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A B S T R A C T

Semantic line is a straight line based representation designed to well capture the spatial layout or structural
shape of the scene in an image that is valuable as a high-level visual property. In this paper, we propose an
efficient end-to-end trainable semantic line detection model named Complementary semantic line TRansformer
(CosineTR), which is designed according to an old proverb ‘‘two heads are better than one’’. CosineTR adopts
a dual-branch framework to detect semantic lines with a coarse to fine strategy. These two branches are built
based on well-designed attention modules to capture multi-scale line semantic features locally and globally, and
are equipped with heatmap prediction head and parameter regression head respectively to perform semantic
line detection from two different perspectives. In addition, we introduce bilateral region attention and Gaussian
prior cross-attention modules to reinforce semantic contexts extracted by the two branches, and couple them to
form complementary feature representations by leveraging a feature interaction method. Extensive experiments
demonstrate that our approach is effective and achieves competitive semantic line detection performance on
multiple datasets.
1. Introduction

For most captured natural images, the spatial structure layout can
often be divided by a set of meaningful end-to-end straight lines [1], so
that the different regions correspond to distinct scene semantics. Such
straight lines are defined as semantic lines [2,3]. Semantic lines are a set
of intuitive and effective visual cues that can serve various applications,
such as autonomous driving [4,5], assisted photography [6], image
skew correction [7,8] and so on. It not only has practical importance,
but also can be used as prior knowledge for downstream tasks re-
lated to scene perception and understanding, for instance, scene graph
generation [9–11], image caption generation [12–14], etc.

Since deep Convolutional Neural Networks (CNNs) have become the
dominant architectures for vision tasks and shown powerful capabilities
for high-level semantic modeling [15,16], previous works on semantic
line detection all choose CNN as the paradigm to build networks.
For existing methods, they can be broadly divided into two types of
schemes as illustrated in Fig. 1. One is multi-stage detection method
based on randomly generated candidate lines [1–3], the first stage
pools features in the region around candidate lines and feed them
into a classifier to obtain line proposals, and the additional stages
further select and remove line proposals to refine them. The other
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is based on deep Hough transform [17,18], which translates feature
representation into Hough parametric domain, thus transforming the
detection problem into a heatmap prediction problem.

However, both of these methods perform dense prediction that
are susceptible to class imbalance. Considering the limited number of
semantic regions contained in normal-size images, semantic lines are
bound to be sparsely distributed, causing them to be easily swamped
under the huge number of background samples during training phase.
Moreover, previous works seldom focus on global interactions among a
set of semantic lines, but treat them as independent lines for extracting
and aggregating features from local contexts. As a result, the obtained
semantic lines are weakly correlated and hard to form an global optimal
semantic division for a given image.

In this paper, we go beyond the framework of previous studies
and jump out of the idea of optimizing a single task model. Instead,
inspired by ensemble learning and multi-task learning, we suggest
that combining multiple task modes can help fully detect semantic
lines that would otherwise be ignored, just as an old saying goes:
‘‘two heads are better than one’’. Our network, named Complementary
semantic line TRansformer (CosineTR), applying a multi-scale detection
method that estimates semantic lines both from heatmap prediction
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Fig. 1. Pipeline comparison between: (a) multi-stage detection model, (b) Hough
transform-based model and (c) our proposed Complementary semantic line TRans-
former (CosineTR). CosineTR applies two branches to capture local and global
semantic information, encouraging to complementarily detect semantic lines from two
perspectives.

and parameter regression. The two branches, called content branch
and query branch, can effectively extract local semantic contexts and
perform global interactions to achieve the overall optimal detection
results. Meanwhile, considering the advantage of feature representation
of Transformer [19] and its ability to capture long-term dependencies,
global modeling and set prediction, we build the dual-branch decoder
on top of the Transformer block [20,21], and design two attention
modules to make it better focus on the region features around semantic
lines.

Our contributions are summarized as follows.

• We consider the semantic line detection problem as a joint
heatmap prediction and parameter regression task. A dual-branch
Transformer-based network, CosineTR, is developed to under-
take these processes and aim to obtain complementary detection
results.

• The proposed detector decodes multi-scale features from coarse
to fine, with special focus on local region context and global
interaction of lines, helping to obtain the global optimal set of
semantic lines.

• We introduce two attention modules, bilateral region attention
and Gaussian prior cross-attention, to facilitate paying more at-
tention to regions around semantic lines.

• We conduct experiments on multiple datasets, the results demon-
strate that our method outperforms previous works and achieves
state-of-the-art results.

2. Related work

2.1. Semantic line detection

Semantic lines are the general description of the spatial and scene
layout of an image, with their endpoints all located on the boundaries
of the image, and the two sides of the line representing different seman-
tics. Since the main concept on semantic line detection [2] emerged,
the recent surge of deep learning-based approaches has formed two
types of mainstream approaches. One is the multi-stage detector similar
to Faster R-CNN [22], which initiates candidate lines randomly and
pools contextual features along the lines to generate line proposals,
then filters and validates the proposals and regresses offsets for them
to yield more precise coordinates [2,3,23]. The other kind of method
relies on deep Hough transform [17,18] to parameterize lines in terms
of two geometric terms: an offset and an angle, thus mapping the
2 
deep feature map from image domain to Hough domain [24]. By
parallelizing operations and efficient heatmap prediction, this method
shows a significant inference speed improvement. Nevertheless, the
above approaches employing dense prediction are susceptible to sparse
annotated examples during training phase, and they barely consider the
interaction between a set of semantic lines. In this work, we present
a dual-branch network to focus on local and global semantic contexts
modeling, thus detect semantic lines more comprehensively.

2.2. Transformer in vision

Since Transformer [19] has made a splash in the field of natu-
ral language processing, its application to computer vision tasks is
also growing rapidly [25–27]. These networks built with self-attention
mechanism architecture have been shown to reach or even surpass
the performance of CNNs on various dense prediction tasks [28–30].
They can produce global receptive fields, alleviate inductive bias and
model long-range dependencies [31–33]. In addition to exploiting the
representation capabilities of Transformer encoder to build a vision
backbone, its decoder can also be developed as a detection pipeline
to achieve end-to-end trainable object detection [34–36]. Instead of
using hand-crafted anchor boxes, DETR employ a set of learnable query
embeddings as object proxies, flexibly interacting with the region of
interest features through cross-attention mechanism [37]. As detect-
ing a harmonious set of semantic lines indispensably requires global
perception, as well as interactions between each semantic line, we
take advantage of Transformer to realize our dual-branch network,
and introduce novel attention mechanisms to reduce the computational
complexity and facilitate the training process.

3. Method

3.1. Overview

Semantic line detection aims to find an optimal set of lines that
can delineate the semantic regions of an image [1]. Our proposed
CosineTR (as illustrated in Fig. 2) is built to solve this problem based
on Transformer block and can be adapted to any multi-scale feature
extraction backbone network. More specifically, the processes of the
proposed model consist of three stages:

(1) Image Feature Extraction and Transformation: Given an input
image 𝐼 , a backbone network is used to extract multi-scale feature
maps 𝑋 = [𝑋1, 𝑋2, 𝑋3, 𝑋4], where 𝑋𝑖 ∈ R𝐻𝑖×𝑊𝑖×𝐶𝑖 . In general, we
take features output at multiple encoding stages with [ 1

32 ,
1
16 ,

1
8 ,

1
4 ]

original resolution. To take full advantage of line features and facilitate
parallelization, we follow the previous work [18] to transform the
representation from image domain to Hough domain, so that each pixel
can represent a set of lines. More formally, we use two parameters
(𝜃𝑙 , 𝑟𝑙) to parameterize a straight line 𝑙, where 𝜃𝑙 ∈ [0, 𝜋) represents
the angle between the plumb line of 𝑙 and the 𝑥-axis, and 𝑟𝑙 ∈
[−

√

𝑊 2+𝐻2

2 ,
√

𝑊 2+𝐻2

2 ] denote the distance from 𝑙 to the origin. For
each point on the line 𝑙 with coordinates (𝑥𝑖, 𝑦𝑖), it should satisfy the
parametric equation:

𝑟𝑙 = 𝑥𝑖 cos 𝜃𝑙 + 𝑦𝑖 sin 𝜃𝑙 , (1)

so that the features of all pixels alone line 𝑙 can be aggregated to the
pixel (𝜃𝑙 , 𝑟𝑙) in Hough space feature 𝐻 :

𝐻(𝜃𝑙 , 𝑟𝑙) =
1
∣ 𝑙 ∣

∑

𝑝∈𝑙
𝑋(𝑝), (2)

where 𝑝 is the positional index of the pixel along 𝑙, 𝜃𝑙 and 𝑟𝑙 are
calculated by:

𝜃 = ⌊

𝜃𝑙
⌋, 𝑟 = ⌊

𝑟𝑙
⌋, (3)
𝑙 𝛥𝜃 𝑙 𝛥𝑟
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Fig. 2. Overview of the proposed Complementary semantic line TRansformer (CosineTR): the input image is fed into a backbone network to extract multi-scale feature maps,
which are then converted from image space to Hough space by Deep Hough Transform (DHT) [18]. Next, the features are decoded from coarse to fine through content branch
and query branch respectively, the intermediate features are fused with higher resolution deep representations to attach fine-grained information layer by layer. Finally, semantic
threads are detected by the heatmap prediction header of the content branch and the parameter regression header of the query branch.
where 𝛥𝜃 and 𝛥𝑟 are specified quantization intervals that control the
size of the transformed feature map. We fix 𝛥𝜃 and adjust 𝛥𝑟 for dif-
ferent encoding layers to finally obtain a series of transformed features
𝐻 = [𝐻1,𝐻2,𝐻3,𝐻4], where 𝐻𝑖 ∈ R𝛩×𝑅𝑖×𝐶 .

(2) Coarse-to-Fine Decoding : The proposed dual-branch decoder takes
the transformed features 𝐻 and a set of 𝑁 line queries 𝐿 ∈ R𝑁×𝐶 as
input to perform semantic line detection in a coarse-to-fine iterative
manner. At the end of each decoding stage, we upsample the upper-
level output features 𝑂𝑖−1 to the same size as the current-level output
features �̂�𝑖 and use element-wise add to fuse them:

𝑂𝑖 = Upsample(𝑂𝑖−1) + �̂�𝑖, (4)

and the initial output 𝑂1 = �̂�1. We specifically design bilateral region
attention to replace the standard self-attention mechanism to focus on
the essential property of semantic lines, i.e., the boundaries of semantic
regions. Meanwhile, the need for global modeling is taken up by query
branch, which utilizes learnable line query embeddings to focus on
region of interest in intermediate features output by the content branch
and enables information transfer between all semantic lines using self-
attention mechanism. In addition, to better help line queries locate
to their respective corresponding regions, we design Gaussian prior
attention as a complement to cross-attention. Finally, at the end of
each decoding stage, we concatenate feature map with attention map to
complement the information generated by two branches. More details
can be found in Section 3.2.

(3) Semantic Line Prediction: After a series of decoding stages, we
obtain the final feature maps and decoder embeddings. Since the two
types of features are represented differently, we assemble a heatmap
prediction head to content branch and a parameter regression head
to query branch to predict semantic lines separately. After both heads
output semantic lines and confidence scores, the results are collected
together by a simple post-processing process. Finally, we map the line
parameters back into original space to represent a semantic line with a
quadruple (𝑥1, 𝑦1, 𝑥2, 𝑦2), where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are two intersections
of the semantic line and image boundaries.

3.2. Dual-branch decoder

Different from previous works, we devise a dual-branch
Transformer-based decoder to detect semantic lines. This design has the
advantage of reducing the difficulty of training dense prediction tasks
with sparse labels, while providing a simultaneous focus on local and
global semantic modeling. As a whole, the decoder has two branches
called semantic content branch and semantic query branch. These
two branches consist of identical and independent content blocks and
query blocks stacked multiple times, respectively. They receive feature
3 
Fig. 3. Bilateral region attention. (a) Bilateral region feature generation process. It is
the second step in bilateral region attention. (b) Process of bilateral region attention.
Note that we omit channel dimension in the figure.

maps of different scales as inputs, iteratively decode and make precise
predictions.

Bilateral Region Attention. The essence of a semantic line is
the boundary of different semantic regions, which means the bilateral
regions of the semantic line should exhibit heterogeneity. By exploiting
this property, we propose the bilateral region attention as shown in
Fig. 3. We implement bilateral region attention in Hough space to
efficiently compute a whole attention map for all potential lines.

Given a transformed image feature map 𝐻 ∈ R𝛩×𝑅×𝐶 , our first
objective is to obtain the feature representation of the adjacent regions
for each line. Let us clarify again that each pixel in Hough space feature
represents a set of neighboring lines, so we only need to be concerned
with regions on either side of one pixel. Specifically, for each column
𝑐 ∈ [0, 𝑅), we treat it as an axis to generate weighted feature 𝐻𝑐

𝑤 by
applying Gaussian weighting function 𝐺(⋅):

𝐻𝑐
𝑤(𝑖) = 𝐻(𝑖) × 𝐺(𝑑𝑐𝑖 ), (5)

where 𝑖 is the positional index of the pixel in the feature map and
𝑑𝑐𝑖 denotes the distance of pixel 𝑖 from the column 𝑐. Then, we split
the feature map into left and right parts along the column 𝑐 to obtain
𝐻𝑐

𝑙 ∈ R𝛩×𝑐×𝐷 and 𝐻𝑐
𝑟 ∈ R𝛩×(𝑅−𝑐−1)×𝐷. After that, we sum the feature

maps by rows and concatenate all 𝐻𝑐
𝑙 and 𝐻𝑐

𝑟 separately to obtain
bilateral region feature map 𝐻 𝑙

𝑏 ∈ R𝛩×𝑅×𝐷 and 𝐻𝑟
𝑏 ∈ R𝛩×𝑅×𝐷:

�̂�𝑐
𝑙 =

𝑐−1
∑

𝑖=0
𝐻𝑐

𝑙 (𝑖), (6)

�̂�𝑐
𝑟 =

𝑅−1
∑

𝐻𝑐
𝑟 (𝑖), (7)
𝑖=𝑐+1
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𝐻 𝑙
𝑏 = Concat(�̂�0

𝑙 , �̂�
1
𝑙 ,… , �̂�𝑅−1

𝑙 ), (8)

𝐻𝑟
𝑏 = Concat(�̂�0

𝑟 , �̂�
1
𝑟 ,… , �̂�𝑅−1

𝑟 ), (9)

where 𝑖 is the positional index of the pixel. Up to this point, for each
pixel in original feature, the pixel at the same position in region feature
maps contains the semantic contexts of regions on both sides of the
corresponding axis line. Next, we calculate cosine similarity of 𝐻 𝑙

𝑏 and
𝐻𝑟

𝑏 for each pixel to compare the semantic relevance of the left and
right regions:

𝐴(𝑖) = cos(𝐻 𝑙
𝑏(𝑖),𝐻

𝑟
𝑏 (𝑖)) =

𝐻 𝑙
𝑏(𝑖) ⋅𝐻

𝑟
𝑏 (𝑝)

‖𝐻 𝑙
𝑏(𝑖)‖ × ‖𝐻𝑟

𝑏 (𝑖)‖
, (10)

where ‖⋅‖ is the norm of vector and 𝐴 is bilateral region attention map.
Finally, the feature can be weighted as:

𝐻𝑎𝑡𝑡 = (1 + 𝐴)⊙𝐻. (11)

Gaussian Prior Cross-Attention. We randomly initialize a set of
learnable line queries for the query branch as the basic reference
of semantic lines with different locations. Once trained, these query
embeddings are fixed to compute attention map with content block
features and extract contexts from region of interest. Considering the
original attention map is not always optimistic, we add a Gaussian
prior to the cross-attention mechanism so that the region of interest
of each line query will not excessively deviate from its corresponding
position. Before introducing it, we first revisit the standard attention
module proposed by Transformer [19]. Given a query 𝑄 ∈ R𝑚×𝑑 , a key
𝐾 ∈ R𝑛×𝑑 and a value 𝑉 ∈ R𝑛×𝑑 , the attention operation is defined as:

Attention(𝑄,𝐾, 𝑉 ) = Sof tmax(𝑄𝐾𝑇
√

𝑑
)𝑉 . (12)

In the process of cross-attention, 𝑄 is mapped by decoder embeddings
𝐷𝑞 through 𝑊𝑄 ∈ R𝑑×𝑑 , while 𝐾 and 𝑉 are mapped by the feature
𝐻𝑐 through 𝑊𝐾 ∈ R𝑑×𝑑 and 𝑊𝑉 ∈ R𝑑×𝑑 , where 𝑊𝑄, 𝑊𝐾 , and 𝑊𝑉
re all learnable linear projection weights. More specifically, the cross-
ttention is calculated by Attention(𝑄 = 𝐷𝑞𝑊𝑄, 𝐾 = 𝐻𝑐𝑊𝐾 , 𝑉 =

𝐻𝑐𝑊𝑉 ). As we want to introduce a spatial prior for each query, we
first predict the offset 𝑃𝑜𝑓𝑓𝑠𝑒𝑡 ∈ R𝑁×2 using a feed-forward network
nd query 𝑄, and add it to the reference points. Note that the reference
oints 𝑃𝑟𝑒𝑓 ∈ R𝑁×2 is predicted using the initial query 𝐿. To enhance
he attention of line queries around their position, we generate the
aussian-like weight map as:

(𝑖, 𝑗) = exp(−
(𝑖 − 𝑝𝜃)2

𝜎2
−

(𝑗 − 𝑝𝑟)2

𝜎2
), (13)

where (𝑖, 𝑗) ∈ [0, 𝛩) × [0, 𝑅) is the spatial indices of 𝐺, 𝜎 is the variance,
(𝑝𝜃 , 𝑝𝑟) is the coordinate of the prediction point. Thus, the gaussian prior
attention can be written as:

GPCA(𝑄,𝐾, 𝑉 ) = Sof tmax(𝑄𝐾𝑇
√

𝑑
+ log𝐺)𝑉 . (14)

Content Block. We base the content block on standard Transformer
block, with the difference being the use of bilateral region attention
instead of multi-headed self-attention, so as to reduce computational
complexity and focus on semantic line properties. In addition, deep con-
volution is added to the content block to be more adapted to processing
visual modal features as well as more conducive to converging and fus-
ing local features. Specifically, for the deep convolutional feedforward
neural network, the input is the attention-weighted parameter space
feature 𝐻𝑎. The computational procedure is shown below:

𝐻𝑓1 = Conv1×1
(

𝐻𝑎
)

𝐻𝑓2 = DWConv3×3
(

𝐻𝑓1

)

𝐻𝑓3 = GELU
(

𝐻𝑓2

)

𝐻 = Conv
(

𝐻
)

(15)
𝑓4 1×1 𝑓3

4 
where 𝐻𝑓𝑖 denotes the intermediate features produced by each step,
DWConv3×3 (⋅) denotes the convolutional layer with a convolutional
kernel size of 3 × 3, and 𝐺𝐸𝐿𝑈 (⋅) denotes the Gaussian error linear
cell activation function. The last part of the content block is consistent
with the Transformer block and consists of jump connections and layer
normalization, which is computed as shown in the following equation.

𝐻𝑐 = 𝐿𝑁
(

𝐻𝑓4 +𝐻𝑎

)

(16)

where 𝐿𝑁(⋅) denotes layer normalization.
Query Block. The query block is designed based on the structure

of DETR [21]. Meanwhile, in order to speed up the training to ensure
its performance matching with the content block, we adopt the scheme
proposed in Conditional DETR [34] to perform position correction of
reference points in each decoding stage, and decoupling input features
from positional encoding in cross-attention. More formally, the query
block takes decoding embeddings 𝐷𝑞 ∈ R𝑁×𝐶 which output by the last
query block and line query embeddings as input. First, the self-attention
module makes all lines interact, avoiding multiple queries focusing on
the same region. Then, line embeddings are computed with Hough
space image features with Gaussian prior cross-attention to capture the
line semantic features in different regions. At the same time, we keep
the attention map 𝐴𝑞 ∈ R𝛩×𝑅 generated in cross-attention process and
send it to the next fusion process.

Attention Fusion. Since we do not want the two branches to
perform the detection task completely independently, but rather to
create some communication path between them so that the interme-
diate features can have complementary information, we design the
attention fusion method. This step is very simple and only requires
concatenating the decoded features 𝐻𝑐 output from the content block
with the attention map 𝐴𝑞 output from the query block:

�̂� = Concat(𝐻𝑐 + 𝐴𝑞). (17)

In this way, the feature maps output at each decoding stage contains
the semantic information of both content and query block concerns,
Integrating local and global semantic information.

3.3. Loss function

We use heatmap prediction head and parameter regression head to
detect semantic lines simultaneously, and finally obtain the heatmap
𝑃ℎ ∈ R𝛩×𝑅 and a set of line parameters 𝑃𝑙 ∈ R𝑁×2. Based on this, we
divide the loss into classification loss and regression loss.

Classification Loss. We consider heatmap prediction as a binary
classification task for each pixel, so we compute the cross-entropy loss
between ground-truth label 𝐿ℎ ∈ R𝛩×𝑅 and predicted map:

𝐿𝑐𝑒 = −
∑

𝑝
(𝐿ℎ(𝑝) log𝑃ℎ(𝑝) + (1 − 𝐿ℎ(𝑝)) log(1 − 𝑃ℎ(𝑝))), (18)

where 𝑝 is index of the map. Besides, to overcome the problem of
ositive and negative sample imbalance, we also apply the dice loss:

𝑑𝑖𝑐𝑒 = 1 −
2|𝐿ℎ ∩ 𝑃ℎ|

|𝐿ℎ| + |𝑃ℎ|
, (19)

here |⋅| is the summation of matrix elements.
Regression Loss. Since we predict a pair of parameters and a

onfidence score for each line query, therefore the number of predicted
esults we get is greater than the number of ground-truth labels 𝐿𝑙 ∈
𝑀×2. We calculate the cost function between the prediction results and

he labels based on the coordinate distance and confidence, and select
lines with the smallest total cost as the positive predicted samples

y bipartite matching algorithm. Then, we calculate focal loss for all
redicted results:

𝑓𝑜𝑐𝑎𝑙 = − I{𝜎(𝑖)≤𝑚}𝛼(1 − 𝑃𝑙(𝑖))𝛾 log𝑃𝑙(𝑖)
𝛾 (20)
− I{𝜎(𝑖)>𝑚}(1 − 𝛼)𝑃𝑙(𝑖) log(1 − 𝑃𝑙(𝑖)),
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Fig. 4. Label generation process in parameter space.
where 𝑖 denotes 𝑖th predicted results, 𝜎(𝑖) is the index of 𝑖th line after
matching, 𝛼 and 𝛾 are both hyper-parameters. While for distance loss,
we only consider the matched prediction lines:

𝐿𝑑𝑖𝑠𝑡 = I{𝜎(𝑖)≤𝑚}𝑑(𝐿𝑙(𝑖), 𝑃𝑙(𝑖)), (21)

where 𝑑(⋅) is the sum of L1 distance between prediction and target
coordinates. Finally, the total loss is represented as a weighted sum of
the above losses:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠 + 𝜆𝑑𝑖𝑐𝑒𝐿𝑑𝑖𝑐𝑒 + 𝜆𝑓𝑜𝑐𝑎𝑙𝐿𝑓𝑜𝑐𝑎𝑙 + 𝜆𝑑𝑖𝑠𝑡𝐿𝑑𝑖𝑠𝑡. (22)

4. Experiments

4.1. Experimental settings

Implementation Details. We adopt ResNet50 [38] as our back-
bone, and resize input image size to 384 × 384. The transformed feature
size has 𝛩 equal to 96 and 𝑅 equal to [12, 24, 48, 96] for different
decoding stages from top to down. The number of line queries 𝑁 is
set to 20, the feature dimension 𝐶 is set to 256, and the sigma 𝜎 of
prior Gaussian map is set to 1

3 . We use sine/cosine positional encoding
in query block. The 𝛼 and 𝛾 in focal loss are set to 0.25 and 2, loss
weights 𝜆𝑐𝑙𝑠 = 0.3, 𝜆𝑑𝑖𝑐𝑒 = 0.5, 𝜆𝑓𝑜𝑐𝑎𝑙 = 1 and 𝜆𝑑𝑖𝑠𝑡 = 10. We train the
network for 50 epochs with batch size 8, take AdamW as the model
optimizer and set weight decay as 10−4. The initial learning rate is set
to 10−4 and decays according to (1 − 𝑒𝑝𝑜𝑐ℎ

𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑜𝑐ℎ )
0.9 All experiments are

conducted with a single NVIDIA RTX 3090 GPU.
Dataset. We conduct experiments on the SEL [2], SEL_Hard [3] and

NKL [18] datasets. All of them contain natural images with a large
number of scenes and a variable number of semantic lines are labeled
for each image. Both SEL and NKL datasets provide training set and test
set, while SEL-Hard is only used for testing.

Data preprocessing. In the sample label generation step, corre-
sponding to the loss function setting case introduced in Section 3.3, we
need to provide the heat map ground-truth and semantic line ground-
truth in the parameter space, whose label generation process is shown
in Fig. 4. Specifically, for each semantic line annotation

(

𝑥1, 𝑦1, 𝑥2, 𝑦2
)

in the image, it is first converted into a pair of semantic line parameters
(𝜃, 𝑟) using the line parameterized representation, which can be directly
used as parameter space semantic line ground-truth. In addition, for
heatmap ground-truth in parameter space, the semantic line parameters
need to be further quantized according to the quantization interval
(𝛥𝜃, 𝛥𝑟). By using the quantized line parameters (�̂�, �̂�) as an index, the
pixel value of the position corresponding to this index in the heatmap
label is set to 1, which means that the position corresponds to a
semantic line positive sample.

Evaluation Metrics. To keep consistent with previous works, we
adopt AUC [2] and HIoU [1] metric to evaluate our model. For calcu-
lating AUC, we first evaluate mIoU score between a predicted semantic
line with the ground-truth label, a semantic line is regarded as correctly
5 
Table 1
Performance comparison on SEL and SEL_Hard datasets, all results are presented in
percentages.

Method SEL SEL_Hard FPS

AUC_P AUC_R AUC_F HIoU AUC_P AUC_R AUC_F HIoU

SLNet [2] 84.56 82.01 83.27 78.13 79.53 67.28 72.89 59.83 22.13
DRM [3] 85.84 86.99 86.41 80.35 86.75 77.76 82.01 68.67 1.21
DHT [18] 87.79 80.24 83.85 79.77 84.72 72.47 78.12 64.42 56.70
SHNet [1] 89.60 83.91 86.66 80.92 87.34 72.35 79.14 65.89 27.13
CosineTR (ours) 92.44 84.35 88.21 84.48 88.37 73.87 80.47 69.65 16.20

detected if its mIoU score with the ground-truth line is greater than a
threshold 𝜏, then we can compute the precision and the recall by:

Precision =
𝑁𝑡𝑝

𝑁𝑡𝑝 +𝑁𝑓𝑝
,Recall =

𝑁𝑡𝑝

𝑁𝑡𝑝 +𝑁𝑓𝑛
, (23)

where 𝑁𝑡𝑝 is the number of correctly detected lines, 𝑁𝑓𝑝 is the number
of wrongly detected lines and 𝑁𝑓𝑛 the number of undetected lines.
Meanwhile, the F1-score can be calculated by:

F1−score = 2 × Precision × Recall
Precision + Recall

. (24)

By adjusting the threshold, a curve can be plotted and the AUC is the
area under this curve.

In addition, HIoU measures the harmony of detected semantic lines
in the context of an image. Suppose that the set of detected lines
and the set of ground-truth lines divide the image into regions 𝑆 =
{𝑠1, 𝑠2,… , 𝑠𝑁} and 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑀}, the HIoU is defined as:

HIoU =

∑𝑁
𝑖=1 max𝑘 IoU(𝑠𝑖, 𝑡𝑘) +

∑𝑀
𝑗=1 max𝑘 IoU(𝑡𝑗 , 𝑠𝑘)

𝑁 +𝑀
. (25)

4.2. Results and comparisons

We compare our model with previous methods on SEL and SEL_Hard
datasets in Table 1, and the detection results is shown in Fig. 5. The
results demonstrate that our method achieves a new state-of-the-art
for HIoU metric on both dataset, which verifies that the interactive
modeling of local and global semantic contexts by dual-branch allows
for a more harmonious division of semantic regions for each image.
Besides, our model also gains notable improvements on AUC metrics,
more specific result curves are shown in Fig. 6. Notably, our model
can improve recall as much as possible with high precision and is com-
parable to candidate line-based multi-stage detectors, which benefit
from the use of dual branch architecture with two prediction heads.
In contrast, the inference speed of our model is slightly lower than that
of other methods, which is mainly caused by the cross-attention in the
multi-stage decoding process, as well as the impact of the dual-branch
architecture. Nevertheless, the speed of our method is still substantially
faster than DRM, which gets a higher recall by repeatedly selecting
proposal lines, while this consumes too much time.
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Fig. 5. Comparison of semantic line detection results on SEL and SEL_Hard datasets.
Fig. 6. Comparison of precision, recall and F1-score curves on the SEL dataset.
Table 2
Performance comparison on NKL datasets.

Method AUC_P AUC_R AUC_F HIoU

DHT [18] 75.74 76.24 75.99 70.09
SHNet [1] 81.60 81.64 81.62 74,36
CosineTR (ours) 81.75 82.27 82.01 77.70

On the NKL dataset, our model compares with the best-performing
methods in each of the two types of schemes. The NKL dataset includes
a wider range of complex scenarios and a larger number of semantic
lines, making it more difficult to detect the optimal set of semantic
lines. Table 2 shows our model also reaches state-of-the-art perfor-
mance, in fact, our approach can be seen as an organic combination of
these two approaches, which uses both heatmap prediction and para-
metric regression to perform complementary detection, thus achieving
a more comprehensive detection of semantic lines.

4.3. Ablation studies

As shown in Table 3, we conduct ablation studies to explore the
effects of (1) Bilateral Region Attention module, (2) Gaussian Prior
Cross-Attention module, (3) Attention Fusion method, (4) the results
obtained using only content branch and (5) the results obtained us-
ing only query branch. In addition, we also evaluated the impact of
different decoding stages and the results of using different backbone
networks.

Bilateral Region Attention. To explore the effect of applying bilat-
eral region attention, we replace it with the spatial reduction attention
(SRA) which proposed in PVT [25]. The SRA is very close to the
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Table 3
Ablation results of the proposed method on SEL dataset.

Method AUC_P AUC_R AUC_F HIoU

w/o BRA 91.26 84.10 87.53 83.13
w/o GPCA 91.81 83.07 87.22 83.89
w/o AF 92.02 84.29 87.99 83.90
CB only 94.48 81.60 87.51 84.45
QB only 95.80 80.96 87.76 84.29
ours full 92.44 84.35 88.21 84.48

standard attention mechanism, but in order to reduce the resource
consumption in vision tasks, it reduces the length of image embedding
tokens of key and value. Compared to the SRA that requires learning
to focus on different regions, BRA generates heatmaps by evaluating
the semantic similarity of bilateral regional features, which is more
in line with the property and definition of the semantic line. Fig. 7
shows the heatmaps of bilateral region attention generated during the
last decoding stage, we can clearly see that the BRA can effectively
capture the boundaries of different semantic regions and reinforce the
corresponding semantic contextual features, suggesting that there may
be semantic lines here.

Gaussian Prior Cross-Attention. Since gaussian prior attention is
a plug-and-play module attached to the cross-attention mechanism, we
directly disable it in the experiments. It can be seen from Table 3
that the usage of GPCA can bring gains in detection performance,
especially in the metric of AUC_R. This is due to the fact that the
Gaussian prior heatmaps generated based on each line query help them
to better focus on the region they are responsible for predicting. A
more intuitive demonstration is shown in Fig. 8, the original cross-
attention heatmaps are obtained by model learning, and although they



Y. Zhang et al. Pattern Recognition 158 (2025) 110952 
Fig. 7. Visualization of bilateral region attention heatmaps and Hough space attention maps. The heatmap is generated in Hough space and mapping to image space by inverse
Hough transform.
Fig. 8. Visualization of gaussian prior cross-attention heatmaps, the first row shows original cross-attention heatmaps, the second shows gaussian prior heatmaps generated according
to line queries, and the third row shows gaussian prior cross-attention heatmaps.
have focused on some important semantic line locations, they still miss
some key regions. By overlaying Gaussian prior heatmaps on them, it
can be clearly observed that the regions of interest are closer to the
location of the semantic lines in ground-truth labels, which helps the
model to train faster and obtain higher recall score.

Attention Fusion. We evaluate the attention fusion method by
uncoupling the feature map with the attention map after each decoding
stage. We find that using AF results in a slight performance gain, which
proves that establishing an communication path between two branches
can effectively share semantic contexts and help both branches make
better predictions.

Single Head Prediction. Since we equip the model with two inde-
pendent prediction heads to detect semantic lines in the form of heat
map prediction and parameter regression, respectively. We can observe
the effect of complementary detection by keeping the detection results
of the single prediction head, just as shown in Fig. 9. It should be
noted that when combining the results of the these prediction heads,
we first keep the heatmap prediction results and supplement them with
the parametric prediction results, as the heatmap predictions tend to
produce more accurate results. From the figure, we can find that both
detection heads tend to detect the full set of semantic lines, but there
may be omissions in some scenarios, but this can be complemented
by the other. Combined with Table 3 we can see that although the
AUC_P of the single head prediction results are higher than the full
model, they have a major drawback in the AUC_R score, meaning that
they have difficulty reaching comprehensive detection results alone.
Conversely, when we use two prediction heads for complementary
7 
Table 4
Detection results of adopting different backbones on SEL dataset.

Backbone AUC_P AUC_R AUC_F HIoU

VGG16 [39] 88.58 85.89 87.22 82.61
ResNet50 [38] 92.44 84.35 88.21 84.48
PVT [25] 92.30 85.48 88.76 84.89
MPViT [29] 92.73 86.82 89.68 84.95

detection, although some false positive semantic lines are inevitably
introduced into final results, leading to a slight decrease in AUC_P,
we can capture those semantic lines that would otherwise be missed
and eventually achieve the best performance in terms of the combined
metric AUC_F, which confirms our conjecture that two heads are better
than one.

Multi-stage Decoding. We use features gained after each decoding
stage directly for prediction, and the obtained results are presented
in Fig. 10. This intuitively demonstrates the coarse-to-fine decoding
process of the CosineTR decoder. The first decoding stage focuses
on as many semantic line proposals as possible and roughly predicts
their locations. As subsequent decoding stages proceed and fine-grained
semantic features are introduced, the model selects and excludes redun-
dant lines and more finely tunes the specific locations of the predicted
semantic lines, ultimately yielding accurate detection results.

Different Backbones. The proposed decoder can be adapted to
any multi-scale encoding backbone network, so we tried some classical
architectures, including CNN-based networks VGG16 and ResNet50,
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Fig. 9. Detection results of single prediction head and their complements.
Fig. 10. Detection results of different decoding stages.
Transformer-based networks PVT, and a mixed architecture of both
called MPViT, the results are presented in Table 4. We find that the
Transformer-based architecture provides greater performance gains for
the model due to its strong global modeling capabilities and its ability
to capture long-term dependencies. The semantic line detection task
relies strongly on global features and remote dependencies, so that the
model needs to capture semantic contexts in a large range of regions as
well as focus on the connections between different semantic regions.

4.4. Subjective semantic lines quality evaluations

To further evaluate the effectiveness of our model, we conducted
two rounds of subjective semantic lines quality evaluations. A total of
106 evaluations were conducted, with more than 10 instances involving
participants with over five years of photography experience and over
30 instances involving researchers in the field of computer vision.
All participants received brief training to understand the definition of
semantic lines. The results of the two subjective semantic lines quality
evaluations are shown in Fig. 11.

In the subjective semantic lines quality evaluation 1, 50 partici-
pants were involved. This evaluation included 48 images, encompass-
ing ground truth images and semantic lines detection results from five
models, including ours. The options for each question were in a fixed
order and non-anonymous. Evaluators knew the names of the models,
but we did not disclose any potential competitive relationships. As
shown in Fig. 11(a), our model achieved significant results in this
evaluation, demonstrating its superiority in semantic lines detection
compared to other models.
8 
To eliminate any bias caused by the model names, we conducted
the subjective semantic lines quality evaluation 2. In this evaluation,
56 participants were involved, and a total of 60 images were assessed.
Each question included one ground truth image and options A and
B, which contained randomly ordered semantic lines detection results
from two models, and option C, ‘‘The above two are very similar’’. As
shown in Fig. 11(b), even after removing the influence of model names,
our model still outperformed the others, confirming its advantages.
Examples of the two subjective semantic lines quality evaluations can
be found in the Supplementary Information.

5. Conclusion

We propose the Complementary semantic line TRansformer
(CosineTR), a dual-branch Transformer-based network that combines
heatmap prediction and parameter regression tasks for semantic line
detection. We design the attention fusion method to build communica-
tion between the two branches and present bilateral region attention
and Gaussian prior cross-attention to assist the model in capturing se-
mantic lines more effectively. Once trained, we can get complementary
detection results from the two prediction heads. Experimental results
demonstrate that our method achieves new state-of-the-art results.
However, as shown by the visualized detection results, the two-branch
structure still has the problem of duplicated attention or common
omission of some semantic lines, which results in the waste of detection
resources and insufficient enhancement of detection effect. Therefore,
a more effective coupled detection scheme can be considered in further
research by applying an artificial prior to the two branches.
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Fig. 11. Results of subjective semantic line quality evaluation. In (a), the horizontal coordinates are the different models and the vertical coordinates are the count of evaluators’
votes. In (b), the horizontal coordinates are the different options after collation (the pictures were randomized when the evaluators voted) and the vertical coordinates are the
same as in (a).
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