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Abstract

This paper uses information-theoretic tools to analyze the generalization error in1

unsupervised domain adaptation (UDA). This study presents novel upper bounds2

for two notions of generalization errors. The first notion measures the gap between3

the population risk in the target domain and that in the source domain, and the4

second measures the gap between the population risk in the target domain and the5

empirical risk in the source domain. While our bounds for the first kind of error6

are in line with the traditional analysis and give similar insights, our bounds on7

the second kind of error are algorithm-dependent and also inspire insights into8

algorithm designs. Specifically, we present two simple techniques for improving9

generalization in UDA and validate them experimentally.10

1 Introduction11

This paper focuses on the unsupervised domain adaptation (UDA) task, where the learner is confronted12

with a source domain and a target domain and the algorithm is allowed to access to a labeled training13

sample from the source domain and an unlabeled training sample from the target domain. The goal is14

to find a predictor that performs well on the target domain.15

A main obstacle in such a task is the discrepancy between the two domains. Some recent works have16

[1–9] proposed various measures to quantify such discrepancy, either for the UDA setting or for the17

more general domain generalization tasks, and many learning algorithms are proposed. For example,18

most recently, Nguyen et al. [9] uses a (reverse) KL divergence to measure the misalignment of19

the distributions of the two domains, and motivated by their generalization bound, they design an20

algorithm that penalizes the KL divergence between the marginal distributions of two domains in the21

representation space. Despite that this “KL guided domain adaptation” algorithm is demonstrated22

to outperform many existing marginal alignment algorithms [10, 11, 6, 12], it is not clear whether23

KL-based alignment of marginal distributions is adequate for UDA, and more fundamentally what24

role the unlabelled target-domain training sample should play to achieve cross-domain generalization.25

Notably, most UDA algorithms are heuristically designed and intuitively justified and most existing26

generalization bounds are algorithm-independent. Then there appears significant room for both27

deeper theoretical understanding and more principled algorithm design.28

In this paper, we analyze the generalization ability of hypotheses and algorithms for UDA tasks using29

an information-theoretic framework developed in [13, 14]. The foundation of our bounding technique30

is the Donsker-Varadhan representation of KL divergence (see Lemma A.1) with the application of31

sub-gaussianity (see Assumption 2). We present novel upper bounds for two notions of generalization32

errors. The first notion (“PP generalization error”) measures the gap between the population risk33

in the target domain and that in the source domain for a hypothesis, and the second (“expected EP34

generalization error”) measures the gap between the population risk in the target domain and the35

empirical risk in the source domain for a learning algorithm. The specific contributions of this work36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



are as follows. We show that the PP generalization error for all hypotheses are uniformly bounded37

by a quantity governed by the KL divergence between the two domain distributions, which, under38

bounded losses, recovers the the bound in [9]. We then show that such this KL term upper-bounds39

some other measures including Total-Variation distance [1], Wasserstein distance [6] and domain40

disagreement [7]. Thus, minimizing KL-divergence forces the minimization of other discrepancy41

measures as well. This, together with the ease of minimizing KL [9], explains the effectiveness42

of the KL-guided alignment approach. For expected EP generalization error, we develop several43

algorithm-dependent generalization bounds. These algorithm-dependent bounds further inspire the44

design of two new and yet simple strategies that can further boost the performance of the KL guided45

marginal alignment algorithms. Experiments are performed on standard benchmarks to verify the46

effectiveness of these strategies.47

2 Related Work48

Domain Adaptation From a theoretical perspective, many domain adaptation generalization bounds49

have been developed [1, 2, 15, 3, 6, 5, 7, 8], and some discrepancy measures are designed to derive50

these bounds including the reduction of the total variation [1, 2, 15, 3], Wasserstein distance [6],51

domain disagreement [7] and so on. In particular, bounds based on H∆H in [2] are restricted to52

a binary classification setting and assume a deterministic labeling function. Furthermore, [2] also53

assumes the loss is the L1 distance between the predicted label and true label (which is bounded).54

Our bounds work for the general supervised learning problems with any labelling mechanism (e.g.,55

stochastic labelling), and we do not require the specific choice of the loss (which could be unbounded).56

[16] proposed some generalization bounds based on Jensen-Shannon (JS) divergence, which are57

related to our Corollary 4.2. Most existing works including [2, 16] that give upper bounds for Err,58

while we give upper bounds for its absolute value, |Err|, which also serves as a lower bound for59

generalization, highlighting some fundamental difficulty of the UDA learning task (see Corollary 4.1).60

For more details about the domain adaptation theory, we refer readers to [17] for a completed61

survey. From the algorithmic perspective of the domain adaptation, the most common method is to62

align the marginal distribution of representation between the source domain and the target domain,63

including using the adversarial training mechanism [10, 6, 8] and aligning the first two moments of64

the representation distribution [11]. There are numerous other domain adaptation algorithms, and we65

refer readers to [18–21] for recent advances.66

Information-Theoretic Generalization Bounds Information-theoretic analysis are usually used67

to analyze the expected generalization error of supervised learning, where the training and testing68

data come from the same distribution [13, 22, 14, 23–27]. By exploiting the chain rule property of69

mutual information, these bounds are successfully applied to characterize the generalization ability of70

stochastic gradient based optimization algorithms [28, 24, 26, 29–31]. Recently, this framework has71

also been used in the multi task setting including meta-learning [32–35], semi-supervised learning72

[36, 37] and some other transfer learning problems [38, 32, 39–41]. In particular, [38, 39] consider a73

different transfer learning problem setup with ours. Specifically, their expected generalization error is74

the gap between the target population risk and the empirical weighted risk (or the convex combination75

of the source empirical risk and the target empirical risk), while our “EP” error is the gap between76

the target population risk and the source empirical risk. That is to say, our work studies how to make77

use of the unlabelled target data to improve the generalization performance on target domain except78

for minimizing the empirical risk of source domain, and their works assume the training objective79

function for the target domain data, which could be labelled, has already been known. In addition,80

bounds in [38, 39] fail to characterize the dependence between W and S′
X′ . More precisely, the81

algorithm-dependent term in their bounds is I(W ;Zi) or I(W ;S), while our algorithm-dependent82

term is IX
′
j (W ;Zi) that directly depends on the unlabelled target data (see Theorem C.1 for more83

discussion in Appendix).84

3 Preliminary85

Unless otherwise noted, a random variable will be denoted by a capitalized letter, and its realization86

denoted by the corresponding lower-case letter. Consider a prediction task with instance space87

Z = X × Y , where X and Y are the input space and the label (or output) space respectively. Let F88

be the hypothesis space of interesting, in which each f ∈ F is a function or predictor mapping X to89

Y . We assume that each hypothesis f ∈ F is parameterized by some weight parameter w in some90

spaceW and may write f as fw as needed.91
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Let µ and µ′ be two distributions on Z , unknown to the learner. Normally, µ and µ′ are not the92

same and we consider µ characterizing the source domain and µ′ characterizing the target domain.93

For the ease of notation, we may also write µ as PZ or PXY and µ′ as PZ′ or PX′Y ′ , which also94

defines random variables Z = (X,Y ) and Z ′ = (X ′, Y ′). Let S = {Zi}ni=1 ∼ µ⊗n be a labeled95

source-domain training sample and S′
X′ = {X ′

j}mj=1 ∼ P⊗m
X′ be an unlabelled target-domain training96

sample. The objective of UDA is to design an algorithm A takes S and S′
X′ as the input and outputs97

a weight W ∈ W , giving rise to a predictor fW ∈ F that “works well” on the target domain. Note98

that the algorithm A is in general characterized by a conditional distribution PW |S,S′
X′

.99

To be precise on the performance metric of UDA, let ℓ : Y × Y → R+
0 be a loss function. Then for100

each weight configuration w ∈ W , its population risk in the target domain is defined as101

Rµ′(w) ≜ EZ′ [ℓ(fw(X
′), Y ′)].

and a good UDA algorithm hopes to return a weight w that minimizes this risk. Since µ′ is unknown,102

this risk can not be measured or minimized. On the other hand, one does have access to the empirical103

risk in the source domain, as is defined by104

RS(w) ≜
1

n

n∑
i=1

ℓ(fw(Xi), Yi).

Then the notion generalization error in this setting measures how well the hypothesis returned from105

the algorithm generalize from the source-domain training sample to the target-domain unknown106

distribution µ′. Taking into account the stochastic nature of the algorithm A, a natural notion of107

generalization error for UDA can be defined by108

Err ≜ EW,S [Rµ′(W )−RS(W )] = EW,S,S′
X′

[Rµ′(W )−RS(W )], (1)

where the expectation in the first equation is taken over the joint distribution of (W,S) ∼ PW |S×µ⊗n,109
and the expectation of the second equation is taken over the joint distribution of (W,S, S′

X′) ∼110

PW |S,S′
X′
× µ⊗n × P⊗m

X′ .111

Note that there is another notion of generalization error, more traditional in the domain adaptation112

literature, namely, the gap between the population risk in the target domain and that in the source113

domain, as us define by114

Ẽrr(w) ≜ Rµ′(w)−Rµ(w). (2)

where Rµ(w) ≜ EZ [ℓ(fw(X), Y )]. It is apparent that Ẽrr(w) and Err are related by the following115

triangle inequality:116

|Rµ′(w)−RS(w)| ≤ |Rµ′(w)−Rµ(w)|+ |Rµ(w)−RS(w)|.

where the second term on the right hand side is the standard generalization error in the source domain,117

which can be bounded by classical learning-theoretic tools, e.g., Rademacher complexity [42]. Thus118

bounding Ẽrr(w) helps bounding Err.119

This paper studies both notions of generalization error for UDA. Specifically, starting from Section 5,120

we will mainly use information-theoretic tools to bound Err directly, without going through Ẽrr(w).121

For the ease of reference, we refer to Ẽrr(w) as the population-to-population (PP) generalization122

error for w and Err as the expected empirical-to-population (EP) generalization error for the123

algorithm A.124

Some definitions are prerequisite in this paper, we now present some uncommon notions and defer125

the common notions to Appendix.126

Definition 1 (Disintegrated Mutual Information). Let X , Y and Z be random variables and z be127

a realization of Z. The disintegrated mutual information of X and Y given Z = z is Iz(X;Y ) ≜128

DKL(PX,Y |Z=z||PX|Z=zPY |Z=z).129

Note that the conditional mutual information I(X;Y |Z) = EZI
Z(X;Y ).130

Definition 2 (Lautum Information [43]). Define the lautum information between X and Y as131

L(X;Y ) ≜ DKL(PXPY ||PXY ).132

3



4 Upper Bounds for PP Generalization Error133

In this section, we present some upper bounds for Ẽrr(w). The key techniques used in developing134

these bounds are the information-theoretic tools in the style of Lemma A.1. All these bounds adopt135

certain KL divergence as a key quantity measuring the discrepancy between the source and target136

domain. Notably, some previously established bounds are recovered under a different assumption of137

the loss function. Additionally we demonstrate that under certain conditions, the KL-based bound is138

an upper bound of many other discrepancy measures and hence minimizing the KL divergence forces139

the minimization of these other measures.140

We first list some common assumptions on the loss function, which we consider in this paper.141

Assumption 1 (Boundedness). ℓ(·, ·) is bounded in [0,M ].142

Assumption 2 (Subgaussianity). ℓ(fw(X), Y ) is R-subgaussian1 under µ for any w ∈ W .143

Remark 4.1. Note that Assumption 1 implies Assumption 2, i.e., if ℓ(fw(X), Y ) is bounded in [0,M ],144

then it is also M/2-subgaussian. Thus, Assumption 2 is weaker than Assumption 1.145

Assumption 3 (Lipschitzness). ℓ(fw(X), Y ) is β-Lipschitz continues in Z for any w ∈ W , i.e.,146

|ℓ(fw(x1), y1)− ℓ(fw(x2), y2)| ≤ βd(z1, z2).147

Remark 4.2. Note that Assumption 1 implies Assumption 3 when d is a discrete metric, i.e., if148

ℓ(fw(X), Y ) is bounded in [0,M ], then it is also M -Lipschitz under the discrete metric.149

Assumption 4 (Triangle). ℓ(·, ·) satisfies the following the triangle inequality: ℓ(y1, y2) ≤ ℓ(y1, y3)+150

ℓ(y3, y2) for any y1, y2, y3 ∈ Y .151

4.1 Generalization Bounds via the Subgaussian Condition152

The following generalization bound is established by combining Lemma A.1 and Assumption 2, a153

technique developed in [14] for information-theoretic analysis of generalization.154

Theorem 4.1. If Assumption 2 holds, then for any w ∈ W ,
∣∣∣Ẽrr(w)∣∣∣ ≤√2R2DKL(µ′||µ).155

We note that this result on one hand can be turned into a generalization upper bound providing156

guidance to algorithm design, and on the other hand provides a lower bound of the generalization157

error, which highlights some fundamental difficulty of the learning task. To illustrate this, we present158

an corollary of Theorem 4.1, while noting that similar development can also be applied to other159

bounds presented later in this paper.160

To that end, suppose that each fw in the model family is expressed as the composition g ◦ h, where h161

is a function mapping X to a representation space T and g is a function mapping T to Y . For any162

given h : X → T , denote by µh the distribution on T × Y obtained by pushing over µ via h, that is,163

µh(t, y) =
∫
δ(t− h(x))dµ(x, y), where δ is the Dirac measure on T . Similarly, let µ′

h denote the164

distribution on T × Y obtained by pushing over µ′ via h.165

Corollary 4.1. Suppose that fw = g ◦ h and that Assumption 2 holds. then for any w ∈ W ,166

Rµ(w)−
√
2R2DKL(µ′||µ) ≤ Rµ′(w) ≤ Rµ(w) +

√
2R2DKL(µ′

h||µh).

In this result, the lower bound of Rµ′(w) indicates a fundamental difficulty in UDA learning in that,167

using the same predictor mapping fw, there is no way for the population risk in the target domain to168

be lower than that of the source domain less a constant which depends only on the domain difference.169

On the other hand, the upper bound suggests that it is possible to squeeze the gap between the two170

population risks by choosing an appropriate representation map h - evidently such a map should be171

attempting to align µ′
h with µh or to align their respective proxies.172

It is also remarkable that under Assumption 1 and due to Remark 4.1, Theorem 4.1 implies173 ∣∣∣Ẽrr(w)∣∣∣ ≤ M√
2

√
DKL(PX′ ||PX) + DKL(PY ′|X′ ||PY |X). (3)

Similarly applying this result in the representation space T , we see that Eq. (3) recovers the bound in174

Proposition 1 of [9]. Notice that unlike [9], Theorem 4.1 ( or Eq. (3)) does not require the loss to be175

the cross entropy loss.176

1A random variable X is R-subgaussian if for any ρ, logE exp (ρ (X − EX)) ≤ ρ2R2/2.
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Theorem 4.1 and [9] both use the KL divergence from source domain to target domain, DKL(µ
′||µ),177

and in fact,
∣∣∣Ẽrr(w)∣∣∣ can also be upper bounded by DKL(µ||µ′). This can be done by invoking the178

subgaussianality of ℓ(fw(X ′), Y ′) (rather than ℓ(fw(X), Y )); for bounded loss, the subgaussianality179

of ℓ(fw(X ′), Y ′) is also satisfied. Then we obtain the following corollary.180

Corollary 4.2. If Assumption 1 holds,
∣∣∣Ẽrr(w)∣∣∣ ≤ M√

2

√
min{DKL(µ||µ′),DKL(µ′||µ)} ≤181

M
2

√
DKL(µ||µ′) + DKL(µ′||µ).182

Remark 4.3. In the second inequality of Corollary 4.2, DKL(µ||µ′) + DKL(µ
′||µ) is usually called183

the symmetrized KL divergence (or Jeffrey’s divergence [44]), and the regularization term used in184

[9] is indeed the symmetrized KL divergence between the distributions of the source and target185

representations. Notice that bounds in [16] are based on the JS divergence. Since there is a sharp186

upper bound of the JS divergence based on Jeffrey’s divergence [45], minimizing Jeffrey’s divergence187

(in the representation space) will simultaneously penalize the JS divergence.188

In UDA, since Y ′ is completely unavailable to the algorithm A, it is impossible to minimize the189

misalignment of conditional distributions, i.e. DKL(PY ′|T ′ ||PY |T ), without any additional infor-190

mation. A common method is to assign pseudo labels to target data. However, it may also cause191

some additional issues. For concreteness, suppose the trained model Q can well approximate the192

real mapping between X and Y on source domain (i.e. QY |T = PY |T ), which is usually the training193

objective. Let Ŷ ′ be the pseudo label of T ′ generated by the trained model, i.e., QŶ ′|T ′ = QY |T . Let194

QT ′,Ŷ ′ = PT ′QŶ ′|T ′ , then the following holds,195

DKL(PT ′,Y ′ ||PT,Y ) = EPT ′,Y ′ log
PT ′,Y ′QT ′,Ŷ ′

QT ′,Ŷ ′PT,Y
= DKL(PT ′ ||PT ) + DKL(PY ′|T ′ ||QŶ ′|T ′). (4)

For a specific t′, if P (Y ′ = y′|T ′ = t′) ̸= 0 and P (Ŷ ′ = y′|T ′ = t′) = 0, then the second term196

in RHS of Eq. (4), DKL(PY ′|T ′ ||QŶ ′|T ′) → ∞. In this case, even the marginal distributions are197

perfectly aligned, the overall value of the upper bound is large. Thus, incorrect pseudo labels may198

even have negative impact on the target domain performance, and we hope two supports, Supp(PY ′)199

and Supp(PŶ ′), could largely overlap with each other for every target data.200

Indeed, the misalignment of the conditional distributions appears to be the main difficulty of UDA201

[1, 8]. The next corollary suggests that this difficulty may be alleviated when the loss function satisfies202

the triangle property, namely, Assumption 4. It can be verified that this assumption is satisfied by the203

0-1 loss and square error loss; this assumption has also been considered in previous works [3, 6].204

Theorem 4.2. If Assumption 4 holds and let ℓ(fw′(X), fw(X)) be R-subgaussian for any w,w′ ∈ W .205

Then for any w, Ẽrr(w) ≤
√
2R2DKL(PX′ ||PX) + λ∗, where λ∗ = minw∈W Rµ′(w) +Rµ(w).206

In this theorem, λ∗ measures the possibility of whether the domain adaptation algorithm will succeed207

under the oracle knowledge of µ and µ′. In particular, if the hypothesis space is large enough,208

the minimizer w∗ for the “joint population risk” Rµ′(w) + Rµ(w) may give rise to Rµ′(w∗) =209

Rµ(w
∗) = 0. then we’re likely to generalize well on the target domain. Then the KL divergence210

DKL(PX′ ||PX) between the two X -marginals alone bounds the PP generalization error uniformly211

for all w ∈ W .212

This theorem motivates the strategy of penalizing DKL(PT ′ ||PT ) in the representation space to213

achieve better a generalization error. The next theorem suggests that such an approach also penalizes214

other notions of domain discrepancy, for example, domain disagreement defined in [7, Definition 1.]215

and serving as a key quantity in the PAC-Bayes type of domain adaptation generalization bounds [7]:216

dis(PX , PX′) ≜ |EW,W ′,X′ [ℓ(fW (X ′), fW ′(X ′))]− EW,W ′,X [ℓ(fW (X), fW ′(X))]| . (5)
Theorem 4.3. If ℓ(fw′(X), fw(X)) is R-subgaussian for any w,w′ ∈ H, then dis(PX , PX′) ≤217 √

2R2DKL(PX′ ||PX).218

Note that unlike [7], here we do not require the loss function to be the 0-1 loss.219

4.2 Generalization Bounds via the Lipschitz Condition220

Wasserstein distance based generalization bound are often directly connected to, or even included221

in, the information-theoretic bounds [46, 27]. We now present such a bound for UDA under the222

Lipschitz continuity assumption of the loss function.223
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Theorem 4.4. If Assumption 3 holds, then
∣∣∣Ẽrr(w)∣∣∣ ≤ βW(µ′, µ).224

Note that Theorem 4.4 can be related to the KL divergence based bounds in the previous section225

when the Wasserstein distance is defined with respect to the discrete metric d. In this case, if the loss226

function is bounded, it is also Liptschitz continuous, and hence Theorem 4.4 applies. On the other227

hand, Wasserstein distance is equivalent to the total variation distance [1, 2, 15, 3], while the latter is228

connected to the KL divergence via Pinsker’s inequality [47, Theorem 6.5] and the Bretagnolle-Huber229

inequality [48, Lemma 2.1]. Thus we arrive at the following result.230

Corollary 4.3. If Assumption 1 holds holds and let d be the discrete metric, then231 ∣∣∣Ẽrr(w)∣∣∣ ≤MTV(µ′, µ) ≤M

√
min

{
1

2
DKL(µ′||µ), 1− e−DKL(µ′||µ)

}
.

The bound in Corollary 4.3 can be immediately verified to be tighter than the bound in Eq. (3).232

Parallel to Theorem 4.2, if the loss function satisfies the triangle property, we may establish another233

bound below, which recovers a similar result in [6, Theorem 1.].234

Theorem 4.5. If Assumption 4 holds and ℓ(fw(X), fw′(X)) is β-Lipschitz in X for any w,w′ ∈ W ,235

then for any w ∈ W , Ẽrr(w) ≤ LW(PX′ , PX) + λ∗, where λ∗ = minw∈W Rµ′(w) +Rµ(w).236

Unlike the bound in [6], we do not require the classification tasks to be binary in Theorem 4.5, and237

the loss does not need to be the L1 distance.238

This section may convey the following message. Since the KL divergence based bounds upper-239

bounds those based on other measures of domain differences, (e.g. total variation distance, domain240

discrepancy etc), if we penalize the KL divergence, we will also penalize those other measures. This is241

practically advantageous since it is usually easier and more stable to minimize the KL divergence[9].242

5 Upper Bounds for Expected EP Generalization Error and Applications243

There are two limitations in the bounds on the PP generalization error developed in the previous244

section and in the traditional analysis of domain adaptation. First, such bounds are independent of w245

and hence algorithm-independent. Second, although these bounds may inspire strategies to exploit the246

unlabelled target sample, e.g., aligning its marginal distribution with that of the source sample in the247

representation space, they only provide very limited knowledge on the role that the unlabelled target248

sample plays in the algorithm. We now derive upper bounds for the EP generalization error, which249

better utilize the dependence of the algorithm output on the unlabelled target data. Applications of250

these bounds in designing the learning algorithms are also presented.251

5.1 Bounds252

Theorem 5.1. Assume ℓ(fw(X
′), Y ′) is R-subgaussian under µ′ for any w ∈ W . Then253

|Err| ≤ 1

nm

m∑
j=1

n∑
i=1

EX′
j

√
2R2IX

′
j (W ;Zi) +

√
2R2DKL(µ||µ′).

254

Remark 5.1. Note that the unlabelled target data plays a role in the first term of the bound. Indeed,255

more source and target data will reduce the first term of the bound. Specifically, moving the256

expectation inside the square root function by Jensen’s inequality and since Zi ⊥⊥ X ′
j , the equations257

I(W ;Zi|X ′
j) = I(W ;Zi|X ′

j) + I(Zi;X
′
j) = I(W ;Zi) + I(X ′

j ;Zi|W ) hold by the chain rule. The258

term I(W ;Zi) will vanish as n→∞ and the term I(X ′
j ;Zi|W ) will also vanish as n,m→∞.259

It is also worth mentioning that, from a practical perspective, the number of samples may have260

different impact on the different algorithms. For example, the second term (KL divergence) in261

our Theorem 5.1 can not be computed in the original space and we can only estimate it in the262

representation space. On the one hand, it seems that having more data will make the approximation263

(of KL between marginal distributions) more accurate. While on the other hand, some domain264

adaptation algorithms involve the pseudo labelling process, and assigning incorrect pseudo labels to265

the target data may even have negative impact on the target domain performance (as discussed in266

Section 4). In this case, having more target data will not improve the performance.267
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Corollary 5.1. Let Assumption 1 hold. Then268

|Err| ≤ M√
2nm

m∑
j=1

n∑
i=1

EX′
j

√
min

{
IX

′
j (W ;Zi), L

X′
j (W ;Zi)

}
+

M√
2

√
min {DKL(µ||µ′),DKL(µ′||µ)}.

where LX′
j (·; ·) is the disintegrated version of Lautum information.269

Theorem 5.2. Assume ℓ is Lipschitz for both w ∈ W and z ∈ Z , i.e., |ℓ(fw(x), y)−ℓ(fw(x
′), y′)| ≤270

βd1(z, z
′) for all z, z′ ∈ Z and |ℓ(fw(x), y)− ℓ(fw′(x), y)| ≤ β′d2(w,w

′) for all w,w′ ∈ W , then271

|Err| ≤ β′

nm

m∑
j=1

n∑
i=1

EX′
j ,Zi

W(PW |Zi,X′
j
, PW |X′

j
) + βW(µ, µ′).

This bound is tighter than the bound in Theorem 5.1, as can be indicated by the following corollary.272

Corollary 5.2. Let Assumption 1 hold. Then273 ∣∣∣Ẽrr∣∣∣ ≤ M

nm

m∑
j=1

n∑
i=1

EX′
j ,Zi

[
TV(PW |Zi,X′

j
, PW |X′

j
)
]
+MTV(µ, µ′)

≤ 1

nm

m∑
j=1

n∑
i=1

EX′
j ,Zi

√
M2

2
DKL(PW |Zi,X′

j
||PW |X′

j
) +

√
M2

2
DKL(µ||µ′).

Notice that to recover Theorem 5.1 from Corollary 5.2, we can use Jensen’s inequality to move the274

expectation over Zi inside the convex square root function.275

5.2 Gradient Penalty as an Universal Regularizer276

The algorithm-dependent bound in Theorem 5.1 tells us that one can reduce the expected generaliza-277

tion error by limiting the disintegrated mutual information IX
′
j (W ;Zi). In the stochastic gradient278

based optimization algorithms, this term can be controlled by penalizing the gradient. To see this, we279

now consider a “noisy” iterative algorithm for updating W , e.g., SGLD. At each time step t, let the280

labelled mini-batch from the source domain be ZBt , let the unlabelled mini-batch from the target281

domain be X ′
Bt

, and let g(Wt−1, ZBt , X
′
Bt
) be the gradient at time t. Thus, the updating rule of W282

is Wt = Wt−1 − ηtg(Wt−1, ZBt
, X ′

Bt
) +Nt where ηt is the learning rate and Nt ∼ N (0, σ2Id) is283

an isotropic Gaussian noise. The next theorem is an application of Theorem 5.1 in this setting.284

Theorem 5.3. Let the total iteration number be T and let Gt = g(Wt−1, ZBt
, X ′

Bt
), then285

|Err| ≤

√√√√R2

n

T∑
t=1

η2t
σ2
t

ES′
X′ ,Wt−1,S

[
||Gt||2

]
+
√
2R2DKL(µ||µ′).

Remark 5.2. Considering a noisy iterative algorithm here is to simplify analysis. In fact it is also286

possible to analyze the original iterative gradient optimization method without noise injected. For287

example, one can follow the same development in [30, 31] to analyze vanilla SGD. In that case, there288

will be some additional terms in the bound, which are related to flatness of the found minima.289

Theorem 5.3 hints that to reduce the generalization error, one can restrict the gradient norm at each290

step. This strategy will also restrict the distance between the final output WT and the initialization291

W0, effectively shrinking the hypothesis space accessible by the algorithm.292

Indeed, adding gradient penalty can be applied to any existing UDA algorithm and it is simple but293

effective in practice. Later on we will show that even when the algorithm A does not access to294

any target data, in which case I(W ;Zi|X ′
j) reduces to I(W ;Zi) and g(Wt−1, ZBt , X

′
Bt
) becomes295

g(Wt−1, ZBt
), minimizing the empirical loss of source domain sample while penalizing gradient296

norm will still improve the performance. Notice that gradient penalty is also used in Wasserstein297

distance based adversarial training [49, 6], and their motivation is to stabilize the training to avoid298

gradient vanishing problem while here we use it to improve the generalization performance directly.299

Notably the bound in Theorem 5.3 only depends on the size n of labelled source sample and does300

not explicitly depend on m, the size of unlabelled target sample. With a more careful design, if we301
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consider the mutual information as the expected KL divergence of a posterior and a prior, based302

on IX
′
j (W ;Zi) in Theorem 5.1, it is possible to create a target data dependent prior and derive a303

tighter bound based on some quantity similar to "gradient incoherence" in [24]. As this will introduce304

additional complexity in practice, we leave this as a future study.305

5.3 Controlling Label Information for KL Guided Marginal Alignment306

Consider instances in the representation space, Z = (T, Y ) and Z ′ = (T ′, Y ). Theorem 5.1 also307

encourage us to align the distributions of two domains in the representation space, as argued earlier.308

Then the KL guided marginal alignment algorithm proposed in [9] can be invoked here. One may309

notice that Theorem 5.1 uses DKL(µ||µ′) while [9] uses DKL(µ
′||µ). As already discussed in310

Section 4, this inconsistency can be ignored when loss is bounded (see Corollary 5.1).311

Most domain adaptation algorithms aim to align the marginal distributions of two domains in the312

representation space. However, without accessing to Y ′, it remains unknown if an UDA algorithm313

will work well since we cannot guarantee that discrepancy between conditional distribution PY |T314

and PY ′|T ′ won’t become too large when we align the marginals. In [9], the authors show that315

DKL(PY ′|T ′ ||PY |T ) can be upper-bounded by DKL(PY ′|X′ ||PY |X), if I(X;Y ) = I(T ;Y ). The316

authors then argue that penalizing the KL divergence of the marginals distributions is safe.317

We now argue that in practice the condition I(X;Y ) = I(T ;Y ) can be difficult to satisfy if the318

cross-entropy loss is used to define the source-domain empirical risk.319

By data processing inequality on Y −X−T , we know that I(X;Y ) ≥ I(T ;Y ) = H(Y )−H(Y |T ).320

Thus, to let I(T ;Y ) reach its maximum, one must minimize H(Y |T ). On the other hand, let QY |T,W321

be the predictive distribution of labels in the source domain generated by the classifier. The expected322

cross-entropy loss for each Zi in the representation space is then323

EW,Zi
[ℓ(fW (Ti), Yi)] = EZi

[
EW |Zi

[
− logQYi|Ti,W

]]
,

which also decomposes as [50, 51]324

EW,Zi
[ℓ(fW (Ti), Yi)] = H(Yi|Ti) + ETi,W

[
DKL(PYi|Ti,W ||QYi|Ti,W )

]
− I(W ;Yi|Ti). (6)

Then minimizing the expected cross-entropy loss may not adequately reduce H(Yi|Ti) but rather325

cause I(W ;Yi|Ti) to significantly increase, particularly when the model capacity is large. This326

may have two negative effects. First, the condition I(X;Y ) = I(T ;Y ) is significantly violated,327

and DKL(PY ′|T ′ ||PY |T ) is no longer upper bounded by DKL(PY ′|X′ ||PY |X). As a consequence,328

aligning the two marginals alone may not be adequate. Second, large I(W ;Yi|Ti) indicates W329

just simply memorizes the label Yi, resulting a form of overfitting and hurting the generalization330

performance.331

The key take-away from the above analysis is that when aligning the marginals in UDA, controlling the332

source label information in the weights can be important to achieve good cross-domain generalization.333

A similar message can also be deduced from Theorem 5.1, when it is viewed in the repsentation space334

and noting IT
′
j (W ;Zi) = IT

′
j (W ;Ti, ) + IT

′
j (W ;Yi|Ti).335

To control label information, [51] proposed an approach called LIMIT. However this method is rather336

complicated and arguably hard to train in domain adaptation (see Appendix). We now derive a simple337

alternative strategy for this purpose.338

Notice that IT
′
j (W ;Yi|Ti) ≤ infQ ETi

[
DKL(P (W |Yi, Ti, T

′
j = t′j)||Q(W |Ti, T

′
j = t′j))

]
, which is339

a simple extension of variational representation of mutual information [47, Corollary 3.1.]. Here340

Q could be any distribution. By assuming P = N (W,σ2Id|Yi, Ti, T
′
j = t′j) and taking Q =341

N (W̃ , σ̃2Id|Ti, T
′
j = t′j), we have342

IT
′
j (W ;Yi|Ti) ≤ inf

Q
ETi

[
DKL(P (W |Yi, Ti, T

′
j = t′j)||Q(W̃ |Ti, T

′
j = t′j))

]
∝ ||W − W̃ ||2.

Thus, we may create an auxiliary classifier fw̃ that is not allowed to access to the real source label343
Y . In each iteration, we use the pseudo labels of target data (and source data) assigned by fw to344

train fw̃ and adding ||W − W̃ ||2 as a regularizer in the training of W . The algorithm is given in345

the Appendix. Remarkably the regularizer here resembles “Projection Norm” designed in [52] for346

out-of-distribution generalization.347
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Table 1: RotatedMNIST and Digits Experiments. Results of baseline methods are reported from [9].

RotatedMNIST (0◦ as source domain) Digits

Method 15◦ 30◦ 45◦ 60◦ 75◦ Ave M → U U → M S → M Ave

ERM 97.5±0.2 84.1±0.8 53.9±0.7 34.2±0.4 22.3±0.5 58.4 73.1±4.2 54.8±6.2 65.9±1.4 64.6
DANN 97.3±0.4 90.6±1.1 68.7±4.2 30.8±0.6 19.0±0.6 61.3 90.7±0.4 91.2±0.8 71.1±0.5 84.3
MMD 97.5±0.1 95.3±0.4 73.6±2.1 44.2±1.8 32.1±2.1 68.6 91.8±0.3 94.4±0.5 82.8±0.3 89.7

CORAL 97.1±0.3 82.3±0.3 56.0±2.4 30.8±0.2 27.1±1.7 58.7 88.0±1.9 83.3±0.1 69.3±0.6 80.2
WD 96.7±0.3 93.1±1.2 64.1±3.3 41.4±7.6 27.6±2.0 64.6 88.2±0.6 60.2±1.8 68.4±2.5 72.3
KL 97.8±0.1 97.1±0.2 93.4±0.8 75.5±2.4 68.1±1.8 86.4 98.2±0.2 97.3±0.5 92.5±0.9 96.0

ERM-GP 97.5±0.1 86.2±0.5 62.0±1.9 34.8±2.1 26.1±1.2 61.2 91.3±1.6 72.7±4.2 68.4±0.2 77.5
KL-GP 98.2±0.2 96.9±0.1 95.0±0.6 88.0±8.1 78.1±2.5 91.2 98.8±0.1 97.8±0.1 93.8±1.1 96.8
KL-CL 98.4±0.2 97.3±0.2 95.6±0.1 83.0±8.2 73.6±4.0 89.6 98.9±0.1 97.7±0.1 93.0±0.3 96.5

6 Experimental Results348

We now perform experiments to verify the proposed techniques inspired by our theory in the previous349

section. The experimental setup follows that in [9].350

Datasets We select two popular small datasets, RotatedMNIST and Digits, to compare the different351

methods. In particular, RotatedMNIST is built based on the MNIST dataset [53] and consists of six352

domains with each domain containing 11, 666 images. These six domains are rotated MNIST images353

with rotation angle 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦, respectively. We will take the original MNIST354

dataset (0◦) as the source domain and take other five domains as target domains. Hence there are five355

domain adaptation tasks on RotatedMNIST. Digits consists of three sub-datasets, namely MNIST,356

USPS [54] and SVHN [55], and the corresponding domain adaptation tasks are MNIST→USPS357

(M→U), USPS→MNIST (U→M), SVHN→MNIST (S→M).358

Compared Methods Baseline methods are some popular marginal alignment UDA methods359

including DANN [10], MMD [12], CORAL [11], WD [6] and KL [9]. We also choose ERM for360

another baseline in which the algorithm can only access to the source domain sample during training.361

To verify the strategies inspired by our theory, we first add the gradient penalty to the ERM algorithm362

(ERM-GP), and we then combine gradient penalty (GP) and controlling label information (CL)363

with the recent proposed KL guided marginal alignment method, which are denoted by KL-GP and364

KL-CL, respectively.365

Implementation Details Most part of the implementation is based on the famous DomainBed366

suite [56]. Other settings are exactly the same with [9] and the results of baseline methods are367

reported directly from [9]. Specifically, each algorithm is run three times and we show the average368

performance with the error bar. Every dataset has a validation set, and the model selection scheme is369

based on the best performance achieved on the validation set of target domain during training (oracle).370

The hype-parameter searching process is also built upon the implementation in the DomainBed suite.371

Other details and additional experiments can be found in Appendix.372

Results From Table 1, we first notice that gradient penalty is able to help ERM to be more373

comparable with other marginal alignment methods. For example, on RotatedMNIST, ERM-GP374

outperforms CORAL and performs nearly the same with DANN. On Digits, ERM-GP outperforms375

WD. When GP and CL combined with KL guided algorithm, we can see that the performance can be376

further boosted. This justifies the discussion in Section 5.2 and Section 5.3.377

7 Conclusion378

Despite that the numerous learning techniques have been developed for domain adaptation, significant379

room exists for more in-depth theoretical understanding and more principled design of learning algo-380

rithms. This paper presents the information-theoretic analysis for unsupervised domain adaptation,381

where we query two notions of the generalization errors in this context and present novel learning382

bounds. Some of these bounds recover the previous KL-based bounds under different conditions and383

confirm the insights in the learning algorithms that align the source and target distributions in the384

representation space. Our other bounds are algorithm-dependent, better exploiting the unlabelled385

target data, which have inspired novel and yet simple schemes for the design of learning algorithms.386

We demonstrate the effectiveness of these schemes on standard benchmark datasets.387
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(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]581

582

(d) Did you discuss whether and how consent was obtained from people whose data you’re583

using/curating? [N/A]584

(e) Did you discuss whether the data you are using/curating contains personally identifiable585

information or offensive content? [N/A]586

5. If you used crowdsourcing or conducted research with human subjects...587

(a) Did you include the full text of instructions given to participants and screenshots, if588

applicable? [N/A]589

(b) Did you describe any potential participant risks, with links to Institutional Review590

Board (IRB) approvals, if applicable? [N/A]591

(c) Did you include the estimated hourly wage paid to participants and the total amount592

spent on participant compensation? [N/A]593
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