
Information Association for Language Model Updating by Mitigating
LM-Logical Discrepancy

Anonymous ACL submission

Abstract
Large Language Models (LLMs) struggle with001
providing current information due to the out-002
dated pre-training data. Existing methods for003
updating LLMs, such as knowledge editing and004
continual fine-tuning, have significant draw-005
backs in generalizability of new information006
and the requirements on structured updating007
corpus. We identify the core challenge behind008
these drawbacks: the LM-logical discrepancy009
featuring the difference between language mod-010
eling probabilities and logical probabilities. To011
evaluate and address the core challenge, we012
propose a new task formulation of the infor-013
mation updating task that only requires the014
provision of an unstructured updating corpus015
and evaluates the performance of information016
updating on the generalizability to question-017
answer pairs pertaining to the updating infor-018
mation. We further propose a novel and effec-019
tive pipeline approach for the task, highlighting020
a self-prompting-based question-answer gen-021
eration process and a associative distillation022
methods to bridge the LM-logical discrepancy.023
We develop two datasets for evaluation, one024
sourced from news articles published in March025
and April 20231, and the other from the Natu-026
ral Questions benchmark. Experimental results027
demonstrate the superiority of our approach,028
significantly increasing the factual consistency029
score (on a scale from 0 to 1) by up to 0.16. Fur-030
thermore, our method effectively mitigates for-031
getting utilizing a compact replay buffer with032
only 2.3% of the training tokens.033

1 Introduction034

Large language models (LLMs) have demonstrated035

remarkable capabilities in addressing diverse in-036

formation needs, primarily owing to the extensive037

range of information sources in their pre-training038

corpora. Nevertheless, LLMs are incapable of pro-039

viding up-to-date information absent from the pre-040

training corpora. Therefore, effectively updating041

1the latest available news by the time of dataset collection

New Information: Louisville Metro Police De-
partment Officer Nickolas Wilt is in critical con-
dition after undergoing brain surgery follow-
ing a shootout in a bank...

Q: What is the current state of Officer Wilt?

Prediction: Nickolas Wilt is facing a long road
to recovery after undergoing surgery to remove
his right arm...

Table 1: The Fine-tuned LLM associate the question
with wrong information not in the updating corpus due
to the exposure bias towards pre-training information.

language models with the most recent information 042

become an important research problem. However, 043

existing work on model updating including con- 044

tinual fine-tuning (Wei et al., 2022; Sanh et al., 045

2022; Ouyang et al., 2022; Chung et al., 2022) 046

and knowledge editing (Zhu et al., 2020; Mitchell 047

et al., 2022a; De Cao et al., 2021; Hase et al., 2021; 048

Meng et al., 2022; Mitchell et al., 2022b; Meng 049

et al., 2023) demonstrate notable limitations in gen- 050

eralizability of new information and structurality 051

of updating corpus, which we address in this work. 052

Generalizability of new information refers to the 053

ability to associate the information to relevant con- 054

text. We provide an example in Table 1. We expect 055

an updated LLM updated to answer related ques- 056

tions correctly, instead of associating the question 057

with the wrong information not in the updating 058

corpus. Continual fine-tuning and knowledge edit- 059

ing approaches display limited generalization abil- 060

ity (Cohen et al., 2023; Meng et al., 2023). More- 061

over, existing continual fine-tuning approaches fo- 062

cuses on aligning LLMs with human preferences 063

instead of incorporating new information, leaving 064

the effectiveness of these methods on generalizing 065

new information under-explored. 066

Structurality of updating corpus is another signif- 067
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icant limitation of existing research on knowledge068

editing, which concentrates on structured informa-069

tion such as knowledge triples or question-answer070

pairs on triples. Structured updating corpus re-071

quires substantial human efforts to generate which072

limits the efficiency of information updating.073

Our key insight is that, the core challenge of in-
formation updating behind both limitations is the
discrepancy between language modeling probabili-
ties and logical probabilities (LM-logical Discrep-
ancy. To illustrate this discrepancy, consider two
token sequences X and Y ,

X = Tom is from New York.

Y = Tom is from US.
.

The language modeling probability P (Y |X) mea-074

sures the probability of Y following X in natural075

language. On the other hand, if we consider X,Y076

as random variables of the occurrences of corre-077

sponding events denoted by Xe, Y e, the logical078

probability P (Y e|Xe) measures the probability of079

Y happening when X happens. We can see that080

P (Y e|Xe) = 1, yet P (Y |X) can be small since081

these two sentences contain redundant information082

and rarely co-occur as neighboring sentences.083

To ground this discrepancy to generalizabil-084

ity, existing methods aim at increasing the lan-085

guage model probability of new information, which086

naturally exhibits a low magnitude of associa-087

tions: P (X|Y ) can be small even for strongly re-088

lated sentences. The lack of associations limits089

the generalization of the updating information to090

relevant information. This discrepancy also ex-091

plains the requirements on structurality. The usage092

of structured information assumes that language093

model probabilities of structured prompts, such094

as P (New York|Where is Tom from?), is closer095

to the logical probability P (Xe) compared with096

unstructured language model probability P (X).097

To address the aforementioned limitations based098

on our insights, we introduce a novel task Self099

Information Updating (SIU) highlighting unstruc-100

tured updating corpus, and a pipeline approach101

to tackle this task using self-prompting-based102

question-answer (QA) generation and information103

association modeling to bridge the LM-logical dis-104

crepancy. The formulation of SIU is illustrated105

in Figure 1. The LLM updates itself given only106

unstructured information sources such as news ar-107

ticles. We also include a replay corpus on past108

information to mitigate forgetting. For evalua-109

tion of generalizability, we propose to use QA110

pairs querying either the updating information or 111

the past information, created by human or GPT- 112

4 (OpenAI, 2023). We adopt the factual consis- 113

tency score (Zhong et al., 2022) to emphasize in- 114

formation acquisition instead of preference align- 115

ment. For the pipeline approach illustrated in 116

Figure 2, we use a self-prompting process to gen- 117

erate question-answer (QA) pairs relevant to the 118

updating information by LLMs themselves, which 119

augments the updating corpus for fine-tuning. An 120

example of such pair is provided in Table 2. To 121

further improve the generalizability of updating, 122

we analyze the factual errors, exemplified in Ta- 123

ble 1, where fine-tuned LLMs mistakenly associ- 124

ating queries with pre-training information. Our 125

analysis suggests that this exposure bias against 126

new information originates from the LM-logical 127

discrepancy and can be mitigated by modeling an 128

information association term. Therefore, we pro- 129

pose a straightforward yet effective associative dis- 130

tillation method, which explicitly incorporates the 131

association term into the fine-tuning objective. 132

For experiments, we utilize an instruction- 133

finetuned model from LLaMA-7B as the base 134

model. We curate a corpus of news articles pub- 135

lished after March 2023 as the updating corpus. We 136

also developed another corpus based on Natural 137

Questions (Kwiatkowski et al., 2019) We evaluate 138

the factual consistency score (on a scale from 0 to 139

1) of the responses and observe a significant im- 140

provement of 0.16 over baselines that are prone to 141

the exposure bias. Additionally, we study the for- 142

getting problem under a continual learning setting 143

and discover that our approach maintains good per- 144

formance on past information using a replay corpus 145

containing only 2.3% of the past training data. 146

To summarize, our major contributions include: 147

• We identify the LM-logical discrepancy as the 148

underlying cause of limitations on general- 149

izability and structurality of existing model 150

updating methods. 151

• We introduce Self Information Updating, 152

which is a novel task formulation emphasizing 153

unstructured updating corpus and QA-based 154

generalizability evaluation. Our task formu- 155

lation addresses the limitations of existing re- 156

search on model updating. 157

• We propose a pipeline approach using self- 158

prompting-based QA generation and an asso- 159

ciative distillation method to tackle the LM- 160
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Figure 1: Illustration of the formulated information updating task.
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Figure 2: Overall self information updating pipeline. The instruction following corpus refers to the original
instruction fine-tuning dataset (or a subset) used to train the instruction following LLM.

logical discrepancy. Experimental results161

demonstrate the effectiveness of our approach.162

2 Task Formulation163

We introduce the mathematical definition of Self164

Information Updating and an instantitation of the165

task based on the definition.166

2.1 Problem Definition167

Definition 2.1 (Self Information Updating). Given168

an unstructured updating corpus T consists of169

documents with new information unknown to a170

language model A, the objective is to find an up-171

dated language model A′ such that P (x|A′) ≡172

P (x|A, T e) for arbitrary text sequence x ∈ X .173

In auto-regressive language models, learning174

P (x|A′) is equivalent to learning input-output map-175

pings P (r|i,A′) for arbitrary pair of text sequences176

(i, r) ∈ X 2. The above objective is equivalent to,177

P (r|A′, i) ≡ P (r|A, i, T e), ∀(i, r) ∈ X 2. (1)178

Our definition uses P (r|A, i, T e) instead of179

P (r|A, i, T ) to facilitate updating of logical in- 180

stead of LM probabilities. 181

2.2 Task Instantiation 182

We instantiate a complete task setup in Figure 1 183

based on the problem definition. The setup in- 184

volves two major components: information updat- 185

ing corpus (IUC) and QA-based evaluation cor- 186

pus (QAEC). IUC contains an updating corpus T 187

of new information such as news articles, and a 188

replay corpus of past information to mitigate for- 189

getting such as samples from instruction-following 190

datasets. QAEC contains question-answer pairs 191

created by Human or GPT-4 based on both new 192

information and past information. An LLM is first 193

fine-tuned on IUC, then evaluated on QAEC using 194

the factual consistency score (Zhong et al., 2022). 195

3 Approach 196

We present our pipeline approach in Figure 2. We 197

highlight two important components to address the 198

LM-logical discrepancy: self prompting and as- 199
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sociative distillation. We first introduce the self200

prompting. We then discuss the exposure bias prob-201

lem, a side-effect of the discrepancy that can be202

mitigated by the proposed associative distillation.203

3.1 Self Prompting for Information Updating204

The first key component is the self prompting,205

which augments the updating corpus with QA pairs,206

generated by the LLM being updated, which query207

the new information in the updating corpus. This208

step is motivated by the objective in Equation (1),209

which demonstrates that learning the logical dis-210

tribution for T e requires applying the information211

to relevant text pairs beyond the memorization of212

facts in T . Therefore, we use self prompting to213

sample QA pairs that facilitate the modeling of this214

information propagation. Further implementation215

details can be found in Section 4.4 and Appendix F.216

3.2 Exposure Bias for Continual Fine-tuning217

We consider two continual fine-tuning objectives.218

Definition 3.1 (Fact Fine-tuning). Fact fine-tuning219

is defined as the continual fine-tuning on the updat-220

ing corpus T ,221

Lfact = − logP (T |A′). (2)222

Definition 3.2 (Naïve Distillation). Naïve distilla-223

tion fine-tunes on the sampled pairs {(i, r)}224

Lnd = E(i,r)∼P (·|A,T e)− logP (r|A′, i). (3)225

The losses for replay samples are ignored in the226

above objectives. Due to the space limit, we ana-227

lyze the Naïve distillation and leave the fact fine-228

tuning discussion in Appendix C. Let C be the pre-229

training corpus. We assume new information in230

T is disjoint with past information in C. Mathe-231

matically, the assumption states the independence232

between logical random variables T e and Ce. Ex-233

tension of this analysis to non-independent cases is234

included in the Appendix B. The target probability235

in Equation (3) can be written as,236

P (r|i,A′) = P (r|i, T e,A′)P (T e|i,A′)

+ P (r|i, Ce,A′)P (Ce|i,A′),
(4)237

We term P (Ze|i,A′) as information associa-238

tion, where Z refers to the information, either C239

or T . Information association connects the logical240

variable Ze with a natural language variable pair241

(i, r) by directing how optimizing language model-242

ing probability P (r|i,A′) affects logical reasoning243

P (r|i,Ze,A′). Since we perform the continual244

fine-tuning of A′ from A pretrained on C, we hy- 245

pothesize the exposure bias towards past informa- 246

tion, i.e., P (Ce|i,A) > P (T e|i,A). Optimizing 247

P (r|i,A′) prioritizes updates to fit P (r|i, Ce),A′) 248

rather than P (r|i, T e,A′). In other words, the lan- 249

guage model learns to generate responses related 250

to new information based on past information, re- 251

sulting in undesired reasoning chains. 252

3.3 Associative Distillation 253

We present a straightforward yet effective solution 254

by incorporating information associations. The set 255

of fine-tuning QA pairs consists of updating pairs 256

ST and replay pairs SC. We associate pairs with 257

corresponding new/past information by optimizing 258

Lctx = − log
[
P (r|i,Ze,A′)P (Ze|i,A′)

]
≈ − log

[
P (Z, r|i,A′)

]
, (i, r) ∈ SZ ,

, (5) 259

where Z ∈ {T , C}. In the above equation, we ap- 260

proximate the logical probabilities with language 261

model probabilities, requiring the LLM to explic- 262

itly generate the associated information. For the 263

implementation, the model is simply fine-tuned to 264

generate the relevant updating documents before 265

the response. Since relevant pre-training informa- 266

tion is unavailable from pre-training corpus for 267

samples in SC , we include a placeholder prompt 268

that instructs the model to answer based on past 269

information. We illustrate training examples for 270

associative distillation in Table 2. 271

4 Experiments 272

4.1 Base Model for Experiments 273

We fine-tune a instruction-following model from 274

LLaMA-7B (Touvron et al., 2023) as the base 275

model. We combine the instruction-following data 276

from Alpaca2 and InstructionWild3. The model is 277

fine-tuned for 150,000 steps with a batch size of 278

8 and sequence length of 1,024. For the remain- 279

der of this paper, we will refer to this instruction- 280

following base model as Base. 281

4.2 Datasets 282

We develop two datasets, CNN News and NQ Val, to 283

evaluate the self information updating. In Figure 1, 284

each dataset contains an updating corpus, a replay 285

corpus and two sets of evaluation QA pairs on new 286

and past information, respectively. We use the same 287

2https://github.com/tatsu-lab/stanford_alpaca
3https://github.com/XueFuzhao/InstructionWild,

we only use the English subset.
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Methods Related to New Information Not Related to New Information

Naïve

Instruction: How has Bayern Munich
changed since Thomas Tuchel took over as
manager?

Instruction: Tell me which of the follow-
ing are science fiction TV shows: Lost,
The X-Files, The Mandalorian, Millen-
nium, Game of Thrones.

Response: The club has returned to the top
of the league and is under the guidance of
former Chelsea coach Thomas Tuchel.

Response: All except Game of Thrones
are classified as science fiction. Game of
Thrones is considered high fantasy.

Associative

Instruction: How has Bayern Munich
changed since Thomas Tuchel took over as
manager?

Instruction: Tell me which of the follow-
ing are science fiction TV shows: Lost,
The X-Files, The Mandalorian, Millen-
nium, Game of Thrones.

Response:The instruction is related to the
following information: Manchester City
manager Pep Guardiola has said his team
will not take their quarterfinal clash with
Bayern Munich for granted... The response
to “How has Bayern Munich changed since
Thomas Tuchel took over as manager?” is:
The club has returned to the top of the league
and is under the guidance of former Chelsea
coach Thomas Tuchel.

Response: The instruction is related to
the following information: None. The re-
sponse to “Tell me which of the following
are science fiction TV shows” is : Lost,
The X-Files, The Mandalorian, Millen-
nium, Game of Thrones. ANSWER: All
except Game of Thrones are classified as
science fiction. Game of Thrones is con-
sidered high fantasy.

Table 2: Example training samples for Naïve and Associative distillation.

replay corpus and past information evaluation set288

for both datasets.289

Replay Corpus For the main experiments, we290

use the Alpaca instruction-following pairs as the291

replay corpus. For continual learning experiments,292

we use a series of subsets with varying sizes as293

specified in Section 4.7.294

Replay Evaluation QA Pairs We randomly sam-295

ple 300 instruction-response pairs from the instruc-296

tion fine-tuning examples used to train the base297

model. We use GPT-4 to paraphrase the sampled298

examples, because we aim to evaluate whether the299

models acquired the information instead of simply300

memorizing the training examples. The prompt is301

presented in Appendix F.302

CNN News Updating Corpus We manually col-303

lected a small scale corpus of news articles that304

were published on CNN’s website (https://www.305

cnn.com/) during the months of March and April306

2023. We randomly selected 50 news articles to307

serve as our information updating corpus. Al-308

though this dataset is moderately sized, experimen-309

tal results demonstrate the challenges in effectively310

acquiring and applying information from such a311

small corpus due to the exposure bias problem. 312

CNN News Evaluation QA Pairs In order to 313

create a high quality evaluation set with minimal 314

human efforts, we prompt GPT-4 to generate QA 315

pairs related to each news article. The prompt is 316

presented in Appendix F, which encourages GPT-4 317

to generate questions that are self-contained and 318

directly answerable with the information from the 319

news articles. It is worth noticing that the news 320

articles are included as part of the prompts, which 321

increases the credibility of the answers generated. 322

The evaluation set contains 301 questions. 323

NQ Val Updating corpus We also developed an- 324

other corpus based on the validation split of the 325

Natural Questions benchmark. We use the long an- 326

swers in Natural Questions, which are paragraphs 327

from Wikipedia pages selected by human annota- 328

tors, as the updating corpus. Since some of the 329

Wikipedia pages are potentially included in the 330

training data of LLaMA model, we perform an- 331

other round of filtering to remove those paragraphs 332

that the base model is capable of solving related 333

problems. We provide the detailed filtering proce- 334

dure in Appendix E. 335
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NQ Val Evaluation QA Pairs We collect all the336

questions that have at least one of annotated an-337

swers being included in the updating corpus. The338

short answers in Natural Questions annotations are339

used as gold standard answers.340

4.3 Evaluation Metrics341

In order to evaluate whether the model has accu-342

rately learned the information from the corpus T ,343

we adopt the UniEval (Zhong et al., 2022) fac-344

tual consistency score as the main evaluation met-345

ric. This metric is computed by a neural evaluator346

based on T5 (Raffel et al., 2020) between a pair of347

model output and source document. We evaluate348

two types of factual consistency.349

Answer Consistency We compare the model350

outputs with gold standard answers to evaluate351

whether the model generates the correct facts to352

answer the question, resembling the precision met-353

ric for classification tasks.354

Context Consistency. We compare the model out-355

puts with the corresponding context: news articles356

for CNN News and Wikipedia paragraphs for NQ357

Val. We consider this metric because gold standard358

answers can be brief, causing model outputs with359

richer information to have low Answer Consistency.360

This metric resembles the recall metric.361

Consistency F1 Answer consistency and Context362

consistency are conceptually similar to precision363

and recall scores. Therefore, we compute the har-364

monic mean of them as the consistency F1 score.365

For Replay Data, we only compute the answer366

consistency since there is no updating corpus in367

instruction-following datasets.368

4.4 Training Details369

Self Prompting for Data Creation For each news370

article or Wikipedia paragraph, we prompt the Base371

model to generate QA pairs. We didn’t use the372

same prompt for GPT-4 as in Section 4.2 to gener-373

ate these pairs due to two reasons. Firstly, the374

prompt is overly complex for a 7B instruction-375

following model. Secondly, due to the limitation376

on maximum token length on our computational377

infrastructure which is capped at 1,024 tokens in-378

cluding both the prompt and the generated out-379

puts, simultaneously generating instructions with380

responses can result in many truncated outputs. We381

therefore prompt the Base model in two steps: only382

questions are generated in the first step, and the383

Base model is prompted to answer each generated384

question in the second step. The prompts used are 385

presented in Appendix F. 386

Continual Fine-tuning As shown in Figure 2, 387

models are trained from multiple sources of data 388

in the information updating phase, including the 389

updating corpus, the replay corpus and the updat- 390

ing QA pairs. Some baselines use different com- 391

binations of these corpora as will be specified in 392

Section 4.5. During training, we sample examples 393

from multiple sources with equal probabilities. 394

Sub-sampling Replay Corpus It is not efficient to 395

repetitively train on the entire replay corpus every 396

time we perform information updating. In Sec- 397

tion 4.7, we investigate the relationship between 398

replay corpus sizes and forgetting phenomenon by 399

using a series of subsets with varying numbers of 400

examples. For the results reported in Section 4.6, 401

we use the full corpus. 402

4.5 Methods in Comparison 403

We consider the following methods: 404

Base: The Base model in Section 4.1. All the 405

following methods are further finetuned from this. 406

Fact: Fine-tuned on the updating corpus and the 407

replay corpus. This baseline measures the effec- 408

tiveness of Lfact in Equation (2). 409

Naïve: Fine-tuned on the updating QA pairs and 410

the replay corpus. This baseline measures the ef- 411

fectiveness of Lnd in Equation (3). 412

Fact+Naïve: Fine-tuned on all three corpora. 413

Associative: Our proposed approach. 414

4.6 Main Results 415

We summarize our main results on the CNN News 416

and the NQ Val in Table 3 and Table 4, re- 417

spectively. Our methods achieve significant im- 418

provements on both answer and context consis- 419

tency scores on both datasets, while demonstrating 420

slight performance degradation on past informa- 421

tion on Replay. Moreover, Fact+Naïve also demon- 422

strates improved factual consistency scores over 423

Fact Fine-tuning baselines by includeing the self- 424

prompted data. This demonstrates the effectiveness 425

of the self-prompting step in mitigating the LM- 426

logical discrepancy. Our approach still outperforms 427

Fact+Naïve, showing the superiority of explicit 428

modeling of information associations. We also 429

provide an example case study in the Appendix D 430

where naive distillation fails due to past informa- 431

tion but our approach succeed. 432
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Metric
New Information Updating Replay

Answer Context F1 Answer

Base 0.399 0.460 0.428 0.699
Fact 0.426±0.014 0.516±0.008 0.467±0.014 0.702± 0.014
Naïve 0.409±0.017 0.499±0.005 0.449±0.017 0.707± 0.012
Fact+Naïve 0.421±0.008 0.538±0.002 0.472±0.008 0.713±0.018

Associative 0.480±0.003 0.695±0.034 0.568±0.003 0.691±0.014

Table 3: Factual consistency scores on CNN News

Metric
New Information Updating Replay

Answer Context F1 Answer

Base 0.187 0.268 0.221 0.699
Fact 0.235±0.005 0.318±0.004 0.270±0.004 0.700±0.011
Naïve 0.228±0.003 0.337±0.006 0.272±0.003 0.699±0.007
Fact+Naïve 0.249±0.001 0.371±0.009 0.298±0.001 0.698±0.005

Associative 0.256±0.023 0.380± 0.013 0.306±0.023 0.691±0.051

Table 4: Factual consistency scores on NQ Val
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Figure 3: Forgetting of past information

4.7 Varying Number of Replay Examples433

We investigate the relationship between the num-434

ber of replay examples with the forgetting of past435

knowledge. We evaluate the performance on Re-436

play Data when models are fine-tuned on varying437

number of replay examples. The result is shown438

in Figure 3a. We use subsets of 0(no replay), 240,439

1.2k, 2.4k, 4,8k, 12k and 14.4k replay examples.440

Since our evaluation Replay Data is paraphrased441

from the original training examples as introduced442

in Section 4.2, we also compute the number of re-443

play examples that overlap with the paraphrased444

evaluation examples in these subsets: 0/240, 8/1.2k, 445

17/2.4k, 39/4.8k, 108/12k, 136/14.4k. 446

We observe from the results that even with only 447

240 examples with no overlapping evaluation ex- 448

amples, the fine-tuned model is able to maintain a 449

similar level of performance on Replay Data. Fur- 450

ther increasing the replay examples doesn’t affect 451

the performance to a large extent. However, it is 452

still crucial to include replay examples, since the 453

no replay performance is significantly worse. 454
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4.8 Continual Learning of Two Datasets455

We also conduct another continual learning experi-456

ments, where the model is updated using NQ Val457

first, and then CNN News. When fine-tuning on458

the CNN News corpus, we include 1,200 replay ex-459

amples, and 1,290 replay examples (one example460

per Wikipedia paragraph) from NQ Val. We only461

keep the self-prompted questions from NQ Val in462

the replay corpus, and use the model fine-tuned on463

NQ Val to re-generate answers for the next stage464

of fine-tuning. Due to the associative distillation,465

the re-generated answers serve as the replay of466

the updating corpus (Wikipedia paragraphs). This467

significantly reduces the number of tokens in the468

replay corpus by 97.7%, from 919,624 to 21,124.469

To investigate the forgetting problem, we evalu-470

ate the performance on Replay Data and NQ Val of471

the base model, the model after NQ Val fine-tuning472

stage and the model after CNN News fine-tuning473

stage. The results are shown in Figure 3b. We ob-474

serve only minor performance degradation on NQ475

Val when keeping 2.3% of the training tokens.476

5 Related Work477

Knowledge Editing Knowledge editing or478

model editing aims to update the existing model479

with human curated structured corpus. (Zhu et al.,480

2020) studies the task of knowledge modification481

and establishes a benchmark for pre-trained lan-482

guage models , defining knowledge as subject-483

object-relation triples. (Mitchell et al., 2022a;484

De Cao et al., 2021; Hase et al., 2021) employ hy-485

per model editor networks to directly edit the model486

weights based on gradients. (Meng et al., 2022) de-487

velops a model editing framework to locate and488

update the specific neurons in language models489

with knowledge triples based on causal inference.490

(Mitchell et al., 2022b) proposes a memory-based491

model editor that resembles retrieval-augmented492

language models. (Meng et al., 2023) introduces493

a massive editing approach to edit multiple triples494

with one edit. (Cohen et al., 2023) studies the gen-495

eralization problem of knowledge editing based on496

Ripple Effect. This line of research is mainly based497

on updating language model probabilities, there-498

fore limited by the LM-logical discrepancy we aim499

to address in this work.500

Instruction Fine-tuning Instruction fine-tuning501

has been shown to enable zero-shot capabilities502

for language models (Wei et al., 2022; Sanh et al.,503

2022; Ouyang et al., 2022; Chung et al., 2022).504

However, these methods focus on utilizing existing 505

information instead of information updating 506

Retrieval Augmented Language Models Re- 507

trieval augmented language models (RALMs) en- 508

hance the existing models with an external re- 509

triever that acquires external knowledge. Various 510

retriever design has been proposed in existing re- 511

search (Guu et al., 2020; Khandelwal et al., 2020; 512

Borgeaud et al., 2022; Izacard et al., 2022). How- 513

ever, RALMs cannot replace information updat- 514

ing since it is memory-intensive to maintain an 515

infinitely large storage for new information and 516

computation-intensive to retrieve from it. 517

6 Conclusions and Future Work 518

In this paper, we identify the core challenge of 519

LM-logical discrepancy for information updating 520

behind the limitations of exisiting research on gen- 521

eralizability and structurality. We introduce the 522

task of self information updating for LLMs, which 523

highlights unstructured information updating and 524

QA-based generalization evaluation. We design 525

a pipeline approach to tackle self information up- 526

dating, featuring a self prompting method and an 527

associative distillation approach to mitigate the LM- 528

logical discrepancy. The associative distillation is 529

proposed to solve the exposure bias problem which 530

prioritizes past information originating from the 531

discrepancy. Our proposed method significantly 532

improves factual consistency. Additionally, we 533

study the forgetting phenomenon under the con- 534

tinual learning setting and find that our proposed 535

method can maintain past knowledge by keeping a 536

small portion of the past data. 537

We envision three extensions for this work: 538

• Our analysis of the exposure bias problem is 539

applicable to any method based on the proba- 540

bilistic modeling of language. Therefore, our 541

approach can be combined with other knowl- 542

edge editing approaches to further improve 543

information updating; 544

• The exposure bias problem may also exist in 545

the pre-training stage due to the order in which 546

textual data is provided. A more in-depth 547

analysis of this phenomenon could lead to 548

improved strategies for language modeling. 549

• We conduct a continual learning experiment 550

of two stages in this work. We leave studies 551

on more updating stages as future work. 552
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7 Limitations553

Our work has several limitations. Firstly, we only554

experiment with a news corpus and a Wikipedia555

corpus. Additional experiments are required to val-556

idate the effectiveness of our approach on other text557

genre. Secondly, exploration on larger language558

models with hundreds of billions of parameters are559

absent in our current studies. Thirdly, we conduct a560

continual learning experiment of two stages in this561

work. Performance on more updating stages are562

subject to further investigation. Lastly, we only use563

moderately sized updating corpus for evaluation.564

Therefore, effectiveness on larger updating corpus565

requires more experiments.566
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A Computation Infrastructure and705

Additional Training Details706

We use Google TPU v3-8 for all the training spon-707

sored by the Google TPU Researc Cloud program.708

Batching for Self Information Updating In or-709

der to improve the training efficiency of training on710

TPU v3-8, we don’t use the conventional batchifi-711

cation of the training data based on instances. In-712

stead, we concatenate all the tokenized instruction-713

response pairs into a single list of tokens, and714

chunk the list into segments of batch_size × se-715

quence_length. We run training on 3 random seeds716

and report average performances. We derive our717

training codebase from EasyLM4. We will release 718

our code and data after publication. 719

Evaluation For evaluation, the responses are gen- 720

erated with a temperature of 0.2 for all the methods, 721

which ispicked from {0.1, 0.2, 0.5, 1.0} based on 722

the base model performance . We modify the code 723

from UniEval github repository5 with torch-xla6 724

to support running on TPUs. We evaluate our pro- 725

posed approach on the generated tokens after “The 726

response to {question} is:”. 727

Usage of GPT-4 We use snapshot of gpt-4-0314 728

for all prompting with GPT-4. 729

B Extension to Non-Independent New 730

and Past Information 731

Definition B.1 (Information in Text Corpus). The 732

information IS(T ) of the corpus T with respect 733

to another text corpusS is defined as the minimal 734

sufficient statistic of T e with respect to Se, such 735

that 736
P (x|T e) ≡ P (x|IS(T )), x ∈ S. (6) 737

Remark. Intuitively, IS(T) should consist of mini- 738

mal text pieces containing new information from T 739

such as “Manchester City’s manager is Pep Guardi- 740

ola”. 741

We can assume without the loss of generality 742

that IS(T) and IS(C) are independent. Otherwise 743

we can replace IS(T) with the conditional minimal 744

sufficient statistic of IS(T) given IS(C), which is 745

intuitively equivalent to removing the text pieces 746

consisting of existing information in C from T. 747

Therefore, we can do the same analysis on IS(T) 748

and IS(C) instead of T and C for non-independent 749

cases. 750

C Exposure Bias for Fact Fine-tuning 751

Fact fine-tuning optimizes 752

P (T |A′) =
∑
x∈X

P (T |xe,A′)P (xe|A′). (7) 753

A similar information-query association term 754

P (T |xe,A′) reveals how fact fine-tuning affects 755

probabilities of other information P (xe|A′). Ex- 756

posure bias undermines the quality of learned 757

P (T |xe,A′) and degrades the updating perfor- 758

mance. 759

4https://github.com/young-geng/EasyLM
5https://github.com/maszhongming/UniEval
6https://github.com/pytorch/xla
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D Case Study760

We provide an example case demonstrating where761

naive distillation fails but our associative distilla-762

tion approach successfully learns the information in763

Table. We omit some part of the text in both news764

article and model response for conciseness. We ob-765

serve that the naïve distillation approach generates766

hallucinated information. The omitted part men-767

tions bank attacks in Kentucky and Georgia, while768

this incident happens in Louisville. This suggest769

the baseline model utilizes existing information to770

generate the response.771

E Preparation Details of Natural772

Questions773

Our goal is to keep only those questions (together774

with relevant Wikipedia paragraphs) from the Nat-775

ural Questions (Kwiatkowski et al., 2019) valida-776

tion set where the base model (LLaMA-7B after777

instruction fine-tuning) cannot generate good an-778

swers. The overall filtering process is:779

Step 1. We first remove questions with "None"780

answers in the Natural Questions validation set.781

Step 2. We use the base model and the Alpaca782

template as in Appendix A to generate the answers783

to the rest questions in the Natural Questions vali-784

dation set.785

Step 3. We compute the factual consistency score786

(ranging from 0 to 1) from UniEval (Zhong et al.,787

2022) between the generated answer and gold stan-788

dard short answers. When there are multiple short789

answers, we use the maximum consistency score.790

Those questions whose scores are lower than 0.5791

are kept.792

Step 4. We collect all the Wikipedia paragraphs793

that are labeled as the long answer of any kept794

questions in Step 2 as the information updating795

corpus.796

F A Comprehensive List of Prompts Used797

in the Experiment798

We summarize a comprehensive list of prompts/in-799

puts used in the experiment for easier reference.800

Some of these prompts are already covered in the801

main text.802

Instruction Finetuning We train the instruction-803

following model following the template of Alpaca 7.804

7https://github.com/tatsu-lab/stanford_alpaca

Each instruction-response pair is prepared as the 805

following paragraph to fine-tune the model. 806

Below is an instruction that describes a 807

task. Write a response that appropriately 808

completes the request. 809

810

### Instruction: 811

{instruction} 812

813

### Response: 814

{response} 815

The losses are only computed for the tokens in 816

responses. This template is also used for the 817

instruction-response pairs in the information up- 818

date training. 819

Self Instruction Generation This prompt is 820

given to the language model to be updated for self 821

data creation. This prompt instructs the model to 822

generate instructions from the information updat- 823

ing corpus. 824

Given the input below, generate at least 5 825

questions that are directly related to the 826

content of the input. Ensure that each 827

question you generate does not contain 828

coreferential words or pronouns (e.g., 829

he, she, it, this, they, etc.). The ques- 830

tions should be clear, concise, and per- 831

tain specifically to details mentioned in 832

the input. {Context} 833

The {Context} slot is filled with each individual 834

news article from the information update corpus. 835

Self Answer Generation This prompt is given 836

to the language model to be updated for self data 837

creation. This prompt instructs the model to gen- 838

erate responses for the instructions in the previous 839

step from the information updatingcorpus. 840

Answer the question based on the facts 841

from the input. If there is no relevant 842

information in the input, answer ’None’. 843

Question: {Instruction} {Context} 844

The {Context} slot is filled with each individual 845

news article from the information update corpus. 846

The {Instruction} is from the outputs of last step. 847

To ensure the generated instruction-response pairs 848

pertain to the corpus, we remove those pairs when 849

the response is None. 850
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Table 5: An examples case where baseline fails but associative distillation succeeds.

Fact in News Article: Louisville Metro Police Department Officer Nickolas Wilt is
in critical condition after undergoing brain surgery following a shootout in a bank
... Mayor Craig Greenberg visited Wilt in the hospital, saying that he had made it
through surgery and was in serious condition but in great hands...
Instruction: What is the current state of Officer Wilt and what kind of recovery does he face?

Naïve Associative

Response:Nickolas Wilt is facing a long
road to recovery after undergoing surgery
to remove his right arm which was injured
in the attack. He is currently in serious
condition in the hospital...

Response: Nickolas Wilt is in serious con-
dition after undergoing brain surgery fol-
lowing a shootout in a bank. He faces a
long road to recovery and is currently se-
dated...

Fact Finetuning Training Data This is the in-851

puts to train the Fact Fine-tuning baseline in the852

main text. It is just the news articles.853

{News Article}854

Naïve Distillation This is the inputs to the train855

the Naïve Distillation Baseline. Only losses on the856

tokens after “Response” is used for training.857

Below is an instruction that describes a858

task. Write a response that appropriately859

completes the request.860

861

### Instruction:862

{Instruction}863

864

### Response:865

{Response}866

Here the {Instruction} and {Response} are paired867

outputs from Self Instruction Generation and Self868

Answer Generation.869

Associative Distillation This is the inputs to the870

train the Naïve Distillation Baseline. Only losses871

on the tokens after “Response” is used for training.872

Below is an instruction that describes a873

task. Write a response that appropriately874

completes the request.875

876

### Instruction:877

{Instruction}878

879

### Response:880

The instruction is related to the follow-881

ing information: {News Article}. The882

response to {Instruction} is: {Response}883

Here the {Instruction} and {Response} are paired 884

outputs from Self Instruction Generation and Self 885

Answer Generation. {News Article} is the corre- 886

sponding news article from the information update 887

corpus. Note that for unrelated instructions, the 888

{News Article} is filled with “None”. We repeat 889

the instruction one more time to compensate for 890

the limited sequence length and reduce the possi- 891

bility of instructions being truncated. We think it 892

may not be necessary to repeat the instruction if 893

the computational resources supports sufficiently 894

long training sequences. Only losses on the tokens 895

after “Response” is used for training. 896

Evaluation Data Generation We generate CNN 897

News evaluation data using GPT-4. This prompt 898

is given to GPT-4 to generate instruction-response 899

pairs. 900

Generate some questions8 with answers 901

related to facts from the following para- 902

graph. Make sure each question is self- 903

contained and specific enough for read- 904

ers to associate it with the information 905

provided in the paragraph, rather than 906

confusing it with other similar events. 907

Avoid using words such as "these", "this", 908

or "the event", "the movie" referring to 909

concepts not mentioned in the question. 910

Please generate in the format of "1. Ques- 911

tion: ... Answer: ..." {News Article}. 912

Because we strictly required the format of the gen- 913

eration in the last sentence, it is easy to parse the 914

output pairs. 915

8In this work, we focus on instruction-response pairs in a
question-answering format
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Paraphrasing Evaluation QAs on Past Informa-916

tion We generate evaluation QAs on past infor-917

mation by paraphrasing the instruction-response918

pairs in the instruction fine-tuning data. We use919

GPT-4 to generate the paraphrases.920

Given the following instruction and re-921

sponse pair, rewrite the pair to query the922

same information in different words.923

Instruction: instruction924

Response: response925

G Use of AI Assistant in Writing926

Chat-GPT is used as a grammar-checker in the927

writing of this paper.928
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