to the class-specific mean µℓ, as stated in the following lemma.
Lemma 4. Under the conditions of Theorem 1 (which include the CSBM structure and Assump-
tions 1–4), let γT

i = eTi (E[A/νn])
kE[X] be the 1× d row vector defined in Lemma 3. For any

node i ∈ Cℓ, its limiting mean γT
i converges to µT

ℓ = eTℓ J
kM . More precisely,

max
ℓ∈[L]

sup
i∈Cℓ

∥γT
i − µT

ℓ ∥2 = o(1)

Proof. The expected adjacency matrix of an undirected, loop-less SBM is E[A] = (νn/n)(P −
diag(P )), where P = ZBZT and diag(P ) contains the diagonal entries of P . Thus, E[A/νn] =
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(P/n)− (diag(P )/n). The difference between (E[A/νn])
k and (P/n)k can be bounded. Since

matrix exponentiation H 7→ Hk is locally Lipschitz for matrices with bounded operator norm
(which (P/n) and E[A/νn] are, as their entries are O(1/n) and norms are O(1)), and

∥E[A/νn]− P/n∥op = ∥diag(P )/n∥op = max
ℓ′∈[L]

n−1Bℓ′ℓ′ = O(n−1), (22)

it follows that ∥(E[A/νn])
k − (P/n)k∥op = O(n−1). Given E[X] = ZM has bounded row

norms (from Assumption 4), we can write:

γT
i = eTi (P/n)

kE[X] + eTi ((E[A/νn])
k − (P/n)k)E[X]

= eTi (P/n)
kZM +O(n−1) · ∥eTi ∥op∥E[X]∥op.

Since ∥eTi ∥op = 1 and ∥E[X]∥op is bounded (e.g., by
√
Lmaxℓ ∥Mℓ,·∥2 ≤

√
Lx∗), the error

term is O(n−1). So,
γT
i = eTi (P/n)

kZM +O(n−1).

Now consider the main term eTi (P/n)
kZM . For a node i ∈ Cℓ, we have eTi Z = eTℓ (where

ei ∈ Rn, eℓ ∈ RL).

eTi (P/n)
kZM = eTi (ZBZT /n)kZM

= eTi Z(B(ZTZ/n))kM

= eTℓ (BΠ̃)kM (since ZTZ/n = diag(|Cs|/n)Ls=1 = Π̃)

= eTℓ J̃
kM,

where J̃ = BΠ̃ and Π̃ = diag(π̃1, . . . , π̃L) with π̃s = |Cs|/n. We are given µT
ℓ = eTℓ J

kM ,
where J = BΠ. The difference is eTℓ (J̃

k − Jk)M .

From the Assumption 3, π̃s = πs + o(1), which implies Π̃ = Π +En where En is a diagonal
matrix with entries o(1). Thus, ∥Π̃ − Π∥op = o(1). Then, J̃ − J = B(Π̃ − Π) = BEn.
So, ∥J̃ − J∥op ≤ ∥B∥op∥En∥op = O(1) · o(1) = o(1). Using the identity Ak − Bk =∑k−1

j=0 A
j(A − B)Bk−1−j , and since ∥J∥op and ∥J̃∥op are O(1) (as ∥B∥op and ∥Π∥op are

O(1)),

∥J̃k − Jk∥op ≤ k ·max(∥J∥op, ∥J̃∥op)
k−1 · ∥J̃ − J∥op = O(1) · o(1) = o(1).

Therefore,

∥eTℓ (J̃k − Jk)M∥2 ≤ ∥eTℓ ∥op∥J̃k − Jk∥op∥M∥op = 1 · o(1) ·O(1) = o(1).

Combining the two error terms:

γT
i = eTℓ J

kM + o(1) +O(n−1).

Since νn = o(n) (Assumption 2), n−1 = o(ν−1
n ) which is also o(1). Thus, the dominant error

term is o(1). The bounds are uniform over i ∈ Cℓ and ℓ ∈ [L] because the operator norm bounds
on B,Π,M and the rate of convergence in Assumption 3 are uniform.

2. Covariance Characterization: The deviation ϕ
(k)

i −E[ϕ(k)

i ] = ξ
(k)
i /

√
νn. The analysis for ξ(k)i

(specifically, the characterization of its moments leading to Proposition 4 in Appendix A.4) shows
its asymptotic covariance, conditional on zi = ℓ, is Σℓ. Thus, the covariance of ϕ

(k)

i − E[ϕ(k)

i ]

(and asymptotically, of ϕ
(k)

i − µℓ for i ∈ Cℓ) is Σℓ/νn.

3. Moment Matching and Concentration: Similar to Theorem 2, one shows that the moments of
(ϕ

(k)

i −µℓ) (for i ∈ Cℓ), when appropriately scaled, match those of N(0,Σℓ/νn). Concentration
arguments analogous to Part 1 of Theorem 2’s proof apply.

Steps 2 and 3 above are rigorously formalized during the proof of the class-conditional version of the
statement (Eq. (11) which is stated and proved as Proposition 6 in Appendix A.4).
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A.3 Supporting Lemmas for Moment Analysis

We borrow the following two key results from [18]:

Proposition 2. Suppose Xi − E[Xi] ∼ SG(σ2) and νn ≥ 1. Then, for Λi,θ = ⟨Λ̊i/ν
k−1/2
n , θ⟩:

∥Λi,θ∥Ψrn
≲ σβk,n where βk,n = (ν−k+1

n )1/2 · 1{k is even}+ (νn/n)
1/2.

Proof. A component-wise version of the above (i.e. with θ a coordinate basis vector) is proven in [18,
Section 4.1]. The general case follows by a similar argument. Broadly, this follows from the fact
that Λ̊i = E[Ak](X − E[X])/ν

k−1/2
n is a linear transformation of sub-Gaussian random vectors

{Xi∗ − E[Xi∗]}i. The rate βk,n is obtained through path counting on E[Ak]ij for each j ∈ [n].

Proposition 3. Let t∗ = rk−⌈r/2⌉ and κ0 = 4max{C1σ, x∗} for a distribution-dependent constant
C1. Assume Assumption (4) and suppose νn ≥ 1. For ϵ ∈ [0, 1], let

rn(ϵ) := max{r ∈ 2N : 3(κ0rke
k)r ≤ ν1−ϵ

n }. (23)

Then, for ∆̊i,θ = ⟨(Ak − E[Ak])X, θ⟩ and for all r ≤ rn(0):

E|∆̊i,θ|r ≤ 2(
√
rκ0)

rνt∗n . (24)

As a consequence, for ∆i,θ = ∆̊i,θ/ν
k−1/2
n , we have ∥∆i,θ∥Ψrn

≲ κ0.

Proof. This result is proven in [18]. The power νt∗n arises from counting dominant walk structures
contributing to the r-th moment.

With these propositions place, we show that, in the sparse setting, the sliced moments of ⟨ξ(k)i , θ⟩ are
determined by the moments of graph noise ∆i,θ. That is to say, as n grows large and the graph grows
sparse, the contribution of feature noise Λi,θ to our normalized features ⟨ξ(k)i , θ⟩ is negligible. This
has important downstream consequences to our limiting aggregated features, as it implies the feature
noise covariance will not appear in the final limiting form of the aggregated feature covariance.

Lemma 5. Assume Assumptions 1, 2, and 4. For any r ∈ N:

lim
n→∞

max
i∈[n]

∥∥∥⟨ξ(k)i , θ⟩r −∆r
i,θ

∥∥∥
L2

= 0.

Proof. Using the decomposition ⟨ξ(k)i , θ⟩ = ∆i,θ + Λi,θ, we have

⟨ξ(k)i , θ⟩r −∆r
i,θ =

r∑
s=1

(
r

s

)
∆r−s

i,θ Λs
i,θ.

By Minkowski inequality (for L2 norm of sums):∥∥∥∥∥
r∑

s=1

(
r

s

)
∆r−s

i,θ Λs
i,θ

∥∥∥∥∥
L2

≤
r∑

s=1

(
r

s

)∥∥∥∆r−s
i,θ Λs

i,θ

∥∥∥
L2

By Hölder inequality, with 1/p = (r − s)/r and 1/q = s/r,∥∥∥∆r−s
i,θ Λs

i,θ

∥∥∥2
L2

= E[∆2(r−s)
i,θ Λ2s

i,θ] ≤ (E∆2r
i,θ)

1−s/r(EΛ2r
i,θ)

s/r.

This is ∥∆i,θ∥2(r−s)
L2r · ∥Λi,θ∥2sL2r . For n large enough so 2r ≤ rn, Proposition 3 (via Lemma 9) gives

∥∆i,θ∥L2r ≲ κ0

√
2r. Proposition 2 (via Lemma 9) gives ∥Λi,θ∥L2r ≲ σβk,n

√
2r. Take n large

enough so that βk,n ≤ 1. Then, for s ≥ 1, we have β2s
k,n ≤ βk,n, hence ∥Λi,θ∥2sL2r ≲ σ2sβk,n(2r)

s.
Since βk,n → 0 from Proposition 2 (as νn → ∞, νn = o(n)), and all other terms are bounded, the
sum tends to 0. The convergence is uniform over i as the bounds are uniform.
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Lemma 6. Under Assumption 1 and 4. For every i, i′ ∈ [n], r ∈ N and θ ∈ Sd−1,

Cov
(
∆r

i,θ,∆
r
i′,θ

)
≲ n−1{i ̸=i′}.

In particular, Var
(
n−1

∑n
i=1 ∆

r
i,θ

)
≲ n−1 for r ∈ N and θ ∈ Sd−1.

The proof of Lemma 6 is quite involved, using combinatorics of walk sequences, and appears in
Appendix F.

Lemma 7. Let r ∈ 2N and 0 < ϵ < 1. Assume Assumption (4) and suppose νn ≥ 1. If r ≤ rn(ϵ),
then

max
i∈[n]

∣∣E[∆r
i,θ]− (r − 1)!! · σ̃r

i,θ

∣∣ ≤ C(r)xr
∗ ν

−ϵ
n

where σ̃2
i,θ := ∥ViE[A/νn]

k−1E[X]θ∥22 and Vi =
[
diag

(
(pi1(1− pi1), . . . , pin(1− pin)

)
/νn
]1/2

.

The proof of Lemma 7 appears in Appendix F and involves walk-based proxy term T̃ hi
i (r) and careful

counting of dominant vs non-dominant walk structures.

Lemma 8 (Odd Moment Control for ∆i,θ). Under Assumptions 1–4, for any odd integer r ≥ 1 and
any unit vector θ ∈ Rd,

lim
n→∞

max
i∈[n]

|E[∆r
i,θ]| = 0.

More specifically, E[∆r
i,θ] = O(ν

−1/2
n ).

Proof. This follows from Proposition 3. For an odd r, the moment bound for ∆i,θ is E|∆i,θ|r ≲
(
√
rκ0)

rν
r/2−⌈r/2⌉
n = (

√
rκ0)

rν
−1/2
n .

A.4 Supporting Results for Specialization to Community-Based Graphs

Proposition 4. Under Assumptions 1–4,

lim
n→∞

1

n

n∑
i=1

E⟨ξ(k)i , θ⟩r = (r − 1)!!

L∑
ℓ=1

πℓ

(
(Jk−1Mθ)Tdiag(eTℓ J)(J

k−1Mθ)
)r/2 · 1{r is even}.

Stated differently, mr(Pn,θ) → mr(Gθ) where Gθ =
∑L

ℓ=1 πℓN(0, θTΣℓθ).

Proof. We proceed in steps:

Step 1: Approximate with moments of ∆i,θ. By Lemma 5 (specifically, ∥⟨ξ(k)i , θ⟩r −∆r
i,θ∥L1 → 0

since L2 convergence implies L1), we have E⟨ξ(k)i , θ⟩r = E[∆r
i,θ] + o(1), where the o(1) term is

uniform over i. Thus,
1

n

n∑
i=1

E⟨ξ(k)i , θ⟩r =
1

n

n∑
i=1

E[∆r
i,θ] + o(1).

Step 2: Handle odd moments. If r is an odd integer, by Lemma 8, E[∆r
i,θ] = o(1) uniformly in i.

Therefore,

lim
n→∞

1

n

n∑
i=1

E[∆r
i,θ] = 0.

This matches the proposition statement, as 1{r is even} = 0 for odd r.

Step 3: Handle even moments using σ̃r
i,θ. If r is an even integer, by Lemma 7,

E[∆r
i,θ] = (r − 1)!! · σ̃r

i,θ + o(1),

uniformly in i. Here, σ̃2
i,θ = ∥ViE[A/νn]

k−1E[X]θ∥22. So we need to analyze the limit of
1
n

∑n
i=1(r − 1)!! · σ̃r

i,θ.
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Step 4: Analyze σ̃2
i,θ under the CSBM structure. We have

σ̃2
i,θ = (E[A/νn]

k−1E[X]θ)TV 2
i (E[A/νn]

k−1E[X]θ).

where V 2
i = ν−1

n diag((pij(1 − pij))
n
j=1) = ν−1

n diag(eTi E[A])(In − diag(eTi E[A])). Since by
assumption νn = o(n), we have eTi E[A] = O(νn/n) = o(1) uniformly in i. It follows that

V 2
i = ν−1

n diag(eTi E[A]) + o(1).

Moreover, as shown in the proof of Lemma 4 (specifically Eq. (22)), E[A/νn] = P/n + O(n−1),
where P = ZBZT . Substituting we get

σ̃2
i,θ = ((P/n)k−1E[X]θ)T diag(eTi P/n)((P/n)

k−1E[X]θ) + o(1).

Under the CSBM structure, we have E[X]θ = ZMθ. Similar to the derivation in Lemma 4’s proof:

(P/n)k−1ZMθ = Z(BΠ̃)k−1Mθ = ZJ̃k−1
n Mθ.

If node i ∈ Cℓ, then eTi P/n = eTℓ (BZT /n). The term ZT diag(eTi P/n)Z becomes a diagonal L×L
matrix. For i ∈ Cℓ:

(ZT diag(eTi P/n)Z)s,s′ =

n∑
j=1

Zjs(e
T
i P/n)jZjs′

=
∑

j∈Cs,s=s′

(Pij/n) =
∑

j∈Cs,s=s′

(Bzizj/n)

= 1{s = s′} · (Bℓs|Cs|/n) = 1{s = s′} ·Bℓsπ̃s.

So, ZT diag(eTi P/n)Z = diag((Bℓsπ̃s)
L
s=1) = diag(eTℓ J̃n). Therefore, for i ∈ Cℓ:

σ̃2
i,θ = (J̃k−1

n Mθ)T diag(eTℓ J̃n)(J̃
k−1
n Mθ) + o(1).

Let σ2
ℓ,θ(J̃n) = (J̃k−1

n Mθ)T diag(eTℓ J̃n)(J̃
k−1
n Mθ). This term is the same for all i ∈ Cℓ up to o(1)

errors.

Step 5: Averaging over i and taking limits. For even r:

1

n

n∑
i=1

E[∆r
i,θ] =

(r − 1)!!

n

n∑
i=1

σ̃r
i,θ + o(1)

= (r − 1)!!

L∑
ℓ=1

|Cℓ|
n

(
1

|Cℓ|
∑
i∈Cℓ

σ̃r
i,θ

)
+ o(1)

= (r − 1)!!

L∑
ℓ=1

π̃ℓ · (σ2
ℓ,θ(J̃n))

r/2 + o(1).

As n → ∞, by Assumption 3, π̃ℓ → πℓ. Also, ∥J̃n − J∥op → 0 (due to Π̃ → Π). Since σ2
ℓ,θ(·) is

a continuous function of its matrix argument (in terms of matrix entries or operator norm for fixed
M, θ,B, eℓ, k), we have σ2

ℓ,θ(J̃n) → σ2
ℓ,θ(J). Let σ∗2

ℓ,θ = (Jk−1Mθ)T diag(eTℓ J)(J
k−1Mθ). The

limit becomes:

(r − 1)!!

L∑
ℓ=1

πℓ(σ
∗2
ℓ,θ)

r/2.

This is precisely the r-th moment of Gθ =
∑L

ℓ=1 πℓN(0, σ∗2
ℓ,θ). Note that σ∗2

ℓ,θ = θTΣℓθ where
Σℓ = (Jk−1M)T diag(eTℓ J)(J

k−1M). The proof is complete.

Proposition 5 (Part of Theorem 2). Consider the setting of Proposition 4. Let Gℓ = N(0,Σℓ) for
ℓ ∈ [L]. Then for any R > 0:

E

{
sup

f1,...,fL∈Lip(R)

∣∣∣∣ 1n
L∑

ℓ=1

∑
i∈Cℓ

fℓ(ξ
(k)
i )−

L∑
ℓ=1

πℓEY∼Gℓ
[fℓ(Y )]

∣∣∣∣
}

→ 0.
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Proof. Let Pn,ℓ = 1
|Cℓ|
∑

i∈Cℓ
δ
ξ
(k)
i

be the class-conditional empirical measure for class ℓ. Let
fℓ ∈ Lip(R). We can assume fℓ(0) = 0 without loss of generality by considering fℓ(x)− fℓ(0), as
this does not change the difference of expectations for centered measures and preserves the Lipschitz
constant. The term we want to show goes to zero is:

∆n := sup
f1,...,fL∈Lip(R)

∣∣∣∣∣
L∑

ℓ=1

|Cℓ|
n

Pn,ℓ[fℓ]−
L∑

ℓ=1

πℓGℓ[fℓ]

∣∣∣∣∣ .
Using the triangle inequality:

∆n ≤ sup
f1,...,fL∈Lip(R)

L∑
ℓ=1

∣∣∣∣ |Cℓ|n
Pn,ℓ[fℓ]− πℓPn,ℓ[fℓ]

∣∣∣∣
+ sup

f1,...,fL∈Lip(R)

L∑
ℓ=1

|πℓPn,ℓ[fℓ]− πℓGℓ[fℓ]|

≤
L∑

ℓ=1

∣∣∣∣ |Cℓ|n
− πℓ

∣∣∣∣ sup
fℓ∈Lip(R)

|Pn,ℓ[fℓ]|

+

L∑
ℓ=1

πℓ sup
fℓ∈Lip(R)

|Pn,ℓ[fℓ]−Gℓ[fℓ]| .

The second term is
∑L

ℓ=1 πℓR ·W1(Pn,ℓ,Gℓ) by definition of W1 (scaled by R). Let T1,n and T2,n

be the two terms.

For T1,n: Since fℓ(0) = 0 and fℓ ∈ Lip(R), |Pn,ℓ[fℓ]| ≤ Pn,ℓ[|fℓ(x)|] ≤ R · Pn,ℓ[∥x∥].
So, E[supfℓ∈Lip(R) |Pn,ℓ[fℓ]|] ≤ R · E[Pn,ℓ[∥x∥]] = R · Pn,ℓ[∥x∥]. The term Pn,ℓ[∥x∥] =
1

|Cℓ|
∑

i∈Cℓ
E[∥ξ(k)i ∥]. From the proof of Theorem 2 (specifically Part 1c, relying on uniform integra-

bility of moments of Pn), supn E[∥ξ
(k)
i ∥] is bounded for all i. Thus, supn Pn,ℓ[∥x∥] is bounded (as

|Cℓ| → ∞). By Assumption 3,
∣∣∣ |Cℓ|

n − πℓ

∣∣∣→ 0. Therefore, E[T1,n] → 0.

For T2,n: We need to show E[W1(Pn,ℓ,Gℓ)] → 0 for each ℓ. By the triangle inequality,
W1(Pn,ℓ,Gℓ) ≤ W1(Pn,ℓ,Pn,ℓ) +W1(Pn,ℓ,Gℓ). For the two terms on we have:

(a) E[W1(Pn,ℓ,Pn,ℓ)] → 0: Pn,ℓ is an empirical measure of Nℓ = |Cℓ| variables {ξ(k)i : i ∈ Cℓ}.
Since Nℓ → ∞ (as πℓ > 0), we can apply Proposition 10 to this specific subset of
variables. The conditions for Proposition 10 are: (i) Uniform ΨrNℓ

sub-Gaussianity of

⟨ξ(k)i , θ⟩ for i ∈ Cℓ: This holds from Lemma 1. (ii) Variance of their empirical moments
Var(N−1

ℓ

∑
i∈Cℓ

⟨ξ(k)i , θ⟩r) → 0 holds from the more general formulation of Lemma 6
where Cov(∆r

i,θ,∆
r
θ,i′) ≲ n−1{i ̸=i′}. (iii) supn M1(Pn,ℓ) < ∞: This holds as shown for

T1,n. Thus, E[W1(Pn,ℓ,Pn,ℓ)] → 0.

(b) W1(Pn,ℓ,Gℓ) → 0: We analyze the moments of Pn,ℓ for a given θ ∈ Sd−1. mr(Pn,ℓ,θ) =
1

|Cℓ|
∑

i∈Cℓ
E[⟨ξ(k)i , θ⟩r]. From Steps 1, 2, 3 of the proof of Proposition 4, we know that

E[⟨ξ(k)i , θ⟩r] = E[∆r
i,θ] + o(1). If r is odd, E[∆r

i,θ] = o(1) by Lemma 8. So mr(Pn,ℓ,θ) →
0 = mr(N(0, θTΣℓθ)). If r is even, E[∆r

i,θ] = (r − 1)!! · σ̃r
i,θ + o(1), where the o(1) is

uniform in i. From Step 4 in the proof of Proposition 4, for any i ∈ Cℓ, σ̃2
i,θ → σ∗2

ℓ,θ :=

θTΣℓθ. Thus, for i ∈ Cℓ, E[⟨ξ(k)i , θ⟩r] → (r − 1)!!(σ∗2
ℓ,θ)

r/2 · 1{r is even}. This limit is
uniform for all i ∈ Cℓ. Therefore,

mr(Pn,ℓ,θ) =
1

|Cℓ|
∑
i∈Cℓ

(
(r − 1)!!(σ∗2

ℓ,θ)
r/2 · 1{r is even}+ o(1)

)
→ (r − 1)!!(σ∗2

ℓ,θ)
r/2 · 1{r is even}.
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This is mr(N(0, θTΣℓθ)). Since Gℓ,θ = N(0, θTΣℓθ) is determined by its moments, and
its moments are finite, Pn,ℓ,θ ⇝ Gℓ,θ. The uniform integrability of moments for Pn,ℓ,θ

is inherited from the global case (as seen in T1,n argument, Mp(Pn,ℓ) is bounded for any
p). This promotes weak convergence to W1(Pn,ℓ,θ,Gℓ,θ) → 0. Then, by Proposition 9,
W1(Pn,ℓ,Gℓ) → 0.

Since E[W1(Pn,ℓ,Gℓ)] → 0 for each ℓ, and πℓ are constants, E[T2,n] → 0. Combining E[T1,n] → 0
and E[T2,n] → 0 completes the proof.

Proposition 6 (Part of Theorem 1). Consider the settings of Proposition 4. Let G̃n,ℓ = N(µℓ,Σℓ/νn).
Then for any R > 0:

E

{
sup

f1,...,fL∈Lip(R)

∣∣∣∣∣ 1n
L∑

ℓ=1

∑
i∈Cℓ

fℓ(ϕ
(k)

i )−
L∑

ℓ=1

πℓEY∼G̃n,ℓ
[fℓ(Y )]

∣∣∣∣∣
}

→ 0.

Proof. Let P̃n,ℓ be the class-conditional empirical measure for ϕ
(k)

i for class ℓ:

P̃n,ℓ[f ] =
1

|Cℓ|
∑
i∈Cℓ

f(ϕ
(k)

i ).

Let ∆′
n be the term inside the overall expectation:

∆′
n := sup

f1,...,fL∈Lip(R)

∣∣∣∣∣
L∑

ℓ=1

|Cℓ|
n

P̃n,ℓ[fℓ]−
L∑

ℓ=1

πℓG̃n,ℓ[fℓ]

∣∣∣∣∣ .
Similar to the proof of Proposition 5, using the triangle inequality:

∆′
n ≤

L∑
ℓ=1

∣∣∣∣ |Cℓ|n
− πℓ

∣∣∣∣ sup
fℓ∈Lip(R)

|P̃n,ℓ[fℓ]| (:= T ′
1,n)

+

L∑
ℓ=1

πℓ sup
fℓ∈Lip(R)

∣∣∣P̃n,ℓ[fℓ]− G̃n,ℓ[fℓ]
∣∣∣ (:= T ′

2,n).

The second term is
∑L

ℓ=1 πℓR ·W1(P̃n,ℓ, G̃n,ℓ). We can assume fℓ(0) = 0 by replacing fℓ(x) with
fℓ(x)− fℓ(0) and noting that |P̃n,ℓ[fℓ(0)]− G̃n,ℓ[fℓ(0)]| = |fℓ(0)− fℓ(0)| = 0.

Before bounding the two terms, we first show that

E∥ϕ(k)

i − µℓ∥2 → 0 uniformly for i ∈ Cℓ. (25)

By Lemma 3 and Lemma 4, E[ϕ(k)

i ] → µℓ for i ∈ Cℓ. Next,

Var(ϕ
(k)

i ) = Var(ξ(k)i /
√
νn) = Σℓ/νn + o(ν−1

n ),

uniformly over i ∈ Cℓ, by noting that the convergence in the proof of Proposition 4 is, in fact, uniform
over i ∈ Cℓ and θ ∈ Sd−1. Since E∥ϕ(k)

i − µℓ∥2 ≤ E∥ϕ(k)

i − E[ϕ(k)

i ]∥2 + ∥E[ϕ(k)

i ]− µℓ∥2, and the

first term is bounded by
(
tr(Var(ϕ

(k)

i ))
)1/2

= O(ν
−1/2
n ) = o(1), and the second terms is o(1) for

i ∈ Cℓ, the claim follows.

For T ′
1,n: E[supfℓ∈Lip(R) |P̃n,ℓ[fℓ]|] ≤ R · E[P̃n,ℓ[∥x∥]] = R · 1

|Cℓ|
∑

i∈Cℓ
E[∥ϕ(k)

i ∥]. By eq. (25),

E[∥ϕ(k)

i ∥] converges to ∥µℓ∥ which is bounded. Thus, supn E[supfℓ |P̃n,ℓ[fℓ]|] is bounded. Since∣∣∣ |Cℓ|
n − πℓ

∣∣∣→ 0 by Assumption 3, E[T ′
1,n] → 0.

For T ′
2,n: We need to show E[W1(P̃n,ℓ, G̃n,ℓ)] → 0 for each ℓ. Let f ∈ Lip(R) with f(0) = 0. Let

P̃n,ℓ = E[P̃n,ℓ]. We first analyze

|P̃n,ℓ[f ]− G̃n,ℓ[f ]| ≤
1

|Cℓ|
∑
i∈Cℓ

E|f(ϕ(k)

i )− G̃n,ℓ[f ]|,
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where P̃n,ℓ[f ] =
1

|Cℓ|
∑

i∈Cℓ
E[f(ϕ(k)

i )]. Using the decomposition for a single i ∈ Cℓ:

E|f(ϕ(k)

i )− G̃n,ℓ[f ]| ≤ E|f(ϕ(k)

i )− f(µℓ)|+ E|f(µℓ)− G̃n,ℓ[f ]|.
Let these two terms be Ai, Bi. (Note Bi is actually independent of i for i ∈ Cℓ). Since f ∈ Lip(R):

• Ai ≤ R · E∥ϕ(k)

i − µℓ∥2 = O(ν
−1/2
n ) uniformly for i ∈ Cℓ, by eq. (25).

• For Bi, we have

Bi = |EY∼N(0,Σℓ/νn)[f(µℓ)− f(µℓ + Y )]| ≤ R · EY∼N(0,Σℓ/νn)[∥Y ∥2]

and EY∼N(0,Σℓ/νn)[∥Y ∥2] ≤
√

tr(Σℓ/νn) = O(ν
−1/2
n ). So Bi = O(ν

−1/2
n ).

Thus, uniformly over i ∈ Cℓ and f ∈ Lip(R), we have E|f(ϕ(k)

i ) − G̃n,ℓ[f ]| = O(ν
−1/2
n ). This

establishes W1(P̃n,ℓ, G̃n,ℓ) → 0.

Now, for the concentration part E[W1(P̃n,ℓ, P̃n,ℓ)] → 0: We will verify the conditions of Proposi-

tion 10 for the variables Xi,n = ϕ
(k)

i for i ∈ Cℓ:

(i) Uniform Ψrn sub-Gaussianity of ⟨ϕ(k)

i , θ⟩: Since ϕ
(k)

i = E[ϕ(k)

i ] + ξ
(k)
i /

√
νn, we have

∥⟨ϕ(k)

i , θ⟩∥Ψrn
≤ ∥⟨E[ϕ(k)

i ], θ⟩∥Ψrn
+ ∥⟨ξ(k)i /

√
νn, θ⟩∥Ψrn

= |⟨E[ϕ(k)

i ], θ⟩| · ∥1∥Ψrn
+ ∥⟨ξ(k)i /

√
νn, θ⟩∥Ψrn

the first term is bounded in the limit by C⟨µℓ, θ⟩ where C = lim supn→∞ ∥1∥Ψrn
is a

universal constant, and the second term is O(ν
−1/2
n ) by Lemma 1, both uniformly over

i ∈ Cℓ and θ ∈ Sd−1.

and µℓ is bounded, and ξ
(k)
i /

√
νn has vanishing Ψ norm (as ξ

(k)
i has bounded Ψ norm),

⟨ϕ(k)

i , θ⟩ will have bounded ΨrNℓ
norm (dominated by ⟨µℓ, θ⟩ plus a small term).

(ii) Variance of empirical moments: Var(N−1
ℓ

∑
i∈Cℓ

⟨ϕ(k)

i , θ⟩r). Again, we use ϕ
(k)

i =

E[ϕ(k)

i ] + ξ
(k)
i /

√
νn. By an argument similar to Lemma 5, we obtain

∥⟨ϕ(k)

i , θ⟩r − ⟨Eϕ(k)

i , θ⟩r∥L2 ≤
r∑

s=1

(
r

s

)
∥⟨Eϕ(k)

i , θ⟩∥r−s
L2r · ∥⟨ξ(k)i /

√
νn, θ⟩∥sL2r (26)

We have ∥⟨Eϕ(k)

i , θ⟩∥r−s
L2r = |⟨Eϕ(k)

i , θ⟩|r−s since the quantity is deterministic. This is
uniformly bounded over i ∈ Cℓ and θ ∈ Sd−1, by eq. (25). Similarly, ∥⟨ξ(k)i , θ⟩∥L2r is uni-
formly bounded over i ∈ Cℓ and θ ∈ Sd−1, by the argument in the proof of Proposition 4 (the
convergence of the moments is uniform over i ∈ Cℓ). It follows that ∥⟨ξ(k)i /

√
νn, θ⟩∥sL2r =

O(ν
−s/2
n ) = O(ν

−1/2
n ) for s ≥ 1, uniformly over i and θ. The same then applies to LHS

of eq. (26). This in turn implies ∥N−1
ℓ

∑
i∈Cℓ

⟨ϕ(k)

i , θ⟩r − N−1
ℓ

∑
i∈Cℓ

⟨Eϕ(k)

i , θ⟩r∥L2 =

o(1). Now, Var(N−1
ℓ

∑
i∈Cℓ

⟨Eϕ(k)

i , θ⟩r) = 0 since this quantity is deterministic. This

implies (see the inequality in the proof of Lemma 2) Var(N−1
ℓ

∑
i∈Cℓ

⟨ϕ(k)

i , θ⟩r) = o(1)
which is the desired result.

(iii) supn M1(P̃n,ℓ) < ∞: This was shown for T ′
1,n.

Thus, by Proposition 10, E[W1(P̃n,ℓ, P̃n,ℓ)] → 0.

Since E[W1(P̃n,ℓ, G̃n,ℓ)] → 0 for each ℓ, it follows that E[T ′
2,n] → 0. Combining E[T ′

1,n] → 0 and
E[T ′

2,n] → 0 completes the proof.
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B Moment Characterization in Wp

In the following {Hn}n≥1 and H are all (Borel) probability measures on Rd.

Proposition 7. Assume that {Hn}n≥1 is a sequence of (Borel) measures on Rd such that

sup
n≥1

∫
|θTx|rdHn(x) < ∞, for all θ ∈ Rd.

Then, supn≥1

∫
∥x∥rdHn(x) < ∞.

Proof. Let {θ1, . . . , θm} be a 1
2 -net of the unit sphere Sd−1 = {θ ∈ Rd : ∥θ∥ = 1}. We

have ∥x∥ = supθ∈Sd−1 |θTx| ≤ 2maxi∈[m] |θTi x|. It follows that ∥x∥r ≤ 2r maxi∈[m] |θTi x|r ≤
2r
∑m

i=1 |θTi x|r, hence

sup
n≥1

∫
∥x∥rdHn(x) ≤ 2r

m∑
i=1

sup
n≥1

∫
|θTi x|r dHn(x) < ∞

proving the result.

C Ψr sub-Gaussians

Definition 1 (Ψr sub-Gaussian). Let r ≥ 2 be a real number, and Ψr : [0,∞) → [0,∞) be defined
by

Ψr(x) =

⌊r/2⌋∑
j=1

x2j

j!
. (27)

The corresponding Orlicz (or Luxembourg) norm for a random variable X is:

∥X∥Ψr
= inf{K > 0 : E[Ψr(|X|/K)] ≤ 1}. (28)

Lemma 9 (Norm equivalence). Let X be a random variable and r ≥ 2. The following holds:

(a) Norm implies moments: If ∥X∥Ψr
≤ K for some K > 0, then

(E|X|p)1/p ≤ C1K
√
p for all p ∈ [2, 2⌊r/2⌋]

where C1 > 0 is a universal constant.

(b) Moments imply norm: If (E|X|p)1/p ≤ C
√
p for some C > 0 and for all p ∈ [2, r], then

∥X∥Ψr ≤ C2C

where C2 = 2
√
e.

Proof. Part (a) Assume ∥X∥Ψr
≤ K. By definition, E[Ψr(|X|/K)] ≤ 1.

E

⌊r/2⌋∑
j=1

(|X|/K)2j

j!

 ≤ 1

For any integer j0 ∈ [1, ⌊r/2⌋], let p = 2j0. Since all terms in the sum are non-negative:

E
[
|X|p

Kpj0!

]
≤ E[Ψr(|X|/K)] ≤ 1

So, E|X|p ≤ Kpj0! = Kp(p/2)!. Taking the p-th root: (E|X|p)1/p ≤ K((p/2)!)1/p. Using the
inequality m! ≤ e

√
m(m/e)m for m = p/2 ≥ 1:

((p/2)!)1/p ≤ (e
√

p/2(p/2e)p/2)1/p = (e
√

p/2)1/p(p/2e)1/2 = (e
√
p/2)1/p

√
p

2e
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The term (e
√

p/2)1/p is bounded by a universal constant c′ for p ≥ 2. (It tends to 1 as p → ∞).
Thus, (E|X|p)1/p ≤ Kc′

√
1/(2e)

√
p for even integers p ∈ [2, 2⌊r/2⌋]. Now, let p ∈ [2, 2⌊r/2⌋]

be any real number. Let q = 2⌈p/2⌉. Then q is an even integer, p ≤ q ≤ p + 1 < p + 2, and
q ≤ 2⌈(2⌊r/2⌋)/2⌉ = 2⌊r/2⌋. By Lyapunov’s inequality:

(E|X|p)1/p ≤ (E|X|q)1/q ≤ Kc′
√

1/(2e)
√
q

Since q ≤ p + 2 and p ≥ 2, we have q ≤ p + p = 2p. So
√
q ≤

√
2p =

√
2
√
p. Therefore,

(E|X|p)1/p ≤ Kc′
√

1/(2e)
√
2
√
p = (c′

√
1/e)K

√
p. Setting C1 = c′

√
1/e (a universal constant)

proves the first part.

Part (b) Assume (E|X|p)1/p ≤ C
√
p for p ∈ [2, r]. We want to find k such that E[Ψr(|X|/k)] ≤ 1.

E[Ψr(|X|/k)] =
⌊r/2⌋∑
j=1

E[|X|2j ]
k2jj!

Let p = 2j. Since j ∈ [1, ⌊r/2⌋], p ∈ [2, 2⌊r/2⌋]. This range is contained in [2, r]. So we can use
the moment bound: E|X|p ≤ (C

√
p)p = Cppp/2.

E[Ψr(|X|/k)] ≤
⌊r/2⌋∑
j=1

C2j(2j)j

k2jj!

Using the bound (2j)j/j! ≤ (2e)j :

E[Ψr(|X|/k)] ≤
⌊r/2⌋∑
j=1

C2j(2e)j

k2j
=

⌊r/2⌋∑
j=1

(
2eC2

k2

)j

This is a geometric series with ratio R = 2eC2/k2. If we choose k such that R ≤ 1/2, the
sum is bounded by

∑∞
j=1(1/2)

j = 1. We need 2eC2/k2 ≤ 1/2, which means k2 ≥ 4eC2. Let
k =

√
4eC = 2

√
eC. With this choice of k, we have E[Ψr(|X|/k)] ≤ 1. By the definition of the

norm, ∥X∥Ψr ≤ k = 2
√
eC. Setting C2 = 2

√
e proves the second part.

Lemma 10 (Tail bound). Let Y be a random variable and r ≥ 2. Suppose ∥Y ∥Ψr
≤ K for some

K > 0. Then there exists a universal constant c0 > 0 such that for all t ≥ c0K:

P(|Y | ≥ t) ≤ exp
(
−c1 min

{ t2

K2
, ⌊r/2⌋

})
where c1 = 1/(4C2

1e) and C1 is the universal constant from Lemma 9(a). The threshold constant is
c0 = 2C1

√
e.

Proof. The assumption ∥Y ∥Ψr
≤ K implies (E|Y |p)1/p ≤ C1K

√
p for all p ∈ [2, 2⌊r/2⌋] by

Lemma 9(a). Let r′0 = 2⌊r/2⌋. This matches the condition (56) of [18, Lemma 25] with ∆ = Y ,
η = 1/2, Klem = K, Clem = 2C2

1 , and r0 replaced by r′0. Lemma 25 applies for x ≥ 4Clemηe =
4(2C2

1 )(1/2)e = 4C2
1e. It gives the tail bound:

P(|Y | ≥ Kx1/2) ≤ exp
(
−min

{ x

2Cleme
, ηr′0

})
= exp

(
−min

{ x

4C2
1e

, ⌊r/2⌋
})

Let t = Kx1/2, so x = (t/K)2. The condition on x becomes t ≥ K
√
4C2

1e = 2C1
√
eK.

Substituting x in the bound yields:

P(|Y | ≥ t) ≤ exp
(
−min

{ (t/K)2

4C2
1e

, ⌊r/2⌋
})

Setting c1 = 1/(4C2
1e) and c0 = 2C1

√
e gives the desired result.
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D Results on Triangular Arrays

Proposition 8. Let µn = 1
n

∑n
i=1 δYi,n

be the empirical measure of real-valued random variables
Yi,n for i ∈ [n], and let µ̄n = Eµn. Assume that for some sequence rn = ω(1), we have

(a) {Yi,n}ni=1 is uniformly Ψrn sub-Gaussian, that is, there exists ζ > 0 such that
supi∈[n] ∥Yi,n∥Ψrn

≤ ζ.

(b) var
(
n−1

∑n
i=1 Y

r
i,n

)
→ 0 as n → ∞ for all r ∈ N.

Then, E
[
W1(µn, µ̄n)

]
→ 0 as n → ∞.

The full proof of this proposition will be deferred for a next section.
Lemma 11. W1(ηθ1 , ηθ2) ≤ ∥θ1−θ2∥M1(η), for any probability measure η on Rd and θ1, θ2 ∈ Rd.

Proof. Let X ∼ η. Using the dual formulation of W1 for measures on R:

W1(ηθ1 , ηθ2) = sup
f∈L

∣∣Ef(θT1 X)− Ef(θT2 X)
∣∣

≤ sup
f∈L

E
∣∣f(θT1 X)− f(θT2 X)

∣∣ ≤ E|θT1 X − θT2 X| ≤ ∥θ1 − θ2∥M1(η).

This completes the proof.

Proposition 9. Let {µn}n≥1 and {ηn}n≥1 be random probability measures on Rd. Let µ̄n = Eµn

and η̄n = Eηn. Assume that
sup
n≥1

(
M1(µ̄n) +M1(η̄n)

)
< ∞, (29)

and E
[
W1(µn,θ, ηn,θ)

]
→ 0 as n → ∞ for every θ ∈ Sd−1. Then, E

[
W1(µn, ηn)

]
→ 0 as n → ∞.

Proof. The map θ 7→ W1(µn,θ, ηn,θ) is Lipschitz with constant Ln := M1(µn) +M1(ηn). This is
shown in [4], and we reproduce the argument here for completeness.

The triangle inequality for W1 gives,

W1(µn,θ1 , ηn,θ1) ≤ W1(µn,θ1 , µn,θ2) +W1(µn,θ2 , ηn,θ2) +W1(ηn,θ2 , ηn,θ1).

Rearranging yields

W1(µn,θ1 , ηn,θ1)−W1(µn,θ2 , ηn,θ2) ≤ W1(µn,θ1 , µn,θ2) +W1(ηn,θ1 , ηn,θ2)

≤ ∥θ1 − θ2∥M1(µn) + ∥θ1 − θ2∥M1(ηn)

= Ln∥θ1 − θ2∥.
where the second inequality follows from Lemma 11. Switching θ1 and θ2 shows that the inequality
holds with the LHS replaced with its absolute value, proving Lipschitz continuity.

Let Fn(θ) = W1(µn,θ, ηn,θ). By the result of [4], there is a constant C(d) such that

W1(µn, ηn) ≤ C(d) max
θ∈Sd−1

Fn(θ).

Let θ1, θ2, . . . , θN be a ε-net of Sd−1, with N = N(ε) finite. For every θ ∈ Sd−1, there is a θj such
that Fn(θ) ≤ Lnε+ Fn(θj) ≤ Lnε+

∑N
i=1 Fn(θi). It follows that

E max
θ∈Sd−1

Fn(θ) ≤ E[Ln] · ε+
N∑
i=1

E[Fn(θi)]

Bounding E[Ln] further by supn≥1 E[Ln] and noting that E[Ln] = M1(µ̄n) +M1(η̄n), we have

E[W1(µn, ηn)] ≤ C(d)
{
ε sup
m≥1

(
M1(µ̄m) +M1(η̄m)

)
+

N∑
i=1

EW1(µn,θi , ηn,θi)
}
.

The sum goes to zero by assumption as n → ∞, and the first term goes to zero taking ε ↓ 0 and
using (29).
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Proposition 10. Let µn = 1
n

∑n
i=1 δYi,n be the empirical measure of vector-valued random variables

Yi,n ∈ Rd for i ∈ [n], and let µ̄n = Eµn. Assume that for some sequence rn = ω(1) and for any
θ ∈ Sd−1,

(a) {⟨θ, Yi,n⟩}ni=1 is uniformly Ψrn sub-Gaussian, that is, there exists ζ(θ) > 0, such that
supi∈[n] ∥⟨θ, Yi,n⟩∥Ψrn

≤ ζ(θ).

(b) var
(
n−1

∑n
i=1⟨θ, Yi,n⟩r

)
→ 0 as n → ∞ for all r ∈ N.

(c) supn≥1 M1(µ̄n) < ∞.

Then, E
[
W1(µn, µ̄n)

]
→ 0 as n → ∞.

Proof. First, note that Eµn,θ = µ̄n,θ. By Proposition 8, and assumptions (a) and (b), we have that
E
[
W1(µn,θ, µ̄n,θ)

]
→ 0 as n → ∞ for every θ ∈ Sd−1. Next, applying Proposition 9 with ηn = µ̄n

and noting that ν̄n = µ̄n, the result follows.

E Proof of Proposition 8

Proof. Let us write Lip(f) = supx ̸=y
|f(x)−f(y)|

|x−y| for the Lipschitz constant of f . Consider the set of
functions

L = {f : R → R | Lip(f) ≤ 1, f(0) = 0}, LB = {f1|x|≤B | f ∈ L, B > 0}.

Let ϖn := µn − µ̄n. By the dual characterization of W1, we have

W1(µn, µ̄n) ≤ sup
f∈L

|ϖnf |.

By breaking f = f1|x|≤B + f1|x|>B , we have

W1(µn, µ̄n) ≤ sup
f∈LB

|ϖnf |+ sup
f∈L

|ϖn(f1|x|>B)|. (30)

Fix ε ∈ (0, 1) and consider the second term first. For any integrable f , we have

|ϖn(f1|x|>B)| ≤ |µn(f1|x|>B)|+ |µ̄n(f1|x|>B)|
≤ µn(|f |1|x|>B) + µ̄n(|f |1|x|>B). (31)

For f ∈ L, we have |f(x)| = |f(x)− f(0)| ≤ |x− 0|.
Then, we have

|ϖn(f1|x|>B)| ≤ µn(|x|1|x|>B) + µ̄n(|x|1|x|>B)

Taking the supremum over f ∈ L and then expectation, we have

E sup
f∈L

|ϖn(f1|x|>B)| ≤ 2µ̄n(|x|1|x|>B) =
2

n

n∑
i=1

E
(
|Yi,n|1{|Yi,n| > B}

)
.

Take n large enough so that

rn ≥ 2
(B2

ζ2
+ 1
)

(32)

which we will verify at the end. Also, take B ≥ B0(ζ) := c0ζ where c0 is the constant in Lemma 10.
Then, by this lemma, we have P(|Yi,n| > B) ≤ exp(−c1B

2/ζ2), and by Lemma 10, we have
E[Y 2

i,n] ≤ 2C2
1ζ

2. Then, by Cauchy-Schwarz, we have

E
(
|Yi,n|1{|Yi,n| > B}

)
≤
√
E[|Yi,n|2] · P(|Yi,n| > B) ≤

√
2C1ζ · exp(−cB2/2ζ2).

Taking B ≥ B1(ζ) for B1(ζ) large enough, the RHS can be made ≤ ε, which gives

E sup
f∈L

|ϖn(f1|x|>B)| ≤ 2ε.
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Consider now the first term in (30). Viewing LB as a subspace of (Cb([−B,B]), ∥·∥∞), by restricting
to [−B,B], LB is uniformly bounded and equicontinuous, hence by Arzelà–Ascoli, it is relatively
compact in the sup-norm topology. This, in turn, implies LB is totally bounded. Then, there exists
f1, . . . , fM ∈ LB that form an ε-net for LB in sup-norm, for some M = M(ε,B) < ∞. That is, for
any f ∈ LB , there is fℓ such that ∥f − fℓ∥∞ ≤ ε, hence

|ϖnf | ≤ |ϖn(f − fℓ)|+ |ϖnfℓ|
≤ ∥ϖn∥TV · ∥f − fℓ∥∞ + |ϖnfℓ| ≤ 2ε+ |ϖnfℓ|.

Taking supremum over f ∈ LB , we have
sup
f∈LB

|ϖnf | ≤ 2ε+ sup
ℓ∈[M ]

|ϖnfℓ|.

Take B ≥ 3. By Lemma 13, each fℓ admits a (truncated) polynomial Qℓ(x) = 1{|x| ≤ B} ·∑m
j=0 cjℓx

j , with m = 4⌈C2B/ε⌉ ∈ 4N (can take C2 = 18) such that

∥fℓ −Qℓ∥∞ ≤ ε,

and |cjℓ| ≤ 6B · 3m−j =: aj for all j ≥ 0 and ℓ ∈ [M ]. We have
|ϖnfℓ| ≤ ∥ϖn∥TV · ∥fℓ −Qℓ∥∞ + |ϖnQℓ|.

It follows that
sup
ℓ∈[M ]

|ϖnfℓ| ≤ 2ε+ sup
ℓ∈[M ]

|ϖnQℓ|

and we have

sup
ℓ∈[M ]

|ϖnQℓ| ≤ sup
ℓ∈[M ]

∣∣∣ m∑
j=0

cjℓ ϖn(x
j1|x|≤B)

∣∣∣
≤

m∑
j=0

(
sup
ℓ∈[M ]

|cjℓ|
)
· |ϖn(x

j1|x|≤B)| ≤
m∑
j=0

aj |ϖn(x
j1|x|≤B)|

We have
|ϖn(x

j1|x|≤B)| ≤ |ϖn(x
j)|+ |ϖn(x

j1|x|>B)|.
Then, for the second term, using (31), we have, for all j ∈ [m],

|ϖn(x
j1|x|>B)| ≤ µn(|xj |1|x|>B) + µ̄n(|xj |1|x|>B)

≤ µn(|xm|1|x|>B) + µ̄n(|xm|1|x|>B).

Taking maximum over j ∈ [m], followed by expectation, we have

E sup
j∈[m]

|ϖn(x
j1|x|>B)| ≤ 2µ̄n(|x|m1|x|>B) =

2

n

n∑
i=1

E
(
|Yi,n|m1{|Yi,n| > B}

)
.

Take n large enough so that
rn ≥ 2m = 8⌈C2B/ε⌉, (33)

which we will verify at the end. Then, by Lemma 10 we have E[|Yi,n|2m] ≤ (C1ζ)
2m(2m)m =

(2C2
1ζ

2m)m. Then, by Cauchy-Schwarz, we have

E
(
|Yi,n|m1{|Yi,n| > B}

)
≤
√

E[|Yi,n|2m] · P(|Yi,n| > B)

≤ (2C2
1ζ

2m)m · exp(−cB2/2ζ2)

Using aj = 6B · 3m−j , we have
∑m

j=0 aj ≤ 9B · 3m. It follows that

E
[ m∑
j=0

aj |ϖn(x
j1|x|>B)|

]
≤
( m∑
j=0

aj

)
· E sup

j∈[m]

|ϖn(x
j1|x|>B)|

≤ 9B · 3m · 2(2C2
1ζ

2m)m · exp(−cB2/2ζ2)

≤ 18 exp
(
logB +m log(6C2

1ζ
2m)− cB2/2ζ2

)
≤ 18 exp

(
logB + 4⌈C2B/ε⌉ log

(
24C2

1ζ
2⌈C2B/ε⌉

)
− cB2/2ζ2

)
.
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Since B2 grows faster than B logB, the RHS can be made ≤ ε for B ≥ B2(ζ, ε) for some B2(ζ, ε)
large enough. For this choice of B, we have

E sup
ℓ∈[M ]

|ϖnQℓ| ≤
m∑
j=0

ajE|ϖn(x
j)|+ ε

≤
m∑
j=0

aj var
( 1
n

n∑
i=1

Y j
i,n

)
+ ε.

By assumption

max
0≤j≤m

var
( 1
n

n∑
i=1

Y j
i,n

)
≤ ε/(

m∑
j=0

aj) (34)

for sufficiently large n. This gives E supℓ∈[M ] |ϖnQℓ| ≤ 2ε. Putting the pieces together, we have

E sup
f∈LipB

|ϖnf | ≤ 2ε+ 2ε+ 2ε = 6ε.

All in all, taking B = max{3, B0(ζ), B1(ζ), B2(ζ, ε)}, and n large enough so that (32) and (33) are
satisfied for the chosen B, and (34) holds, we obtain EW1(µn, µ̄n) ≤ 8ε. The proof is complete.

Lemma 12. Let Tk be the kth Chebyshev polynomial, and let [Tk]j be the coefficient of xj in Tk(x).
Then, |[Tk]0| ≤ 1 and

max
1≤j≤k

|[Tk]j | ≤ (1 +
√
2)k ≤ 3k.

Proof. The first part is clear, since [Tk]0 ∈ {0, 1}. For the second part, from the recurrence relation
Tk+1(x) = 2xTk(x)− Tk−1(x), we have

|[Tk+1]j | ≤ 2|[Tk]j−1|+ |[Tk−1]j |.

Assuming the result holds as max1≤j≤k |[Tk]j | ≤ ck for some constant c and for all Tr, r ≤ k, we
have |[Tk+1]j | ≤ 2 · ck + ck−1. Then, if 2ck + ck−1 ≤ ck+1, the result follows by induction. But
this holds for c ≥ 1 +

√
2. The proof is complete.

Lemma 13 (Chebyshev–Jackson approximation). Let B ≥ 3. Then, for any f : [−B,B] → R
1-Lipschitz with f(0) = 0, there exists a polynomial P (x) =

∑m
j=0 cjx

j , with m ∈ 4N, such that

sup
x∈ [−B,B]

|f(x)− P (x)| ≤ 18B

m
, |cj | ≤ 6B · 3m−j , for all j ≥ 0.

Proof. Consider an L-Lipschitz function g on [−1, 1] with g(0) = 0. Then, for each m ∈ 4N, there
is a polynomial of the form

Qm(x) =

m∑
k=0

λk,mak(g)Tk(x)

where λk,m are derived from a Jackson kernel, satisfying 0 ≤ λk,m ≤ 1 and ak(g) are the Chebyshev
coefficients of g, such that

sup
x∈[−1,1]

|g(x)−Qm(x)| ≤ 18L

m
, |ak(g)| ≤

√
8/πL

k
, k ≥ 1.

See Facts 3.2 and 3.3 in [5]. The Chebyshev coefficients are given by

ak(g) =
2

π

∫ 1

−1

g(x)Tk(x)√
1− x2

dx, k ≥ 1,

and for k = 0, the same fomrula holds with 2/π replaced with 1/π. For k = 0, using g(0) = 0 so
that |g(x)| ≤ L|x| for all x ∈ [−1, 1], and T0(x) = 1, we have

|a0(g)| ≤
1

π

∫ 1

−1

L|x|√
1− x2

dx =
2L

π
.
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Thus a crude upper bound that works for all k ≥ 0 is |ak(g)| ≤ 2L.

Let ak,m = λk,mak(g) and note that |ak,m| ≤ 2L for all k ≥ 0, by the above discussion. Rewriting
Qm(x) =

∑m
j=0 bjx

j , one has bj =
∑m

k=j ak,m[Tk]j where [Tk]j is the coefficient of xj in Tk(x).
It follows that

|bj | ≤
m∑

k=j

2L · 3k ≤ 2L · 3m
m∑

k=j

3k−m ≤ 2L · 3m 1

1− 3−1
≤ 6L · 3m

for all j ≥ 0.

If f is 1-Lipschitz on [−B,B] with f(0) = 0, then g(x) = f(Bx) is B-Lipschitz on [−1, 1] with
g(0) = 0. Let Qm be the above polynomial for g, and let P (x) = Qm(x/B) =

∑m
j=0(bj/B

j)xj =:∑m
j=0 cjx

j . Then,

|cj | ≤ 6B
3m

Bj
≤ 6B · 3m−j

assuming B ≥ 3. We also have supx∈[−B,B] |f(x)− P (x)| = supx∈[−1,1] |g(x)−Qm(x)| ≤ 18B
m .

The proof is complete.

F Remaining proofs

F.1 Proof of Lemma 6

Let Wk(i) be the set of directed, length k walks starting at node i ∈ [n]. We consider r-tuples
of walks called walk sequences where w ∈ Wr

k(i) gives w = (ws)rs=1 with ws ∈ Wk(i). We
define the last vertex projection p : Wk(i) → [n] and walk products Aws :=

∏k
ℓ=1 Aiℓjℓ with

ws = ((iℓ, jℓ))
k
ℓ=1.

Relating back to ∆i,θ, let

ϱ(w) = E
[ r∏
s=1

(Aws − E[Aws ])xp(ws)

]
with x := Xθ. Then

E[∆̊r
i,θ] =

∑
w∈Wr

k(i)

ϱ(w).

Further let [w] and JwK be the set of unique edges and vertices, respectively, found on a walk w. A
walk sequence w is said to be overlapping if for every s ∈ [r] there exists a distinct s′ ∈ [r] such that
[ws] ∩ [ws′ ] ̸= ∅. Walk sequence which are not overlapping have ϱ(w) = 0. For this reason we
define the following walk sets

Nr,t,v(i) := {w ∈ Wr
k(i) : w overlapping, |[w]| = t, |JwK| = v} (35)

where [w] :=
⋃r

s=1[w
s] and JwK :=

⋃r
s=1Jw

sK.

The walk sets {Nr,t,v(i)}t,v form a partition for Wr
k(i) with 2 ≤ v ≤ t+ 1 and 1 ≤ t ≤ t∗ where

t∗ ≤ rk − ⌈r/2⌉. This gives the sum equivalence

∑
w∈Wr

k(i)

ϱ(w) =

t∗∑
t=1

t+1∑
v=2

∑
w∈Nr,t,v(i)

ϱ(w),

which gives fine-grained control of ϱ(w) for the specific walk sets Nr,t,v(i).

To prove the result, start by expanding the variance of the r-empirical moment of γ,

Var
( 1
n

n∑
i=1

∆r
i,θ

)
=

1

n2

∑
i,i′

E[∆r
i,θ∆

r
i′,θ]− E[∆r

i,θ]E[∆r
i′,θ]. (36)
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By the n−2 scaling over i, i′ ∈ [n], it suffices to show

Cov
(
∆r

i,θ,∆
r
θ,i′
)
= E[∆r

i,θ∆
r
i′,θ]− E[∆r

i,θ]E[∆r
θ,i′ ] ≲ n−1{i ̸=i′},

for every i, i′ ∈ [n].

Introduce the new notation for walk-sequence pairs (w, w̃)

ϱ(w, w̃) = E
{( r∏

s=1

(Aws − E[Aws ])xp(ws)

)( r∏
s=1

(Aw̃s − E[Aw̃s ])xp(w̃s)

)}
.

Then, the walk-linearized covariance expansion is

Cov
(
∆r

i,θ,∆
r
θ,i′
)
=

1

ν
r(2k−1)
n

∑
(w,w̃)∈Wr

k(i)×Wr
k(i

′)

ϱ(w, w̃)− ϱ(w)ϱ(w̃). (37)

We are interested in the case ϱ(w, w̃) does not factorize as ϱ(w, w̃) = ϱ(w)ϱ(w̃). Collect walk
pairs under the concatenation notation w|w̃ = (w1, . . . ,wr, w̃1, . . . , w̃r) and define the walk set

Mr,t,v := {(w, w̃) ∈ Wr
k(i)×Wr

k(i
′) : w|w̃ overlapping, |[w|w̃]| = t, |Jw|w̃K| = v, |[w]∩[w̃]| > 0}.

(38)
The last condition of (38) filters out walk pairs (w, w̃) which factorize as ϱ(w, w̃) = ϱ(w)ϱ(w̃).
Similarly, if w|w̃ is not overlapping ϱ(w, w̃) = 0 and, consequently, ϱ(w)ϱ(w̃) = 0.

Let’s start with the case i = i′. By the set construction in (38), Mr,t,v(i, i) ⊆ N2r,t,v(i). So
|Mr,t,v(i, i)| ≤ |N2r,t,v(i)| and by the counting result [18, Lemma 13]

|Mr,t,v(i, i)| ≤ (v − 1)2rk
(
n− 1

v − 1

)
. (39)

A similar argument can be made when i and i′ are distinct. By fixing i and i′, we are left selecting(
n−2
v−2

)
unique vertices with a walk selection factor of (v − 1)2rk. Altogether,

|Mr,t,v(i, i
′)| ≤ (v − 1)2rk

(
n− 2

v − 2

)
. (40)

For bounds on v and t, we note that u := w|w̃ is an overlapping walk sequence, which by the partition
result [18, Lemma 12], means it must have, at most, |[u]| ≤ 2rk − r unique edges. Similarly, the
number of unique vertices bounds as |JuK| ≤ |[u]|+ 1 since the discrete graph (JuK, [u]) associated
with u is necessarily connected by the rooted nature of the walks in the sequence u (walks must start
at i or i′) and the last condition of (38).

Next, we consider the bound |ϱ(w, w̃)| ≤ 2max{|ϱ(w, w̃)|, |ϱ(w)ϱ(w̃)|}. Introduce the notation,
ϱ1(w) = E

[∏r
s=1(Aws − E[Aws ])

]
and ϱ2(w) = E

[∏r
s=1 xp(ws)

]
. We analogously define,

ϱ1(w, w̃) := ϱ1(w|w̃) and ϱ2(w, w̃) := ϱ2(w|w̃). From [18, Lemma 10],

|ϱ1(w)ϱ1(w̃)| ≤ 22r(νn/n)
|[w]|+|[w̃]| ≤ 22r(νn/n)

|[w|w̃]| and |ϱ1(w, w̃)| ≤ 22r(νn/n)
|[w|w̃]|

and
|ϱ2(w)ϱ2(w̃)| ≤ (2

√
rκ0)

2r and |ϱ2(w, w̃)| ≤ (2
√
rκ0)

2r

where κ0 is defined as in Proposition 3. Let t∗ = r(2k − 1) then

Cov
(
∆r

i,θ,∆
r
θ,i′
)
≤ 1

ν
r(2k−1)
n

t∗∑
t=1

t+1∑
v=2

(4
√
rκ0)

2r · |Mr,t,v(i, i
′)|(νn/n)t. (41)

For the case i = i′, cardinality and |Mr,t,v(i, i)| ≲ nv−1 ≤ nt by (39).

Cov
(
∆r

i,θ,∆
r
θ,i′
)
≲

1

ν
r(2k−1)
n

t∗∑
t=1

t+1∑
v=2

(4
√
rκ0)

2r · νtn

≲
νt∗n

ν
r(2k−1)
n

,
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where the last line follows from the fact r and k are fixed relative to n. Similarly for the off-diagonal
case of i ̸= i′, |Mr,t,v(i, i

′)| ≲ nv−2 ≤ nt−1 by (40) and

1

ν
r(2k−1)
n

t∗∑
t=1

t+1∑
v=2

(4
√
rκ0)

2r · |Mr,t,v(i, i
′)|(νn/n)t ≲

1

ν
r(2k−1)
n

· ν
t∗
n

n
.

Noting t∗ = r(2k − 1), this proofs the claim that Cov
(
∆r

i,θ,∆
r
θ,i′

)
≲ n−1{i̸=i′}.

F.2 Proof of Lemma 7

Shown in [18] the dominant term in a walk-based for ∆̊i,θ is given by the proxy term

T̃ hi
i (r) = (r − 1)!!

∑
(jℓ)ℓ∈Pr/2

[n]\{i}

r/2∏
q=1

pijℓ(1− pijℓ)(e
T
jℓ
E[A]k−1E[X]θ)2

where Pr/2
[n]\{i} is the set of coordinate distinct (r/2)-tuples on [n] \ {i}. Specifically, it was shown

for r ∈ 2N and νn sufficiently large∣∣E[∆r
i,θ]− ν−(rk−r/2)

n T̃ hi
i (r)

∣∣ ≤ C(r)xr
∗(n

−1 + ν−ϵ
n ) (42)

where ϵ can be used to parameterize the separation of higher- and lower-order terms ∆̊i,θ [18, Lemma
14 and Lemma 18].

To obtain the limiting closed form, we utilize |[n]r/2 \ Pr/2
[n]\{i}| ≤ C(r)nr/2−1 and

∑
(jℓ)ℓ∈[n]r/2

r/2∏
q=1

pijℓ(1− pijℓ)(e
T
jℓ
E[A]k−1E[X]θ)2 =

( ∑
j∈[n]

pij(1− pij)(e
T
j E[A]k−1E[X]θ)2

)r/2
=
(
(E[A]k−1E[X]θ)T (νnV

2
i )(E[A]k−1E[X]θ)

)r/2
.

For brevity, let fi(j) := (pij/νn)(1− pij)(e
T
j E[A/νn]

k−1E[X]θ)2. Then, noting Pr/2
[n]\{i} ⊆ [n]r/2,

|ν−(rk−r/2)
n T̃ hi

i (r)− (r − 1)!! ∥ViE[A]k−1E[X]θ∥r2|

= (r − 1)!!
∣∣∣ ∑
(jℓ)ℓ∈Pr/2

[n]\{i}

r/2∏
q=1

fi(jℓ)−
∑

(jℓ)ℓ∈[n]r/2

r/2∏
q=1

fi(jℓ)
∣∣∣

≤ (r − 1)!! |[n]r/2 \ Pr/2
[n]\{i}| (max

j∈[n]
fi(j))

r/2.

Let Wk−1(j) be the set of k − 1 walks on [n] starting at j. Then, with W2
k−1(j) := Wk−1(j) ×

Wk−1(j)

fi(j) = (pij/νn)(1− pij)
∑

w∈W2
k−1(j)

2∏
s=1

(
E[(Xθ)p(ws)]

k−1∏
ℓ=1

(p(ws)ℓ/νn)
)

Recall that E|(Xθ)i| < x∗ by assumption. Since |Wk−1(j)| ≤ |[n]k−1| = nk−1 and pij/νn ≤ 1/n
we have

fi(j) ≤ x2
∗/n for every i, j ∈ [n].

Altogether, this yields the inequality

|ν−(rk−r/2)
n T̃ hi

i (r)− (r − 1)!! ∥ViE[A]k−1E[X]θ∥r2| ≤ C(r)xr
∗n

−1,

where constants not depending on r or x∗ have been absorbed in C. Noting that n−1 ≤ ν−ϵ
n for

0 < ϵ < 1 and piecing together with (42) produces the desired bound.
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F.3 Proof of Lemma 3

Similar to the proof Lemma 6 we begin with a walk analysis. Define the simple walk partition element
Nt,v(i) := {w ∈ Wk(i) : |[w]| = t, |JwK| = v}. Note that, in this case, Nt,v(i) no longer has an
overlapping constraint. As such,

E[⟨ϕ(k)

i , θ⟩] = 1

νkn

k∑
t=1

t+1∑
v=2

∑
w∈Nt,v(i)

E[Aw]E[(Xθ)p(w)]

where notation Aw :=
∏k

ℓ=1 Aiℓjℓ . Similarly define (E[A])w =
∏k

ℓ=1 E[Aiℓjℓ ] for walks on the
expected matrix E[A]. Note that, when t = v − 1 = k, the edges of w are all unique and the
expectation factorizes as∑

w∈Nk,k+1(i)

E[Aw]E[(Xθ)p(w)] =
∑

w∈Nk,k+1(i)

(E[A])w E[(Xθ)p(w)].

Therefore,

E[⟨ϕ(k)

i , θ⟩]− ⟨γT
i , θ⟩ =

1

νkn

k∑
t=1

t+1∑
v=2

∑
w∈Nt,v(i)

(E[Aw]− (E[A])w)E[(Xθ)p(w)] · 1{v ̸= k + 1}.

Setting r = 1 in Lemma 13 of [18] gives the counting bound
∑b+1

v=2 |Nt,v(i)| ≤ bk−b(en)b. Finally,
noting that E[Aw]− (E[A])w ≤ 2(νn/n)

|w|,

∥E[⟨ϕ(k)

i , θ⟩]− ⟨γT
i , θ⟩∥2 ≤ 1

νkn

k∑
t=1

t+1∑
v=2

|Nt,v(i)|(νn/n)rx∗ · 1{v ̸= k + 1}

=
1

νkn

k∑
v=2

|Nt,v(i)|(νn/n)rx∗ +
1

νkn

k−1∑
t=1

t+1∑
v=2

|Nt,v(i)|(νn/n)rx∗

≤ 1

n
(k − 1)k−1ek−1x∗ +

1

νkn

k−1∑
t=1

tk−tetx∗ν
t
n

≤ C(k)x∗ν
−1
n .

Since the above holds for any i ∈ [n] and any θ ∈ Sd−1,

max
i∈[n]

∥E[ϕ(k)

i ]− γT
i ∥ = max

i∈[n]
max

θ∈Sd−1
∥⟨(E[ϕ(k)

i ]− γT
i ), θ⟩∥2 ≤ C(k)x∗ν

−1
n .

G Joint Wasserstein Distance and the Class-Conditional Supremum

In Theorem 1, we state that the joint empirical distribution converges in 1-Wasserstein distance and
then provide a related, stronger-looking class-conditional convergence statement (11). This note
formalizes the relationship between these two quantities, showing that the latter is a tractable upper
bound on the former.

Consider the joint space [L]×Rd with the metric d
(
(z1, y1), (z2, y2)

)
:= 1{z1 ̸= z2}+ ∥y1 − y2∥2.

The true joint 1-Wasserstein distance is the supremum of the difference in expectations over all
1-Lipschitz functions F : [L]× Rd → R.

A function F is 1-Lipschitz with respect to this metric if and only if its component functions,
fℓ(y) := F (ℓ, y), satisfy two conditions: (1) Each fℓ : Rd → R is 1-Lipschitz. (2) The collection
{fℓ}Lℓ=1 is jointly coupled by the constraint |fℓ1(y1)− fℓ2(y2)| ≤ 1 + ∥y1 − y2∥2 for any ℓ1 ̸= ℓ2.

In contrast, the class-conditional expression in Eq. (11) takes its supremum over all possible collec-
tions of 1-Lipschitz functions {fℓ} without enforcing the second joint constraint.

The set of test functions for the true joint W1 distance is therefore a strict subset of the test functions
for the class-conditional expression. Consequently, the class-conditional expression provides a valid
upper bound on the joint 1-Wasserstein distance. This justifies our proof strategy: showing that this
upper bound converges to zero is a sufficient condition to prove the desired joint convergence.
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Figure 5: Empirical distribution of a two-class CSBM with exaggerated class proportions and edge probabilities.
Both mixture components are centered at zero with a visible difference between the peak widths and heights of
each component.

H Simulation Details for Figures

This appendix details the experimental setups for the figures presented in the main text. Specific
parameters for these and all other figures are provided in the subsequent subsections.

H.1 Details for Figure 1

The plots in Figure 1 were simulated from a 1-class SBM, commonly referred to as an Erdős–Réyni
graph, with probability parameter p = νn/n. Depth k = 3 was used with unit, univariate features
Xi = 1 for all i ∈ [n]. A grid search was performed on graph sizes n ∈ {300, 3000, 30000} with
expected degrees νn ∈ {2, 4, 16}. These graph are very sparse, yet they approach Gaussianity fairly
quickly. Particularly, the plot associated with νn = 16 has nearly symmetrical tails and a bell curve
shape.

H.2 Details for Figure 2

The plots in Figure 2 were generated using a 3-class CSBM with n = 8192 nodes. Class proportions
were π1 = 0.25, π2 = 0.45, π3 = 0.30, average degree parameter was νn =

√
8192, and the inter-

community probability scaling matrix was B = (νn/n)·

(
0.4 1 1
1 0.4 1
1 1 0.4

)
. Initial features Xi where

d = 2 dimensional and generated as Xi ∼ N(Mzi,∗, σ
2I2) with σ2 = 0.25 and M1,∗ = [2, 2]T ,

M2,∗ = [−1,−3]T , and M3,∗ = [−1, 0]T .

Cross entropy training was run for a single linear classifier layer for 10 epochs with learning rate 10
on the SGD optimization. Although small differences are expected at later time steps, Figure 2 still
shows good agreement between the empirical and theoretical gradient average.

H.3 Details for Figure 3

The plots in Figure 3 were generated using a 2-class SBM with n = 32000 nodes. Class proportions
were π1 = 0.4, π2 = 0.6, average degree parameter was νn = 30, and the inter-community

probability scaling matrix was B = (νn/n)·
(
0.5 1
1 0.5

)
. Initial features Xi were d = 2 dimensional

drawn from mean vectors M1,∗ = [2, 2]T and M2,∗ = [−1,−2]T . Quadratic discriminant analysis
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was performed using the sample statistics of ϕ
(k)

i with k = 2. Cross-entropy training consisted of
single linear layer trained for 5000 epochs at learning rate 0.5 with a SGD optimizer

H.4 Details for Figure 4

The plots in Figure 4 were generated in the same setting as Section H.3 with the exception of a higher
average degree νn = 35. The plots show Kernel Density Estimates (KDEs) of the ϕ

(k)

i features for
k ∈ {2, 4, 6}. The KDEs were computed using Gaussian kernels with bandwidth selected by Scott’s
rule.

H.5 Details for Figure 5

The plot of Figure 5 was generated from a 2-class SBM with 32000 nodes. Class proportions
were π1 = 0.9, π2 = 0.1, average degree parameter was νn =

√
32000, and the inter-community

probability scaling matrix was B = (νn/n)·
(
10 0.1
0.1 10

)
. Initial features Xi were d = 1 dimensional

and generated as Xi ∼ N(Mzi , σ
2) for M1 = 10−2, M2 = −10−2 and σ2 = 10−4.

For the plot of Figure 5 we simulate 100 CSBM graphs each at 32000 nodes. From these 100
replicates, we obtain an estimate for E[ξ(k)] with k = 3. The final figure is a 100 bin histogram of
the 3200000 empirical elements with a theoretical density given by our theory drawn on top.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In our abstract we highlight a feature CLT and a potential explanation for GNN
oversmoothing. Both points are addressed in Sections 3 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: Limitations were not discussed but could revolve around the question of
generative model. It remains an open question whether Poly-GNN feature CLTs hold for
non-community-based graphs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs are deferred in the main text and provided in full in the supplement of
the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Simulation settings and parameters necessary to reproduce the plotted figures
are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code is not instrumental to understanding our result. Plots are supplementary
to the theoretical results shown in this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: No benchmarking was done for this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Figures provided are for visual aid. No tables or statistical tests were provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Computer resources included one local machine with 64Gb of RAM and a
Nvidia 4090 GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our theoretical results do no have direct causes for harm or ethical concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This did not seem relevant to the work we presented.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No model is released as part of this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No external models or assets were used for this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no new assets introduced by this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing was used for this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No participants were studied.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: Core methodology and proofs were not changed due to an LLM
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Overview of Our Contributions

	Preliminaries and Model Setup
	Poly-GNNs and Feature Definitions
	Community-Based Graph Model
	Assumptions
	Wasserstein Distance

	Asymptotic Distribution of Poly-GNN Embeddings
	Main Central Limit Theorems
	Proof Outline and Key Steps

	Implications for Classification and GNN Oversmoothing
	Convergence of Linear Classification on Poly-GNN Features
	A Precise Mechanism for GNN Oversmoothing

	Conclusion
	Detailed Proofs of Main Theorems
	Proof of Theorem 2 (CLT for Centered and Scaled Features)
	Proof of Theorem 1 (CLT for Degree-Normalized Features and Labels)
	Supporting Lemmas for Moment Analysis
	Supporting Results for Specialization to Community-Based Graphs

	Moment Characterization in Wp
	r sub-Gaussians
	Results on Triangular Arrays
	Proof of Proposition 8
	Remaining proofs
	Proof of lem:lemdeltvar
	Proof of Lemma 7
	Proof of Lemma 3

	Joint Wasserstein Distance and the Class-Conditional Supremum
	Simulation Details for Figures
	Details for Figure 1
	Details for Figure 2
	Details for Figure 3
	Details for Figure 4
	Details for Figure 5


