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Abstract

Texture editing is a crucial task in 3D modeling that allows users to automatically1

manipulate the surface properties of 3D models. However, the inherent complexity2

of 3D models and the ambiguous text description lead to the challenge in this3

task. To address this challenge, we propose ITEM3D, an illumination-aware model4

for automatic 3D object editing according to the text prompts. Leveraging the5

power of the diffusion model, ITEM3D takes the rendered images as the bridge6

of text and 3D representation, and further optimizes the disentangled texture and7

environment map. Previous methods adopt the absolute editing direction namely8

score distillation sampling (SDS) as the optimization objective, which unfortunately9

results in the noisy appearance and text inconsistency. To solve the problem caused10

by the ambiguous text, we introduce a relative editing direction, an optimization11

objective defined by the noise difference between the source and target texts, to12

release the semantic ambiguity between the texts and images. Additionally, we13

gradually adjust the direction during optimization to further address the unexpected14

deviation in the texture domain. Qualitative and quantitative experiments show that15

our ITEM3D outperforms SDS-based methods on various 3D objects. We also16

perform text-guided relighting to show explicit control over lighting.17

1 Introduction18

Texture editing is an important task in 3D modeling that involves manipulating the surface properties19

of 3D models to create a visually fantastic and appealing appearance according to the user’s ideas.20

With the increasing applications of 3D models in entertainment and e-shopping, how to automatically21

generate and edit the texture of a 3D model without manual effort becomes an appealing task in the22

field of 3D vision. However, this task is challenging due to the complexity of 3D models and the23

special representation of the texture.24

To sufficiently handle the above applications, it would be desirable if a texture editing method can25

fulfill the following aspects: 1) Realism: The generated textures should give rise to realistic and26

visually natural 2D images after rendering. It requires generative models to capture the complex27

patterns and structures present in the textures of the 3D model. 2) Relighting: The relighting ability28

allows adjusting the lighting conditions of the edited model to be consistent with the changes made to29

its texture. 3) Efficiency: Texture editing should be efficient and scalable. This requires the use of30

fast and memory-efficient generative models that can generate high-quality textures in a short time.31

Recent advances have demonstrated the effectiveness of generative models in synthesizing high-32

quality textures that are both visually pleasing and semantically meaningful. The use of generative33

adversarial networks (GANs) (50; 2; 43; 7) has shown promising results in producing textures with34

intricate patterns and complex structures. Other approaches, such as texture synthesis via direct35

optimization (8; 9; 40; 54) or neural style transfer (3; 14; 48; 24), have also been explored for their36
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ability to generate textures with specific artistic styles. However, the capacity of these models is still37

unable to meet the need of real-world applications, which requires high-quality and diverse textures.38

Meanwhile, recent researches (6; 34; 25; 20; 21; 17; 23) on the diffusion models have emerged as a39

powerful new family of generative methods, which achieve impressive generation results in natural40

images and videos, inspiring us to introduce the awesome power into the task of 3D modeling.41

However, directly applying the diffusion model to 3D objects is a non-trivial task due to the following42

reasons. 1) The gap between the 3D representation and natural images. Existing diffusion43

models are typically trained with natural images, making the pre-trained diffusion model lack prior44

knowledge in the 3D domain. Moreover, due to the complexity of the 3D model, it would be45

difficult to simultaneously edit shape, appearance, and shading, sometimes leading to conflicts in46

optimization goals. Therefore, directly editing the 3D representation may cause extreme semantic47

bias and destruction of inherent 3D topology. 2) The learning misdirection of text description. It is48

hard for text prompts to exactly describe the target images at the pixel level, leading to an ambiguous49

direction when taking the rendered images as the bridge.50

To solve these problems, we present an efficient model, dubbed ITEM3D, which can generate visually51

natural texture corresponding to the text prompt generated by users. Instead of directly applying the52

diffusion model for texture editing in the 2D space, we adopt rendered images as the intermediary that53

bridges the text prompts and the appearance of 3D models. Apart from the appearance, the lighting54

and shading are also key components influencing the rendering results. Therefore, we represent the55

3D model into a triangular mesh and a set of disentangled materials consisting of the texture and an56

environment map using nvdiffrec (29), which achieves a balance for representing both appearance57

and shading.58

To optimize a texture and an environment map with the diffusion model, a naive idea is to adopt59

the score distillation sampling (SDS) like 2D diffusion-based editing methods, which represents60

the absolute direction. Unfortunately, the absolute direction often leads to noisy details and an61

inconsistent appearance, due to the ambiguous description of the text prompt for the target images.62

Inspired by the recent improvement (13), we replace the absolute editing direction led by the score63

distillation sampling with a relative editing direction determined by two predicted noises under the64

condition of the source text and the target text respectively, as illustrated in Fig. 1 (a). In this way,65

our model enables us to edit the texture in obedience to the text while bypassing the inconsistency66

problem by releasing the ambiguous description. It is ideal that the intermediate states between the67

source and target text can give relatively accurate descriptions for arbitrary rendered images during68

the optimization, like the green straight lines in Fig. 1 (b). However, the optimization in the texture69

domain actually shows an unexpected offset of the appearance in rendered images, leading to the70

deviation from the determined direction, like the red line in Fig. 1 (b). To reduce the deviation caused71

by the texture projection, we gradually adjust the editing direction during the optimization, as green72

fold lines shown in Fig. 1 (b). With the advent of the textural-inversion model, it can be easy to73

automatically correct the description as the change of the texture and its rendered images.74

Thanks to the proposed solutions, our method overcomes the challenges of domain gap and learning75

misdirection, fulfilling all three requirements of texture editing. In summary, our contributions are:76

• We design an efficient optimization pipeline to edit the texture and environment map obedient77

to the text prompt, directly empowering the downstream application in the industrial pipeline.78

• We introduce the relative direction to the 3D texture optimization, releasing the problem of79

noisy details and inconsistent appearance caused by the semantic ambiguity between the texts80

and images.81

• We propose to gradually adjust the relative direction guided by the source and target texts82

which addresses the unexpected deviation from the determined direction caused by the texture.83

2 Related Work84

3D Model Representation. From the perspective of 3D representations, traditional methods typically85

exploit point clouds or meshes to estimate depth maps (1; 38; 11) or employ a voxel grid and estimate86

the corresponding occupancy and color (39; 4). However, these methods are often limited to the87

memory requirement, which results in excessive runtime. With the development of computer vision,88

neural implicit representations are brought up and leverage differentiable rendering to reconstruct89
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Figure 1: Motivation. (a) Previous methods (31; 6) with SDS Loss to directly guide the optimization
leads to ambiguous details due to the bias between texts and images (red line), while our method in-
troduces the relative direction between source and target texts to the optimization process, eliminating
the bias and improving the rendering results (green line). (b) The optimization in the texture domain
gives rise to the deviation of the target direction (red line), thus we gradually adjust the direction to
fine-tune the optimization (fold green line).

3D geometry with appearance. Neural Radiance Field (27) and followup methods (52; 47; 28; 5;90

49; 51; 33; 22), utilize volumetric representations and a neural encoded field to compute radiance91

by ray marching. While these NeRF-based methods synthesize high-fidelity rendering results, the92

quality of the generated geometry is limited due to the ambiguity of volume rendering. Meanwhile,93

surface-based methods (30; 46; 10) optimize the underlying surface directly. These methods usually94

rely on volumetric representation and utilize an implicit surface by converging the volumetric95

representation (30) or constructing a field that converse SDF into density (46; 10). Though surface-96

based methods achieve better geometry than NeRF-based methods, they require excessive computation97

runtime since they rely too much on the ray-marching mechanism. Apart from implicit neural98

representations, there also exist approaches that utilize explicit surface representations to estimate99

explicit mesh from images. To extend such methods that originally built upon a fixed mesh topology,100

DMTet (41) employs a differentiable marching tetrahedral layer and optimizes the surface mesh101

directly. Nvdiffrec (29) further extends DMTet by jointly optimizing mesh topology, materials, and102

lighting. ITEM3D leverages an explicit mesh representation and optimizes texture and environment103

map. By supporting the decomposition of shape, materials and lighting, ITEM3D supports texture104

editing while preserving the topology by design. Additionally, ITEM3D employs an efficient105

differentiable rasterization pipeline for faster optimization.106

2D Diffusion-based Image Editing. Owing to the remarkable generalization ability of the diffusion107

model, a growing number of works (23; 17; 35; 36; 42) emerged to create customized images with108

specific styles or objects, as well as stunning images based on text descriptions. All these methods109

rely on the diffusion process by either fine-tuning the diffusion model or refining the target embedding110

to reach the desired image domain. SDEdit (23) denoises the noisy image through a diffusion process111

under the given description. DDIB (42) first converts the input image into a latent representation112

using origin text and subsequently translates the latent into the desired image with the target text.113

ControlNet (53) trains a controlling module to augment images with additional conditions that114

improve the controllability of the editing process. DiffusionCLIP (18) fine-tunes the diffusion model,115

which translate the image from a pretrained domain to a target text domain. Imagic (17) fine-tunes116

both the text embeddings and the diffusion model to ensure more stable editing. Unlike these methods117

that optimize in 2D image space, our ITEM3D utilizes the pre-trained diffusion model as a prior for118

3D texture optimization.119

3D Text-guided Generation. With the advent of large text-image models, i.e., the CLIP, recent120

works (45; 37; 16; 15; 26) have made impressive progress on 3D text-driven synthesis. The majority121

of methods adopt the optimization procedures supervised by the CLIP similarity (32). Specifically,122

CLIP-NeRF (45) proposes a unified framework to manipulate NeRF, guided by a text prompt or an123

example image. Similarly, CLIP-Mesh applies the explicit textured mesh as a 3D representation, able124

to deform the shape along with its texture corresponding to the text. Apart from the CLIP-based125

method, the diffusion model (35) recently inspires huge breakthroughs in 3D text-guided generation.126
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Latent-NeRF (25) utilizes the score distillation sampling to bring the NeRF representation to the127

latent space, showing impressive generation results of the combination between diffusion model and128

NeRF. TEXTure (34) takes an iterative scheme to paint a 3D model from different viewpoints based129

on a pre-trained depth-to-image diffusion model. Fantasia3D (6) leverages the disentangled modeling130

and learns the geometry and appearance supervised by the score distillation sampling. However,131

these SDS-based methods often produce non-detailed and blurry outputs due to noisy gradients. In132

contrast, our ITEM3D uses the relative direction to eliminate the semantic ambiguity of the target133

prompt towards the texture.134

3 Method135

3.1 Overview136

Given a set of multi-view images I = {I1, ..., In}, we aim to reconstruct the 3D model with both137

geometry and texture, and then edit the texture under the guidance of text prompts. To this end, we138

design a zero-shot differentiable framework that optimizes the disentangled materials of the object,139

i.e., texture map and environment map. We first leverage a differentiable rendering model R to140

represent the 3D model as an accurate shape and surface materials with texture and environment map141

Sec. 3.2). For further editing of appearance, we utilize the diffusion model to guide the direction142

of the texture optimization given the target text prompt. To solve the problem of ambiguous and143

noisy details, we introduce the relative direction of source text and target text into the optimization144

(Sec. 3.3). Moreover, we gradually adjust relative direction to address the challenges of deviation145

caused by the unbalanced optimization in the texture domain (Sec. 3.4). The overview of our method146

is demonstrated in Fig. 2.147

3.2 3D Model Representation148

To accomplish editing the appearance of the 3D model via text prompt, we disentangle the 3D model149

into a triangular mesh and a set of spatially varying materials. The disentanglement thus allows us150

to edit the texture directly while keeping the geometry invariant. The material model we employed151

combines a diffuse term, a specular term and a normal term. A four-channel texture is provided for the152

diffuse parameters kd, where the optional fourth channel α represents the transparency. Meanwhile,153

the specular term is described by a roughness factor r, a metalness factor m and a sheen factor o154

that is unused in our model. These values (o, r,m) are stored in another texture map korm. The155

normal term in our representation is a tangent space normal map n, which is utilized to capture the156

high-frequency details of the appearance. In order to handle texturing effectively during optimization,157

we utilize volumetric texturing and access our texture by the world space position x. We tackle the158

challenge of the impractical cubic growth in memory usage of volumetric textures for our target159

resolution by leveraging a multi-layer perceptron (MLP) to encode the material parameters into a160

compact representation. Specifically, given a world space position x, we compute the base color,161

kd, the specular parameters, korm and a tangent space normal perturbation n, the mapping is thus162

formulated as x → (kd, korm, n). With the introduction of this mapping, for a fixed topology, the163

textures are initialized by sampling the MLP on the mesh surface and then optimized efficiently.164

Following the rendering equation of the image-based lighting model, we compute the radiance L in165

direction ωo by:166

L (ωo) =

∫
Ω

Li (ωi) f (ωi, ωo) (ωi · n) dωi, (1)

where Li is the incident radiance from direction ωi , the f is the BSDF and n is the intersection167

normal of the corresponding integral domain Ω. Specifically, we adopt the Cook-Torrance microfacet168

specular shading model as the BSDF in our rendering equation:169

f (ωi, ωo) =
D G F

4 (ωo · n) (ωi · n)
. (2)

The term D here represents the GGX (44) normal distribution while the term G is the geometric atten-170

uation and F is the Fresnel term respectively. Furthermore, we employ the split-sum approximation171

for its efficiency and the rendering equation Eq. (1) can be formulated as:172

L (ωo) ≈
∫
Ω

f (ωi, ωo) (ωi · n) dωi

∫
Ω

Li (ωi)D (ωi, ωo) (ωi · n) dωi. (3)
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Figure 2: Pipeline of texture editing. We render the 3D model with mesh, texture, and environment
map into 2D images which are then added with noise ϵ. We then use the source text and the target
text as the conditions to denoise via two U-Nets. The difference between the two predicted noises
serve as the relative direction to guide the optimization of the materials of the 3D model, i.e., texture
and environment map.

The first term of this product only relies on the parameters (ωi · n) and the roughness r of the BSDF,173

which are precomputed and stored in a 2D lookup texture. Meanwhile, the second term is the integral174

of the radiance with the specular normal distribution function D expressed in Eq. (2), which is also175

precomputed and stored by a filtered cubemap. Owing to the precomputation and lookup mechanism,176

the rendering process is then accelerated. In order to learn the environment lighting from 2D image177

observations, we employ a differentiable shading model to represent this split-sum approximation.178

The cube map in our case can be represented as trainable parameters, which are initialized as the179

preintegrated lighting.180

3.3 Relative Direction Based Optimization181

Our goal is to enable users to edit the appearance of 3D models using natural language descriptions.182

To accomplish this, the directional idea is to utilize the diffusion model that has been pre-trained in183

2D images as knowledge prior to guide the editing of texture. Naively, we could use Score Distillation184

Sampling (SDS) loss,185

∇θLSDS(ϕ,x = R(θ)) = Et,ϵ

[
w(t)

(
ϵωϕ(zt; y, t)− ϵ

) ∂x
∂θ

]
, (4)

where x is the rendered images, t is the sampled time step, zt is the t time step latent, w(t) is the186

weighting function that equals ∂zt/∂x, y is the text condition, ϵωϕ(zt; y, t) is the predicted noise187

through classifier-free guidance, and ϵ ∈ N(0, I) is the noise added to the rendered images. The188

gradient of SDS loss gives an editing direction for our texture optimization, determined by the text189

prompt y. However, the SDS loss may cause the destruction of original image content with noisy190

details, because the text prior typically cannot faithfully reflect the information of the image. It is191

known that the entropy of an RGB image is significantly larger than that of a text prompt. As a192

consequence, the misdescription inevitably arises when taking the text prompt as the prior to restore193

the high-quality image from the same-scale noise. Therefore, even for a text prompt y0 describing the194

original images, there exists a deviation related to the optimized texture θ between the added noise ϵ195

and the predicted noise ϵωϕ (zt; y0, t), which can be simply expressed as,196

Dbias(θ, ...) ∝ ||ϵωϕ (zt; y0, t)− ϵ||. (5)

Thus, the gradient leads to a bias term from the original input image, which can be expressed as,197

n⃗bias =
∂Dbias(θ, ...)

∂θ
=

(
ϵωϕ (zt; y0, t)− ϵ

) ∂x
∂θ

. (6)

Moreover, for an arbitrary text prompt ytgt describing the target editing texture, it could be considered198

that there exists a term of expected editing direction and a term of bias discussed above,199
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(
ϵωϕ (zt; ytgt, t)− ϵ

) ∂x
∂θ

= n⃗tgt + n⃗bias. (7)

As a result, the n⃗bias gives rise to the misdirection for the optimization procedure.200

To address these issues, it is ideal to find the accurate editing direction n⃗tgt, while the term of n⃗bias201

is hard to estimate due to the diverse input images. To mitigate the gap, it is natural to take the text202

guidance as a relative direction rather than an absolute direction, enabling us to eliminate the term of203

n⃗bias. The absolute direction of the source n⃗src and the target n⃗tgt can be expressed as,204

n⃗src =
(
ϵωϕ (zt; y0, t)− ϵ

) ∂x
∂θ

− n⃗bias, (8)

n⃗tgt =
(
ϵωϕ (zt; ytgt, t)− ϵ

) ∂x
∂θ

− n⃗bias, (9)

where n⃗src is actually the 0⃗ giving no extra information to the input images. Inspired by the CLIP-205

directional loss improved by the StyleGAN-Nada (12) and the denoising loss proposed by the recent206

work (31), we utilize the difference between the source n⃗src and the target n⃗tgt as the relative direction207

of the target, which can be presented as,208

n⃗tgt = n⃗tgt − n⃗src =
(
ϵωϕ (zt, ytgt, t)− ϵωϕ (x, y0, t)

) ∂x
∂θ

. (10)

Therefore, the final gradient utilized for optimizing the texture can be presented as,209

∇θLRDL(ϕ,x = R(θ)) = Et,ϵ

[
w(t)

(
ϵωϕ(zt; ytgt, t)− ϵωϕ(zt; y0, t)

) ∂x
∂θ

]
, (11)

3.4 Direction Adjustment210

Different from the gradual transition in the nature image domain, the optimization of the texture211

domain unfortunately shows an unexpected offset of the appearance in rendered images, due to212

the complex projection in differentiable rendering. The inherent reason is that the complexity of213

rendering leads to unbalanced optimization for the texture, with some parts under-tuning and other214

parts over-tuning. This appearance offset can be seen in some parts of the rendered image, leading215

to the inconsistency between the source text and the rendered images in the median period of the216

optimization procedure. It is known that a source image with an inconsistent text description means217

an optimization misdirection which leads to an unknown change in the editing results. Similar to the218

known problem, if a rendered image during the median optimization hops out the direction between219

the source text and the target text, it can be considered as the inconsistent description for the source220

image when we take the current median point as a relative beginning point. The original editing221

direction is give by,222

n⃗ori = n⃗tgt − n⃗src. (12)
If the optimization continues along the original direction, a more severe deviation can be attached to223

the optimization procedure.224

To avoid the misdirection caused by the texture domain, we propose to adjust the editing direction,225

specifically the source text prompt, during our optimization process of the texture map. The adjusted226

direction ∆T̂i can be represented as,227

∆T̂i = ⃗̂ni − ⃗̂ni−1 = B(Ii)− B(Ii−1), (13)
where i is the optimization iteration and B (·) expresses the inverse text generated by a pre-trained228

language-image model BLIP-v2 (19).229

As shown in the Fig. 1 (b), the direction is continually adjusted during the optimization so that the230

new global direction n⃗i can be written as,231

n⃗i = n⃗ori +
∑
j≤i

∆T̂j . (14)

By adjusting the optimization direction step by step, we achieve more delicate and controllable232

editing, which can be seen in Sec. 4.3.233
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Figure 3: Qualitative comparison on NeRF synthetic dataset. The results of both textures and
rendered images are presented. Our method synthesizes more realistic objects which better correspond
to text instructions.

4 Experiments234

4.1 Implementation Details235

Dataset. In the experiments, we mainly evaluate our model on the NeRF Synthetic (27) dataset. The236

NeRF synthetic dataset consists of 8 path-traced scenes with multi-view images which we reconstruct237

into our textural mesh-based representation via nvdiffrec (29). Besides, we adopt 3D objects from238

Keenan’s 3D model repository.239

Experiment Setup. We optimize the 3D model on one RTX A6000 GPU with 48G memory. The240

optimization procedure lasts about average 500 iterations with 8 minutes for each 3D model. We use241

the Adam optimizer for both the texture and the environment map with an initial learning rate of 0.01242

which gradually decreases to 1/10 every 5k iterations during the training process.243

4.2 Comparison with Baseline244

Qualitative Comparison. We compare ITEM3D with the optimization method based on the SDS245

loss. Specifically, Fig. 3 shows the results of editing texture and rendered image with the guidance246

of text prompts. While SDS-based method could edit textures along the direction of text prompt,247

their rendered images show the unrealistic appearance, sometimes overfitting to the text. In contrast,248
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Table 1: Quantitative Comparisons. We report two CLIP-based scores, i.e., global score and
directional score to evaluate the semantic quality of rendered images. ‘-’ indicates not available.
Our ITEM3D achieves better results than the SDS-based method. Besides, the inferiority of the
performance without direction adjustment also shows the effect of this designed component.

Method Origin (Ref.) ITEM3D SDS-based w/o dir. adjustment

Global Score↑ 0.31 0.32 0.30 0.30
Directional Score↑ - 0.23 0.18 0.16

Table 2: User study conducted with 33 participants. Each participant scores based on two evaluation
criteria, i.e., photorealism and text consistency. The range of scores is from 1 to 5, where 1 represents
worst and 5 represents best.

Method Origin (Ref.) ITEM3D SDS-based

Photorealism ↑ 4.18 3.77 2.77
Text Consistency ↑ - 4.11 2.45

the texture edited by our ITEM3D can render realistic images with high quality, while remaining249

consistent with the input text prompt. The comparison indicates the effectiveness of the introduced250

relative direction of optimization and further direction adjustment. Besides, it can be noticed that251

our methods support segmentation-aware editing. Although the diffusion model lacks the capacity252

of recognizing the semantics in the texture map, it enables to edit the specific part of texture253

corresponding to a text prompt describing partial change. For example, with the prompt “A ficus with254

blue pot”, the change in the texture precisely reflects to the part of the pot in the rendered images. It255

proves that the gradients can accurately back-propagate to the corresponding parts of the texture map256

via the rendered images.257

Quantitative Comparison. Moreover, we conduct a quantitative comparison in the Tab. 1. To258

evaluate the semantic consistency, we choose objects from Keenan’s 3D Model Repository, render259

their 512×512 RGB images after texture editing, and further compute the CLIP-Score of the rendered260

image and corresponding target text. CLIP-score contains two parts, i.e., global score and directional261

score. Global score measures the similarity between the target text and the editing images, and262

directional score measures the similarity between two editing directions of text prompts and images,263

which are expressed as which can be presented as,264

Scoreglobal =
Ttgt · Itgt

∥Ttgt∥∥Itgt∥
, Scoredirection =

∆T ·∆I

∥∆T∥∥∆T∥
, (15)

where Ttgt and Itgt are the embedding of target text and edited image encoded by the CLIP encoder,265

and ∆T and ∆I are expressed as,266

∆T = Ttgt − Tsrc, ∆I = Itgt − Isrc. (16)

As illustrated in Tab. 1, our method achieves better results than the SDS-based method.267

User Study. Additionally, we perform a user study in Tab. 2 to further assess the quality of editing268

objects. Users are required to rate on a scale of 1 to 5, based on the following questions: (1) Are269

the edited objects realistic and natural (Photorealism)? (2) Are the edited objects accurately reflect270

the target text’s semantics (Text Consistency)? As presented in Tab. 2, the results demonstrate the271

superior quality with higher realism and more text consistency of our proposed method as compared272

to the baselines.273

4.3 Direction Adjustment274

In this section, we further study the necessity of direction adjustment. We perform the ablation275

study in Fig. 4. Without the adjustment for the relative optimization direction, the texture shows276

a wired change that the duck gradually generates two heads and the color seems partially yellow277

and partially red. When applying the gradual adjustment, the duck bypasses the unnatural change278

and smoothly achieves the target appearance. The example of cattle shows a similar trend. In this279

experiment, it can be noticed that there exists unbalanced optimization for different parts of the280
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Figure 4: Ablation study of direction adjustment. The results without adjustment show a wired
appearance, i.e., dual heads and quadruple eyes. When applying gradual adjustment, the unrealistic
artifacts are released, in result of natural appearance.

Figure 5: Relighting results under the condition of an illumination-aware text prompt. Keeping the
texture constant, ITEM3D has capacity of explicit control over the lighting under the guidance of
prompt related to the environment map.

texture. The optimization scheme of simple pieces of texture converges quickly, while more complex281

modifications require longer time, which in turn over-tunes easy parts leading to poor results. We282

also compute the two CLIP score for the results without direction adjustment in Tab. 1. It shows that283

the adjustment indeed helps to maintain the major semantics.284

4.4 Illumination-aware Editing285

The disentangled representation of environment map empowers ITEM3D to explicitly control the light-286

ing under the guidance of a text prompt aiming to relight the 3D model. The results of illumination-287

aware editing are demonstrated in Fig. 5. As shown, given the prompt including lighting information288

such as “sunrise”, “bright light”, and “dazzling light”, ITEM3D enables to edit the environment map289

along the direction led by the prompt. It is valuable to prove that the lighting condition of a 3D model290

can be learned solely from the text through the bridge of rendered 2D images.291

5 Conclusion and Limitations292

In conclusion, our ITEM3D model presents an efficient solution to the challenging task of texture293

editing for 3D models. By leveraging the power of diffusion models, ITEM3D is capable to optimize294

the texture and environment map under the guidance of text prompts. To address the semantic295

ambiguity between text prompts and images, we replace the traditional score distillation sampling296

(SDS) with a relative editing direction. We further propose a gradual direction adjustment during the297

optimization procedure, solving the unbalanced optimization in the texture.298

Despite the promising editing results, our ITEM3D still remains several limitations which should be299

solved in future work. The major limitation is that there remains irremovable noise in some samples.300

Because of the synthesis mechanism of the diffusion model, our ITEM3D extremely depends on the301

denoising ability of the pre-trained U-Net. Another limitation is that the adjustment by the source302

description is non-essential. Our further work aims to explore the learning scheme to solve the303

problem of unbalanced optimization in the texture.304
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