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Abstract
Existing context-based offline meta-
reinforcement learning (COMRL) methods
primarily focus on task representation learning
and given-context adaptation performance. They
often assume that the adaptation context is
collected using task-specific behavior policies or
through multiple rounds of collection. However,
in real applications, the context should be
collected by a policy in a one-shot manner to
ensure efficiency and safety. We find that inherent
context ambiguity across multiple tasks and
out-of-distribution (OOD) issues due to distri-
bution shift significantly affect the performance
of one-shot adaptation, which has been largely
overlooked in most COMRL research. To address
this problem, we propose using heteroscedastic
uncertainty in representation learning to identify
ambiguous and OOD contexts, and train an
uncertainty-aware context collecting policy
for effective one-shot online adaptation. The
proposed method can be integrated into various
COMRL frameworks, including classifier-based,
reconstrution-based and contrastive learning-
based approaches. Empirical evaluations on
benchmark tasks show that our method can
improve one-shot adaptation performance by up
to 36% and zero-shot adaptation performance by
up to 34% compared to existing baseline COMRL
methods.

1. Introduction
Reinforcement learning (RL) has achieved remarkable suc-
cess in a wide range of domains, including game play-
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ing(Mnih, 2013; Lample & Chaplot, 2017), robotic con-
trol(Nguyen & La, 2019), and recommendation systems
(Zheng et al., 2018). However, RL faces a critical challenge
of low sample efficiency due to its reliance on extensive
interactions with the environment, a limitation that becomes
even more pronounced in multi-task settings (Levine et al.,
2020; Li et al., 2020a).

Context-based offline meta reinforcement learning
(COMRL) provides a promising solution to improve sample
efficiency in multi-task environments by leveraging offline
datasets for training and enabling fast adaptation to new
tasks with minimal online samples (Li et al., 2020b).
COMRL treats task-specific trajectories or transitions
as context information and operates in two key phases:
the offline meta-training and the online adaptation. In
the first phase, a context encoder is learned through
task representation learning, alongside a meta-policy
conditioned on the learned task representations. During
the second phase, the meta-policy adapts to new tasks by
conditioning on the task representation inferred from the
online-collected context.

Despite its promise, COMRL encounters two major chal-
lenges, as depicted in Figure 1 left: context ambiguity and
out-of-distribution (OOD). Context ambiguity arises when
a context fails to uniquely infer a task because it appears
across multiple tasks (Dorfman et al., 2021). Context OOD,
on the other hand, occurs when a context falls outside the
task distribution of the offline dataset. Both issues can lead
the context encoder to infer unreliable task representations,
resulting in suboptimal policy performance.

Most existing COMRL methods predominantly focus on
task representation learning (Li et al., 2020b; Gao et al.,
2024; Li et al., 2024). These methods often assume that
contexts are either in-distribution, thereby avoiding OOD
issues, or can be collected through multiple rounds, which
mitigates the impact of ambiguity. While CORRO (Yuan &
Lu, 2022) attempts to address OOD challenges, its applica-
bility is limited to (s, a) pairs observed in the dataset, and it
fails to generalize to truly OOD (s, a) scenarios. However,
in many practical scenarios, context collection is constrained
to a one-shot manner due to safety and efficiency considera-
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Figure 1. Left: Contexts consist of certain task-specific transitions and uncertain transitions that are either ambiguous or OOD. Right: Our
approach involves training an uncertainty estimation network and an uncertainty-aware context collecting policy to restrain the detrimental
influence of uncertain contexts on task inference during online adaptation.

tions, making context ambiguity and OOD issues even more
challenging.

To address these challenges, we propose CERTAIN: Context
Uncertainty-aware One-Shot Adaptation. The core insight
behind CERTAIN is that both ambiguous and OOD contexts
contribute to high task representation uncertainty, whereas
contexts that reliably distinguish tasks exhibit lower uncer-
tainty (Figure 1, left).

Building on this observation, we introduce an uncertainty
estimation network during the offline meta-training phase to
estimate context uncertainty alongside task representation
learning (Figure 1, right). By leveraging these uncertainty
estimates, CERTAIN effectively identifies ambiguous and
OOD contexts, mitigating their negative impact on task infer-
ence during online adaptation. To enable fast and accurate
task inference, we further propose training an uncertainty-
aware context collecting policy that prioritizes the collection
of low-uncertainty contexts during the online adaptation
phase.

CERTAIN is designed as a plug-in framework that seam-
lessly integrates into existing COMRL methods, includ-
ing classifier-based, reconstruction-based, and contrastive
learning-based approaches, to enhance robustness against
context ambiguity and OOD issues during online adaptation.
We validate CERTAIN through extensive experiments on
a range of benchmark tasks. The results show that CER-
TAIN significantly improves the performance of existing
COMRL methods in the one-shot adaptation setting, achiev-
ing up to a 36% increase in average return. Furthermore,
in the zero-shot adaptation setting—where the meta-policy
is directly applied to new tasks without any online adapta-
tion—CERTAIN delivers up to a 34% improvement in aver-
age return, outperforming state-of-the-art (SoTA) COMRL
methods.

2. Related Work
2.1. Offline Reinforcement Learning

Offline reinforcement learning (Offline RL) aims to learn a
policy from a static dataset without requiring interactions
with the environment, significantly improving sample effi-
ciency (Levine et al., 2020). Recent research has focused
on addressing key challenges such as value overestimation
(Kumar et al., 2020; Li et al., 2022; Singh et al., 2023; Mao
et al., 2024) and distributional shift (Fujimoto et al., 2019;
Kumar et al., 2019; Kostrikov et al., 2021; Brandfonbrener
et al., 2021; Ran et al., 2023; Zhang & Tan, 2024). Our work
adheres to the offline RL setting, targeting the learning of
the task representation and the meta-policy from multi-task
offline datasets.

2.2. Meta Reinforcement Learning

Meta reinforcement learning (Meta RL) seeks to train a
meta-policy that generalizes across multiple tasks, enabling
rapid adaptation to new tasks. Context-based methods
(Duan et al., 2016; Rakelly et al., 2019; Fakoor et al., 2019;
Zintgraf et al., 2019; Humplik et al., 2019; Wang et al.,
2023b; Chu et al., 2024) frame Meta RL as a partially ob-
servable Markov decision process (POMDP), where histori-
cal trajectories serve as the context. These methods extract
task-specific information from the context and treat it as
a hidden state to guide decision-making. Gradient-based
methods (Finn et al., 2017; Finn & Levine, 2017; Xu et al.,
2018; Rothfuss et al., 2018; Xu et al., 2020; Liu et al., 2022;
Xu & Zhu, 2024) aim to learn a meta-policy that provides
a strong initialization for task-specific policies. Adaptation
to new tasks is achieved by fine-tuning the meta-policy us-
ing meta-gradients computed from online few-shot samples.
Our work builds on the context-based Meta RL framework,
which is better suited for real-world applications due to its
practicality and scalability.
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2.3. Offline Meta Reinforcement Learning

Offline meta reinforcement learning (OMRL) focuses on
learning a meta-policy from multi-task offline datasets to en-
able rapid adaptation to new tasks (Li et al., 2020a). Similar
to Meta RL, OMRL methods are categorized into gradient-
based (Mitchell et al., 2021) and context-based (Li et al.,
2020b) approaches. The key distinction is that OMRL oper-
ates under an offline RL setting.

Our work is grounded in context-based OMRL methods.
Recent COMRL approaches (Li et al., 2020b; Yuan & Lu,
2022; Gao et al., 2024) emphasize task representation learn-
ing during the meta-training phase, which can be unified
under the perspective of mutual information maximization
(Li et al., 2024). Other works (Gao et al., 2024; Wang et al.,
2023a) address the challenge of context collection during
the online adaptation phase. Our method aligns with the
latter category, focusing on improving context collection for
robust one-shot adaptation.

2.4. Uncertainty Estimation

Uncertainty can be categorized into epistemic uncertainty
and aleatoric uncertainty. Prior work has tackled epistemic
uncertainty estimation using ensemble methods (Lakshmi-
narayanan et al., 2017) and Bayesian neural networks (Gal
& Ghahramani, 2016), while aleatoric uncertainty is typi-
cally modeled via heteroscedasticity by parameterizing the
variance of the output distribution (Kendall & Gal, 2017).
However, the heteroscedastic uncertainty obtained with the
above method can also be affected by the model’s capacity
and the training dynamics. Building upon the heteroscedas-
tic uncertainty framework, we propose an approach to esti-
mate context uncertainty in the setting of COMRL.

3. Problem Formulation
3.1. Preliminaries

A task in RL is formally represented as a Markov Decision
Process (MDP) M = ⟨S,A,P,R⟩, where S denotes the
state space, A the action space, P the transition dynam-
ics, and R the reward function. In COMRL, each task is
assumed to be sampled from a task distribution:

Mi = ⟨S,A,Pi,Ri⟩ ∼ p(M) (1)

The context c for task Mi is defined as a set of transition
tuples:

c = {(sj , aj , rj , s′j)}Kj=1 (2)

Given an offline dataset D containing M tasks:

D = {Di = {(sj , aj , rj , s′j)}Nj=1}Mi=1 (3)

the objective of offline meta-training in COMRL is to learn
a context encoder qϕ(z|c) and a meta-policy πθ(a|s, z) that

maximize the expected return J across tasks:

max
ϕ,θ

EMi∼p(M)

[
Ec∼Di,z∼qϕ(z|c)J(πθ(a|s, z))

]
(4)

here, z is the latent task representation inferred from the
context c, specifically:

z =
1

K

K∑
j=1

qϕ(zj |sj , aj , rj , s′j) (5)

In the online adaptation phase, trajectories are collected for
the unseen task M′ using a context collecting policy πc to
form the adaptation context c′:

c′ = {(sj , aj , rj , s′j)}Tj=0 ∼ ⟨M′, πc⟩ (6)

Subsequently, the adapted policy πθ(a|s, z′) is derived
based on the inferred task representation z′ = qϕ(z|c′).

3.2. Context Uncertainty in Task Inference

In COMRL, the task representation z is inferred from the
context c using a context encoder qϕ(z|c). Assuming a
reasonable qϕ, the reliability of task inference based on
z heavily depends on the context c. Two major factors
that lead to unreliable task inference are context ambiguity
and OOD contexts. Before formally defining ambiguity
and OOD, we first define the probability of a context c =
{(sj , aj , rj , s′j)}Kj=1 given a task M and a policy π as:

p(c|M, π) =

K∏
j=1

ρ(sj)π(aj |sj)pM(rj , s
′
j |sj , aj) (7)

where ρ(s) denotes the initial state distribution, and
pM(s′, r|s, a) is the model of the task M.

With this formulation, we define context ambiguity and
OOD contexts as follows:

Definition 3.1. Context Ambiguity: Context ambiguity
occurs when a given context c corresponds to at least two
distinct tasks Mi and Mj , such that p(c|Mi) > 0 and
p(c|Mj) > 0, where p(c|M) :=

∫
p(c|M, π)dπ.

Definition 3.2. OOD Context: A context c is considered
OOD if it cannot be sampled by the behavior policy πβ
within the offline dataset task M, i.e., p(c|M, πβ) = 0.

Definition 3.3. Context Uncertainty: Contexts affected
by either ambiguity or OOD issues are likely to produce
unreliable task representations for task inference, which
we refer to as Uncertain contexts. Conversely, a context
that is neither ambiguous nor OOD is defined as a Certain
context, capable of reliably inferring a task based on z. To
quantify the reliability of a context for task inference, we
define Context Uncertainty as σ, which captures the degree
of uncertainty in task inference for a given context.
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Figure 2. Overview of the proposed method: (a) combining off-the-shelf task representation learning with heteroscedastic uncertainty
framework, (b) integrating Uncertainty in meta-policy learning and context collecting policy learning, and (c) uncertainty-aware one-shot
adaptation in unseen task.

3.3. One-shot Adaptation Challenges

In the online adaptation phase, most existing COMRL meth-
ods assume that the adaptation context c′ is collected by
the task-specific behavior policy πβ for the unseen task M′,
following a distribution similar to the offline dataset D. Al-
ternatively, these methods assume that c′ can be collected
over multiple rounds using an exploratory policy, e.g. a
random policy, to obtain more certain contexts, thereby mit-
igating the impact of uncertain contexts. However, under
the one-shot adaptation setting, the adaptation context c′

is derived from a single trajectory collected by the context
collecting policy πc. This restriction substantially increases
the likelihood of encountering uncertain contexts, which
can impair task inference based on the task representation,
thereby degrading policy performance.

4. Method
We now present our method, CERTAIN, which consists of
three key components: (a) uncertainty-aware task represen-
tion learning, (b) uncertainty-aware meta-policy learning,
and (c) uncertainty-aware adaptation. Figure 2 provides an
overview of our method.

4.1. Uncertainty-aware Task Representation Learning

Building on the heteroscedastic uncertainty framework pro-
posed in (Kendall & Gal, 2017), we introduce a method to
evaluate context uncertainty in task representation learning
by slightly modifying the heteroscedastic loss. This for-
mulation allows the context uncertainty to be seamlessly
integrated into the three primary paradigms of task represen-
tation learning in COMRL: (1) classifier-based methods, (2)
reconstruction-based methods, and (3) contrastive learning-
based methods. All these methods share the context encoder
qϕ(z|c) as a core component but differ in their training ob-

jectives.

Classifier-based methods (Zhang et al., 2025) train the con-
text encoder by predicting the task label y using a classifier
pφ(y|z). The objective is to minimize the cross-entropy loss
between the predicted task label and the ground truth:

Lcls = −E(s,a,r,s′)∼D,z∼qϕ(z|c) [log pφ(y|z)] (8)

Reconstruction-based methods (Li et al., 2024) train the
context encoder by reconstructing the dynamics and reward
model with a decoder pφ(r, s′|s, a, z). The objective is to
maximize the likelihood of the reconstructed dynamics and
reward model:

Lrec = E(s,a,r,s′)∼D,z∼qϕ(z|c) log pφ(r, s
′|s, a, z) (9)

Contrastive learning-based methods (Le-Khac et al., 2020)
train the context encoder using contrastive losses, includ-
ing InfoNCE (Oord et al., 2018), FOCAL (Li et al., 2020b)
etc. These objectives minimize the distance between query
and positive samples while maximizing the distance be-
tween query and negative samples. One commonly used
contrastive loss (Li et al., 2020b) :

Lcont =1{yi = yj}∥zi − zj∥22

+ 1{yi ̸= yj}
β

∥zi − zj∥n2 + ϵ

(10)

To integrate context uncertainty, the above learning objec-
tives are modified by incorporating an uncertainty estima-
tion network hψ(σ|c). As shown in Figure 2 (a), given an
input context c, the task representation z is inferred using
the context encoder qϕ(z|c), and a task representation learn-
ing objective Lϕ is computed. Simultaneously, a context
uncertainty σψ is predicted by hψ(σ|c). The heteroscedastic
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loss Lϕ,ψ is then formulated by combining Lϕ with σψ:

L(ϕ,ψ) =
Lϕ
σ2
ψ

+ log σψ (11)

The context uncertainty σψ is positively correlated with the
task representation learning loss Lϕ; the detailed proof is
provided in Appendix A. This correlation implies that σψ
can serve as a reliable measure of context uncertainty, as
a higher task representation learning loss Lϕ typically in-
dicates that the context is more likely to be ambiguous or
OOD. Moreover, the heteroscedastic loss formulation pro-
vides an additional benefit: it adaptively adjusts the effective
learning signal for Lϕ, allowing the model to place less em-
phasis on uncertain contexts and more on confident ones,
thereby improving the overall robustness of task representa-
tion learning.

4.2. Uncertainty-aware Policy Learning

4.2.1. META-POLICY LEARNING

The meta-policy πθ(a|s, z) in COMRL is conditioned on the
task representation z to maximize the expected return across
tasks. Its theoretical foundation lies in the framework of
a partially observable Markov decision process (POMDP).
Once the task representation z is inferred from the context,
the tuple (s, z) is treated as a fully observable state, effec-
tively transforming the POMDP into a Markov decision
process (MDP). This enables the meta-policy in COMRL
to be optimized using standard offline RL algorithms, such
as CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021),
BRAC (Wu et al., 2019), and TD3BC (Fujimoto & Gu,
2021).

The task representation z in the meta-policy is typically
derived as the mean of task representations of the context in
existing COMRL methods. Nevertheless, assigning equal
importance to all transitions within the context is vulnerable
to ambiguous and OOD contexts. To address this limitation,
we propose leveraging the uncertainty σ estimated for each
transition in the context c, and computing a weighted sum
of each z as the task representation. This approach reduces
the influence of uncertain transitions, thereby improving the
accuracy of task inference.

As illustrated in Figure 2 (b), given a context c with n
transition tuples, the context encoder qϕ(z|c) is used to
extract task representations for each transition, yielding
{zi|i = 1, . . . , n}. The uncertainties for each transition
{σi|i = 1, . . . , n} are then predicted by the uncertainty
estimation network hψ(σ|z). These uncertainties are then
transformed into weights {wi|i = 1, . . . , n} via a softmax
function. Finally, zw is computed as the weighted sum of
{zi|i = 1, . . . , n}.

zw = Σni=1wizi (12)

4.2.2. CONTEXT COLLECTING POLICY LEARNING

In the one-shot adaptation setting, collecting an effective
context for task inference is crucial. Existing methods are
not applicable as they either assume that adaptation contexts
are either collected under the same behavior policy as the
offline dataset or allow for multiple collection attempts using
an exploratory policy.

To address these limitations, we propose training a con-
text collecting policy that actively explore low-uncertainty
contexts, thereby avoiding ambiguous and OOD contexts.

As illustrated in Figure 2 (b), the context collecting pol-
icy is defined as πθ(a|s, z0), where z0 represents a zero-
initialized task representation. The policy πθ(a|s, z0) is
trained to maximize the action value function Qθ(s, a, z0),
while incorporating an uncertainty penalty. This encourages
the collection of informative and reliable contexts that im-
prove task inference and enhance downstream adaptation
performance:

J(πθ(a|s, z0)) =maxE(s,a,r,s′)∼D,σ∼hψ(σ|qϕ(c))

[
(r − ασ)

+ γEa′∼πθ(s,a,z0)Qθ(s
′, a′, z0)

]
(13)

where α is a hyperparameter to balance the reward and the
uncertainty penalty and γ is the discount factor.

4.3. Uncertainty-aware One-shot Adaptation

As illustrated in Figure 2 (c), during the online adapta-
tion, we employ the proposed context collecting policy
πθ(a|s, z0) to collect one trajectory as adaptation context c′

in the unseen task M′:

c′ ={(s1, a1, r1, s2), (s2, a2, r2, s3), . . . ,
(sT , aT , rT , sT+1)} ∼ ⟨M′, πθ(a|s, z0)⟩

(14)

Since the ambiguous and OOD context cannot be fully pre-
vented, we then utilize the context encoder qϕ and the uncer-
tainty estimation network hψ to infer the task representation
z′, while restraining the influence of uncertain contexts in
c′:

z′ =

T∑
t=1

wtzt

where zt ∼ qϕ(zt|st, at, rt, st+1)

wt =
exp(−hψ(σt|zt))∑T
t=1 exp(−hψ(σt|zt))

(15)

Finally, the adapted policy πθ(a|s, z′) for the unseen task
M′ is obtained by conditioning on the weighted task repre-
sentation z′.
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Figure 3. Average return of one-shot in five environments. Each curve represents the average return of four seeds.

5. Experiments
In our experiments, we aim to demonstrate the effectiveness
of CERTAIN in online one-shot adaptation. Additionally,
we conduct an ablation study to assess the necessity of
both the uncertainty-aware context collecting policy and the
uncertain context restraining mechanism.

5.1. Setup

Environments. We evaluate CERTAIN on one toy environ-
ment, Point-Robot, and four MuJoCo environments: Ant-
Goal, Half-Cheetah-Vel, Walker-Rand-Params, and Hopper-
Rand-Params.

The Point-Robot environment consists of an agent starting
at (0, 0) and a goal positioned on a semicircle with a radius
of 1. Tasks are distinguished by different goal positions.
This environment enables intuitive visualization of agent tra-
jectories and facilitates analysis of our method’s underlying
mechanism.

The MuJoCo environments present more complex and chal-
lenging scenarios. In Ant-Goal and Half-Cheetah-Vel, tasks
are distinguished by different reward functions. In Walker-
Rand-Params and Hopper-Rand-Params, tasks vary based
on differences in environment dynamics parameters.

Baselines. We integrate CERTAIN with three baseline meth-
ods: CLASSIFIER (Zhang et al., 2025), FOCAL (Li et al.,
2020b), and UNICORN (Li et al., 2024).

• CLASSIFIER (classifier-based) learns context repre-
sentation by predicting task labels from the context
using a cross-entropy loss.

• FOCAL (contrastive learning-based) learns context rep-
resentations using a contrastive metric loss.

• UNICORN (reconstruction-based) extends FOCAL by
incorporating a reconstruction loss.

Additionally, we compare with IDAQ (Wang et al., 2023a),
which builds upon FOCAL and explicitly consider the OOD
problem in online adaptation. The complete experimental
configurations are summarized in Appendix B.

Evaluation Metrics. We evaluate CERTAIN in the one-
shot online adaptation setting. Each evaluation consists of
collecting two episode trajectories:

• First episode (context collection phase): The trajectory
is collected using the context collecting policy, serving
as the one-shot context.

• Second episode (adaptation phase): The trajectory is
collected using the adapted policy, conditioned on the
task representation z inferred from the first episode’s
context.

For each evaluation, we run experiments across four random
seeds and report the average return from the second episode
as the final performance metric.
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Figure 4. Average return of zero-shot in five environments.

5.2. Main Results

5.2.1. COMPARISON WITH BASELINES

We incorporate CERTAIN into three baseline methods and
evaluate their one-shot adaptation performance against the
original baselines. As shown in Figure 3, CERTAIN consis-
tently matches or outperforms the baseline methods across
all environments. Notably, CERTAIN+FOCAL consistently
outperforms IDAQ (Wang et al., 2023a). The most signifi-
cant improvement is observed in the Point-Robot environ-
ment, where CERTAIN+CLASSIFIER achieves a 36.9%
performance improvement over the original CLASSIFIER.

Additionally, we evaluate zero-shot performance based on
the return of the first episode trajectory, as shown in Figure 4.
The results demonstrate that CERTAIN tends to outperform
baseline methods in most environments. We attribute this
to CERTAIN’s context collecting policy, which gathers an
initial trajectory with lower uncertainty, often resulting in
higher returns.

Interestingly, FOCAL achieves higher zero-shot returns in
the Point-Robot and Ant-Goal environments. We hypothe-
size that this is due to contrastive learning enabling FOCAL
to learn a more balanced initial latent representation z0, al-
lowing the policy πθ(s, z0) to explore diverse goals more
effectively. In contrast, CERTAIN’s z0 policy prioritizes
collecting low-uncertainty transitions, which does not neces-
sarily correlate with higher returns in the zero-shot setting.

Moreover, we observe that the zero-shot performance of
baseline methods tends to degrade as training progresses.
We hypothesize that this is because the policy πθ(s, z0)
in the baselines becomes increasingly conservative over
time. To support this claim, we provide an interpretable
visualization of this performance decline in the Point-Robot
environment in Appendix C.

Additional results on online adaptation in training tasks are
presented in Appendix D, and results using a fixed offline
context are provided in Appendix E. While our primary fo-
cus is on one-shot adaptation—the most challenging case in
the few-shot setting—we also evaluate CERTAIN in a few-
shot setting, where the agent can collect multiple context
trajectories and update the task representation z after each
episode. As shown in Appendix F, CERTAIN consistently
outperforms the baselines, demonstrating its effectiveness
in few-shot adaptation as well.

5.2.2. VISUALIZATION

To better understand the rationale behind CERTAIN, we
visualize the uncertainty of each context transition in the
Point-Robot offline dataset. As shown in the left of Figure 5,
transition uncertainty is notably higher near the starting
point (shaded in red), where transitions are likely to oc-
cur across multiple tasks. This overlap leads to context
ambiguity, making it challenging for the model to reliably
distinguish between different tasks. In contrast, transitions
farther from the starting point exhibit more pronounced re-
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Figure 5. Context Uncertainty of the Point-Robot offline dataset.
The left shows the uncertainty distribution across the state space,
while the right presents the histogram of uncertainty values.

ward differences, facilitating task identification and resulting
in lower uncertainty (shaded in blue). To characterize the
uncertainty distribution, we present a histogram of all transi-
tions on the right of Figure 5, showing that most transitions
have low uncertainty, while highly uncertain transitions be-
come progressively less frequent.

Ood Context Ood Task
Goals(ID)
Goals (OOD)

0.1 0.2 0.3 0.4 0.5

Figure 6. Context Uncertainty of OOD context and OOD task
in the Point-Robot. The left shows the OOD context under in-
distribution tasks, while the right presents the context uncertainty
under OOD-task collected with behavior policy.

We evaluate CERTAIN’s OOD-awareness by visualizing
context uncertainty in the Point-Robot under two settings:
OOD context and OOD task. In the OOD context setting,
tasks remain the same as in training, but transitions are col-
lected from the bottom semicircle, while the offline dataset
comes from the top. In the OOD task setting, transitions
are collected from the top semicircle using the same behav-
ior policy in offline dataset, but with goals located in the
bottom semicircle—unseen during training. As shown in
Figure 6, both OOD settings exhibit significantly higher con-
text uncertainty than the in-distribution case, highlighting
CERTAIN’s ability to detect distribution shifts—crucial for
robust one-shot adaptation.

To further demonstrate the effectiveness of CERTAIN, we
visualize the online trajectories over two episodes for dif-
ferent methods in the Point-Robot environment. As shown
in Figure 7, the first episode trajectory (green) collected
by CERTAIN moves directly toward the semicircle where

episode Line 1
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(a) CLASSIFIER
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(f) UNICORN+

Figure 7. Visualization of two episode trajectories in the Point-
Robot during evaluation. ’+’ denotes CERTAIN.

the goal is likely located, whereas baseline methods tend
to explore around the starting point. In the second episode
(orange), CERTAIN’s trajectory is more direct and accu-
rate compared to the baselines. Moreover, the uncertainties
along CERTAIN’s trajectories are lower than those of the
baseline methods, suggesting that CERTAIN effectively re-
duces context uncertainty.

5.3. Ablation Study

To assess the necessity of the uncertainty-aware collecting
policy and the uncertain context restraining mechanism in
CERTAIN, we conduct ablation studies on CLASSIFIER-
CERTAIN. For the ablation of the uncertainty-aware col-
lecting policy, we compare CERTAIN with two variants:
CERTAIN-Random and CERTAIN-Naive-z0. CERTAIN-
Random collects the adaptation context trajectory using a
random policy, whereas CERTAIN-Naive-z0 employs the
same collecting policy as CERTAIN but without training
during the meta-training phase. For the ablation of the
uncertain context restraining mechanism, we introduce an-
other variant, CERTAIN-Mean, which computes the mean
of the representations inferred from the context trajectory.
As shown in Table 1, CERTAIN consistently outperforms
CERTAIN-Random, CERTAIN-Naive-z0, and CERTAIN-
Mean across all environments. These results highlight the
necessity of both the uncertainty-aware collecting policy and
the uncertain context restraining mechanism in CERTAIN.
The ablation study for FOCAL-CERTAIN and UNICORN-
CERTAIN is provided in Appendix G.1.

To evaluate the impact of the uncertainty penalty coeffi-
cient α in Equation (13), we conduct an ablation study. We
observe no clear correlation between performance and the
value of α, and hypothesize that the penalty should be scaled
to match the magnitudes of both the reward and context un-
certainty. Detailed results are provided in Appendix G.2.
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Table 1. Average return and standard deviation of the second episode trajectory collected with CLASSIFIER-CERTAIN and its variants in
the point-robot environment.

Env CERTAIN Naive-z0 Random Mean

Point-Robot -9.27 ± 0.69 -13.30 ± 1.00 -10.04 ± 0.78 -9.89 ± 0.35
Ant-Goal -539.37 ± 40.83 -576.40 ± 52.04 -583.9 ± 72.63 -555.67 ± 68.17
Cheetah-Vel -110.02 ± 15.21 -173.90 ± 7.34 -126.23 ± 15.63 -133.31 ± 33.38

Walker 144.40 ± 26.19 105.66 ± 13.26 100.99 ± 44.19 113.16 ± 37.07
Hopper 223.45 ± 28.23 202.22 ± 13.64 213.47 ± 20.01 206.6 ± 36.15

We also study the effect of offline dataset quality on CER-
TAIN’s performance in the Point-Robot environment. Re-
sults show that performance improves most when the dataset
is of medium quality. We hypothesize that extreme dataset
qualities impair uncertainty estimation, resulting in subopti-
mal performance. Full results are presented in Appendix H.

6. Conclusion and Limitations
In this paper, we address the challenges of context ambigu-
ity and OOD issues in one-shot adaptation for COMRL. By
leveraging context uncertainty learning, we effectively iden-
tify ambiguous and OOD contexts. To further enhance task
inference accuracy during one-shot online adaptation, we
design an uncertainty-aware context collecting policy and
an uncertain context restraining mechanism. Experimental
results demonstrate that our method outperforms baseline
approaches in both task inference accuracy and its ability to
handle ambiguous and OOD contexts.

Despite its effectiveness, our method has certain limitations.
First, it does not address the issue of spurious correlations,
a common challenge in COMRL. However, it can be in-
tegrated with existing approaches, such as relabeling the
context with task-specific models, to mitigate this problem.
Second, while our method exhibits zero-shot adaptation ca-
pabilities, we attribute this primarily to the fact that our
context collecting policy tends to gather low-uncertainty
context trajectories, which often yield higher returns. Third,
the context uncertainty estimated by our method can capture
the presence of both OOD and ambiguous contexts, but it
cannot explicitly distinguish between them. In future work,
we plan to investigate techniques for disentangling OOD
and ambiguous contexts and explore integrating our method
with approaches designed to handle spurious correlations.
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A. The Proof of Context Uncertainty
The modified heteroscedastic loss is defined as:

L(ϕ,ψ) =
Lϕ
σ2
ψ

+ log σψ (16)

where Lϕ denotes the task representation learning loss which is non-negative, and σψ represents the context uncertainty
predicted by the network.

Since the neural network outputs the log-variance oψ = log σψ , we can reparameterize the loss as:

L(ϕ,ψ) =
Lϕ

exp(2oψ)
+ oψ (17)

We then compute the first- and second-order derivatives of the loss with respect to oψ:

∂L(ϕ,ψ)

∂oψ
= − 2Lϕ

exp(2oψ)
+ 1 (18)

∂2L(ϕ,ψ)

∂o2ψ
=

4Lϕ
exp(2oψ)

≥ 0 (19)

Since Lϕ ≥ 0, the second derivative is non-negative, implying that the loss is convex with respect to oψ. Setting the first
derivative to zero yields the minimizer o∗ψ:

o∗ψ =
1

2
log(2Lϕ) (20)

and consequently, the optimal context uncertainty is:

σ∗
ψ =

√
2Lϕ (21)

This derivation demonstrates that the optimal context uncertainty σ∗
ψ is positively correlated with the task representation

learning loss Lϕ, thus justifying the use of σψ as a proxy for context uncertainty.

12



CERTAIN: Context Uncertainty-aware One-Shot Adaptation for COMRL

B. Experimental Details

Table 2. Configurations and hyper-parameters used in the training process.

Configurations Point-Robot Ant-Goal Cheetah-Vel Walker-Rand-Param Hopper-Rand-Param

dataset size 1e3 1e6
training steps 60k 200k
test time context size 1 trajectory (20 steps) 1 trajectory (200 steps)

unicorn weight η
1−α

0.5 0.1 0.5 0.5 0.5
punish weight(focal) 10 0.1 2 5 0.1
punish weight(classifier) 10 5 10 25 10
punish weight(unicorn) 2 2 0.1 2 2

context batch size 1024 512 100 256

RL batch size 256
task representation dimension 20
learning rate 3e-4

RL network width 256
RL network depth 3
encoder width 200
encoder depth 3
uncertainty network width 200
uncertainty network depth 1
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C. Explanation of Baseline Decline in Figure 4(a) with Training Steps
To further investigate generalization under the zero-shot condition, we examine how baseline performance evolves as training
progresses. The following figures visualize the average return of FOCAL, CLASSIFIER, and UNICORN at various training
steps (×103). In each subfigure, the trajectory labeled ”Episode Line 1” corresponds to zero-shot evaluation. We observe
that the average return of baselines tends to decline as training continues, suggesting a possible overfitting or memorization
of training context.
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Figure 8. Average return of baseline methods under zero-shot conditions at different training steps (×103). Each trajectory labeled
”Episode Line 1” corresponds to the zero-shot rollout.
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D. Online Adaptation Results on Training Tasks
D.1. One-shot Results

We present the online adaptation results on the training tasks in Figure 9. The results indicate that CERTAIN consistently
outperforms the baselines across almost all the environments, mirroring its performance on the testing tasks (Figure 3).
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Figure 9. Average return of one-shot in five environments on training tasks. Each curve represents the average return of four seeds.

D.2. Zero-shot Results

We also present the zero-shot results on the training tasks in Figure 10, which are consistent with those observed on the
testing tasks in Figure 4.
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Figure 10. Average return of zero-shot in five environments on training tasks.
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E. Adaptation Results with Given Offline Context
Similar to other COMRL methods, we present adaptation results with a given offline context in Figure 11 and Figure 12.

E.1. Results on Training Tasks
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Figure 11. Average return on the training tasks with given offline context in five environments. Each curve represents the average return of
four seeds.

E.2. Results on Testing Tasks
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Figure 12. Average return on testing tasks with given offline context in five environments.
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F. Few-shot Performance
In the main paper, a one-shot setting is employed; here we supplement the results under a few-shot setting. Under the
few-shot setting, we randomly sample 5 episodes during evaluation. The table below presents the average return (± standard
deviation) for each episode, with the best return in each episode highlighted in bold.

Table 3. Few-shot average return and standard deviation across five sampled episodes in the Point-Robot environment. Bold values
indicate the best performance per episode across all methods.

Episode FOCAL FOCAL+Ours CLASSIFIER CLASSIFIER+Ours UNICORN UNICORN+Ours

Episode 1 -16.74±0.08 -17.40±0.28 -19.13±0.26 -17.66±0.71 -19.49±0.47 -18.52±1.73
Episode 2 -17.82±0.33 -11.97±1.11 -14.51±0.27 -8.92±0.81 -11.46±1.07 -11.00±2.17
Episode 3 -18.13±0.24 -12.34±1.24 -12.79±1.01 -9.33±0.59 -13.26±1.95 -9.53±0.79
Episode 4 -18.31±0.26 -12.36±1.05 -12.69±1.00 -9.64±0.66 -14.66±2.19 -9.94±1.12
Episode 5 -18.48±0.23 -12.35±0.98 -13.14±1.01 -9.69±1.00 -15.07±1.68 -10.53±0.61

G. Ablation Study
G.1. Ablation Results on FOCAL-CERTAIN and UNICORN-CERTAIN

In this section, we provide additional ablation results for FOCAL-CERTAIN and UNICORN-CERTAIN. We compare the
performance of FOCAL-CERTAIN and UNICORN-CERTAIN with two variants: Naive-z0 and Random. For detailed
explanations, please refer to Section 5.3.

Table 4. Average return and standard deviation of the second episode trajectory collected with FOCAL-CERTAIN and its variants in the
point-robot environment.

Env CERTAIN Naive-z0 Random Mean

Point-Robot -11.20 ± 0.77 -16.38 ± 0.54 -12.52 ± 1.28 -13.80 ± 2.63
Ant-Goal -432.83 ± 12.98 -531.40 ± 31.06 -464.78 ± 23.65 -459.03 ± 6.08
Cheetah-Vel -117.14 ± 31.13 -137.00 ± 14.40 -90.37 ± 16.54 -146.70 ± 43.84

Walker 139.98 ± 16.44 104.71 ± 18.89 112.27 ± 22.70 136.65 ± 34.17
Hopper 231.2 ± 22.51 234.45 ± 29.55 186.20 ± 14.79 192.70 ± 9.90

Table 5. Average return and standard deviation of the second episode trajectory collected with UNICORN-CERTAIN and its variants in
the point-robot environment.

Env CERTAIN Naive-z0 Random Mean

Point-Robot -10.06 ± 1.27 -15.98 ± 2.20 -15.81 ± 1.20 -15.98 ± 2.20
Ant-Goal -637.00 ± 66.39 -618.93 ± 59.30 -630.73 ± 25.91 -660.45 ± 29.03
Cheetah-Vel -139.10 ± 39.70 -147.38 ± 16.89 -117.02 ± 18.78 -169.53 ± 22.23

Walker 186.35 ± 37.75 129.91 ± 60.48 148.63 ± 25.42 109.63 ± 37.53
Hopper 188.93 ± 10.11 197.83 ± 21.95 148.57 ± 4.38 225.47 ± 13.51
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G.2. Impact of Uncertainty Penalty α on Performance

In this section, we provide ablation results for the hyperparameter of uncertainty penalty α, comparing the results for
α ∈ {0.1, 1, 10}.

Table 6. Average return and standard deviation of the second episode trajectory under different methods and uncertainty penalty settings

Env Classifier Focal Unicorn
α 0.1 1 10 0.1 1 10 0.1 1 10

Point-Robot -9.53±0.94 -9.58±0.70 -9.27±0.69 -12.54±1.70 -15.47±5.48 -11.20±0.77 -13.09±4.83 -13.07±5.69 -9.68±1.35
Ant-Goal -527.4±34.86 -519.68±48.66 -530.6±40.89 -432.83±12.98 -451.23±18.39 -500.28±43.87 -649.13±61.54 -665.48±84.17 -633.4±30.92
Cheetah-Vel -129.18±33.15 -164.53±49.16 -110.02±15.21 -114.98±40.86 -141.74±38.00 -106.9±18.94 -139.10±39.70 -175.95±45.61 -195.55±40.24

Walker 128.21±30.67 106.02±41.56 83.23±31.72 100.32±25.87 186.23±39.37 132.95±16.20 168.32±54.78 117.51±27.72 97.77±34.94
Hopper 232.48±25.71 193.9±16.31 223.45±28.23 231.2±22.51 194.30±101.60 194.77±12.97 174.17±56.26 183.99±80.66 140.03±15.83

Table 7. Average return and standard deviation of the first episode trajectory under different methods and uncertainty penalty settings

Env Classifier Focal Unicorn
α 0.1 1 10 0.1 1 10 0.1 1 10

Point-Robot -17.6±0.91 -17.63±0.17 -17.68±0.49 -17.32±0.13 -17.70±0.80 -11.57±0.76 -17.58±0.56 -17.95±1.32 -20.44±3.57
Ant-Goal -668.38±53.85 -639.47±20.72 -662.13±20.72 -651.70±38.44 -671.25±36.89 -615.525±16.73 -694.7±3.49 -672.18±24.88 -698.4±61.56
Cheetah-Vel -183.68±40.76 -173.73±19.21 -172.05±17.91 -193.35±17.59 -180.78±22.01 -186.88±17.26 -210.13±17.55 -181.83±22.10 -219.18±51.25

Walker 131.65±36.93 138.75±28.10 122.04±32.37 101.57±39.44 185.08±48.90 137.25±25.46 179.73±61.36 148.0125±49.78 37.74±33.10
Hopper 203.28±13.20 219.85±11.28 199.95±9.89 194.48±14.13 165.22±80.05 180.03±8.25 140.7±54.38 166.3±24.82 34.05±33.90

H. Performance Results under Low, Mid, and Expert Offline Data
While the main paper adopts the mix offline dataset, this section complements the results by evaluating our method under
low, mid, and expert quality offline datasets in the Point-Robot environment.

We visualize the zero-shot (left) and one-shot (right) performance across different offline data quality levels. The solid lines
represent our method, and the dashed lines denote the corresponding baselines. All results are evaluated every 1000 training
steps.

Data Quality Definitions:

• Low-quality data contains high levels of noise and inaccuracies, often due to environment randomness or poor
dynamics modeling, leading to unstable training and higher uncertainty.

• Mid-quality data contains moderate noise and some useful information for generalization, providing a balanced
trade-off between reliability and diversity.

• Expert-level data is high-quality data with minimal noise, curated by expert policies. It is reliable but may contain
spurious correlations due to lack of exploration diversity.

H.1. Low Offline Dataset

Our method improves over FOCAL and UNICORN baselines, indicating robustness to noisy data. However, it slightly
underperforms the CLASSIFIER baseline, suggesting that noise and incompleteness can hinder effectiveness. This highlights
the need for additional noise handling strategies in future work.

H.2. Mid Offline Dataset

Across all baselines, our method consistently improves second episode performance, demonstrating its effectiveness in
moderately reliable settings and achieving state-of-the-art results under mid-quality data.

H.3. Expert Offline Dataset

Despite high data quality, both baselines and our method perform worse than on mid or mix datasets. Visualizations suggest
that expert data may introduce spurious correlations due to limited exploration, which hinders robust task inference.
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Figure 13. Performance under low-quality offline data.
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(a) Zero-shot on Mid-quality Dataset
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(b) One-shot on Mid-quality Dataset

Figure 14. Performance under mid-quality offline data.
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Figure 15. Performance under expert-level offline data.
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