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Abstract

The rising interest in Bayesian deep learning (BDL) has led to a plethora of
methods for estimating the posterior distribution. However, efficient computation
of inferences, such as predictions, has been largely overlooked with Monte Carlo
integration remaining the standard. In this work we examine streamlining prediction
in BDL through a single forward pass without sampling. For this we use local
linearisation on activation functions and local Gaussian approximations at linear
layers. Thus allowing us to analytically compute an approximation to the posterior
predictive distribution. We showcase our approach for both MLP and transformer
architectures and assess its performance on regression and classification tasks.

See also extended paper at https://arxiv.org/abs/2411.18425.

1 Introduction

Through the success of machine learning models in real-world applications, ensuring their reliability
and robustness has become a key concern. In particular, in applications such as aided medical
diagnosis [1], autonomous driving [18], or supporting scientific discovery [22], providing reliable
predictions, identifying failure modes, and identify how to reduce uncertainties of the system is vital.
Uncertainty quantification is at the core of these topics with Bayesian deep learning (BDL, [27, 20])
providing a promising paradigm for assessing uncertainties effectively and efficiently.

The central goal in BDL is to make inferences w.r.t. the posterior distribution over the probabilistic
model (the parameters or the function itself). For example, to compute the expected prediction, esti-
mate model uncertainties, or use it within acquisition functions in active learning. For this, we need to
first estimate the posterior distribution and secondly make inferences of interest based on the estimated
posterior. While both of these steps typically involve intractable integration, only the first step has
seen significant progress in recent years [3, 16, 4]. For the second step, in case of a Laplace approx-
imation (LA, [11]), globally linearising the model function around the maximum a posteriori (MAP)
estimate to perform inferences [13, 8] has shown promise in providing good predictive uncertainty.
However, for all other posterior approximation methods, sampling based approximations remain to
be the default. Given the high dimensionality of neural networks, sophisticated sampling methods
are usually computationally prohibited and vanilla Monte-Carlo sampling is typically employed.

In this work, we tackle this problem by streamlining the prediction in BDL through local linearisation
of activation functions and local Gaussian approximations at linear layers. Instead of a sample based
approximation, which requires multiple re-evaluations of the network, we analytically approximate
the posterior predictive distribution in a single forward pass through the network, making our
methods well-suited for large-scale applications. Moreover, in contrast to global linearisation, our
method is suitable for more complex inference tasks as the neural network function becomes locally
linear with respect to the inputs. Empirically, we find that local linearisation and local Gaussian
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Figure 1: Ours gives better predictive uncertainties and decision boundaries compared with sampling
in both Laplace approximation (LA) and mean-field variational inference (MFVI), while having
matching performance with global linearised model (GLM) in LA.

approximation of neural networks to provide accurate predictive uncertainties and predictions, while
being conceptually simple. Fig. 1 shows the posterior predictive densities for our proposal, compared
to sampling based approximations and global linearisation in case of a Laplace approximation.

The contributions of our work can be summarised as follows: (i) We propose a sampling-free and
deterministic method for approximating the posterior predictive distribution through local linearisation
of activation functions and local Gaussian approximations in neural networks. (ii) We show how
to exploit different covariance structures of the approximate posterior and present a streamlined
prediction path for both MLP and transformer architectures. (iii) We evaluate our method on
regression and classification tasks and find that our method result in good predictive performance.

2 Related Work

Inferring Posterior in Bayesian Deep Learning There has been many methods developed which
can be roughly grouped into three categories: (i) Laplace approximation based methods: Starting
from [11] where simple post-hoc Laplace approximation (LA) has shown promising results, LA has
gained increasing attention ever since. Recent works applied LA methods in various applications,
such as large language models [29, 10] and dynamic neural networks [17]. (ii): Variational inference
(VI) based methods: [3] showed mean-field VI (MFVI) could improve generalisation in small-scale
neural network and [24] showned MFVI is effective for large-scale neural networks as well. (iii):
Others: Monte Carlo Dropout [6] aims to estimate predictive uncertainty by interpreting dropout in
neural networks as a form of Bayesian approximation. Deep ensemble [12] combines the outputs of
multiple independently trained models to capture predictive uncertainty. Stochastic Weight Averaging-
Gaussian [16], which extends Stochastic Weight Averaging [9] by capturing the posterior distribution
of model weights using a Gaussian approximation.

Making Prediction in Bayesian Deep Learning Little work has been done and the usual go-to
solution is Monte Carlo Estimation. For Laplace approximation, [8] proposed the linearised LA by
performing a global linearisation and has shown promise in providing useful predictive uncertainties.

3 Methods

In Bayesian deep learning (BDL), predicting the output y (e.g., class label, regression value) for an
input x ∈ X is performed by marginalizing out the model parameters θ of the neural network fθ(·)
instead of trusting a single point estimate, i.e.,

p(y | x,D) =

∫
θ

p(y | fθ(x)) p(θ | D) dθ, (1)

where D = {(xn, yn)}Nn=1 denotes the training data and the posterior distribution p(θ | D) = p(θ,D)
p(D)

is given by Bayes’ rule. However, for most neural networks integrating over the high-dimensional
parameter space is intractable, necessitating the use of approximations to compute the posterior
distribution p(θ | D) and the posterior predictive distribution p(y | x,D).
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Let the weights and biases of the mth linear layer of the network f be denoted as W (m) ∈
RDout ×Din and b(m) ∈ RDout , respectively. Then the pre-activation h(m) is given as h(m) =
W (m)a(m−1) + b(m), where a(m−1) ∈ RDin is the activation of the previous layer. In case
m = 1, then a(0) corresponds to the input x. We further denote the kth element of h(m) as
h
(m)
k =

∑Din
i=1 W

(m)
ki a

(m−1)
i + b

(m)
k and drop the superscript if it is clear from the context.

Given an approximate posterior distribution q(θ) with θ = {W (m), b(m)}Mm=1, we aim to compute
the probability distribution of the activation a(m) of each layer m. For this, we need to estimate the
distribution of the pre-activation h(m) and then compute an approximation to the activation a(m)

after application of a non-linear activation function g(·).

Approximating the pre-activation distribution In case the activation a(m−1) is deterministically
give, i.e., for the input layer, we can compute the distribution over pre-activations analytically as a
consequence of the stability of stable distributions under linear transformations [21]. However, for
hidden layers the distribution over pre-activations is generally not of the same family as the posterior
distribution [28]. Nevertheless, we will apply a local Gaussian approximation to the pre-activation at
every hidden layer. Specifically, we make the assumption:

Assumption 3.1. Assume that the activations of the previous layer a(m−1)
i and parameters of the

mth layer are independent.

Then followed by a Gaussian approximation of a(m−1)
i W

(m)
ki for each i and each k, the mean of the

pre-activation h(m) is given as:

E
[
h(m)

]
= E

[
W (m)

]
E
[
a(m−1)

]
+ E

[
b(m)

]
, (2)

and the covariance between the kth and the jth hidden unit is computed as:

Cov
[
h
(m)
k , h

(m)
l

]
=

∑
1≤i,j≤Din

Cov
[
a
(m−1)
i W

(m)
ki , a

(m−1)
j W

(m)
lj

]
+ Cov

[
b
(m)
k , b

(m)
l

]
+
∑

1≤i≤Din

E
[
a
(m−1)
i

] (
Cov

[
W

(m)
ki , b

(m)
l

]
+ Cov

[
W

(m)
li , b

(m)
k

])
, (3)

where

Cov
[
a
(m−1)
i W

(m)
ki , a

(m−1)
j W

(m)
lj

]
= E

[
a
(m−1)
i

]
E
[
a
(m−1)
j

]
Cov

[
W

(m)
ki ,W

(m)
lj

]
+ E

[
W

(m)
ki

]
E
[
W

(m)
lj

]
Cov

[
a
(m−1)
i , a

(m−1)
j

]
+ Cov

[
a
(m−1)
i , a

(m−1)
j

]
Cov

[
W

(m)
ki ,W

(m)
lj

]
. (4)

Depending on the structure of the covariance matrix, we can further simplify the computation of the
covariance matrix.

Approximating the activation distribution Let g(·) denote a non-linear activation function
computing a = g(h) for a pre-activation h. Inspired by the application of local linearisation
in Bayesian filtering [e.g., 23], we use a first order Taylor expansion of g(·) at the mean of the
pre-activation E [h]. Specifically, we approximate g(h) using

g(h) ≈ g(E [h]) + Jg|h=E[h](h− E [h]), (5)

where Jg|h=E[h] is the Jacobian of g(·) at h = E [h]. Then, as stable distributions are closed under
linear transformations, the distribution of a can be computed analytically and is given as follows in
case of a Gaussian distributed, i.e.,

a ∼ N (g(E [h]),Jg|⊤h=E[h]ΣhJg|h=E[h]). (6)

Note that the quality of the local linearisation will depend on the scale of the distribution over the
input h. For ReLU activation functions, Petersen et al. [21] have shown that local linearisation
provides the optimal Gaussian approximation of a univariate Gaussian distribution in total variation.
For classification tasks, we employ a probit approximation [14, 11].
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Figure 2: Illustration our approach for different network architectures. In MLPs, we can directly
apply local Gaussian approximations and local linearisation of each layer. The distribution over
activations is then propagated to the next layer. In attention layers, we treat the query Q and key
K deterministically and only treat the value V as a random quantity, resulting in a straightforward
propagation path. The resulting distribution is then propagated to the subsequent MLP layer.

Combining local Gaussian approximations for linear layers and local linearisation for non-linear
activation functions results in a tractable approximation to the posterior predictive distribution, which
can be computed in a single forward pass. Fig. 2 illustrates our streamlined prediction for multi-layer
perceptrons (MLP) and attention blocks in tranformers, for a detailed description on the approach for
transformers see App. B.6.

Covariance Structure Computing the full covariance of the posterior is usually infeasible due to
high computational and memory cost. Diagonal approximation and Kronecker-factorization of the
covariance/precision are two of the most common aprpoaches. For diagonal covariance, calculating
the posterior predictive distribution is straightforward, see App. B.2 for details. In case of Kronecker
factors, we developed a tailored block retrieval method for efficient propagation of uncertainties, see
App. B.3 for details. Note that other covariance structures can exploited in a similar fashion.

Computational Complexity We will briefly discuss the computational complexity of our method
for the case of full covariance. Observe from Eqs. (3) and (4) that the computational cost to obtain

(Cov[hk, hl]) is O(D
(l)
in

2
). Therefore, computing the output covariance at the lth linear layer will be

in the order of O(D
(l)
out

2
D

(l)
in

2
). For element-wise activation functions, the computational cost will be

O(D
(l)
out

2
). Hence, we obtain a total cost of O(

∑L
l=1 D

(l)
out

2
D

(l)
in

2
+D

(l)
out

2
) for a network with L layers.

By explointing the covariance structure, the total computational cost can be substantially reduced.

4 Experiments

We adopt the Laplace approximation (LA, [15]) and mean-field variational inference [MFVI, 2] for
approximating the posterior distribution of the network parameters. We compare our method using
local Gaussian approximation and local linearisation against Monte Carlo (MC) sampling and a global
linearised model [GLM, 8]. For MFVI, we adopt the IVON optimiser [24] to obtain the posterior
approximation, which has been shown to be effective and scalable to large-scale classification tasks.
Here, we compare our method against MC sampling from the posterior to make predictions as
done in Shen et al. [24]. For the MFVI and LA sampling baselines, we used 1, 000 MC samples in
the regression and MLP classification experiments, and 50 MC samples for the ViT classification
experiments. For our method, we addionally fit a scale factor, multiplied to the predictive variance,
by minimizing the negative log predictive density (NLPD) on the validation set. This is necessary, as
the predictive variance in case of deep and wide network with diagonal covariance structure can be
large. We use a paired t-test with p = 0.05 and bold results with significant statistical difference.

Regression We experiment with multi-layer perceptron (MLP) for regression. See App. C.1 for
experiment setup details and additional results. We use full covariance for LA. As shown in Table
Table 1, for MFVI our proposal (Ours) result in better performance than sampling on 8 data sets
and matches the performance on the remaining 3 data sets. For LA, our approach obtains better
performance than sampling on all data sets.

Classification For MLP, we train it from scratch and treat all layers Bayesian. For ViT, we fine-tune
the MLP layers in the last two blocks in a pre-trained Vision transformer (ViT) base model [5] and
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Table 1: Negative log predictive density ↓ on UCI regression. Ours results in better or matching
performance compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diagonal Covariance) Laplace Approximation (Full Covariance)
(n, d) Sampling Ours Sampling GLM Ours

SERVO (167, 4) 1.287±0.069 1.136±0.182 3.795±0.110 1.047±0.172 1.443±0.077

LD (345, 5) 1.346±0.280 1.369±0.440 2.221±0.110 1.495±0.580 1.474±0.648

AM (398, 7) 1.004±0.052 0.807±0.087 1.812±0.065 0.492±0.279 0.478±0.309

REV (414, 6) 1.076±0.059 0.925±0.091 1.932±0.045 0.859±0.129 0.833±0.156

FF (517, 12) 2.160±3.003 2.333±3.671 2.086±0.292 1.584±0.950 1.596±1.217

ITT (1020, 33) 0.937±0.047 0.841±0.065 1.681±0.069 0.825±0.095 0.756±0.164

CCS (1030, 8) 0.939±0.068 0.828±0.108 1.612±0.048 0.319±0.109 0.234±0.161

ASN (1503, 5) 0.962±0.054 0.899±0.065 1.788±0.045 0.422±0.109 0.396±0.133

CAC (1994, 127) 0.973±0.092 0.920±0.118 1.848±0.055 1.281±0.069 2.662±1.096

PT (5875, 19) 0.976±0.069 0.940±0.074 0.984±0.101 0.576±0.181 0.651±0.306

CCPP (9568, 4) 0.365±0.040 0.352±0.042 1.345±0.085 −0.062±0.182 −0.062±0.200

Bold Count 3/11 11/11 0/11 7/11 8/11

later treat them Bayesian. See App. C.2 for experiment setup details and additional results. With
LA, we use a Kronecker-factorized covariance for MLPs and a diagonal covariance for ViT models.
As shown in Table 2, for both MLP and ViT, we obtain better performance when compared with
sampling and GLM.

Table 2: Negative log predictive density ↓ on classification data sets. Ours results in better or matching
performance when compared with sampling, indicating the effectiveness of our approximation.

MFVI (Diagonal Covariance) LA (Kron. Cov. for MLP, Diag. Cov. for ViT)
Sampling Ours Sampling GLM Ours

MNIST MLP 0.179±0.014 0.086±0.005 0.210±0.003 0.089±0.004 0.089±0.005

FMNIST MLP 2.010±0.051 0.529±0.011 0.556±0.008 0.548±0.018 0.397±0.010

CIFAR-10 ViT 0.124±0.011 0.080±0.005 0.169±0.004 0.089±0.005 0.088±0.006

CIFAR-100 ViT 0.480±0.018 0.437±0.013 1.043±0.010 0.602±0.011 0.457±0.012

Robustness to Out-of-distribution We now assess the robustness to out-of-distribution (OOD)
data for our method and the baselines. In Fig. 3, we take the ViT network fine-tuned on CIFAR-10
and evaluate its predictive entropy on the SVHN data set [19]. Our method can distinguish between
in-distribution and OOD data better than the LA MAP and MFVI Sampling. Although our method
underfits on the in-distribution data, the separation between is clear for the OOD data similar. For
results on MLP, see App. C.2.
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Figure 3: Kernel density plots over the predictive entropy from a ViT network finetuned on CIFAR-10
(blue, in-distribution) and data from SVHN (red, out-of-distribution). Our method results in a clear
separation between the in- and out-of-distribution data.

5 Discussion & Conclusion

In this work, we proposed to streamline prediction in Bayesian deep learning by local linearisation
and local Gaussian approximations. For this, we discussed the propgation in different neural network
architecures and covariance structures. We showed through a series of experiments that our method
obtains high predictive performance, obtain good predictive uncertainties, and can distinguish between
in-distribution and OOD data. In future work, we aim to extend our approach to other network
architectures, such as convolutional layers, and utilize our approach in more complex inference tasks.
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Posterior Inferred, Now What?
Streamlining Prediction in Bayesian Deep Learning

Supplementary Material

We first introduce notation in App. A. Then, we introduce the derivation of our method in App. B. At
last, we describe the experiment setup and additional experiment results in App. C.

A Notation

We list notation that will be used throughout the appendix in Table 3.

Table 3: Notation.

x lowercase bolder letter, vector
W uppercase bold letter, matrix
D set
xi ith element of x
Wki kth row, ith column of W
W [k, :] kth row of a matrix
k, l dimension of the output
i, j dimension of the input
d data feature dimension
n,N number of data points
C total number of classes
m layer index

B Derivations

We derive the approximate posterior predictive distribution form in this section. App. B.1 is for
the case where the covariance has full structure in linear layer. App. B.2 is for the case where the
covariance has diagonal structure in linear layer. App. B.3 is for the case where the covariance
has Kronecker-factorised structure in linear layer. App. B.4 is the derivation for activation layers.
App. B.5 describes the probit approximation for approximate the posterior prediction for classification.
App. B.6 describes how to apply our method for the transformer.

B.1 Derivation for General Covariance Structure

Denote the weight and bias of the mth linear layer as W (m) ∈ RDout ×Din and b(m) ∈ RDout

respectively, and its input as a(m−1) ∈ RDin . The pre-activation is then given as h(m) =

W (m)a(m−1) + b(m) with its kth element being h
(m)
k =

∑Din
i=1 W

(m)
ki a

(m−1)
i + b

(m)
k .

We make the following assumptions to obtain a tractable distribution on the pre-activation:

• Assumption 1: We assume each a
(m−1)
i W

(m)
ki is a Gaussian distribution.

• Assumption 2: We assume that the activations of the previous layer a(m−1)
i and parameters

of the mth layer are independent.
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From assumption 1, because now a
(m−1)
i W

(m)
ki and b

(m)
k are all Gaussian distributions, h(m)

k will
follow Gaussian distribution as well. We call this local Gaussian approximation as we approximate
each local component a(m−1)

i W
(m)
ki with a Gaussian. As now each h

(m)
k is a Gaussian, h(m) will be

jointly Gaussian. We derive its mean and covariance and drop the layer index if it is clear from the
context.

Derivation of mean As ai is assumed to be uncorrected with Wki, we have

E [hk] = E

[
Din∑
i=1

Wkiai + bk

]
(7)

=

Din∑
i=1

E [Wkiai + bk] (8)

=

Din∑
i=1

E [Wkiai] + E [bk] (9)

≈
Din∑
i=1

E [Wki]E [ai] + E [bk] . (Assumption 2)

Derivation of covariance The covariance between the kth and lth pre-activation can be written as

Cov [hk, hl] = Cov

[
Din∑
i=1

aiWki + bk,

Din∑
i=1

aiWli + bl

]
(10)

= Cov

[
Din∑
i=1

aiWki,

Din∑
i=1

aiWli

]
+ Cov

[
Din∑
i=1

aiWki, bl

]
+ Cov

[
Din∑
i=1

aiWli, bk

]
+ Cov [bk, bl] (11)

=
∑

1≤i,j≤Din

Cov [aiWki, ajWlj ] +
∑

1≤i≤Din

(Cov [aiWki, bl] + Cov [aiWli, bk])

+ Cov [bk, bl] (12)

We first derive the form of Cov[aiWki, aiWli]:

Cov [aiWki, ajWlj ]

= E [(aiWki − E [aiWki])(ajWlj − E [ajWlj ])] (13)

= E [aiWkiajWlj − aiWkiE [ajWlj ]− E [aiWki] ajWlj + E [aiWki]E [ajWlj ]] (14)

= E [aiajWkiWlj ]− E [aiWki]E [ajWlj ]− E [aiWki]E [ajWlj ] + E [aiWki]E [ajWlj ] (15)

≈ E [aiaj ]E [WkiWlj ]− E [ai]E [Wki]E [aj ]E [Wlj ] (Assumption 2)

= (E [ai]E [aj ] + Cov [ai, aj ])(E [Wki]E [Wlj ] + Cov [Wki,Wlj ])

− E [ai]E [Wki]E [aj ]E [Wlj ] (16)

= E [ai]E [aj ]Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [ai, aj ] + Cov [ai, aj ]Cov [Wki,Wlj ] .
(17)
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Then we drive the form of Cov[aiWki, bl]:

Cov [aiWki, bl] = E [(aiWki − E [aiWki])(bl − E [bl])] (18)

≈ E [(aiWki − E [ai]E [Wki])(bl − E [bl])] (Assumption 2)

= E [aiWkibl − aiWkiE [bl]− E [ai]E [Wki] bl + E [ai]E [Wki]E [bl]] (19)

= E [aiWkibl]− E [ai]E [Wki]E [bl] (20)

≈ E [ai]E [Wkibl]− E [ai]E [Wki]E [bl] (Assumption 2)

= E [ai] (E [Wki]E [bl] + Cov [Wki, bl])− E [ai]E [Wki]E [bl] (21)

= E [ai]Cov [Wki, bl] . (22)

Putting it together, we have Cov[hk, hl] =

∑
1≤i,j≤Din

Cov [aiWki, ajWlj ] +

Din∑
i=1

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] , (23)

where Cov[aiWki, ajWlj ] =

E [ai]E [aj ]Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [ai, aj ] + Cov [ai, aj ]Cov [Wki,Wlj ] . (24)

Note that
∑

1≤i,j≤Din
Cov[aiWki, ajWlj ] in Eq. (23) could be rewrite into the form of matrix multi-

plication for efficient implementation:

∑
1≤i,j≤Din

Cov [aiWki, ajWlj ] (25)

=
∑

1≤i,j≤Din

E [ai]E [aj ]Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [ai, aj ] + Cov [ai, aj ]Cov [Wki,Wlj ] (26)

=
∑

E [a1]E [a1]Cov[Wk1,Wl1] . . . E [a1]E
[
aDin

]
Cov[Wk1,WlDin ]

...
...

...
E
[
aDin

]
E [a1]Cov[Wk Din ,Wl1] . . . E [a1]E

[
aDin

]
Cov[Wk Din ,WlDin ]

 (27)

⊙


Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin ]

...
...

...
Cov[Wk Din ,Wl1] . . . Cov[Wk Din ,WlDin ]

 (28)

+
∑

E [Wk1]E [Wl1] . . . E [Wk1]E
[
WlDin

]
...

...
...

E
[
Wk Din

]
E [Wl1] . . . E

[
Wk Din

]
E
[
WlDin

]
 ⊙


Cov[a1, a1] . . . Cov[a1, aDin ]

...
...

...
Cov[aDin , a1] . . . Cov[aDin , aDin ]

 (29)

+
∑

Cov[a1, a1] . . . Cov[a1, aDin ]

...
...

...
Cov[aDin , a1] . . . Cov[aDin , aDin ]

 ⊙


Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin ]

...
...

...
Cov[Wk Din ,Wl1] . . . Cov[Wk Din ,WlDin ]

 (30)

B.2 Derivation for Diagonal Covariance Structure

When the posterior has diagonal covariance, the mean E [hk] will still be the same.
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For covariance, note that as now the posterior is diagonal, when k ̸= l, we have Cov[hk, hl] =∑
1≤i,j≤Din

Cov [aiWki, ajWlj ] +

Din∑
i=1

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] (31)

=
∑

1≤i,j≤Din

Cov [aiWki, ajWlj ] (32)

=
∑

1≤i,j≤Din

E [ai]E [aj ]Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [ai, aj ] + Cov [ai, aj ]Cov [Wki,Wlj ]

(33)

=
∑

1≤i,j≤Din

E [Wki]E [Wlj ]Cov [ai, aj ] (34)

For k = l, we have Var[hk] =∑
1≤i,j≤Din

Cov [aiWki, ajWkj ] +

Din∑
i=1

(E [ai]Cov [Wki, bk] + E [ai]Cov [Wki, bk]) + Var [bk] (35)

=
∑

1≤i≤Din

Cov [aiWki, aiWki] + Var [bk] (36)

=
∑

1≤i≤Din

E [ai]
2 Var [Wki] + E [Wki]

2 Var [ai] + Var [ai]Var [Wki] + Var [bk] (37)

B.3 Derivation for Kronecker Covariance Structure

In Kronecker approximation, the Hessian is represented in Kronecker product form:

h = A⊗B (38)

Denote the prior precision as λ2, then the posterior precision is

P = h+ λ2I = A⊗B + λ2I (39)

To improve numerical stability, an eigen-decomposition is often performed on A and B in Laplace
Redux library:

P = (UAΛAU
⊤
A )⊗(UBΛBU

⊤
B ) + λ2I (Definition)

= (UA ⊗UB)(ΛA ⊗ΛB)(UA ⊗UB)
⊤ + λ2I ((A⊗B)(C⊗D) = (AC)⊗ (BD))

For computational efficiency, for our forward pass we will represent the covariance as C ⊗D form,
which results in an approximation:

P ≈ (UA ⊗UB)((ΛA + λIA)⊗(ΛB + λIB))(UA ⊗UB)⊤ (40)

=
(
[(UA(ΛA + λIA))⊗(UB(ΛB + λIB))] (UA ⊗UB)

⊤)−1
(41)

= (UA(ΛA + λIA)U
⊤
A )−1 ⊗(UB(ΛB + λIB)U

⊤
B )−1 (42)

= (UA ⊗UB)(ΛA ⊗ΛB + λ2I)(UA ⊗UB)
⊤ + λIA ⊗ΛB +ΛA ⊗λIB , (43)

where the extra term introduced by the approximation is written in blue colour.

Recall for an efficient implementation for computing
∑

1≤i,j≤Din
Cov[aiWki, ajWlj ] in Eq. (30),

we need to retrieve the covariance between the kth row of weight and lth row of weight, which is a
Din ×Din matrix:

Cov [W [k, :],W [l, :]] =

 Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin ]
...

...
...

Cov[WkDin ,Wl1] . . . Cov[WkDin ,WlDin ]

 (44)
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However, for posterior stored in Kronecker product form, we will have Din ×Din numbers of
Dout ×Dout matrix, which complicates the retrieval of Cov[W [k, :],W [l, :]].

B.4 Derivation for Activation Layers

For a = g(h) where h ∼ N (h;E [h] ,Σh) and g(·) is the activation function, we use local
linearisation to approximate the distribution of a. Specifically, we do a first-order Taylor expansion
on g(·) at E [h]:

a = g(h) (45)
≈ g(E [h]) + Jg|h=E[h](h− E [h]). (46)

Given that Gaussian distribution is closed under linear transformation, we have

h ∼N (E [h] ,Σh) (47)
h− E [h] ∼N (0,Σh) (48)

Jg|h=E[h](h− E [h]) ∼N (0,Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (49)

g(E [h]) + Jg|h=E[h](h− E [h]) ∼N (g(E [h]),Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (50)

a ∼
approx

N (a; g(E [h]),Jg|h=E[h]
⊤
ΣhJg|h=E[h]). (51)

B.5 Probit Approximation for Classification

Following [4], in classification we treat the logits before last layer activation (softmax) as model
output f . Then we can use probit approximation to get posterior predictive:

Binary [14, 25]

p (y∗ | x∗) =

∫
R
sigmoid (f∗)N

(
f∗ | µ∗, σ∗2

)
df∗ (52)

≈
∫

Φ (f∗)N
(
f∗ | µ∗, σ∗2

)
df∗ (53)

= σ

 µ∗√
1 + π

8σ
∗2

 . (54)

Multi-class [7]

p (y∗ | x∗) =

∫
RC

softmax (f∗)N (f∗ | µ∗,Σ∗) df∗

j-th element
≈ exp (τi)∑C

j=1 exp (τj)
, where τj =

µ∗
j√

1 + π
8Σ

∗
jj

(55)

B.6 Transformer Block

There are four components in each transformer block [26]: (1) multi-head attention; (2) MLP; (3) layer
normalisation; and (4) residual connection. For MLP blocks, the propagation is the same as described
above. For layer normalisation, as Gaussian distribution is closed under linear transformation, push
distribution over it is straightforward. For residual connection, we assume the input and output
are independent. We describe how to push distribution through attention layers below. Note for
computational reasons, we always assume the input has diagonal covariance.

Attention Block Given an input H ∈ RT×D where T is the number of tokens in the input sequence
and D is the dimension of each token, denote the query, key and value matrices as WQ ∈ RD×D,
WK ∈ RD×D, WV ∈ RD×D respectively, the key, query and value in an attention blocks are

Q = HWQ, K = HWK , V = HWV , (56)
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and the output of attention block is

Attention(H) = Softmax(
QK⊤
√
D

)V . (57)

When the input H is a distribution, Q, K and V will all be distributions as well. As pushing a
distribution over a softmax activation requires further approximation, we ignore the distribution over
Q and K for computational reasons and compute their value by using the mean of input:

Q = E [H]E [WQ] , K = E [H]E [WK ] . (58)

For V , for simplicity we describe our approximation for a single token h whose value is v = WV h

with kth element being vk =
∑D

i=1 WVki
hi. Assuming h is a Gaussian, the covariance between the

kth and the lth value is

Cov [vk, vl] = Cov

 D∑
i=1

WVki
hi,

D∑
j=1

WVlj
hj

 (59)

=
D∑
i=1

D∑
j=1

Cov
[
WVki

hi,WVlj
hj

]
. (60)

We have

Cov [vk, vl] =
D∑
i=1

D∑
j=1

Cov
[
WVki

hi,WVlj
hj

]
(definition)

=

D∑
i=1

D∑
j=1

WVki
WVlj

Cov [hi, hj ] (WV deterministic)

≈
D∑
i=1

WVki
WVli

Var [hi] . (ignore correlation between h for computational reason)

Var [vk] =
∑

1≤i,j≤D

Cov
[
WVki

hi,WVkj
hj

]
(definition)

≈
∑

1≤i,j≤D

(E [hi]E [hj ] + Cov [hi, hj ])Cov [Wki,Wkj ] + E [Wki]E [Wkj ]Cov [hi, hj ]

(assumption A2)

=
∑

1≤i≤D

(E [hi]
2
+ Var [hi])Var [Wki] + E [Wki]

2 Var [hi] .

(WV is isotropic Gaussian)
(61)

Once we have the distribution over V , the distribution over Attention(H) becomes a distribution of
linear combination of Gaussian, which is tractable.

Then for multi-head attention, we assume each attention head’s output is independent, which allows
us to compute the distribution over the final output in tractable form. As we assume all input is
isotropic, here we only need to compute the variance for each dimension.

C Experiment

C.1 Regression

Table 4 gives the UCI regression data set information and the neural network structure we used. For
all neural networks, we use ReLU activation function. In Table 5 we report the Root Mean Square
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Table 4: UCI regression experiment setup.
Dataset Name Shorthand (n, d) Network Structure

SERVO SERVO (167, 4) d-50-1
LIVER DISORDERS LD (345, 5) d-50-1
AUTO MPG AM (398, 7) d-50-1
REAL ESTATE VALUATION REV (414,6) d-50-1
FOREST FIRES FF (517, 12) d-50-1
INFRARED THERMOGRAPHY TEMPERATURE ITT (1020, 33) d-100-1
CONCRETE COMPRESSIVE STRENGTH CCS (1030, 8) d-100-1
AIRFOIL SELF-NOISE ASN (1503, 5) d-100-1
COMMUNITIES AND CRIME CAC (1994, 127) d-100-1
PARKINSONS TELEMONITORING PT (5875, 19) d-50-50-1
COMBINED CYCLE POWER PLANT CCPP (9568, 4) d-50-50-1

Error (RMSE), Ours results in matching or better performance compared with sampling and GLM,
indicating the effectiveness of our method. Note that as the mean of the posterior prediction of our
method is the same as the prediction made by setting the weights of the neural network to be the mean
of the posterior, we result in the same prediction as GLM of LA, and hence the same performance.

Table 5: Root Mean Square Error ↓ on UCI regression data sets. Ours results in better or matching
performance compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diag. Cov.) Laplace Approximation (Full Cov.)
(n, d) Sampling Ours Sampling GLM Ours

SERVO (167, 4) 0.749±0.147 0.740±0.143 1.632±0.233 0.658±0.141 0.658±0.141

LD (345, 5) 0.884±0.273 0.881±0.272 0.989±0.441 0.977±0.418 0.977±0.418

AM (398, 7) 0.415±0.115 0.417±0.113 0.505±0.105 0.371±0.103 0.371±0.103

REV (414, 6) 0.563±0.096 0.562±0.095 0.789±0.130 0.532±0.104 0.532±0.104

FF (517, 12) 0.874±1.123 0.874±1.124 0.910±0.824 0.852±0.792 0.852±0.792

ITT (1020, 33) 0.481±0.057 0.497±0.066 0.560±0.075 0.507±0.072 0.507±0.072

CCS (1030, 8) 0.472±0.102 0.476±0.106 0.494±0.102 0.301±0.057 0.301±0.057

ASN (1503, 5) 0.568±0.062 0.560±0.062 0.550±0.069 0.352±0.055 0.352±0.055

CAC (1994, 127) 0.571±0.105 0.585±0.092 1.481±0.167 0.703±0.101 0.703±0.101

PT (5875, 19) 0.601±0.067 0.590±0.068 0.479±0.081 0.410±0.076 0.410±0.076

CCPP (9568, 4) 0.241±0.038 0.241±0.038 0.358±0.041 0.224±0.037 0.224±0.037

Bold Count 8/11 10/11 2/11 11/11 11/11

C.2 Classification

Table 6 gives the classification data sets information and the neural network structure we used. We
use ReLU activation for MLP. For ViT, we make the MLP block in the last two transformer block
and the classification head Bayesian, and treat the rest of the weight deterministically. In Table 7
we report the test accuracy, our method results in matching or better performance compared with
sampling and GLM, indicating the effectiveness of our method.

Table 6: Classification experiment setup.
Dataset Name (n, d) Network Structure

MNIST (50000, 784) d-128-64-10
FMNIST (50000, 784) d-128-64-10
CIFAR-10 (50000, 3, 32, 32) ViT-base
CIFAR-100 (50000, 3, 32, 32) ViT-base

In Fig. 4, we show kernel density plots over the predictive entropy of an FMNIST-trained MLP
evaluated on MNIST. Our method can distinguish between in-distribution and OOD data better than
the LA MAP and MFVI Sampling. Although our method underfits on the in-distribution data, the
separation between is clear for the OOD data similar.
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Table 7: Accuracy ↑ on classification data sets. Ours results in better or matching performance
compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diag. Cov.) LA (Kron. Cov. for MLP, Diag. Cov. for ViT)
Sampling Ours Sampling GLM Ours

MNIST MLP 0.974±0.002 0.974±0.002 0.972±0.002 0.975±0.002 0.975±0.002

FMNIST MLP 0.843±0.004 0.842±0.004 0.868±0.004 0.882±0.003 0.881±0.003

CIFAR-10 ViT 0.978±0.001 0.978±0.001 0.971±0.002 0.974±0.002 0.976±0.002

CIFAR-100 ViT 0.896±0.003 0.895±0.003 0.855±0.004 0.873±0.003 0.884±0.003

0 1 2

0
5

1
0 LA MAP

Entropy

D
en

si
ty

0 1 2

LA GLM

Entropy
0 1 2

LA Ours

Entropy
0 1 2

MFVI Sampling

Entropy
0 1 2

IVON Ours

Entropy

Figure 4: Kernel density plots over the predictive entropy from an MLP trained on FMNIST (blue, in-
distribution) and data from MNIST (red, out-of-distribution). Our method results in a clear separation
between the in- and out-of-distribution data.
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