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ABSTRACT

We show that introducing a weighting factor to reduce the influence of identity
shortcuts in residual networks significantly enhances semantic feature learning
in generative representation learning frameworks, such as masked autoencoders
(MAEs) and diffusion models. Our modification improves linear probing accuracy
for both, notably increasing ImageNet accuracy from 67.8% to 72.7% for MAEs
with a VIT-B/16 backbone, while also boosting generation quality for diffusion
models. This significant gap suggests that, while residual connection structure
serves an essential role in facilitating gradient propagation, it may have a harmful
side effect of reducing capacity for abstract learning by virtue of injecting an echo
of shallower representations into deeper layers. We ameliorate this downside via a
fixed formula for monotonically decreasing the contribution of identity connections
as layer depth increases. Our design promotes the gradual development of feature
abstractions, without impacting network trainability. Analyzing the representa-
tions learned by our modified residual networks, we find correlation between low
effective feature rank and downstream task performance.
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Figure 1: We design decayed identity shortcuts (Figure 2), a variant of residual connections, to
facilitate self-supervised representation learning. Compared to standard residual connections, our
approach yields superior abstract semantic features (left, visualized using Zhang et al. (2024)’s
approach), whose leading components pop out object instances and classes. Quantitative evaluation
shows our architecture encourages lower feature rank and achieves a substantial increase in linear
probing accuracy for both MAE and diffusion models, along with enhanced generation quality for
diffusion models (right). These improvements require no additional learnable parameters.

1 INTRODUCTION

Residual networks (ResNets) (He et al., 2016) define a connection structure that has achieved near-
universal adoption into modern architectures for deep learning. At the time of their development,
supervised learning (e.g., ImageNet (Deng et al., 2009) classification) was the driving force behind the
evolution of convolutional neural network (CNN) architectures. Residual networks solved a key issue:
CNNs constructed of more than approximately 20 convolutional layers in sequence became difficult
to train, leading to shallower networks outperforming deeper ones, unless additional techniques,
such as auxiliary outputs (Szegedy et al., 2015) or batch normalization (Ioffe & Szegedy, 2015),
were employed. Both ResNets, and their predecessor, highway networks (Srivastava et al., 2015a)
provide elegant solutions to this trainability problem by endowing the network architecture with
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Figure 2: Our decayed identity shortcuts introduce a depth-dependent scaling factor to shortcuts in
a residual network, thereby modulating the contribution of preceding layers and fostering greater
abstraction in deeper layers. A simple schema for controlling decay factor ↵ suffices to improve
feature learning in both MAEs and diffusion models, as well as diffusion model generation quality.

alternative shortcut pathways along which to propagate gradients. Highway networks present a
more general formulation that modulates these shortcut connections with learned gating functions.
However, given their sufficient empirical effectiveness, the simplicity of ResNet’s identity shortcuts
(residual connections) makes them a preferred technique.

While solving the gradient propagation issue, residual connections impose a specific functional form
on the network; between residual connections, each layer (or block of layers) learns to produce
an update slated to be added to its own input. This incremental functional form may influence
the computational procedures learned by the network (Greff et al., 2017). Alternatives to residual
and highway networks exist that do not share this functional form, but implement other kinds of
skip-connection scaffolding in order to assist gradient propagation (Larsson et al., 2017; Huang et al.,
2017; Zhu et al., 2018). Thus, shortcut pathways, rather than a specific form of skip connection,
are the essential ingredient to enable the training of very deep networks. Nevertheless, nearly all
modern large-scale models, including those based on the transformer architecture (Vaswani et al.,
2017) incorporate the standard identity shortcut residual connection.

This design choice holds, even as deep learning has shifted into an era driven by self-supervised
training. The shift to self-supervision brings to the forefront new learning paradigms, including those
based on contrastive (Wu et al., 2018; He et al., 2020; Chen et al., 2020; Caron et al., 2021; Grill et al.,
2020), generative (Goodfellow et al., 2014; Karras et al., 2021; Ho et al., 2020; Song et al., 2021a;
2023; Rombach et al., 2022), and autoencoding (Kingma & Welling, 2013; He et al., 2022; Li et al.,
2023) objectives. Many systems in the generative and autoencoding paradigms rely on “encoder-
decoder” architectures, often styled after the original U-Net (Ronneberger et al., 2015), which contains
additional long-range shortcuts between corresponding layers in mirrored symmetry about a central
bottleneck. With representation learning as a goal, one typically desires that the middle bottleneck
layer produce a feature embedding reflecting abstract semantic properties. The interaction of skip-
connection scaffolding for gradient propagation with encoder-decoder architectures, self-supervised
training objectives, and bottleneck representations has not been carefully reconsidered. This is a
worrisome oversight, especially since, even in the supervised setting with standard classification
architectures, prior work suggests that unweighted identity shortcuts may be a suboptimal design
decision (Savarese & Figueiredo, 2017; Fischer et al., 2023).

Intuitively, identity shortcut connections may not be entirely appropriate for capturing high-level,
semantic representations as they directly inject low-level, high-frequency details of inputs into outputs,
potentially compromising feature abstraction. We explore this issue within generative learning
frameworks, including masked autoencoders (MAEs) (He et al., 2022) and diffusion models (Ho
et al., 2020), leading paradigms for self-supervised image representation learning and generation.
Our experiments demonstrate that identity shortcuts significantly harm semantic feature learning in
comparison to an alternative we propose: gradually decay the weight of the identity shortcut over the
depth of the network, thereby reducing information flow through it (Figure 2). With increasing layer
depth, our approach facilitates a smooth transition from a residual to a feed-forward architecture,
while maintaining sufficient connectivity to train the network effectively. Unlike prior work on
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learned gating (Srivastava et al., 2015a) or reweighting (Savarese & Figueiredo, 2017) mechanisms
for residual connections, our method is a forced decay scheme governed by a single hyperparameter.

A parallel motivation for our design stems from Huh et al. (2021), who show that features from residual
blocks have higher rank than those produced by comparative feed-forward blocks. The smooth
transition between residual and feed-forward behavior induced by our decay scheme regularizes
deeper features toward exhibiting low-rank characteristics. Section 6 experimentally explores the
correlation between our decayed identity shortcuts and low-rank feature representations. Figure 1
previews the corresponding improvements to representation learning. Our contributions are:

‚ We introduce decayed identity shortcuts, a simple architectural mechanism which enhances
semantic feature abstraction in masked autoencoders and diffusion models.

‚ We identify a key correlation between our decayed identity shortcuts and low-rank inductive
bias, empirically validating that our method improves classification accuracy and yields low-rank
features with distinct cluster structures.

‚ Our novel design within an MAE yields a substantial performance boost in linear probing on
ImageNet-1K (Deng et al., 2009) (72.7% from a baseline 67.8%).

‚ In diffusion models, our design improves both feature learning and generation quality.

‚ Ablation studies on ImageNet-100 show that smaller models equipped with decayed identity short-
cuts outperform larger ones using standard residual connections. A VIT-S/16 model (Dosovitskiy
et al., 2021) with our shortcut design outperforms a baseline VIT-B/16 (78.5% vs. 76.5%).

2 RELATED WORK

Self-supervised representation learning. Recent advancements (Achiam et al., 2023; Kirillov et al.,
2023; Rombach et al., 2022; Team et al., 2023; Shi et al., 2020; Ramesh et al., 2021) in deep learning
follow a common scaling law, in which a model’s performance consistently improves with its capacity
and the size of the training data. This effect can be observed in large language models (LLMs),
which are trained on vast amounts of internet text, enabling them to perform some tasks at human
level (Laskar et al., 2023) and exhibit remarkable zero-shot capabilities (Kojima et al., 2022). These
models are trained using next-token-prediction, allowing them to be trained without labeled data. In
contrast, the progress of this scaling law in computer vision has largely depended on annotated data.
For instance, the Segment Anything model (Kirillov et al., 2023) leverages 1 billion human-annotated
masks, and state-of-the-art image generators (Ramesh et al., 2021) require training on huge datasets
of text-image pairs (Schuhmann et al., 2022). However, the vast volume of unlabeled visual data and
desire for continued scaling motivates a transition to self-supervised learning.

At present, two families of approaches to self-supervised visual representation learning appear
particularly promising: contrastive learning (Wu et al., 2018; He et al., 2020; Chen et al., 2020; Caron
et al., 2021; Grill et al., 2020), which trains a discriminative model to maximize mutual information
across image augmentations, and generative learning, via masked image modeling (Bao et al., 2022;
He et al., 2022; Chen et al., 2024), which trains to reconstruct occluded pixels, or via diffusion
denoising (Song et al., 2021b; Ho et al., 2020; Song et al., 2021a), which trains to reverse a process
that mixes images with Gausssian noise. Some hybrid approaches (Zhou et al., 2022; Huang et al.,
2023; Li et al., 2023) combine both families. Despite advancements, neither has demonstrated the
same scalability (Singh et al., 2023) as seen in LLMs. This challenge is additional motivation for
reconsidering the foundations of self-supervised network architectures.

Residual and skip-connection architectures. Highway networks (Greff et al., 2017) first propose
an additive skip connection structure to provide a scaffolding for gradient propagation when training
very deep (e.g., 100 layer) networks. Motivated by the gating mechanisms within LSTMs (Hochreiter
& Schmidhuber, 1997), this solution uses learned gating functions to weight each combination of
identity and layer output branches. Residual networks (He et al., 2016) are a simplification that
removes these learned coefficients. DenseNet (Huang et al., 2017) and FractalNet (Larsson et al.,
2017) demonstrate that access to gradient paths of multiple lengths are the core requirement of
training scaffolding, by introducing skip-connection structures with other functional forms. DenseNet
utilizes feature concatenation instead of addition, while FractalNet imposes a recursive tree-like
architecture combining subnetworks of multiple depths.
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Zhu et al. (2018) explore variants of ResNets and DenseNets with fewer points of combination
between different internal paths, demonstrating that a sparser scaffolding structure may be more
robust as network depth increases to thousands of layers. Savarese & Figueiredo (2017) add a scalar
gating functional to the layer output in residual networks, yielding a hybrid design between residual
and highway networks; learning this scalar gating provides a consistent benefit to classification
accuracy. Fischer et al. (2023) develop a weighting scheme for residual connections based upon
a sensitivity analysis of signal propagation within a ResNet. To date, none of these potential
improvements have seen broad adoption.

Low rank bias in neural networks. Over-parameterized neural networks exhibit surprising gen-
eralization capabilities, a finding seemingly in contradiction with classical machine learning the-
ory (Neyshabur et al., 2019). This phenomenon implies the existence of some form of implicit
regularization that prevents the model from overfitting. From the perspective of neural network
parameterizations, Arora et al. (2019) suggest that linear models with more layers tend to converge
to minimal norm solutions. In the context of CNNs, Huh et al. (2021) demonstrates that stacking
more feed-forward layers compels the model to seek solutions of a lower rank, and Jing et al. (2020)
reinforce this finding by adding more layers to an autoencoder’s bottleneck, thereby creating a
representation bottleneck. In vision transformers, Geshkovski et al. (2024) examine the connection
between attention blocks and mean-shift clustering (Cheng, 1995), showing that repeated attention
operations result in low-rank outputs. Moreover, Dong et al. (2021) reveal that eliminating the
shortcut connection from residual attention blocks causes features to degenerate to rank 1 structures
doubly exponentially. From a different perspective, recent work (Radhakrishnan et al., 2022; Beagle-
hole et al., 2023; Radhakrishnan et al., 2024) shows training algorithms implicitly induce low-rank
behavior in neural networks. Radhakrishnan et al. (2024) study the dimensionality reduction behavior
of a recursive feature machine (Radhakrishnan et al., 2022) and effectively verify performance on
low-rank matrix recovery.

3 METHOD

Prior works show that deeper feed-forward architectures have an inductive bias towards producing
low-rank feature maps, while ResNets do not display the same behavior (Huh et al., 2021). However,
despite this bias, deeper feed-forward architectures are typically less effective and generalize worse
than ResNets (He et al., 2016). We aim to combine the properties of both feed-forward networks
and ResNets, using the low-rank prior to enhance the abstraction capability of the network while
maintaining the core benefits of the residual block, including stable training and the capacity to
construct deeper models.

3.1 DECAYED IDENTITY SHORTCUTS

Feed-forward layers. Consider a neural network of L layers. For each layer l parameterized with ✓l,
the operation of a feed-forward neural network can be described as:

xl`1 “ f✓lpxlq, (1)

where xl P Rd represents the output from the preceding layer, and f✓l denotes the transformation
applied at the current layer. Although it is widely known that pure feed-forward architectures are
susceptible to vanishing gradients when building deeper models, Huh et al. (2021) demonstrates
that feed-forward modules offer implicit structural regularization, enabling deep models to generate
abstract representations at bottlenecks.

Residual connections. To address the optimization problem of vanishing gradients in deeper neural
networks, ResNets (He et al., 2016) construct each layer as a residual function, resulting in a
modification to Eq. 1:

xl`1 “ xl ` f✓lpxlq. (2)

This design builds shortcuts from input to output, allowing gradient magnitude to be preserved
regardless of the depth of the model. However, a consequence of this design is that the output
stays close to the input in practice (Greff et al., 2017), defeating the need to construct complex
transformations over depth. The same phenomenon is also observed in highway networks (Srivastava
et al., 2015a), which adopt learnable gates H�pxq P r0, 1sd in both the residual and skip branches:
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xl`1 “ H�pxlq ¨ xl ` p1 ´ H�pxlqq ¨ f✓lpxlq. Although this flexible design allows the model to
build the abstraction level over depths, similar to feedforward networks, Srivastava et al. (2015b)
finds H� « 1 for most units, suggesting the model prefers copying the input.

Decayed identity shortcuts for unsupervised representation learning. Setting aside the optimiza-
tion benefits brought by residual connections, we rethink the role of the residual connections from
the viewpoint of representation learning. Abstraction can be viewed as invariance to local changes
of input and is crucial to the disentanglement of the feature space (Bengio et al., 2013). Prior work
suggests that a shortcut path of residual connections tends to preserve high-frequency fine-grained
input information (Greff et al., 2017), resulting in decreased feature abstraction. We hypothesize
that this lack of abstraction harms the capability of the model to learn meaningful low-level features
and that ensuring an abstract structure in the deeper layers of the neural network will help improve
representation learning, especially for unsupervised tasks that often use indirect proxy objectives,
such as pixel-wise reconstruction loss. Motivated by this hypothesis, we propose to downweight the
contribution from the shortcut path:

xl`1 “ ↵lxl ` f✓lpxlq, (3)

where ↵l P r0, 1s is a rescaling factor to the residual path, controlling the information flow through
the skip connection. Fully expanding this relation for a network with L layers indexed from 0 to
L ´ 1, we have that:

xL “
˜

L´1π

l“0

↵l

¸
x0 `

L´2ÿ

l“0

˜
L´1π

i“l`1

↵i

¸
f✓lpxlq ` f✓L´1pxL´1q. (4)

We see that the contribution of the input x0 is scaled by each ↵l § 1 while each subsequent network
block output f✓lpxlq omits scaling factors up to ↵l. Hence, the contribution of early features of the
network is especially down-weighted, preventing the network from passing fine-grained detailed
information to the bottleneck XL.

Decay schema. Rather than adopting a naive choice of ↵l as a constant across all layers, we choose
↵l to be a function parameterized by the layer index l, where the contribution from the shortcut path
is monotonically decreasing when l increases:

↵l “ 1 ´ �↵l, (5)

where �↵ :“ p1´↵minq
L , ↵L´1 ” ↵min is a minimum scaling factor applied at the final layer L ´ 1.

Our formulation brings two primary benefits. First, ↵l, as a linear interpolation between 0 and 1,
acts as a smooth transition between residual connections and feedforward layers, bringing us the
optimization benefits seen in the residual connections, while simultaneously encouraging learning the
deeper layers to learn more abstract representations. Second, similar to the naive formulation, our
method only introduces one extra hyperparameter ↵min, which is not data-dependent and does not
need to be learned.

3.2 IMPLEMENTATION STRATEGY

Skip connections for autoencoders. Since our method progressively decays the residual connections
over network depth, it encourages the most abstract features to be learned by later layer. However,
learning a highly abstract bottleneck is detrimental to the training objectives that aim for pixel-wise
reconstruction, as they necessitate the preservation of information across all feature levels. To address
this, we incorporate standard skip connections between the encoder and decoder, enabling the encoder
to directly pass information from shallow layers to the decoder while learning increasingly abstract
representations in the deeper encoder layers.

Stabilizing training with residual zero initialization. The model exhibits rapid feature norm growth
at the beginning of training for ↵min § 0.7. We suspect that the model learns to amplify the output
feature norm of f✓lpxq to counteract the significant decay applied to the residual connection. This
growth leads to training instability and negatively impacts training convergence. To address this
issue, we follow the implementation of previous works (Ho et al., 2020) and initialize the weights of
the final output layer in each f✓l to zero instead of using the original Xavier uniform initialization
(Glorot & Bengio, 2010). This approach significantly enhances training stability by limiting the rate
of feature norm growth and enables us to explore training with even lower values of ↵min.
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Method Objective Augmentation FT LP

MoCo-v3(Chen et al., 2021) Contrastive Loss Full 83.2 76.7
DINO(Caron et al., 2021) Contrastive Loss Full 83.3 78.2
Con MIM(Yi et al., 2023) Contrastive Loss Affine + Mask 83.7 39.3
ADDP(VIT-L) (Tian et al., 2024) Feature Loss (VQ) Affine + Mask 85.9 23.8
Latent MIM(Wei et al., 2024) Feature Loss Affine+ Mask 83.0 72.0
Data2Vec(Baevski et al., 2022) Feature Loss Full+Mask 84.2 68.0
CAE(Chen et al., 2024) Recon. + Feature Loss Affine+Mask 83.8 70.4
I-JEPA(Assran et al., 2023) Feature Loss Affine+Mask - 72.9

MAE(He et al., 2022) Recon. Loss Affine+Mask 83.6 67.8
Ours (↵min = 0.6) Recon. Loss Affine+Mask 82.9 72.7

Table 1: Accuracy of linear classifier based on pre-trained learned representations on the

ImageNet-1K dataset. We evaluate our learned representation using the standard evaluation protocol:
linear probing (LP) and fine-tuning (FT). With our simple modification, we substantially improve the
MAE ViT-B/16 baseline for linear probing by encouraging the model to learn an increased abstract
features over depth. We achieve competitive performance compared to I-JEPA which uses an explicit
feature loss.

4 EXPERIMENTS ON MASKED AUTOENCODER (MAE)

For masked autoencoders (MAEs) (He et al., 2022), we replace the residual connections in the
encoder’s MLP and attention blocks with decayed identity shortcuts. The MAE operates by accepting
images with a random subset of pixels masked out and learning to recover the discarded pixels. As
Section 3.2 describes, we add skip connections between the encoder and decoder to facilitate learning
abstract representations at the bottleneck. Since the original MAE has twice the number of encoder
layers as decoder layers, we inject output from every other encoder layer into the corresponding
decoder layer. To match spatial dimensions, injected encoder features are combined with learnable
masked tokens before channel-wise concatenation. The implementation details for the training and
evaluation are shown in Section A. He et al. (2022) show the desired representations appear at the
end of encoder; we therefore apply our decaying schema only to the encoder.

4.1 REPRESENTATION LEARNING ON IMAGENET-1K

We pre-train MAE on the ImageNet-1K train split (Deng et al., 2009) and follow recent works to
evaluate the learned representations using linear probing and end-to-end finetuning, where we added
a single linear head over learned representations to predict the image categories

For hyperparameters of pretraining MAE, including the learning rate schedule, total training epochs,
and mask ratio, we follow the best settings found in the original paper. Please see the appendix for
detailed experimental setups.

We report the results in Table 1, where we show the linear probing performance of various self-
supervised methods, which we categorize by their objectives, and data augmentation processes. In
the top half of the table, we present methods that employ a contrastive loss. Although these methods
produce the best probing accuracies, their success depends on a carefully designed data augmentation
process, which may need to be tuned for each different data distribution. In the bottom half, we show
several methods based on generative architecture, including ours, which do not rely on contrastive
objectives. With the exception of Data2Vec, these methods only use a standard random affine data
transformation (with random masking), which need not be distribution-reliant. Among these methods,
MAE only uses a pixel-wise loss, I-JEPA , Latent MIM, and CAE use a latent feature alignment loss,
and CAE uses both. Our method simply extends MAE by constructing an implicit feature bottleneck
and shows significant improvements over the MAE baselines (72.7% vs. 67.3%), outperforming
Data2Vec, Latent MIM and CAE and giving a probing accuracy competitive with I-JEPA, without
needing to use explicit feature alignment.

End-to-end fine-tuning, unlike linear probing which only trains a single linear layer, updates the
entire network for image classification. Since the features can shift significantly from their pre-

6
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(a) MAE (b) Ours

Figure 3: Comparison of t-SNE visualiza-

tion for models trained with (a) standard

residual connection and (b) our method

with ↵min “ 0.6. We visualize the learned
embedding using t-SNE on 10 randomly se-
lected categories of ImageNet-100 and we
color points within the same category using
the same color. Model with standard residual
connections (a) have collapsed together while
our method (b) forms well structured clusters.

(a) Input Image (b) MAE (4.1 mIoU) (c) Ours (10.4 mIoU)

Figure 4: Visualize learned representations using

Zhang et al. (2024). We project the learned represen-
tations onto a 3-channel feature map, visualized as
RGB images. Our method learns more abstract and
semantically consistent representations compared to
the baseline MAE. This visual comparison is further
supported by benchmarking on unsupervised seman-
tic segmentation tasks, where our approach achieves
better results (10.4 mIoU) compared to the baseline
MAE (4.1 mIoU).

training state during end-to-end updating, we argue that this may not accurately reflect the quality
of the learned representations. For example, DINO demonstrates superior performance in various
downstream vision tasks compared to MAE, but its fine-tuning performance is worse than MAE.
Similarly, ConMIM and ADDP exhibit poor linear probing performance, suggesting lower-quality
representations, yet their fine-tuning performance surpasses that of contrastive learning methods.
Nevertheless, we still provide the fine-tuning results for reference.

4.2 EMBDDING ANALYSIS.

We qualitatively evaluate the feature learning in Figure 3 by visualizing the t-SNE embeddings of
the learned features for a random subset of test images. The embedding produced from our features
displays much clearer separation than baseline, which has struggles to differentiate the categories.

To provide another qualitatively evlauation of our learned representations, we adopt the pixel-wise
embedding approaches proposed by Zhang et al. (2024) to group the representations from the last
layer of the encoder into a lower dimensional space. We use their default hyperparameters to
cluster representations across images of COCO validation set. We visualize in Figure 4 the top 3
eigenvectors for both our approaches with ↵min “ 0.7 and baseline. From the visualization, ours
learns abstract representation and the object from the same categories have similar color, indicating a
global consistent semantic grouping. The baseline MAE, on the other hand, doesn’t show clearly
global semantic patterns overall and the low-level representations, e.g., edges, are also high-lightened,
indicating a representations from multiple semantic hierarchies are entangled.

We further evaluate the clustering quantitatively, following the postprocessing protocol (Zhang et al.,
2024) to produced unsupervised semantic segmentation and report the results as the mean intersection
of union (mIoU). Ours (10.41 mIoU) achieve 6.31 mIoU improvement over baseline (4.10 mIoU),
which support the qualitatively comparison.

4.3 ABLATION STUDIES ON IMAGENET-100

We conduct ablations on several properties of our framework on ImageNet-100. A summary of results
can be found in Tables 2 and 3.

Decay rate ↵min. The only parameter of our framework is ↵min, the minimum scaling factor applied
to the identity shortcut at the final layer. In Table 2,we show linear probing scores for varying values
of ↵min. We observe that ↵min must be sufficiently small to regularize the flow of information
through the residual connection effectively. A reasonably small ↵min prevents the deeper layers of the
encoder from relying heavily on the residual connections, allowing for more abstract representations
in the bottleneck. This yields up to a 7.1% improvement over the ViT-B/16 baseline (↵min “ 1)
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``````````Backbone

↵min 0.5 0.6 0.7 0.8 0.9 1.0

ViT-B/16 82.3 83.6 81.8 79.8 79.2 76.5
ViT-S/16 78.6 78.5 78.1 75.2 73.5 69.2

Table 2: Linear Probing Accuracy on ImageNet-100 for our method varying ↵min and archi-

tecture size. We conduct ablation studies and demonstrate that linear probing performance for both
architectures increases as ↵min decreases until around 0.5-0.6. While the larger ViT-B/16 architecture
achieves the highest accuracy of 83.6, it is noteworthy that the smaller ViT-S/16, when utilizing our
method, outperforms the baseline setting (standard Residual Connection at ↵min “ 1) of ViT-B/16.

Configurations UNet Accuracy

↵min “ 0.6 No 61.5
↵min “ 0.6 Yes 83.6*

(a) Effect of Skip Connections. Applying the
framework without skip connections designed
in Section 3.2 results in a severe drop in repre-
sentation quality.

Configurations Decay Block ↵min Accuracy

xl`1 “ xl ` f✓lpxlq - ´ 76.5
xl`1 “ xl `

?
0.5f✓lpxlq MLP & Atten. ´ 76.9

xl`1 “
?
0.5 pxl ` f✓lpxlqq MLP & Atten. ´ 82.6

xl “ ↵lxl ` f✓pxlq Atten. 0.6 79.3
xl “ ↵lxl ` f✓pxlq MLP 0.6 80.6
xl “ ↵lxl ` f✓pxlq MLP & Atten. 0.6 83.6*

(b) Other Decay Schemas. We conduct ablations using a variety of
scalings of the residual connection. We observe that our full method
produces the best results.

Table 3: Linear probing accuracy of ablation experiments using ViT-B/16 on ImageNet-100.

*We duplicate the performance of our ↵min “ 0.6 result from Table 2 for comparison.

in linear probing accuracy on ImageNet-100. On the other hand, if ↵min is too small, for example,
↵min § 0.4 for ViT-B/16, we observe that the training becomes unstable.

Architecture size. In Table 2, we also train both the ViT-B/16 and the smaller ViT-S/16 backbone
using varying ↵min. Our framework is especially effective on the smaller architecture, increasing
linear probing performance by 9.4%, compared to the baseline setting (standard Residual Connection
at ↵min “ 1). This is consistent with the observation that larger models generalize better (Huh et al.,
2021) than smaller models. Our method is able to significantly improve the smaller ViT-S/16 and
slightly close the gap between the differently-sized architectures.

Skip connections. Another critical design choice in our network is to include skip connections that
are not in the original MAE. As discussed in Section 3.2, if the MAE does not use skip connections,
the bottleneck layer must preserve all information to reconstruct the input image accurately. This is
opposed to learn abstract representations at bottleneck. These contrary effects significantly degrade
the representation learned by the model, leading to a 22.1% drop in the linear probing score, as we
report in Table 3a.

Different decay schema. We also explore decay schema, with results summarized in Table 3b: (1)
Scaling both branches of the residual blocks simultaneously by applying a constant factor, ↵ “

?
0.5,

to both x and f✓lpxq. (2) Scaling only f✓l using the same constant factor, ↵ “
?
0.5. (3) Applying

our proposed schema exclusively to either the attention or MLP branch.

Among these, (2) shows no significant improvement over the baseline, while (1) yields some improve-
ment but still underperforms compared to our approach. By analyzing (1) and (2), we demonstrate
that the representation gains are due to down-weighting the skip connection branch. Notably, recent
diffusion models (Karras et al., 2018; Song et al., 2021b; Karras et al., 2020; 2022) have employed
(1) in their designs. However, applying decay only to the MLP or attention branch reduces the overall
decaying effect across the network, resulting in lower performance compared to our schema, which
achieves the best performance among the tested designs.

5 EXPERIMENTS ON DIFFUSION MODELS

Diffusion models. We use U-ViT (Bao et al., 2023), a ViT-based diffusion model with skip connec-
tions between the encoder and decoder, as the baseline for our diffusion model experiments. Recent

8
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Linear Probing (Acc)Ò Generation quality (FID)ÓXXXXXXXXDataset
↵min 1.0 0.8 0.7 0.6 1.0 0.8 0.7 0.6

CIFAR-100 (Uncon.) 62.47 63.58 66.86 64.63 14.34 11.65 8.99 11.71
ImageNet-100 (Uncond.) 72.8 74.5 76.1 75.8 44.40 40.96 41.17 43.51

ImageNet-100 (Class Cond.) - - - - 6.93 5.75 5.11 4.98

Table 4: In diffusion models, we demonstrate that our proposed decayed identity shortcut enhances
probing accuracy and improves generation quality across various datasets and configurations.

studies (Yang & Wang, 2023; Baranchuk et al., 2022) suggest that diffusion models learn the best
semantic representations near the decoder’s latter stages. Therefore, we apply our proposed decay
mechanism up to the end of the decoder. While this design might be suboptimal, as the smallest
decay factor may not align with the layers holding the best semantic representations, we demonstrate
in practice that this simple approach effectively enhances both the learned representations and the
quality of generated outputs.

Experimental details. We utilize the default scheduler and sampler from U-ViT (Bao et al., 2023),
replacing only the residual connections with our proposed decayed shortcut connections. We train
unconditional diffusion models on CIFAR-100 and ImageNet-100 without using image class labels.
Additionally, we train a class-conditional diffusion model on ImageNet-100 to validate our design
across different tasks. For ImageNet-100, instead of training directly on pixels, we adopt a latent
diffusion (Rombach et al., 2022) approach by running the model in the latent space of a pretrained
VAE, which reduces input resolutions from 256x256x3 to 32x32x4. We use U-ViT-Mid for ImageNet-
100 and U-ViT-small for CIFAR-100. For model and training details, please refer to Bao et al.
(2023).

We evaluate the learned representations with linear probing and we train a linear classifier over the
frozen representations. We report the results as the best configurations, including the choices of layer
index and noise level, that yields the best performance

Results. Our results are presented in Table 4, where we demonstrate that replacing residual connec-
tions with our proposed decayed identity shortcuts consistently enhances representation quality and
image generation across both datasets and tasks (conditional and unconditional generation). Notably,
this improvement is achieved without introducing any additional learnable parameters.

6 DISCUSSION ON FEATURE RANK

In this section, we try to answer a key question: How and why do residual connections impact the
abstraction level of the deeper layers in a neural network? We delve deeper into how our design
reinforces the low-rank bias of neural networks and try to connect our method to ideas in existing
works (Huh et al., 2021). To this end, we visualize the training dynamics of our method and analysis
the feature rank of our approach to provide a holistic analysis.

Low-rank simplicity bias. Huh et al. (2021) investigate the low-rank simplicity bias in deeper
feed-forward neural networks, which drives neural networks to find low-rank solutions. At the same
time, they make an empirical observation that deeper residual networks do not show a similar rank
contracting behavior.

Effective rank. For analysis purpose, Huh et al. (2021) quantify the rank of the learned representation
using the effective rank, which is a continuous measure. For a matrix A P Rmˆn, the effective rank
⇢pAq is defined as the Shannon entropy of the normalized singular values (Roy & Vetterli, 2007):

⇢pAq “ ´
minpn,mqÿ

i

�̄i log �̄i, (6)

where �̄i “ �i{
∞

j �j denotes the i
th normalized singular value. Intuitively, this measure is small

when a few singular values dominate and large when singular values are evenly spread, hence giving
a good continuous approximation for matrix rank.

9
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(a) Effective Rank of MAE over time. (b) Linear probing accuracy of MAE.

Epochs
rrank, accuracy

coefficient
Pearson correlation

200 -0.51
300 -0.56
400 -0.57
500 -0.58
600 -0.52
700 -0.44
800 -0.42

(c) Pearson correlation coeffi-
cient between effective rank and
probing accuracy, across training
epochs.

Figure 5: For MAE pretrained on ImageNet-100, we present visualizations of (a) the training
dynamics of the effective rank for different values of ↵min, (b) the linear probing accuracy for
various ↵min , and (c) the Pearson correlation coefficient between feature rank and probing accuracy,
demonstrating that a lower effective feature rank is associated with better performance.

In the following subsections, to compute the effective rank, we use the singular values from the
covariance matrix A✓ of the last-layer features, where A✓pi, jq denotes the covariance of the learned
class tokens for the i

th and j
th samples.

Inspired by their analysis, we conjecture that the improvement to feature learning capability of our
method can mainly be attributed to the decayed identity shortcuts promoting low-rank features at the
bottleneck. We measure the training dynamics of the models presented in Table 2 (MAEs trained on
ImageNet-100) in terms of accuracy and the effective rank. In Figure 5c, we quantify the correlation
between effective feature rank and probing accuracy using Pearson correlation coefficient to validate
the hypothesis.

In Figures 5a and 5b, we present the training dynamics of our model, highlighting effective rank and
linear probing accuracy for different values of ↵min. During the early epochs, models with lower ↵min
tend to exhibit both lower effective rank and higher probing accuracy, supporting our hypothesis.
As training progresses, the correlations between ↵min and effective rank become less precise. We
suspect this is due to the training dynamics, where models with lower ↵min experience faster growth
in feature rank, reflecting the model’s effort to compensate for the decay factors. Despite this, we can
still conclude that lower ↵min “ r0.5 ´ 0.6s results in lower feature rank and better probing accuracy
compared to higher ↵min “ r0.7 ´ 1.0s.

7 CONCLUSION

Huh et al. (2021) raise a key insight in their work – that how a neural network is parameterized
matters for fitting the data – and investigate the inductive low-rank bias of stacking more linear layers
in a network.

In this work, we observe that the ubiquitous residual network (He et al., 2016) may not be the ideal
network parametrization for representation learning and propose a modification of the shortcut path
in residual blocks that significantly improves unsupervised representation learning. We explore the
connection between our reparameterization of the residual connection and the effective rank of the
learned features, finding a correlation between good representations and low-rank representations.

Our work calls into question a fundamental design choice of neural networks that has been used in
many modern architectures. By rethinking this choice, the door is open for further reparametrizations
and improvements to unsupervised representation learning. The results we show provide a prompt
for more extensive investigations into the connection between low effective rank and high-quality
abstract representations, as well as the exploration of underlying theoretical mechanisms for this
relationship.
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