
Posterior Inferred, Now What?
Streamlining Prediction in Bayesian Deep Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

The rising interest in Bayesian deep learning (BDL) has led to a plethora of1

methods for estimating the posterior distribution. However, efficient computation2

of inferences, such as predictions, has been largely overlooked with Monte Carlo3

integration remaining the standard. In this work we examine streamlining prediction4

in BDL through a single forward pass without sampling. For this we use local5

linearisation on activation functions and local Gaussian approximations at linear6

layers. Thus allowing us to analytically compute an approximation to the posterior7

predictive distribution. We showcase our approach for both MLP and transformer8

architectures and assess its performance on regression and classification tasks.9

1 Introduction10

Through the success of machine learning models in real-world applications, ensuring their reliability11

and robustness has become a key concern. In particular, in applications such as aided medical12

diagnosis [1], autonomous driving [15], or supporting scientific discovery [17], providing reliable13

predictions, identifying failure modes, and identify how to reduce uncertainties of the system is vital.14

Uncertainty quantification is at the core of these topics with Bayesian deep learning (BDL, [20, 16])15

providing a promising paradigm for assessing uncertainties effectively and efficiently.16

The central goal in BDL is to make inferences w.r.t. the posterior distribution over the probabilistic17

model (the parameters or the function itself). For example, to compute the expected prediction, esti-18

mate model uncertainties, or use it within acquisition functions in active learning. For this, we need to19

first estimate the posterior distribution and secondly make inferences of interest based on the estimated20

posterior. While both of these steps typically involve intractable integration, only the first step has21

seen significant progress in recent years [2, 14, 3]. For the second step, in case of a Laplace approx-22

imation (LA, [10]), globally linearising the model function around the maximum a posteriori (MAP)23

estimate to perform inferences [12, 8] has shown promise in providing good predictive uncertainty.24

However, for all other posterior approximation methods, sampling based approximations remain to25

be the default. Given the high dimensionality of neural networks, sophisticated sampling methods26

are usually computationally prohibited and vanilla Monte-Carlo sampling is typically employed.27

In this work, we tackle this problem by streamlining the prediction in BDL through local linearisation28

of activation functions and by utilising local Gaussian approximations at linear layers. Instead of29

a sample based approximation, which requires multiple re-evaluations of the network, we analytically30

approximate the posterior predictive distribution in a single forward pass through the network, making31

our methods well-suited for large-scale applications. Moreover, in contrast to global linearisation, our32

method is suitable for more complex inference tasks as the neural network function becomes locally33

linear with respect to the inputs. Empirically, we find that local linearisation and local Gaussian34

approximation of neural networks to provide accurate predictive uncertainties and predictions, while35

Submitted to Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information
Processing Systems (BDU at NeurIPS 2024). Do not distribute.

Laplace Approximation (Full Covariance) MFVI (Diagonal Covariance)

C
la

ss
ifi

ca
tio

n

(a) Sampling (b) GLM (c) Ours (d) Sampling (e) Ours

Figure 1: Ours gives better predictive uncertainties and decision boundaries compared with sampling
in both Laplace approximation (LA) and mean-field variational inference (MFVI), while having
matching performance with global linearised model (GLM) in LA.

being conceptually simple. Fig. 1 shows the posterior predictive densities for our proposal, compared36

to sampling based approximations and global linearisation in case of a Laplace approximation.37

The contributions of our work can be summarised as follows: (i) We propose a sampling-free and38

deterministic method for approximating the posterior predictive distribution through local linearisation39

of activation functions and local Gaussian approximations in neural networks. (ii) We show how40

to exploit different covariance structures of the approximate posterior and present a streamlined41

prediction path for both MLP and transformer architectures. (iii) We evaluate our method on42

regression and classification tasks and find that our method result in good predictive performance.43

2 Methods44

We denote the model parameters as θ and the training set as D. Given the inferred approximate45

posterior q(θ | D) = N (E [θ] ,Σθ), we aim to approximate the posterior predictive distribution for46

a new data point x∗ in a tractable form with a single forward pass, i.e., approximate p(y∗ | x∗,D) =47 ∫
p(y∗ | x∗,θ)q(θ | D)dθ. This problem can be divided into two sub-problems: (i) estimate the48

output distribution at linear layers, and (ii) propagating this resulting distribution through a non-linear49

activation function. We will tackle these two sub-problems separately one after another.50

Local Gaussian Approximations for Linear Layers Denote the weight and bias of the lth linear51

layer as W (l) ∈ RDout×Din and b(l) ∈ RDout respectively, and its input as a(l−1) ∈ RDin . Then52

the output h(l) is given as h(l) = W (l)a(l−1) + b(l), where we use h
(l)
k to denote the kth element.53

We drop the superscript if it is clear from the context. Assumung that W , b and a are Gaussian54

distributed, we make the following two assumptions to obtain a tractable approximation on h: (i) we55

assume aiWki is Gaussian, and (ii) we assume ai and Wki are uncorrelated.56

Under assumption (i), as the sum of Gaussian random variables (aiWki) is still Gaussian, hk will be57

Gaussian as well. Conseuqently, h will be jointly Gaussian distributed. The mean of h is given as58

E [h] = E [W]E [a] + E [b] and the covariance between the kth and the lth hidden unit is computed59

as follows: Cov[hk, hl] =60 ∑
1≤i,j≤Din

Cov [aiWki, ajWlj] +
∑

1≤i≤Din

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] , (1)

where Cov[aiWki, ajWlj] =61

E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj] . (2)
Note that structure of the posterior covariance influences the computational cost of the approximation.62

Local Linearizations of Activation Functions Let g(·) denote a non-linear activation function63

computing a = g(h) for an input h. Given h ∼ N (E [h] ,Σh), we use a first order Taylor expansion64

of g(·) at the input mean E [h] to obtain a tractable approximation of the distribution over a, i.e.,65

g(h) ≈ g(E [h]) + Jg|h=E[h](h− E [h]), (3)
where Jg|h=E[h] is the Jacobian of g(·) at h = E [h]. As Gaussian distributions are closed under66

linear transformations, now a will also be Gaussian distributed, i.e.,67

a ∼ N (g(E [h]),Jg|⊤h=E[h]ΣhJg|h=E[h]). (4)

2

W (l)

×

a(l−1)

≈

h(l)

g(h(l))
≈

a(l)

Local Gaussian
Approximation

Local Linearization
Eq. (3)

(a) Multi-layer Perceptron (MLP)

H(l−1)

t1
t2
t3

E
[
H(l−1)]W (l)

Q

E
[
H(l−1)]W (l)

K

H(l−1)W
(l)
V

softmax(Q
(l)K(l)⊤
√
D

)V (l)
Q(l)

K(l)

V (l)

(b) Attention Block

Figure 2: Illustration of streamlined prediction through different network architecures. In MLPs,
we perform a local Gaussian approximation for linear layers and locally linearise the activation
function at each layer. The distribution over activations is then proporgated to the next layer. In
transformer architecures, we treat the query Q and key K deterministically and use a local Gaussian
approximation to obtain a tractable distribution on the value V . See App. C.6 for details.

Note that the quality of the local linearisation will depend on the scale of the distribution over the68

input h. Combining local Gaussian approximations for linear layers and local linearisation for non-69

linear activation functions results in a tractable approximation to the posterior predictive distribution.70

Fig. 2 illustrates our streamlined prediction for multi-layer perceptrons (MLP) and attention blocks in71

tranformers, for a detailed description on the approach for transformers see App. C.6. Note that the72

mean and covariance of the posterior predictive distribution can be computed in a single forward pass.73

Covariance Structure Computing the full covariance of the posterior is usually infeasible due to74

high computational and memory cost. Diagonal approximation and Kronecker-factorization of the75

covariance/precision are two of the most common aprpoaches. For diagonal covariance, calculating76

the posterior predictive distribution is straightforward, see App. C.2 for details. In case of Kronecker77

factors, we developed a tailored block retrieval method for efficient propagation of uncertainties, see78

App. C.3 for details. Note that other covariance structures can exploited in a similar fashion.79

Computational Complexity We will briefly discuss the computational complexity of our method80

for the case of full covariance. Observe from Eqs. (1) and (2) that the computational cost to obtain81

(Cov[hk, hl]) is O(D
(l)
in

2
). Therefore, computing the output covariance at the lth linear layer will be82

in the order of O(D
(l)
out

2
D

(l)
in

2
). For element-wise activation functions, the computational cost will83

be O(D
(l)
out

2
). Hence, we obtain a total cost of O(

∑L
l=1 D

(l)
out

2
D

(l)
in

2
) + D

(l)
out

2
) for a network with L84

layers. By explointing the covariance structure, the total computational cost can be substantially85

reduced.86

3 Experiments87

We evaluate our method on regression and classification tasks. We choose the Laplace approximation88

(LA, [3]) and mean-field variational inference (MFVI, [18]) to esimate the posterior. We compare89

predicitions based on sampling, global linearisation (GLM, [8]), and our method. We use a paired90

t-test with p = 0.05 and bold results with significant statistical difference. For our method, we91

addionally fit a scale factor, multiplied to the predictive variance, by minimizing the negative log92

predictive density (NLPD) on the training set. This is necessary, as the predictive variance in case of93

deep and wide network with diagonal covariance structure can be large.94

Regression We experiment with multi-layer perceptron (MLP) for regression. See App. D.1 for95

experiment setup details and additional results. We use full covariance for LA. As shown in Table96

Table 1, for MFVI our proposal (Ours) result in better performance than sampling on 8 data sets97

and matches the performance on the remaining 3 data sets. For LA, our approach obtains better98

performance than sampling on all data sets.99

Classification We train an MLP from scratch and fine-tune a pre-trained Vision transformer (ViT)100

base model [5]. See App. D.2 for experiment setup details and additional results. With LA, we use a101

Kronecker-factorized covariance for MLPs and a diagonal covariance for ViT models. As shown in102

Table 2, we obtain better performance when compared with sampling and GLM. For ViT, fine-tuning103

on SVHN with MFVI failed, resulting in unreliable results.104

3

Table 1: Negative log predictive density ↓ on UCI regression data sets. Ours results in better or
matching performance compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diagonal Covariance) Laplace Approximation (Full Covariance)
(n, d) Sampling Ours Sampling GLM Ours

SERVO (167, 4) 1.287±0.069 1.136±0.182 3.795±0.110 1.047±0.172 1.443±0.077
LD (345, 5) 1.346±0.280 1.369±0.440 2.221±0.110 1.495±0.580 1.474±0.648
AM (398, 7) 1.004±0.052 0.807±0.087 1.812±0.065 0.492±0.279 0.478±0.309
REV (414, 6) 1.076±0.059 0.925±0.091 1.932±0.045 0.859±0.129 0.833±0.156
FF (517, 12) 2.160±3.003 2.333±3.671 2.086±0.292 1.584±0.950 1.596±1.217
ITT (1020, 33) 0.937±0.047 0.841±0.065 1.681±0.069 0.825±0.095 0.756±0.164
CCS (1030, 8) 0.939±0.068 0.828±0.108 1.612±0.048 0.319±0.109 0.234±0.161
ASN (1503, 5) 0.962±0.054 0.899±0.065 1.788±0.045 0.422±0.109 0.396±0.133
CAC (1994, 127) 0.973±0.092 0.920±0.118 1.848±0.055 1.281±0.069 2.662±1.096
PT (5875, 19) 0.976±0.069 0.940±0.074 0.984±0.101 0.576±0.181 0.651±0.306
CCPP (9568, 4) 0.365±0.040 0.352±0.042 1.345±0.085 −0.062±0.182 −0.062±0.200

Bold Count 3 11 0 7 8

Table 2: Negative log predictive density ↓ on classification data sets. Ours results in better or matching
performance when compared with sampling, indicating the effectiveness of our approximation.

MFVI (Diagonal Covariance) LA (Kron. Cov. for MLP, Diag. Cov. for ViT)
Sampling Ours Sampling GLM Ours

MNIST MLP 0.081±0.087 0.066±0.050 0.141±0.138 0.137±0.122 0.116±0.038
FMNIST MLP 0.746±0.323 0.458±0.131 1.283±0.498 1.249±0.482 0.430±0.113
CIFAR-10 ViT 0.580±1.305 0.598±1.328 2.389±0.214 0.992±0.155 0.845±0.179
SVHN ViT 12.820±2.820 12.820±2.820 2.522±0.578 1.225±0.287 0.767±0.597

To test our method on out-of-distribution (OOD) data, we first evaluate the MNIST trained model on105

rotated MNIST as shown in Fig. 3a. We observe that with increasing roation degree, the increase in106

NLPD is less compared with other methods. In addition, we show OOD results on a FMNIST trained107

MLP and CIFAR-10 trained ViT model. For this, we evaluate the MLP on MNIST and the ViT on108

SVHN As shown in Figs. 3b and 3c, our method can distinguish between in-distribution (InD) and109

OOD better than the MAP estimate.110

0 60 120 180

0
5

1
0

Rotation Degree

←
N

L
PD

LA GLM

LA Samp.

LA Ours

IVON Samp.

IVON Ours

MAP

(a) Evaluate MNIST trained MLP on rotated MNIST.

0 5 10 15

0
0
.5

1

NLPD

(b) FMNIST → MNIST.

0 5 10 15

0
0
.5

1

NLPD

Ours InD

Ours OOD

MAP InD

MAP OOD

(c) CIFAR-10 → SVHN.

Figure 3: Fig. 3a shows the performance of MNIST-trained model on rotated MNIST and Ours results
in lower NLPD. Figs. 3b and 3c shows the NLPD for InD and OOD data using the posterior inferred
by LA. Compared with MAP, Ours results in a more clear distribution shift. These Out-of-distribution
detection results indicate Ours has good OOD predictive uncertainty.

4 Discussion & Conclusion111

In this work, we proposed to streamline prediction in Bayesian deep learning by local linearisation112

and local Gaussian approximations. For this, we discussed the propgation in different neural network113

architecures and covariance structures. We showed through a series of experiments that our method114

obtains high predictive performance, obtain good predictive uncertainties, and can distinguish between115

in-distribution and OOD data. In future work, we aim to extend our approach to other network116

architectures, such as convolutional layers, and utilize our approach in more complex inference tasks.117

4

References118

[1] E. Begoli, T. Bhattacharya, and D. Kusnezov. The need for uncertainty quantification in119

machine-assisted medical decision making. Nature Machine Intelligence, 1(1):20–23, 2019. 1120

[2] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural121

network. In Proceedings of the 32th International Conference on Machine Learning (ICML),122

Proceedings of Machine Learning Research, pages 1613–1622. PMLR, 2015. 1, 7123

[3] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace redux124

- effortless bayesian deep learning. In Advances in Neural Information Processing Systems125

(NeurIPS) 34, volume 34, pages 20089–20103. MIT Press, 2021. 1, 3, 11126

[4] E. Daxberger, E. Nalisnick, J. U. Allingham, J. Antorán, and J. M. Hernández-Lobato. Bayesian127

deep learning via subnetwork inference. In Proceedings of the 38th International Conference128

on Machine Learning (ICML), Proceedings of Machine Learning Research, pages 2510–2521.129

PMLR, 2021. 7130

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,131

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16132

words: Transformers for image recognition at scale. In International Conference on Learning133

Representations, 2021. 3134

[6] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model un-135

certainty in deep learning. In Proceedings of the 33th International Conference on Machine136

Learning (ICML), Proceedings of Machine Learning Research, pages 1050–1059. PMLR, 2016.137

7138

[7] M. N. Gibbs. Bayesian Gaussian processes for regression and classification. PhD thesis,139

Citeseer, 1998. 12140

[8] A. Immer, M. Korzepa, and M. Bauer. Improving predictions of bayesian neural nets via local141

linearization. In Proceedings of the twenty forth International Conference on Artificial Intelli-142

gence and Statistics (AISTATS), volume 130 of Proceedings of Machine Learning Research,143

pages 703–711. PMLR, 2021. 1, 3, 7144

[9] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging weights leads145

to wider optima and better generalization. In 34th Conference on Uncertainty in Artificial Intel-146

ligence 2018, UAI 2018, pages 876–885. Association For Uncertainty in Artificial Intelligence147

(AUAI), 2018. 7148

[10] A. Kristiadi, M. Hein, and P. Hennig. Being bayesian, even just a bit, fixes overconfidence149

in relu networks. In Proceedings of the 37th International Conference on Machine Learning150

(ICML), Proceedings of Machine Learning Research, pages 5436–5446. PMLR, 2020. 1, 7151

[11] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty es-152

timation using deep ensembles. Advances in Neural Information Processing Systems (NeurIPS)153

30, 30:6402–6413, 2017. 7154

[12] N. D. Lawrence. Variational inference in probabilistic models. PhD thesis, Citeseer, 2001. 1155

[13] D. J. MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992. 12156

[14] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson. A simple baseline for157

bayesian uncertainty in deep learning. In Advances in Neural Information Processing Systems158

(NeurIPS) 32, volume 32, pages 13132–13143. MIT Press, 2019. 1, 7159

[15] R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, and M. Kwiatkowska. Uncertainty160

quantification with statistical guarantees in end-to-end autonomous driving control. In 2020161

IEEE international conference on robotics and automation (ICRA), pages 7344–7350. IEEE,162

2020. 1163

[16] T. Papamarkou, M. Skoularidou, K. Palla, L. Aitchison, J. Arbel, D. Dunson, M. Filippone,164

V. Fortuin, P. Hennig, A. Hubin, et al. Position paper: Bayesian deep learning in the age of165

large-scale ai. arXiv preprint arXiv:2402.00809, 2024. 1166

5

[17] A. F. Psaros, X. Meng, Z. Zou, L. Guo, and G. E. Karniadakis. Uncertainty quantification in167

scientific machine learning: Methods, metrics, and comparisons. Journal of Computational168

Physics, 477:111902, 2023. 1169

[18] Y. Shen, N. Daheim, B. Cong, P. Nickl, G. M. Marconi, B. C. E. M. Raoul, R. Yokota,170

I. Gurevych, D. Cremers, M. E. Khan, and T. Möllenhoff. Variational learning is effective for171

large deep networks. In Proceedings of the 41st International Conference on Machine Learning172

(ICML), Proceedings of Machine Learning Research. PMLR, 2024. 3, 7173

[19] D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional probabilities on174

directed graphical structures. Networks, 20(5):579–605, 1990. 12175

[20] A. G. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective of176

generalization. Advances in Neural Information Processing Systems (NeurIPS) 33, 33:4697–177

4708, 2020. 1178

6

Posterior Inferred, Now What?
Streamlining Prediction in Bayesian Deep Learning

Supplementary Material

We first introduce notation in App. A and related work in App. B. Then, we introduce the derivation179

of our method in App. C. At last, we describe the experiment setup and additional experiment results180

in App. D.181

A Notation182

We use lowercase bold letter for vector, e.g., x, and uppercase bold letter for matrix, e.g., W . We use183

subscript to denote element of vector and matrix, e.g., xi (ith element) and Wki (kth row, ith column).184

We use W [k, :] to indicate the kth row of a matrix.185

B Related Work186

Inferring Posterior in Bayesian Deep Learning There has been many methods developed which187

can be roughly grouped into three categories: (i) Laplace approximation based methods: Starting188

from [10] where simple post-hoc Laplace approximation (LA) has shown promising results on neural189

network, LA has gained increasing attention ever since. [4] has shown that treating a subnetwork190

Bayesian will also result in good predictive uncertainties. (ii): Variational inference (VI) based191

methods: [2] showed mean-field VI (MFVI) could improve generalisation in small-scale neural192

network and [18] showned MFVI is effective for large-scale neural networks as well. (iii): Others:193

Monte Carlo Dropout [6] aims to estimate predictive uncertainty by interpreting dropout in neural194

networks as a form of Bayesian approximation. Deep ensemble [11] combines the outputs of195

multiple independently trained models to capture predictive uncertainty. Stochastic Weight Averaging-196

Gaussian [14], which extends Stochastic Weight Averaging [9] by capturing the posterior distribution197

of model weights using a Gaussian approximation.198

Making Prediction in Bayesian Deep Learning Little work has been done for this and the usual199

go-to solution is simple Monte Carlo Estimation. For Laplace approximation, [8] proposed a global200

liberalised model for better posterior prediction.201

C Derivations202

We derive the approximate posterior predictive distribution form in this section. App. C.1 is for203

the case where the covariance has full structure in linear layer. App. C.2 is for the case where the204

covariance has diagonal structure in linear layer. App. C.3 is for the case where the covariance205

has Kronecker-factorised structure in linear layer. App. C.4 is the derivation for activation layers.206

App. C.5 describes the probit approximation for approximate the posterior prediction for classification.207

App. C.6 describes how to apply our method for the transformer.208

C.1 Derivation for General Covariance Structure209

Denote the weight and bias of a linear layer as W ∈ RDout×Din and b ∈ RDout respectively, and its210

input as a ∈ RDin . The output is h = Wa+ b with its kth element being hk =
∑Din

i=1 Wkiai + bk.211

We make the following two assumptions to obtain tractable distribution on the output:212

7

• Assumption 1: We assume aiWki is a Gaussian distribution.213

• Assumption 2: We assume ai and Wki are uncorrelated.214

From assumption 1, given W , a, and b are all Gaussian, each hk will be a Gaussian distribution. As215

a result, h will be a Gaussian distribution as well.216

We now derive its mean and covariance. We first derive the mean for each hk. As ai and Wki are217

uncorrelated, we have218

E [hk] = E

[
Din∑
i=1

Wkiai + bk

]
(5)

=

Din∑
i=1

E [Wkiai + bk] (6)

=

Din∑
i=1

E [Wkiai] + E [bk] (7)

≈
Din∑
i=1

E [Wki]E [ai] + E [bk] (8)

We now derive the covariance. Define h′k =
∑Din

i=1 aiWki, we have219

Cov [hk, hl] = Cov [h′k + bk, h
′
l + bl] (9)

= Cov [h′k, h′l] + Cov [h′k, bl] + Cov [h′l, bk] + Cov [bk, bl] . (10)

where Cov[h′k, h′l] is220

Cov [h′k, h′l] = Cov

 ∑
1≤i≤Din

aiWki,
∑

1≤j≤Din

ajWlj

 (11)

=
∑

1≤i≤Din

∑
1≤j≤Din

Cov [aiWki, ajWlj] . (12)

To derive the form of Cov[aiWki, ajWlj], we use assumption 2:221

Cov [aiWki, ajWlj]

= E [(aiWki − E [aiWki])(ajWlj − E [ajWlj])] (13)
= E [aiWkiajWlj − aiWkiE [ajWlj]− E [aiWki] ajWlj + E [aiWki]E [ajWlj]] (14)
= E [aiajWkiWlj]− E [aiWki]E [ajWlj]− E [aiWki]E [ajWlj] + E [aiWki]E [ajWlj] (15)
≈ E [aiaj]E [WkiWlj]− E [ai]E [Wki]E [aj]E [Wlj] (Assumption 2)
= (E [ai]E [aj] + Cov [ai, aj])(E [Wki]E [Wlj] + Cov [Wki,Wlj])− E [ai]E [Wki]E [aj]E [Wlj]

(16)
= E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj]

(17)

8

Now the only term left is Cov[h′k, bl], which can be written as222

Cov [h′k, bl] = Cov

[
Din∑
i=1

aiWki, bl

]

=

Din∑
i=1

Cov [aiWki, bl] (18)

=

Din∑
i=1

E [(aiWki − E [aiWki])(bl − E [bl])] (19)

≈
Din∑
i=1

E [(aiWki − E [ai]E [Wki])(bl − E [bl])] (Assumption 2)

=

Din∑
i=1

E [aiWkibl − aiWkiE [bl]− E [ai]E [Wki] bl + E [ai]E [Wki]E [bl]] (20)

=

Din∑
i=1

E [aiWkibl]− E [ai]E [Wki]E [bl] (21)

≈
Din∑
i=1

E [ai]E [Wkibl]− E [ai]E [Wki]E [bl] (Assumption 2)

=

Din∑
i=1

E [ai] (E [Wki]E [bl] + Cov [Wki, bl])− E [ai]E [Wki]E [bl] (22)

=

Din∑
i=1

E [ai]Cov [Wki, bl] (23)

Putting it together, we have Cov[hk, hl] =223

∑
1≤i,j≤Din

Cov [aiWki, ajWlj] +

Din∑
i=1

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] , (24)

where Cov[aiWki, ajWlj] =224

E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj] . (25)

9

Note that the first term in Eq. (24) could be rewrite into the form of matrix multiplication which225

results in an efficient implementation:226 ∑
1≤i,j≤Din

Cov [aiWki, ajWlj] (26)

=
∑

1≤i,j≤Din

E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj]

(27)

=

 E [a1]E [a1]Cov[Wk1,Wl1] . . . E [a1]E [aDin]Cov[Wk1,WlDin]
...

...
...

E [aDin]E [a1]Cov[WkDin ,Wl1] . . . E [a1]E [aDin]Cov[WkDin ,WlDin]

 (28)

⊙

 Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin]
...

...
...

Cov[WkDin ,Wl1] . . . Cov[WkDin ,WlDin]

 (29)

+

 E [Wk1]E [Wl1] . . . E [Wk1]E [WlDin]
...

...
...

E [WkDin]E [Wl1] . . . E [WkDin]E [WlDin]

⊙

 Cov[a1, a1] . . . Cov[a1, aDin]
...

...
...

Cov[aDin , a1] . . . Cov[aDin , aDin]

(30)

+

 Cov[a1, a1] . . . Cov[a1, aDin]
...

...
...

Cov[aDin , a1] . . . Cov[aDin , aDin]

⊙

 Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin]
...

...
...

Cov[WkDin ,Wl1] . . . Cov[WkDin ,WlDin]

(31)

C.2 Derivation for Diagonal Covariance Structure227

When the posterior has diagonal covariance, the mean E [hk] will still be the same.228

For covariance, note that as now the posterior is diagonal, when k ̸= l, we have Cov[hk, hl] =229 ∑
1≤i,j≤Din

Cov [aiWki, ajWlj] +

Din∑
i=1

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] (32)

=
∑

1≤i,j≤Din

Cov [aiWki, ajWlj] (33)

=
∑

1≤i,j≤Din

E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj]

(34)

=
∑

1≤i,j≤Din

E [Wki]E [Wlj]Cov [ai, aj] (35)

For k = l, we have Var[hk] =230 ∑
1≤i,j≤Din

Cov [aiWki, ajWkj] +

Din∑
i=1

(E [ai]Cov [Wki, bk] + E [ai]Cov [Wki, bk]) + Var [bk] (36)

=
∑

1≤i≤Din

Cov [aiWki, aiWki] + Var [bk] (37)

=
∑

1≤i≤Din

E [ai]
2 Var [Wki] + E [Wki]

2 Var [ai] + Var [ai]Var [Wki] + Var [bk] (38)

C.3 Derivation for Kronecker Covariance Structure231

In Kronecker approximation, the Hessian is represented in Kronecker product form:232

10

h = A⊗B (39)

Denote the prior precision as λ2, then the posterior precision is233

P = h+ λ2I = A⊗B + λ2I (40)

To improve numerical stability, an eigen-decomposition is often performed on A and B in Laplace234

Redux library:235

P = (UAΛAU
⊤
A)⊗(UBΛBU

⊤
B) + λ2I (Definition)

= (UA ⊗UB)(ΛA ⊗ΛB)(UA ⊗UB)
⊤ + λ2I ((A⊗B)(C⊗D) = (AC)⊗ (BD))

For computational efficiency, for our forward pass we will represent the covariance as C ⊗D form,236

which results in an approximation:237

P ≈ (UA ⊗UB)((ΛA + λIA)⊗(ΛB + λIB))(UA ⊗UB)⊤ (41)

=
(
[(UA(ΛA + λIA))⊗(UB(ΛB + λIB))] (UA ⊗UB)

⊤)−1 (42)

= (UA(ΛA + λIA)U
⊤
A)−1 ⊗(UB(ΛB + λIB)U

⊤
B)−1 (43)

= (UA ⊗UB)(ΛA ⊗ΛB + λ2I)(UA ⊗UB)
⊤ + λIA ⊗ΛB +ΛA ⊗λIB , (44)

where the extra term introduced by the approximation is written in blue colour.238

Recall for an efficient implementation for computing
∑

1≤i,j≤Din
Cov[aiWki, ajWlj] in Eq. (31),239

we need to retrieve the covariance between the kth row of weight and lth row of weight, which is a240

Din ×Din matrix:241

Cov [W [k, :],W [l, :]] =

 Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin]
...

...
...

Cov[WkDin ,Wl1] . . . Cov[WkDin ,WlDin]

 (45)

However, for posterior stored in Kronecker product form, we will have Din ×Din numbers of242

Dout ×Dout matrix, which complicates the retrieval of Cov[W [k, :],W [l, :]].243

C.4 Derivation for Activation Layers244

For a = g(h) where h ∼ N (h;E [h] ,Σh) and g(·) is the activation function, we use local245

linearisation to approximate the distribution of a. Specifically, we do a first-order Taylor expansion246

on g(·) at E [h]:247

a = g(h) (46)
≈ g(E [h]) + Jg|h=E[h](h− E [h]) (47)

Given that Gaussian distribution is closed under linear transformation, we have248

h ∼N (E [h] ,Σh) (48)
h− E [h] ∼N (0,Σh) (49)

Jg|h=E[h](h− E [h]) ∼N (0,Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (50)

g(E [h]) + Jg|h=E[h](h− E [h]) ∼N (g(E [h]),Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (51)

a ∼
approx

N (a; g(E [h]),Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (52)

C.5 Probit Approximation for Classification249

Following [3], in classification we treat the logits before last layer activation (softmax) as model250

output f . Then we can use probit approximation to get posterior predictive:251

11

Binary [13, 19]252

p (y∗ | x∗) =
∫
R
sigmoid (f∗)N

(
f∗ | µ∗, σ∗2

)
df∗ (53)

≈
∫

Φ (f∗)N
(
f∗ | µ∗, σ∗2

)
df∗ (54)

= σ

 µ∗√
1 + π

8σ
∗2

 . (55)

Multi-class [7]253

p (y∗ | x∗) =
∫
RC

softmax (f∗)N (f∗ | µ∗,Σ∗) df∗

j-th element
≈ exp (τi)∑C

j=1 exp (τj)
, where τj =

µ∗j√
1 + π

8Σ
∗
jj

(56)

C.6 Transformer Block254

There are four components in each transformer block: (1) multi-head attention; (2) MLP; (3)255

layer normalisation; and (4) residual connection. We treat MLP bayesian and multi-head attention256

deterministic. For layer normalisation and residual connection, as Gaussian distribution is closed257

under linear transformation, push distribution over them is straightforward. For MLP, the computation258

is the same as described above. We describe how to push distribution through attention block below.259

Attention Block Given an input H ∈ RT×D where T is the number of tokens in the input sequence260

and D is the dimension of each token, denote the query, key and value matrices as WQ ∈ RD×D,261

WK ∈ RD×D, WV ∈ RD×D respectively, the key, query and value in an attention blocks are262

Q = HWQ, K = HWK , V = HVQ (57)

and the output of attention block is263

Attention(H) = Softmax(
QK⊤√

D
)V (58)

When the input H is a distribution, Q, K and V will all be distribution as well. As pushing a264

distribution over softmax requires further approximation, for computational reason we ignore the265

distribution over Q and K and compute their value by using the mean of input:266

Q = E [H]WQ, K = E [H]WK (59)

We keep the distribution over V and compute its distribution according to the structure of in-267

put’s covariance accordingly. Once we have the distribution over V , getting the distribution over268

Attention(H) will becomes obtain the distribution of linear combination of Gaussian, which is269

tractable. Then for multi-head attention, we assume each attention head’s output is independent,270

which allows us to compute the distribution over the final output in tractable form.271

D Experiment272

D.1 Regression273

Table 3 gives the UCI regression data set information and the neural network structure we used. For274

all neural networks, we use ReLU activation function. In Table 4 we report the Root Mean Square275

Error (RMSE), Ours results in matching or better performance compared with sampling and GLM,276

indicating the effectiveness of our method. Note that as the mean of the posterior prediction of our277

method is the same as the prediction made by setting the weights of the neural network to be the mean278

of the posterior, we result in the same prediction as GLM of LA, and hence the same performance.279

12

Table 3: UCI regression experiment setup.
Dataset Name Shorthand (n, d) Network Structure

SERVO SERVO (167, 4) d-50-1
LIVER DISORDERS LD (345, 5) d-50-1
AUTO MPG AM (398, 7) d-50-1
REAL ESTATE VALUATION REV (414,6) d-50-1
FOREST FIRES FF (517, 12) d-50-1
INFRARED THERMOGRAPHY TEMPERATURE ITT (1020, 33) d-100-1
CONCRETE COMPRESSIVE STRENGTH CCS (1030, 8) d-100-1
AIRFOIL SELF-NOISE ASN (1503, 5) d-100-1
COMMUNITIES AND CRIME CAC (1994, 127) d-100-1
PARKINSONS TELEMONITORING PT (5875, 19) d-50-50-1
COMBINED CYCLE POWER PLANT CCPP (9568, 4) d-50-50-1

Table 4: Root Mean Square Error ↓ on UCI regression data sets. Ours results in better or matching
performance compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diag. Cov.) Laplace Approximation (Full Cov.)
(n, d) Sampling Ours Sampling GLM Ours

SERVO (167, 4) 0.749±0.147 0.740±0.143 1.632±0.233 0.658±0.141 0.658±0.141
LD (345, 5) 0.884±0.273 0.881±0.272 0.989±0.441 0.977±0.418 0.977±0.418
AM (398, 7) 0.415±0.115 0.417±0.113 0.505±0.105 0.371±0.103 0.371±0.103
REV (414, 6) 0.563±0.096 0.562±0.095 0.789±0.130 0.532±0.104 0.532±0.104
FF (517, 12) 0.874±1.123 0.874±1.124 0.910±0.824 0.852±0.792 0.852±0.792
ITT (1020, 33) 0.481±0.057 0.497±0.066 0.560±0.075 0.507±0.072 0.507±0.072
CCS (1030, 8) 0.472±0.102 0.476±0.106 0.494±0.102 0.301±0.057 0.301±0.057
ASN (1503, 5) 0.568±0.062 0.560±0.062 0.550±0.069 0.352±0.055 0.352±0.055
CAC (1994, 127) 0.571±0.105 0.585±0.092 1.481±0.167 0.703±0.101 0.703±0.101
PT (5875, 19) 0.601±0.067 0.590±0.068 0.479±0.081 0.410±0.076 0.410±0.076
CCPP (9568, 4) 0.241±0.038 0.241±0.038 0.358±0.041 0.224±0.037 0.224±0.037

Bold Count 8 10 2 11 11

D.2 Classification280

Table 5 gives the classification data sets information and the neural network structure we used. We281

use ReLU activation for MLP. For ViT, we make the MLP block in the last two transformer block282

and the classification head Bayesian, and treat the rest of the weight deterministically. In Table 6 we283

report the test accuracy, on SVHN the fine-tuning of MFVI failed and hence the bad performance.284

For the rest, Ours results in matching or better performance compared with sampling and GLM,285

indicating the effectiveness of our method.286

Table 5: Classification experiment setup.
Dataset Name (n, d) Network Structure

MNIST (50000, 784) d-128-64-10
FMNIST (50000, 784) d-128-64-10
CIFAR-10 (50000, 3, 32, 32) ViT-base
SVHN (73257, 3, 32, 32) ViT-base

Table 6: Accuracy ↑ on classification data sets. Ours results in better or matching performance
compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diag. Cov.) LA (Kron. Cov. for MLP, Diag. Cov. for ViT)
Sampling Ours Sampling GLM Ours

MNIST ViT 0.981±0.015 0.981±0.015 0.976±0.017 0.974±0.018 0.974±0.017
FMNIST ViT 0.864±0.043 0.863±0.044 0.873±0.041 0.873±0.040 0.871±0.042
CIFAR-10 ViT 0.959±0.089 0.959±0.089 0.109±0.143 0.972±0.072 0.971±0.074
SVHN ViT 0.196±0.177 0.196±0.177 0.197±0.180 0.724±0.200 0.758±0.191

13

0 60 120 180

0
.7

0
.8

0
.9

1

Rotation Degree

←
C

on
fid

en
ce LA GLM

LA Sampling

LA Ours

IVON Sampling

IVON Ours

MAP

(a) Evaluate MNIST trained MLP on Rotated MNIST.

0 5 10 15

0
0
.2

0
.4

0
.6

0
.8

1

FMNIST→MNIST, MLP

(b) Evaluate FMNIST
trained MLP on FMNIST
(InD) and MNIST (OOD).

0 5 10 15

0
0
.2

0
.4

0
.6

CIFAR-10→ SVHN, ViT

Ours InD

Ours OOD

MAP InD

MAP OOD

(c) Evaluate CIFAR-10
trained ViT on CIFAR-10
(InD) and SVHN (OOD).

Figure 4: Fig. 4a shows the performance on rotated MNIST and Ours results in lower NLPD. Figs. 4b
and 4c shows the NLPD for Ind and OOD data using the posterior inferred by MFVI. On CIFAR-10
as the posterior inferred by MFVI is extremely peaked (the highest variance being 0.0004), Ours
has the almost same result as MAP. For FMNIST to MNIST, compared with MAP, Ours results in a
more clear distribution shift. These Out-of-distribution detection results indicate Ours has good OOD
predictive uncertainty.

14

	Introduction
	Methods
	Experiments
	Discussion & Conclusion
	Notation
	Related Work
	Derivations
	Derivation for General Covariance Structure
	Derivation for Diagonal Covariance Structure
	Derivation for Kronecker Covariance Structure
	Derivation for Activation Layers
	Probit Approximation for Classification
	Transformer Block

	Experiment
	Regression
	Classification

