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Abstract

In this paper, we introduce a data augmentation001
approach specifically tailored to enhance inter-002
sectional fairness in classification tasks. Our003
method capitalizes on the hierarchical structure004
inherent to intersectionality, by viewing groups005
as intersections of their parent categories. This006
perspective allows us to augment data for007
smaller groups by learning a transformation008
function that combines data from these parent009
groups. Our empirical analysis, conducted on010
four diverse datasets including both text and011
images, reveals that classifiers trained with this012
data augmentation approach achieve superior013
intersectional fairness and are more robust to014
“leveling down” when compared to methods015
optimizing traditional group fairness metrics.016

1 Introduction017

The primary objective of fair machine learn-018

ing is to create models that are free from dis-019

criminatory behavior towards subgroups within020

the population. These subgroups are often de-021

fined based on sensitive demographic attributes022

such as gender (e.g., Male/Female), race (e.g.,023

African-American/European-American), or age024

(e.g., young/old). To address the above challenge,025

various strategies have been devised, including pre-026

processing datasets (Kamiran and Calders, 2012;027

Feldman et al., 2015), modifying the training pro-028

cess (Cotter et al., 2019; Lohaus et al., 2020),029

and calibrating outputs of trained models (Iosi-030

fidis et al., 2019; Chzhen et al., 2019). Predom-031

inantly, these methods have focused on settings032

where sensitive groups are identified by a single033

demographic attribute. However, recent studies034

(Yang et al., 2020; Buolamwini and Gebru, 2018;035

Kirk et al., 2021) demonstrate that ensuring fair-036

ness for an individual attribute does not guarantee037

intersectional fairness, which arises when consid-038

ering multiple attributes concurrently (for example,039

comparing Male European-Americans or Female040
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Figure 1: Snippet of the hierarchical structure found
in intersectional fairness for Twitter Hate Speech
Dataset (Huang et al., 2020) with 3 sensitive attributes.
Here, ’M’ stands for Male, ’AA’ African American,
and ’U45’ age under 45 years. The group labeled
’M,AA,U45’, represents African American men who are
less than 45 years old, and has parent groups ’M,AA’,
’M,U45’, and ’AA,U45’. For each group, the number
of examples is reported. The deeper we go in this hier-
archical structure, the smaller the number of examples.
Our approach consists in generating additional data for
smaller groups by combining data from parent groups.

African-Americans). For instance, Buolamwini 041

and Gebru (2018) found that several face recogni- 042

tion systems exhibit significantly higher error rates 043

for darker-skinned females than for lighter-skinned 044

males. These observations are inline with the hy- 045

pothesis of Crenshaw (1989) that multiple sensitive 046

attributes “intersect” to create unique effects. 047

In response to emerging challenges, there has 048

been a notable shift towards intersectionality in 049

fair machine learning research (Filippi et al., 2023; 050

Foulds et al., 2020). Among them, recent stud- 051

ies (Maheshwari et al., 2023; Zietlow et al., 2022; 052

Mittelstadt et al., 2023) have highlighted that sev- 053

eral methods improve intersectional fairness by ac- 054
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tually harming the subgroups. In other words, they055

tend to decrease performance over individual sub-056

groups to achieve better overall fairness, an effect057

referred to as “leveling down”.058

In this work, we hypothesize that leveling down059

can be countered by generating additional data for060

smaller groups so as to improve their representa-061

tion. To this end, we propose a data augmenta-062

tion mechanism that utilizes the hierarchical struc-063

ture inherent to intersectionality. More precisely,064

we augment subgroups by modifying and combin-065

ing data from parent groups (which generally have066

more examples). Figure 1 illustrates this hierarchi-067

cal structure for the Twitter Hate Speech Dataset,068

showing how the group ’African American, Male,069

under 45’ is composed of ’Male, African Ameri-070

can’, ’Male, under 45’, and ’African American, un-071

der 45’ groups. It also highlights the data scarcity072

challenge, showing that the number of samples of-073

ten decreases sharply as we consider more intersec-074

tions. For example, the ’African American, Male,075

under 45’ group has 3,277 instances, whereas the076

’Male’ group has 14,171 instances.077

In order to produce valuable examples despite078

limited data availability, we propose a simple pa-079

rameterization of the generative model and train it080

using a loss based on Maximum Mean Discrepancy081

(MMD) (Gretton et al., 2012). This loss quantifies082

the difference between the original examples from083

a group and the examples generated by combining084

examples from its parent groups. Then, we train a085

classifier on the combination of original and gener-086

ated examples, using equal sampling (Kamiran and087

Calders, 2009; González-Zelaya et al., 2021). The088

first step increases the diversity of examples the089

classifier is trained on, thereby improving general-090

ization, while the latter ensures that equal impor-091

tance is given to all subgroups instead of focusing092

more on larger groups. We empirically evaluate093

the quality and diversity of the generated examples094

and their impact on fairness and accuracy. Our re-095

sults on various datasets show that our proposed096

approach consistently improves fairness, without097

harming the groups and at a small cost in accuracy.098

2 Related Work099

In this section, we provide a brief overview of ap-100

proaches which specifically optimize intersectional101

fairness. For a more detailed overview, please refer102

to Appendix A. Foulds et al. (2020) introduced an103

in-processing technique that incorporates an inter-104

sectional fairness regularizer into the loss function, 105

balancing fairness and accuracy. Conversely, Mo- 106

rina et al. (2019) suggests a post-processing mech- 107

anism that adjusts the threshold of the classifier 108

and randomizes predictions for each subgroup in- 109

dependently. InfoFair (Kang et al., 2022) adopts a 110

distinct approach by minimizing mutual informa- 111

tion between predictions and sensitive attributes. 112

Recently, research has begun to explore the phe- 113

nomenon of “leveling down” in fairness. Mahesh- 114

wari et al. (2023); Mittelstadt et al. (2023) argue 115

that the strictly egalitarian perspective of current 116

fairness measures contributes to this phenomenon. 117

Meanwhile, Zietlow et al. (2022) demonstrates lev- 118

eling down in computer vision contexts and intro- 119

duces an adaptive augmented sampling strategy 120

using generative adversarial networks (Goodfellow 121

et al., 2014) and SMOTE (Chawla et al., 2002). 122

Our work aligns with these developments; how- 123

ever, we propose a modality-independent technique 124

that effectively leverages the intrinsic hierarchical 125

structure of intersectionality. 126

3 Problem Statement 127

Let p denote the number of distinct sensitive axes 128

of interest, which we denote as A1, . . . ,Ap. Each 129

of these sensitive axes is a set of discrete-valued 130

sensitive attributes. 131

Consider a feature spaceX , a finite discrete label 132

space Y . Let D be an unknown distribution over 133

X × Y ×A1 × · · · × Ap which can be written as: 134

D = P (X,Y,A1, · · · , Ap) (1) 135

We define a sensitive group g as any p- 136

dimensional vector in the Cartesian product set 137

G = A1 × · · · × Ap of the sensitive axes. For in- 138

stance, a sensitive group g ∈ G can be represented 139

as (a1, . . . , ap) with corresponding distribution as: 140

Dg = P (X,Y,A1 = a1, · · · , Ap = ap) 141

We also introduce a more general group than g 142

called g\i, referred to as the parent group in which 143

the i-th sensitive axis is left underspecified. It 144

can be represented as (a1, · · · , ai−1, ai+1, · · · , ap) 145

where i ∈ {1, . . . , p}. The distribution over such a 146

group can be written as: 147

Dg\i =
∑

ai∈Ai
P (X,Y,A1 = a1,

· · · , Ai = ai , · · · , Ap = ap)
(2) 148

In our example above, if group g is {male, Euro- 149

pean American, under 45}, then the corresponding 150
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parent groups are: {male, European American},151

{male, under 45}, {European American, under 45}.152

Finally, in this work, we focus on classification153

problems and assume K distinct labels. We will154

denote the distribution of a group conditioned on155

same label k by Dg|Y=k.156

Problem Statement: As standard in machine157

learning, D is generally unknown and instead158

we have access to a finite dataset T =159

{(xj , yj ,gj)}nj=1 consisting of n i.i.d examples160

sampled from D. This sample can be rewritten161

as T =
⋃

g∈G Tg where Tg represents the subset162

of examples from group g. Examples belonging to163

parent group g\i are denoted by:164

Tg\i =
⋃

ai∈Ai
Ta1,··· ,ai ,···ap (3)165

The goal of fair machine learning is then to learn166

an accurate model h ∈ H, such that h : X → Y is167

fair with respect to a given group fairness definition168

like Equal Opportunity (Hardt et al., 2016), Equal169

Odds (Hardt et al., 2016), Accuracy Parity (Zafar170

et al., 2017), etc.171

4 Approach172

In this work, we introduce a novel approach for gen-173

erating data that leverages the underlying structure174

of intersectional groups. We begin by highlight-175

ing the structural properties of interest, and then176

present our data generation mechanism. Note that177

in this work, we treat data as vectors, which allows178

us to encompass a wide range of modalities includ-179

ing images and text. To convert data into vector180

representations, we may use pre-trained encoders.181

4.1 Structure of the Data182

Using the notations introduced in the previous sec-
tion, we make the following simple but crucial
observation about the structure of the data:

Tg =
⋂p

i=1 Tg\i and Tg ⊂ Tg\i∀i ∈ {1, . . . , p}.

In other words, the intersection of immediate par-183

ent groups constitutes the target group g, with each184

parent group containing more examples than the185

target group itself. For example, all instances of186

the group Female African American are also part187

of both the Female and African American groups.188

Moreover, the common instances between the Fe-189

male and African American groups collectively190

define the Female African American group.191

4.2 Data Generation 192

Our goal is to learn a generative function genθ,k 193

such that, given a dataset T , a group g, and 194

task label k, the generated distribution Zgen ∼ 195

genθ,k(T ,g) is similar to the true distribution 196

Dg|Y=k. Based on the above observations, we 197

propose to generate examples for group g by com- 198

bining and transforming the examples from the 199

corresponding parent groups. This can be achieved 200

by appropriate parameterizations of genθ,k which 201

we describe next. 202

Parameterization of the Generative Function: 203

In this work, we explore the use of two simple 204

choices for the generative function genθ,k(T ,g) 205

that generates an example Zgen = (Xgen, k,g) for 206

a given group g and label k. The first parameteri- 207

zation is: 208

Xgen =
∑p

i=1 λiXg\i (4) 209

with Zg\i = (Xg\i , k,g\i) ∼ Dg\i|Y=k. In the 210

above equation, λ = (λ1, . . . , λp) ∈ Rp are the 211

parameters to optimize based on the loss we define 212

below. In other words, we generate data for group 213

g by forming weighted combinations of examples 214

from its parent groups. 215

The second parameterization we consider is: 216

Xgen =
∑p

i=1W ·XT
g\i , (5) 217

where W ∈ Rd×d is a diagonal matrix with d 218

parameters where d is the dimension of the encoded 219

inputs. Here, we use a uniform combination of 220

examples from parent groups, but learn weights for 221

the different features of the representation. 222

Given the limited data available for many groups, 223

we opt to share parameters across them instead of 224

learning specific parameters for each group. This 225

approach, combined with the relatively simple pa- 226

rameterizations of the generative function, serves 227

to reduce the risk of overfitting (recall that in prac- 228

tice we have very limited data for many groups). 229

However, we still learn a separate model for each la- 230

bel, i.e., genθ,k(T ,g) ∀k ∈ K, to avoid the added 231

complexity of jointly learning X × Y . 232

Training the Generative Models: To train the 233

generative model genθ,k, we minimize a loss based 234

on Maximum Mean Discrepancy (MMD). MMD is 235

a non-parametric kernel-based divergence used to 236

assess the similarity between distributions by using 237

samples drawn from those distributions (Gretton 238
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et al., 2012). Formally, the MMD between two239

samples S = (z1, . . . , zm) and S′ = (z′1, . . . , z
′
m)240

can be written as241

MMD2(S, S′) = 1
m(m−1)

[∑
i

∑
j ̸=i k(zi, zj)242

+
∑

i

∑
j ̸=i k(z

′
i, z

′
j)
]
+ 1

m2

∑
i

∑
j k(zi, z

′
j)243

where k is a reproducing kernel. In this work, we244

use the radial basis function kernel k : (z, z′) 7→245

exp(∥z − z′∥2 /2σ2) where σ is a free parameter.246

For completeness, more details about MMD are247

given in Appendix B248

Our loss function is the MMD between the gen-249

erated samples and the samples from group g, to250

which we add the MMD between the generated251

samples and those from its parent groups.1 For-252

mally, this can be written as:253

Lg,k(θ) = MMD(Sgen, Sg,k)+∑p
i=1MMD(Sgen, Sg\i,k),

(6)254

where Sgen is a batch of examples generated from255

genθ,k, Sg,k and Sg\i,k are batches of examples256

respectively drawn from Dg|Y=k and Dg\i|Y=k.257

Since Dg|Y=k and Dg\i|Y=k are unknown, we ap-258

proximate them with the empirical distribution259

by sampling with replacement from Tg|Y=k and260

Tg\i|Y=k. Appendix C details the precise training261

process to learn the generative models.262

Training Classifiers on Augmented Data: Af-263

ter training the generative models genθ,k, we use264

them to create additional training data. Specifically,265

for a group g, we sample examples from its cor-266

responding parent groups and pass these samples267

through the generative models as previously de-268

scribed. In this way, we can generate additional269

data for smaller groups that we use to augment the270

original training dataset, so as to enhance their rep-271

resentation in downstream tasks. As we will see in272

the next section, this helps to improve the fairness273

of the classifier.274

Alternative formulations: An alternative ap-275

proach to learn genθ,k involves using a genera-276

tive adversarial network (GAN) (Goodfellow et al.,277

2014). In this setup, the adversary aims to differen-278

tiate between two distributions, while the encoder279

strives to mislead the adversary. However, training280

GANs presents notable challenges (Thanh-Tung281

and Tran, 2020; Bau et al., 2019), including the282

1In our preliminary set of experiments, we found this addi-
tional term brought more diversity in the generated examples.

risk of mode collapse, the complexity of nested op- 283

timization, and substantial computational demands. 284

By contrast, MMD is more straightforward to im- 285

plement and train, with significantly less computa- 286

tional burden. We also note that, while this work 287

primarily employs MMD, our methodology can be 288

adapted to work with other divergences between 289

distributions, such as Sinkhorn Divergences and 290

the Fisher-Rao Distance. We keep the exploration 291

of other choices of divergences for future work. 292

5 Experiments 293

Our experiments are designed to (i) assess the qual- 294

ity of the data generated by our approach, and (ii) 295

examine the influence of this data on fairness with 296

a focus on avoiding leveling down as well as maxi- 297

mizing the classification performance for the worst- 298

off group. Before presenting results, we start by 299

outlining the datasets, baselines, and fairness met- 300

rics we employ. The code base is available here2. 301

Datasets: To demonstrate the broad applicability 302

of our proposed approach, we used four diverse 303

datasets varying in size, demographic diversity, 304

and modality, encompassing both text and images. 305

These datasets are: (i) Twitter Hate Speech (Huang 306

et al., 2020) comprising of tweets annotated with 307

4 demographic attributes; (ii) CelebA (Liu et al., 308

2015) composed of human face images annotated 309

with various attributes; (iii) Numeracy (Abbasi 310

et al., 2021) compiles free text responses denot- 311

ing the numerical comprehension capabilities of 312

individuals; and (iv) Anxiety (Abbasi et al., 2021): 313

indicative of a patient’s anxiety levels. Experimen- 314

tal setup, splits, and preprocessing are identical to 315

those of Maheshwari et al. (2023). Detailed de- 316

scriptions are available in the Appendix D.1. 317

Methods: We benchmark against 6 baselines, 318

encompassing both generative approaches and 319

methods optimizing for intersectional fairness: 320

(i) Unconstrained solely optimizes model ac- 321

curacy, ignoring any fairness measure; (ii) 322

Adversarial adds an adversary (Li et al., 2018) 323

to Unconstrained, implementing standard adver- 324

sarial learning approach; (iii) FairGrad (Mahesh- 325

wari and Perrot, 2022) is an in-processing iterative 326

method that adjusts gradients for groups based on 327

fairness levels; (iv) INLP (Ravfogel et al., 2020) is 328

a post-processing approach that iteratively trains a 329

2Please check the supplementary material. The final ver-
sion will be released on GitHub with camera ready version.
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classifier and then projects the representation on its330

null space; (v) Fair MixUp (Chuang and Mroueh,331

2021) is a generative approach which enforces fair-332

ness by forcing the model to have similar predic-333

tions on samples generated by interpolating exam-334

ples belonging to different sensitive groups; (vi) DF335

Classifier (Foulds et al., 2020) adds a regulariza-336

tion tailored to improve intersectional fairness. Our337

approach Augmented is same as Unconstrained,338

but trained on data generated via our proposed data339

generation mechanism.340

In all experiments we employ a three-layer fully341

connected neural network with hidden layers of342

sizes 128, 64, and 32 as our classifier. Further-343

more, we use ReLU as the activation with dropout344

fixed to 0.5. Cross-entropy loss is optimized in345

all cases, employing the Adam optimizer (Kingma346

and Ba, 2015) with its default parameters. Finally,347

for text-based datasets we encode the text using348

bert-base-uncased (Devlin et al., 2019) and for im-349

ages we employ a pre-trained ResNet183 (He et al.,350

2016). Finally, we use equal sampling as shown ef-351

fective in previous works (Maheshwari et al., 2023;352

Kamiran and Calders, 2009; González-Zelaya et al.,353

2021), ensuring equal number of examples for each354

group. The number of examples, treated as a hyper-355

parameter, spans a spectrum from undersampling356

to oversampling regime. For more detailed descrip-357

tion of hyperparameters and compute infrastructure,358

please refer to Appendix D.2.359

To generate data for Augmented, we employ the360

generative function as described in Section 4.2.361

More specifically, our initial experiments suggest362

that employing a simpler model with fewer param-363

eters (Equation 4) for the positive class, and a more364

complex model with a larger number of parame-365

ters for the negative class (Equation 5), leads to an366

enhanced fairness-accuracy trade-off, when using367

the False Positive rate as fairness measure. Conse-368

quently, for the positive class, we implement the369

function detailed in Equation 4, and for the negative370

class, we apply the model specified in Equation 5.371

Fairness Metrics: To assess unfairness, we uti-372

lize two fairness definitions specifically designed373

for the context of intersectional fairness: α-374

Intersectional Fairness (IFα) (Maheshwari et al.,375

2023) and Differential Fairness (DF) (Foulds et al.,376

2020). Detailed descriptions of these metrics are377

provided in the Appendix (Section D.3).378

For the performance measure m associated with379

3https://pytorch.org/vision/stable/models.html

these definitions, we focus on False Positive Rate. 380

Formally, for a group g, m is given by: 381

m(hθ, Tg) = 1− P (hθ(x) = 0|(x, y) ∈ Tg, y = 1) 382

To estimate these empirical probabilities, we 383

adopt the bootstrap estimation method proposed 384

by Morina et al. (2019). We generate 1000 datasets 385

by sampling from the original dataset with re- 386

placement. We then estimate the probabilities on 387

this dataset using a smoothed empirical estimation 388

mechanism and then average the results over all 389

the sampled datasets. In addition to these fairness 390

metrics, we report the performance measure for 391

both the best and worst-performing groups. 392

Utility metric: In order to evaluate the utility of 393

various methods, we employ balanced accuracy. 394

5.1 Quality of Generated Data 395

In this experiment, we assess the quality and diver- 396

sity of data generated by our approach. Our goal 397

is to generate data that resemble the overall distri- 398

bution of real data, while ensuring the generated 399

examples remain distinct from the original samples. 400

To this end, we propose two evaluations: 401

• Diversity: for each generated example, we 402

identify the most similar example in the real 403

dataset. If the generated sample closely resem- 404

bles a real one, the distance between the gen- 405

erated and real examples will be substantially 406

smaller than between distinct real examples. 407

• Distinguishability: we train a classifier to dif- 408

ferentiate between generated and real datasets. 409

If the classifier’s accuracy approaches that of 410

a random guess, it suggests the empirical dis- 411

tributions of the generated and real data are 412

similar. 413

In both experiments, we report metrics based on 414

the entire dataset rather than computing averages 415

for each group and then aggregating averages. 416

5.1.1 Diversity 417

In this experiment, we use cosine similarity as a 418

measure of closeness. We generate 1000 examples 419

and randomly select an equivalent number from 420

the actual (real) dataset. For each real example, we 421

find its nearest counterpart within the actual dataset 422

to establish a baseline, termed ’R-R’. Then, for 423

every generated example, we identify the closest 424

match in the actual dataset, referred to as ’G-R’. To 425

5



Dataset G-R R-R G-G

CelebA 0.46 0.48 0.44
Numeracy 0.51 0.58 0.45
Anxiety 0.51 0.59 0.46
Twitter Hate Speech 0.47 0.53 0.45

Table 1: Analyzing the similarity of a generated sample
with existing sample. For clarity and ease of readability,
we have omitted the standard deviation in our reporting,
as it remained below ± 0.01 across all settings.

Dataset Accuracy

CelebA 0.52 ± 0.011
Numeracy 0.64 ± 0.012
Anxiety 0.64 ± 0.019
Twitter Hate Speech 0.57 ± 0.022

Table 2: Accuracy of a classifier to distinguish between
real and generated sample over various datasets. The
value of 0.5 represents a random classifier, while 1.0 is
a perfect classifier.

further assess diversity, we also present results of426

the closest match of each generated sample in the427

generated dataset, called ’G-G’. The results of this428

experiment are presented in Table 1.429

Across all datasets, we observe that the distance430

between generated and real examples is similar to431

the distance observed between two real examples.432

In each dataset, the closeness between G-R pairs433

is less than that observed in R-R pairs. Moreover,434

the G-G pairs exhibit lower similarity scores com-435

pared to R-R pairs, suggesting greater diversity in436

the generated dataset. Based on these results, we437

conclude that the generated examples are diverse438

and not mere replicas of the real samples.439

5.1.2 Distinguishability440

We frame distinguishability as a binary classifica-441

tion task where we train a two-layer MLP classifier442

aimed at distinguishing between real and generated443

samples. Again, we compile a dataset by selecting444

1000 real instances and 1000 generated samples.445

This dataset is subsequently partitioned into train-446

ing and test sets with a ratio of 80% to 20%.447

Results are presented in Table 2. The mean accu-448

racy of the classifier is approximately 0.59, suggest-449

ing that the generated samples have a distribution450

similar, but not identical to, the real instances. In451

our preliminary experiments we found that by mod-452

ulating the generator complexity (i.e by employ-453

ing more complex models with more parameters), 454

we could achieve near-random distinguishability. 455

However, such adjustments led to an unfavorable 456

fairness-accuracy trade-off. We conjecture this may 457

arise because near-random indistinguishability in 458

the generated samples causes them to inherit biases 459

from the real data. 460

5.2 Fairness-Accuracy Trade-offs 461

In this experiment, we explore the impact of gener- 462

ated data on the fairness-privacy trade-off and com- 463

pare our approach to existing fairness-promoting 464

methods. We pay particular attention to the lev- 465

eling down phenomenon: a method is considered 466

to exhibit leveling down if its performance for the 467

worst-off or best-off group is inferior to that of the 468

unconstrained model. 469

The outcomes of this experiment is presented 470

in Table 3. Detailed results for CelebA and Nu- 471

meracy, both of which display a similar trend, are 472

provided in Appendix D.4. In terms of accuracy, 473

Augmented exhibits a slight drop for the Anxiety 474

dataset. However, its accuracy is on par with the 475

Unconstrained model when evaluated on Twitter 476

Hate Speech. In terms of performance for both 477

best-off and worst-off groups, Augmented outper- 478

forms competing methods. Notably, Augmented 479

does not show any signs of leveling down across 480

all datasets. When assessing IFα with α = 0.5, 481

Augmented consistently achieves the best fairness 482

results among the datasets. We also plot the com- 483

plete trade-off between relative and absolute per- 484

formance of groups by varying α in Figure 4 in Ap- 485

pendix D.4. For the Anxiety dataset, Augmented 486

gives the best trade-off for every value of α. In the 487

case of Twitter Hate Speech, INLP achieves com- 488

parable results, although with a noticeable drop in 489

accuracy (14 points below Augmented). Overall, 490

the results show that our Augmented gives a supe- 491

rior accuracy-fairness trade-off and successfully 492

avoids leveling down. 493

5.3 Impact of Intersectionality 494

In this experiment, we examine the influence of 495

intersectionality on our approach and its effect on 496

worst-case performance. To this end, we iteratively 497

introduce more sensitive axes and plot the worst 498

case performance. For example, akin to the exper- 499

iment in (Maheshwari et al., 2023) using CelebA, 500

we initially consider gender as a single sensitive 501

axis. In the subsequent step, we incorporate age 502
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Method BA ↑ Best Off ↓ Worst Off ↓ DF ↓ IF0.5 ↓

Unconstrained 0.63 + 0.01 0.25 + 0.02 0.51 + 0.03 0.43 +/- 0.09 0.52 +/- 0.03
Adversarial 0.63 + 0.01 0.27 + 0.06 0.55 + 0.12 0.48 +/- 0.05 0.55 +/- 0.04
FairGrad 0.63 + 0.01 0.29 + 0.05 0.56 + 0.12 0.48 +/- 0.07 0.57 +/- 0.04
INLP 0.63 + 0.01 0.22 + 0.02 0.49 + 0.03 0.42 +/- 0.07 0.48 +/- 0.03
Fair MixUp 0.61 + 0.01 0.28 + 0.02 0.55 + 0.06 0.47 +/- 0.09 0.55 +/- 0.02
DF-Classifier 0.63 + 0.01 0.29 + 0.08 0.56 + 0.09 0.48 +/- 0.17 0.56 +/- 0.08
Augmented 0.6 + 0.0 0.13 + 0.08 0.35 + 0.12 0.29 +/- 0.32 0.39 +/- 0.11

(a) Results on Anxiety

Method BA ↑ Best Off ↓ Worst Off ↓ DF ↓ IF0.5 ↓

Unconstrained 0.81 + 0.0 0.18 + 0.01 0.46 + 0.01 0.42 +/- 0.05 0.46 +/- 0.02
Adversarial 0.79 + 0.01 0.18 + 0.01 0.48 + 0.04 0.46 +/- 0.08 0.47 +/- 0.02
FairGrad 0.8 + 0.0 0.17 + 0.01 0.49 + 0.03 0.49 +/- 0.1 0.44 +/- 0.02
INLP 0.66 + 0.0 0.08 + 0.02 0.26 + 0.02 0.22 +/- 0.25 0.29 +/- 0.04
Fair MixUp 0.81 + 0.01 0.18 + 0.02 0.46 + 0.02 0.42 +/- 0.09 0.45 +/- 0.04
DF-Classifier 0.81 + 0.0 0.13 + 0.01 0.45 + 0.02 0.46 +/- 0.1 0.39 +/- 0.03
Augmented 0.81 + 0.0 0.06 + 0.01 0.36 + 0.03 0.38 +/- 0.13 0.27 +/- 0.02

(b) Results on Twitter Hate Speech

Table 3: Test results on (a) Anxiety, and (b) Twitter Hate Speech. We select hyperparameters based on IF0.5

value. The utility of various approaches is measured by balanced accuracy (BA), whereas fairness is measured
by differential fairness (DF) and intersectional fairness (IF0.5) on the False Positive Rate (FPR). For both fairness
definitions, lower is better, while for balanced accuracy, higher is better. Best Off and Worst Off represent the min
FPR and max FPR across groups (in both cases, lower is better). Results have been averaged over 5 different runs.

2 3 4
Sensitive Axes

0.25

0.30

0.35

FP
R

Unconstrained
Augmented

Figure 2: FPR of worst-off group on CelebA (the lower,
the better) by varying the number of sensitive axes.

alongside gender. Similarly, we then add attractive-503

ness, and finally skin color.504

The results of this experiment can be found in505

Figure 2. With fewer groups (2 sensitive axes),506

the model’s performance on the generated dataset507

closely matches that on the real dataset. However,508

as the number of axes increases, the performance509

difference becomes more pronounced. Further-510

more, we find that the performance of the model511

remains relatively stable despite the increase in sen- 512

sitive axes, further underscoring the effectiveness 513

of our proposed approach. 514

5.4 Alternative Structures 515

Our proposed approach generates additional data 516

for a target group with data from its corresponding 517

parent groups. In this experiment, we explore alter- 518

native structures. Taking the target group g com- 519

posed of {male, European American, under 45} as 520

an example, we examine two distinct structures: 521

• Alternate: Here, we use examples from 522

parent groups unrelated to the target group. 523

More specifically, we follow an adversarial ap- 524

proach where we choose parents such that they 525

share no examples with the target group. For 526

instance, for group g , we define the adversar- 527

ial group ¬g as {Female, African American, 528

above 45}. We then draw examples from par- 529

ents of group ¬g for training our generative 530

model for g. We provide the exact formalism 531

and setup in Appendix D.5. 532
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2 3 4 5
Sensitive Axes

0.20

0.25

IF
Alternate
Augmented

Figure 3: IF0.5 comparison between Augmented and
Alternate by varying the number of sensitive axes
on CelebA. With a smaller number of sensitive axes,
Unconstrained and Alternate exhibit comparable
performance. However, as the number of sensitive axes
increases, Augmented begins to outperform Alternate.

• Abstract: Here, we use examples from the533

parents of parents of the target group. For534

example, for g, the immediate parent groups535

are: ({male, European American}, {male, un-536

der 45}, {European American, under 45}).537

Instead of drawing examples from these im-538

mediate parent groups, we use examples from539

the parents of these parent groups, namely540

({male}, {European American}, {under 45}).541

Method BA ↑ IF0.5 ↓

Unconstrained 0.63 0.52
Augmented 0.60 0.39
Alternate 0.61 0.40
Abstract 0.59 0.43

(a) Results on Anxiety

Method BA ↑ IF0.5 ↓

Unconstrained 0.81 0.46
Augmented 0.81 0.27
Alternate 0.81 0.29
Abstract 0.81 0.32

(b) Results on Twitter Hate Speech

Table 4: Test results on (a) Anxiety, and (b) Twitter Hate
Speech using False Positive Rate showcasing Balanced
Accuracy (BA) and IF0.5

The results of these experiments are provided542

in Table 4. For both experiments, we find that543

any form of data augmentation approach includ-544

ing the Alternate improves fairness. For instance, 545

on Anxiety, Alternate significantly outperforms 546

Unconstrained and reaches the same level of fair- 547

ness as Augmented. Similarly, the Abstract ap- 548

proach outperforms Unconstrained on Anxiety. 549

These observations indicate that data augmentation 550

via combining from different groups is a viable 551

strategy in general. However, when comparing 552

Abstract performance with Augmented, we find 553

that Augmented generally outperforms Abstract. 554

We hypothesize that this occurs because consider- 555

ing more abstract groups approximates a scenario 556

where no groups are considered, which is similar 557

to an unconstrained. 558

Interestingly, we find that for Twitter Hate 559

Speech and Anxiety, Alternate performs simi- 560

larly to Augmented (with a small advantage to the 561

latter in terms of fairness). We hypothesize the hier- 562

archical structure leveraged in Augmented becomes 563

more relevant with the increase in the number of 564

sensitive axes as it provides better inductive bias. 565

To test this hypothesis, we conducted an experi- 566

ment akin to that in Section 5.3 where we gradually 567

increase the number of sensitive axes in CelebA. 568

The findings, illustrated in Figure 3, indicate that 569

with a limited number of sensitive axes, both ap- 570

proaches yield comparable results. However, as the 571

number of axes increases, Augmented generally 572

outperforms the Alternate. It is important to note 573

that these results might also be influenced by inher- 574

ent dataset characteristics, such as modality, size, 575

and diversity. A comprehensive exploration of how 576

these characteristics interact with the optimal struc- 577

ture for generating augmented data is an interesting 578

avenue for future research. In summary, our exper- 579

iments show that data augmentation across groups 580

is a viable strategy for enhancing the fairness of ma- 581

chine learning models in intersectional scenarios. 582

6 Conclusion 583

In this paper, we introduce a data augmentation 584

mechanism that leverages the hierarchical structure 585

inherent to intersectional fairness. Our extensive 586

experiments demonstrate that this method not only 587

generates diverse data but also enhances the clas- 588

sifier’s performance across both the best-off and 589

worst-off groups. In the future, we plan to extend 590

our approach to a broader range of performance 591

metrics, delve into zero-shot fairness, and explore 592

more sophisticated sampling mechanisms. 593
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7 Limitations594

While appealing, our proposed data generation595

mechanism is not without limitations. Its primary596

constraint is the assumption of accurate sensitive597

annotations for each data point. Inaccurate or miss-598

ing annotations could lead to scenarios where an599

otherwise fair model inadvertently harms groups600

with incorrect or missing annotations. Additionally,601

this mechanism adopts a static view of fairness, fail-602

ing to account for issues like data drift, which may603

result in the model becoming unfair over time. Fur-604

thermore, despite our experiments indicating supe-605

rior performance, our evaluation is confined to the606

specific datasets and settings we tested. We advise607

practitioners employing this approach to conduct608

thorough evaluations of the model, considering the609

unique aspects of their intended application.610

References611

Ahmed Abbasi, David G. Dobolyi, John P. Lalor,612
Richard G. Netemeyer, Kendall Smith, and Yi Yang.613
2021. Constructing a psychometric testbed for fair614
natural language processing. In Proceedings of the615
2021 Conference on Empirical Methods in Natural616
Language Processing, EMNLP 2021, Virtual Event617
/ Punta Cana, Dominican Republic, 7-11 November,618
2021, pages 3748–3758. Association for Computa-619
tional Linguistics.620

Solon Barocas, Elizabeth Bradley, Vasant Honavar, and621
Foster Provost. 2017. Big data, data science, and622
civil rights. arXiv preprint arXiv:1706.03102.623

David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles,624
Hendrik Strobelt, Bolei Zhou, and Antonio Torralba.625
2019. Seeing what a gan cannot generate. In Pro-626
ceedings of the IEEE/CVF International Conference627
on Computer Vision, pages 4502–4511.628

Elizabeth Buchanan. 2012. Ethical decision-making629
and internet research. Association of Internet Re-630
searchers.631

Joy Buolamwini and Timnit Gebru. 2018. Gender632
shades: Intersectional accuracy disparities in com-633
mercial gender classification. In Conference on Fair-634
ness, Accountability and Transparency, FAT 2018,635
23-24 February 2018, New York, NY, USA, volume 81636
of Proceedings of Machine Learning Research, pages637
77–91. PMLR.638

Jenna Burrell. 2016. How the machine ‘thinks’: Under-639
standing opacity in machine learning algorithms. Big640
data & society, 3(1):2053951715622512.641

Toon Calders and Sicco Verwer. 2010. Three naive642
bayes approaches for discrimination-free classifi-643
cation. Data mining and knowledge discovery,644
21(2):277–292.645

Flavio P Calmon, Dennis Wei, Bhanukiran Vinza- 646
muri, Karthikeyan Natesan Ramamurthy, and Kush R 647
Varshney. 2017. Optimized pre-processing for dis- 648
crimination prevention. volume 30. 649

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, 650
and W. Philip Kegelmeyer. 2002. SMOTE: synthetic 651
minority over-sampling technique. J. Artif. Intell. 652
Res., 16:321–357. 653

Ching-Yao Chuang and Youssef Mroueh. 2021. Fair 654
mixup: Fairness via interpolation. In 9th Inter- 655
national Conference on Learning Representations, 656
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 657
OpenReview.net. 658

Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, 659
Luca Oneto, and Massimiliano Pontil. 2019. Lever- 660
aging labeled and unlabeled data for consistent fair bi- 661
nary classification. arXiv preprint arXiv:1906.05082. 662

European Commission. 2018. Communication artificial 663
intelligence for europe. 664

Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. 665
2019. Two-player games for efficient non-convex 666
constrained optimization. In Algorithmic Learning 667
Theory, pages 300–332. PMLR. 668

Kimberle Crenshaw. 1989. Demarginalizing the inter- 669
section of race and sex: A black feminist critique 670
of antidiscrimination doctrine, feminist theory and 671
antiracist politics. The University of Chicago Legal 672
Forum, 140:139–167. 673

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 674
Kristina Toutanova. 2019. BERT: pre-training of 675
deep bidirectional transformers for language under- 676
standing. In Proceedings of the 2019 Conference of 677
the North American Chapter of the Association for 678
Computational Linguistics: Human Language Tech- 679
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, 680
June 2-7, 2019, Volume 1 (Long and Short Papers), 681
pages 4171–4186. Association for Computational 682
Linguistics. 683

Michael Feldman, Sorelle A Friedler, John Moeller, 684
Carlos Scheidegger, and Suresh Venkatasubramanian. 685
2015. Certifying and removing disparate impact. In 686
proceedings of the 21th ACM SIGKDD international 687
conference on knowledge discovery and data mining, 688
pages 259–268. 689

Giulio Filippi, Sara Zannone, and Adriano S. 690
Koshiyama. 2023. Intersectional fairness: A frac- 691
tal approach. CoRR, abs/2302.12683. 692

James R. Foulds, Rashidul Islam, Kamrun Naher Keya, 693
and Shimei Pan. 2020. An intersectional definition 694
of fairness. In 36th IEEE International Conference 695
on Data Engineering, ICDE 2020, Dallas, TX, USA, 696
April 20-24, 2020, pages 1918–1921. IEEE. 697

Vladimiro González-Zelaya, Julián Salas, Dennis Pran- 698
gle, and Paolo Missier. 2021. Optimising fairness 699
through parametrised data sampling. In EDBT, pages 700
445–450. 701

9

https://doi.org/10.18653/v1/2021.emnlp-main.304
https://doi.org/10.18653/v1/2021.emnlp-main.304
https://doi.org/10.18653/v1/2021.emnlp-main.304
http://proceedings.mlr.press/v81/buolamwini18a.html
http://proceedings.mlr.press/v81/buolamwini18a.html
http://proceedings.mlr.press/v81/buolamwini18a.html
http://proceedings.mlr.press/v81/buolamwini18a.html
http://proceedings.mlr.press/v81/buolamwini18a.html
https://doi.org/10.1613/JAIR.953
https://doi.org/10.1613/JAIR.953
https://doi.org/10.1613/JAIR.953
https://openreview.net/forum?id=DNl5s5BXeBn
https://openreview.net/forum?id=DNl5s5BXeBn
https://openreview.net/forum?id=DNl5s5BXeBn
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/ARXIV.2302.12683
https://doi.org/10.48550/ARXIV.2302.12683
https://doi.org/10.48550/ARXIV.2302.12683
https://doi.org/10.1109/ICDE48307.2020.00203
https://doi.org/10.1109/ICDE48307.2020.00203
https://doi.org/10.1109/ICDE48307.2020.00203


Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,702
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.703
Courville, and Yoshua Bengio. 2014. Generative704
adversarial networks. CoRR, abs/1406.2661.705

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,706
Bernhard Schölkopf, and Alexander J. Smola. 2012.707
A kernel two-sample test. J. Mach. Learn. Res.,708
13:723–773.709

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equal-710
ity of opportunity in supervised learning. In Ad-711
vances in Neural Information Processing Systems 29:712
Annual Conference on Neural Information Process-713
ing Systems 2016, December 5-10, 2016, Barcelona,714
Spain, pages 3315–3323.715

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der716
Walt, Ralf Gommers, Pauli Virtanen, David Cour-717
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,718
Nathaniel J. Smith, Robert Kern, Matti Picus,719
Stephan Hoyer, Marten H. van Kerkwijk, Matthew720
Brett, Allan Haldane, Jaime Fernández del Río, Mark721
Wiebe, Pearu Peterson, Pierre Gérard-Marchant,722
Kevin Sheppard, Tyler Reddy, Warren Weckesser,723
Hameer Abbasi, Christoph Gohlke, and Travis E.724
Oliphant. 2020. Array programming with NumPy.725
Nature, 585(7825):357–362.726

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian727
Sun. 2016. Deep residual learning for image recog-728
nition. In Proceedings of the IEEE conference on729
computer vision and pattern recognition, pages 770–730
778.731

Xiaolei Huang, Linzi Xing, Franck Dernoncourt, and732
Michael J. Paul. 2020. Multilingual Twitter cor-733
pus and baselines for evaluating demographic bias734
in hate speech recognition. In Proceedings of the735
Twelfth Language Resources and Evaluation Confer-736
ence, pages 1440–1448, Marseille, France. European737
Language Resources Association.738

Vasileios Iosifidis, Besnik Fetahu, and Eirini Ntoutsi.739
2019. Fae: A fairness-aware ensemble framework.740
In 2019 IEEE International Conference on Big Data741
(Big Data), pages 1375–1380. IEEE.742

Faisal Kamiran and Toon Calders. 2009. Classifying743
without discriminating. In 2009 2nd international744
conference on computer, control and communication,745
pages 1–6. IEEE.746

Faisal Kamiran and Toon Calders. 2012. Data prepro-747
cessing techniques for classification without discrimi-748
nation. Knowledge and Information Systems, 33(1):1–749
33.750

Jian Kang, Tiankai Xie, Xintao Wu, Ross Maciejewski,751
and Hanghang Tong. 2022. Infofair: Information-752
theoretic intersectional fairness. In IEEE Interna-753
tional Conference on Big Data, Big Data 2022, Os-754
aka, Japan, December 17-20, 2022, pages 1455–755
1464. IEEE.756

Michael J. Kearns, Seth Neel, Aaron Roth, and Zhi- 757
wei Steven Wu. 2018. Preventing fairness gerryman- 758
dering: Auditing and learning for subgroup fairness. 759
In Proceedings of the 35th International Conference 760
on Machine Learning, ICML 2018, Stockholmsmäs- 761
san, Stockholm, Sweden, July 10-15, 2018, volume 80 762
of Proceedings of Machine Learning Research, pages 763
2569–2577. PMLR. 764

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 765
method for stochastic optimization. In 3rd Inter- 766
national Conference on Learning Representations, 767
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 768
Conference Track Proceedings. 769

Hannah Rose Kirk, Yennie Jun, Filippo Volpin, Haider 770
Iqbal, Elias Benussi, Frédéric A. Dreyer, Aleksandar 771
Shtedritski, and Yuki M. Asano. 2021. Bias out- 772
of-the-box: An empirical analysis of intersectional 773
occupational biases in popular generative language 774
models. In Advances in Neural Information Pro- 775
cessing Systems 34: Annual Conference on Neural 776
Information Processing Systems 2021, NeurIPS 2021, 777
December 6-14, 2021, virtual, pages 2611–2624. 778

John Lalor, Yi Yang, Kendall Smith, Nicole Forsgren, 779
and Ahmed Abbasi. 2022. Benchmarking intersec- 780
tional biases in NLP. In Proceedings of the 2022 781
Conference of the North American Chapter of the 782
Association for Computational Linguistics: Human 783
Language Technologies, NAACL 2022, Seattle, WA, 784
United States, July 10-15, 2022, pages 3598–3609. 785
Association for Computational Linguistics. 786

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018. 787
Towards robust and privacy-preserving text represen- 788
tations. In Proceedings of the 56th Annual Meet- 789
ing of the Association for Computational Linguistics 790
(Volume 2: Short Papers), pages 25–30, Melbourne, 791
Australia. Association for Computational Linguistics. 792

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 793
2015. Deep learning face attributes in the wild. In 794
2015 IEEE International Conference on Computer 795
Vision, ICCV 2015, Santiago, Chile, December 7-13, 796
2015, pages 3730–3738. IEEE Computer Society. 797

Michael Lohaus, Michaël Perrot, and Ulrike 798
Von Luxburg. 2020. Too relaxed to be fair. 799
In International Conference on Machine Learning, 800
pages 6360–6369. PMLR. 801

Gaurav Maheshwari, Aurélien Bellet, Pascal Denis, and 802
Mikaela Keller. 2023. Fair without leveling down: 803
A new intersectional fairness definition. In Proceed- 804
ings of the 2023 Conference on Empirical Methods 805
in Natural Language Processing, pages 9018–9032, 806
Singapore. Association for Computational Linguis- 807
tics. 808

Gaurav Maheshwari and Michaël Perrot. 2022. Fair- 809
grad: Fairness aware gradient descent. CoRR, 810
abs/2206.10923. 811

Jacob Metcalf and Kate Crawford. 2016. Where 812
are human subjects in big data research? the 813

10

http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://doi.org/10.5555/2503308.2188410
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://doi.org/10.1038/s41586-020-2649-2
https://aclanthology.org/2020.lrec-1.180
https://aclanthology.org/2020.lrec-1.180
https://aclanthology.org/2020.lrec-1.180
https://aclanthology.org/2020.lrec-1.180
https://aclanthology.org/2020.lrec-1.180
https://doi.org/10.1109/BIGDATA55660.2022.10020588
https://doi.org/10.1109/BIGDATA55660.2022.10020588
https://doi.org/10.1109/BIGDATA55660.2022.10020588
http://proceedings.mlr.press/v80/kearns18a.html
http://proceedings.mlr.press/v80/kearns18a.html
http://proceedings.mlr.press/v80/kearns18a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2021/hash/1531beb762df4029513ebf9295e0d34f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1531beb762df4029513ebf9295e0d34f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1531beb762df4029513ebf9295e0d34f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1531beb762df4029513ebf9295e0d34f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1531beb762df4029513ebf9295e0d34f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1531beb762df4029513ebf9295e0d34f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1531beb762df4029513ebf9295e0d34f-Abstract.html
https://doi.org/10.18653/v1/2022.naacl-main.263
https://doi.org/10.18653/v1/2022.naacl-main.263
https://doi.org/10.18653/v1/2022.naacl-main.263
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.18653/v1/2023.emnlp-main.558
https://doi.org/10.18653/v1/2023.emnlp-main.558
https://doi.org/10.18653/v1/2023.emnlp-main.558
https://doi.org/10.48550/arXiv.2206.10923
https://doi.org/10.48550/arXiv.2206.10923
https://doi.org/10.48550/arXiv.2206.10923


emerging ethics divide. Big Data & Society,814
3(1):2053951716650211.815

Brent D. Mittelstadt, Sandra Wachter, and Chris Rus-816
sell. 2023. The unfairness of fair machine learning:817
Levelling down and strict egalitarianism by default.818
CoRR, abs/2302.02404.819

Giulio Morina, Viktoriia Oliinyk, Julian Waton, Ines820
Marusic, and Konstantinos Georgatzis. 2019. Audit-821
ing and achieving intersectional fairness in classifica-822
tion problems. CoRR, abs/1911.01468.823

Adam Paszke, Sam Gross, Francisco Massa, Adam824
Lerer, James Bradbury, Gregory Chanan, Trevor825
Killeen, Zeming Lin, Natalia Gimelshein, Luca826
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.827
Yang, Zachary DeVito, Martin Raison, Alykhan Te-828
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,829
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An830
imperative style, high-performance deep learning li-831
brary. In Advances in Neural Information Processing832
Systems 32: Annual Conference on Neural Informa-833
tion Processing Systems 2019, NeurIPS 2019, De-834
cember 8-14, 2019, Vancouver, BC, Canada, pages835
8024–8035.836

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,837
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,838
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,839
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-840
esnay. 2011. Scikit-learn: Machine learning in841
Python. Journal of Machine Learning Research,842
12:2825–2830.843

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael844
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-845
ing protected attributes by iterative nullspace projec-846
tion. In Proceedings of the 58th Annual Meeting of847
the Association for Computational Linguistics, ACL848
2020, Online, July 5-10, 2020, pages 7237–7256.849
Association for Computational Linguistics.850

Hoang Thanh-Tung and Truyen Tran. 2020. Catas-851
trophic forgetting and mode collapse in gans. In852
2020 international joint conference on neural net-853
works (ijcnn), pages 1–10. IEEE.854

Laura Weidinger, John Mellor, Maribeth Rauh, Conor855
Griffin, Jonathan Uesato, Po-Sen Huang, Myra856
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,857
et al. 2021. Ethical and social risks of harm from858
language models. arXiv preprint arXiv:2112.04359.859

Forest Yang, Mouhamadou Cisse, and Oluwasanmi860
Koyejo. 2020. Fairness with overlapping groups;861
a probabilistic perspective. In Advances in Neural862
Information Processing Systems 33: Annual Confer-863
ence on Neural Information Processing Systems 2020,864
NeurIPS 2020, December 6-12, 2020, virtual.865

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez866
Rogriguez, and Krishna P Gummadi. 2017. Fairness867
constraints: Mechanisms for fair classification. In868
Artificial Intelligence and Statistics, pages 962–970.869
PMLR.870

Dominik Zietlow, Michael Lohaus, Guha Balakrishnan, 871
Matthäus Kleindessner, Francesco Locatello, Bern- 872
hard Schölkopf, and Chris Russell. 2022. Leveling 873
down in computer vision: Pareto inefficiencies in fair 874
deep classifiers. In IEEE/CVF Conference on Com- 875
puter Vision and Pattern Recognition, CVPR 2022, 876
New Orleans, LA, USA, June 18-24, 2022, pages 877
10400–10411. IEEE. 878

11

https://doi.org/10.48550/arXiv.2302.02404
https://doi.org/10.48550/arXiv.2302.02404
https://doi.org/10.48550/arXiv.2302.02404
http://arxiv.org/abs/1911.01468
http://arxiv.org/abs/1911.01468
http://arxiv.org/abs/1911.01468
http://arxiv.org/abs/1911.01468
http://arxiv.org/abs/1911.01468
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://proceedings.neurips.cc/paper/2020/hash/29c0605a3bab4229e46723f89cf59d83-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/29c0605a3bab4229e46723f89cf59d83-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/29c0605a3bab4229e46723f89cf59d83-Abstract.html
https://doi.org/10.1109/CVPR52688.2022.01016
https://doi.org/10.1109/CVPR52688.2022.01016
https://doi.org/10.1109/CVPR52688.2022.01016
https://doi.org/10.1109/CVPR52688.2022.01016
https://doi.org/10.1109/CVPR52688.2022.01016


A Additional Related Work879

With ML rapidly automating several key aspects of880

decsion making the potential for harm has sparked881

calls for greater accountability and transparency by882

researchers (Weidinger et al., 2021; Burrell, 2016;883

Metcalf and Crawford, 2016), government agen-884

cies (Commission, 2018; Barocas et al., 2017) and885

NGOs (Buchanan, 2012). This has peaked interest886

in fairness, with researchers responding in two pri-887

mary ways: (i) Capturing and defining unfairness888

by proposing new metrics and evaluation suites,889

and (ii) developing mechanism to mitigate the un-890

fairness.891

The most prevalent approach to assessing inter-892

sectional unfairness involves comparing subgroup893

performances either with the overall population,894

as in subgroup fairness (Kearns et al., 2018), or895

with the best and worst performing subgroups, as896

in Differential Fairness (Foulds et al., 2020). Re-897

cent observations by (Maheshwari et al., 2023; Mit-898

telstadt et al., 2023) suggest that solely focusing899

on relative performance among subgroups, with-900

out considering absolute performance, can lead to901

a phenomenon known as "leveling down." To ad-902

dress this, they recommend a hybrid metric, IFα,903

which combines relative and absolute performance904

measures. Further details about these metrics are905

provided in the Appendix D.3.906

Mitigation techniques can be typically catego-907

rized into three groups: (i) pre-processing, involv-908

ing modifications at the dataset level (Kamiran909

and Calders, 2012; Feldman et al., 2015; Calmon910

et al., 2017); (ii) post-processing, which adjusts911

the outputs of pre-trained models that may exhibit912

biases (Iosifidis et al., 2019; Chzhen et al., 2019);913

and (iii) in-processing, entailing alterations to the914

training process and the model itself to enhance915

fairness (Cotter et al., 2019; Lohaus et al., 2020;916

Calders and Verwer, 2010).917

In terms of approaches that specifically optimize918

intersectional fairness, Foulds et al. (2020) intro-919

duced an in-processing technique that incorporates920

a fairness regularizer into the loss function, bal-921

ancing fairness and accuracy. Conversely, Morina922

et al. (2019) suggests a post-processing mecha-923

nism that adjusts the threshold of the classifier and924

randomizes predictions for each subgroup inde-925

pendently. InfoFair (Kang et al., 2022) adopts a926

distinct approach by minimizing mutual informa-927

tion between predictions and sensitive attributes.928

Recently, research has begun to explore the phe-929

nomenon of "leveling down" in fairness. Mahesh- 930

wari et al. (2023); Mittelstadt et al. (2023) argue 931

that the strictly egalitarian perspective of current 932

fairness measures contributes to this phenomenon. 933

Meanwhile, Zietlow et al. (2022) demonstrates lev- 934

eling down in computer vision contexts and intro- 935

duces an adaptive augmented sampling strategy 936

using generative adversarial networks (Goodfellow 937

et al., 2014) and SMOTE (Chawla et al., 2002). 938

Our work aligns with these developments; how- 939

ever, we propose a modality-independent technique 940

that effectively leverages the intrinsic structure of 941

intersectionality. 942

B Background on Maximum Mean 943

Discrepancy 944

Maximum Mean Discrepancy is an non-parametric 945

kernel-based divergence used to assess the similar- 946

ity between distributions. In a nutshell, it involves 947

identifying an embedding function that, given two 948

distributions P andQ, yields larger values for sam- 949

ples drawn from P and smaller values for those 950

from Q. The difference in the mean value of this 951

function for samples drawn from these two distri- 952

butions provides an estimate of their similarity. 953

In this work, following the footsteps of Gretton 954

et al. (2012), we use unit balls in characteristic 955

reproducing kernel Hilbert spaces as the function 956

class. Intuitively, the idea is to use the kernel trick 957

to compute the differences in all moments of two 958

distributions and then average the result. Formally, 959

the MMD between two distributions P and Q is: 960

MMD2(P,Q) 961

= sup∥Ψ∥H≤1|EZ∼P [Ψ(Z)]− EZ′∼Q[Ψ(Z ′)]| 962

= EZ∼P [k(Z,Z)]− 2EZ∼P,Z′∼Q[k(Z,Z
′)] 963

+ EZ′∼Q[k(Z
′, Z ′)] 964

965

Here, k is the kernel derived from ∥·∥H , the norm 966

associated with corresponding Reproducing Kernel 967

Hilbert Space H . In practice, we generally do not 968

have access to true distributions but only samples, 969

and thus the above equation is approximated as: 970

MMD2(Sz, Sz′) =
1

m(m−1)

[∑
i

∑
j ̸=i k(zi, zj) 971

+
∑

i

∑
j ̸=i k(z

′
i, z

′
j)
]
+ 1

m2

∑
i

∑
j k(zi, z

′
j) 972

where Sz (resp. Sz′) is a set of m samples 973

drawn from P (resp. Q). In this work, we use 974

the radial basis function kernel k : (z, z′) 7→ 975
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Algorithm 1 Training the Generative Models
Input: Groups G, Dataset T , batch size b, number
of iterations l and batch size b
Output: K trained generative models {genθ,k}Kk=1

capable of generating data for each label k
1: for _ in l do
2: Randomly sample a group g from G
3: for k in K do
4: Sg,k ← Sample b examples from Tg|Y=k

5: Sg\i,k ← Sample b examples from
Tg\i|Y=k ∀i ∈ {1, . . . , p}

6: Sgen ← Sample b examples from
genθ,k(T ,g)

7: Compute the MMD loss using these ex-
amples as stated in Equation 6

8: Backpropagate this loss to update the pa-
rameters of the model genθ,k

9: end for
10: end for

exp(∥z − z′∥2 /2σ2) where σ is the free param-976

eter. In summary, MMD provides a simple way to977

compute the similarity between two distributions978

by using samples drawn from those distributions.979

C Algorithm980

The procedure to train our generative models is981

summarized in Algorithm 1.982

D Experiments983

D.1 Datasets984

We benchmark our proposed generative approach985

over four datasets, and employ a similar setup as986

proposed by (Maheshwari et al., 2023). Note that987

all the datasets we experiment with are publicly988

available and can be used for research purpose.989

• CelebA (Liu et al., 2015): It is composed990

of 202, 599 images of human faces. Addi-991

tionally, each image is annotated with 40 bi-992

nary attributes, such as ‘eye glasses’, ‘bangs’,993

and ‘mustaches’. In our experiments, we set994

‘sex’, ‘Young’, ‘Attractive’, and ‘Pale Skin’995

attributes as the sensitive axis for the images996

and ‘Smiling’ as the class label. We split the997

dataset into 80% training of which 20% is998

used as validation, and the remaining 20%999

test split.1000

• Twitter Hate Speech (Huang et al., 2020):1001

The dataset consists of tweets annotated with1002

four race, age, gender, and country, We use 1003

the same pre-processing steps as employed 1004

by (Maheshwari et al., 2023), including bi- 1005

narizing the sensitive attributes, and focus- 1006

ing on English subset. After pre-processing, 1007

our train, validation and test sets consists 1008

of 22, 818, 4, 512, and 5, 032 tweets respec- 1009

tively. 1010

• Psychometric dataset (Abbasi et al., 2021): 1011

The dataset consists of 8, 502 text responses 1012

alongside numerical scores provided by the 1013

physicians over several psychometric dimen- 1014

sions. Each response is also associated with 1015

four sensitive attributes, namely gender, race, 1016

and age. We focus on: 1017

– Numeracy which reflects the numerical 1018

comprehension ability of the patient. 1019

– Anxiety reflects the level of anxiety as 1020

described by the adult. 1021

We use same pre-processing as (Lalor et al., 1022

2022) including binarizing the score. We use 1023

the same splitting procedure as described for 1024

CelebA dataset. 1025

D.2 Hyperparameters 1026

In all our experiments, we utilized an Intel Xeon 1027

CPU. Training a generative model on this plat- 1028

form typically takes about 15 minutes, whereas our 1029

fairness-accuracy experiments generally required 1030

about 30 minutes. For ease of replication, we 1031

will include the PyTorch model description in the 1032

README file accompanying the source code. All 1033

experiments were conducted using five different 1034

seeds: 10, 20, 30, 40, and 50. For the Adversarial 1035

approach, the λ parameter, which indicates the 1036

weight assigned to the adversarial branch, was set 1037

to the following values: 0.25, 0.5, 1.0, 5.0, 10.0, 1038

50.0, 100.0. Similarly, for Fair MixUp, the mixup 1039

regularizer was assigned values of 0.25, 0.5, 1.0, 1040

5.0, 10.0, 50.0, 100.0. For all other approaches, 1041

we used the default settings from the respective 1042

authors’ codebases. The selection of optimal hyper- 1043

parameters followed the procedure outlined in (Ma- 1044

heshwari and Perrot, 2022). In every experiment, 1045

we fixed the value of k at 0.03. 1046

D.3 Fairness Definitions 1047

In this work, we utilize two fairness definitions 1048

specifically formulated to assess intersectional fair- 1049

ness. Both definitions depend on group-wise per- 1050

formance measures, denoted as m, which can take 1051
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various forms, including Accuracy, True Positive1052

Rate, and False Positive Rate. We focus on False1053

Positive Rate for which the corresponding m is:1054

m(hθ, Tg) = 1− P (hθ(x) = 0|(x, y) ∈ Tg, y = 1)1055

• Differential Fairness: A model, denoted by hθ,1056

is considered to be ϵ-differentially fair (DF)1057

wrt m, if1058

DF(hθ,m) ≡ max
g,g′∈G

log
m(hθ, Tg)
m(hθ, Tg′)

≤ ϵ.1059

• α-Intersectional Framework: A model hθ is
said to be (α, γ)-intersectionally fair (IFα)
with respect to m, if

IFα(hθ,m) ≡ max
g,g′∈G

Iα(g,g
′, hθ,m) ≤ γ.

where gw = argming∈G m(hθ, Tg) and1060

gb = argmaxg∈G m(hθ, Tg). Here1061

Iα(g,g
′, hθ,m) is defined as:1062

Iα(g,g
′, hθ,m) = α∆abs + (1− α)∆rel,

(7)1063

where α ∈ [0, 1] and1064

∆abs = max
(
1−m(hθ, Tg), 1−m(hθ, Tg′)

)
,1065

∆rel =
1−max

(
m(hθ, Tg),m(hθ, Tg′)

)
1−min

(
m(hθ, Tg),m(hθ, Tg′)

) .1066

D.4 Results1067

We detail the additional experiments over the1068

CelebA and Numeracy datasets. Table 5 shows1069

results for fixed value of α. While Figure 4 plot1070

the trade-off between relative and absolute perfor-1071

mance over groups by varying α for all the datasets.1072

D.5 Alternate Structure1073

Recall that in Alternate approach, our aim is1074

to draw examples from a different parent group1075

set. More specifically, we follow an adversarial1076

approach where we choose parents such that they1077

share no examples with the group.1078

Formally, for a group g represented as1079

(a1, . . . , ap) , we define adversarial group as ¬g1080

represented by (¬a1, . . . ,¬ap). Note that, in1081

this experiment we assume A1, . . . ,Ap to be bi-1082

nary discrete-valued. The generative function1083

genθ,k(T ,g), akin to Equation 4, is defined as:1084

Xgen =

p∑
i=1

λiX¬g\i (8) 1085

And the corresponding loss function akin to 1086

Equation 6 is: 1087

Lg,k(θ) = MMD(Sgen, Sg,k)+
p∑

i=1

MMD(Sgen, S¬g\i,k),
(9) 1088

D.6 Tools 1089

In all our experiments, we utilized Python and its 1090

associated machine learning libraries, including 1091

Numpy (Harris et al., 2020), PyTorch (Paszke et al., 1092

2019), and scikit-learn (Pedregosa et al., 2011). 1093

Additionally, we employed ChatGPT for grammar 1094

correction. 1095
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Figure 4: Value of IFα on the test set of various datasets by varying α ∈ [0, 1].

Method BA Best Off Worst Off DF IF0.5

Unconstrained 0.81 + 0.0 0.06 + 0.02 0.34 + 0.01 0.35 +/- 0.38 0.26 +/- 0.04
Adversarial 0.81 + 0.01 0.05 + 0.01 0.3 + 0.03 0.31 +/- 0.19 0.24 +/- 0.03
FairGrad 0.76 + 0.0 0.1 + 0.01 0.35 + 0.04 0.33 +/- 0.12 0.34 +/- 0.02
INLP 0.81 + 0.01 0.07 + 0.01 0.35 + 0.03 0.36 +/- 0.16 0.27 +/- 0.01
Fair MixUp 0.81 + 0.0 0.06 + 0.0 0.4 + 0.07 0.45 +/- 0.19 0.28 +/- 0.02
DF-Classifier 0.82 + 0.0 0.06 + 0.02 0.34 + 0.03 0.35 +/- 0.33 0.26 +/- 0.05
Augmented 0.76 + 0.01 0.02 + 0.0 0.21 + 0.03 0.22 +/- 0.21 0.16 +/- 0.01

(a) Results on CelebA

Method BA Best Off Worst Off DF IF0.5

Unconstrained 0.7 + 0.01 0.21 + 0.05 0.46 + 0.06 0.38 +/- 0.13 0.5 +/- 0.06
Adversarial 0.69 + 0.02 0.15 + 0.03 0.39 + 0.04 0.33 +/- 0.16 0.42 +/- 0.05
FairGrad 0.7 + 0.01 0.19 + 0.05 0.45 + 0.09 0.39 +/- 0.12 0.47 +/- 0.06
INLP 0.69 + 0.0 0.23 + 0.02 0.52 + 0.02 0.47 +/- 0.05 0.52 +/- 0.02
Fair MixUp 0.69 + 0.01 0.21 + 0.04 0.45 + 0.05 0.36 +/- 0.09 0.51 +/- 0.04
DF-Classifier 0.68 + 0.01 0.29 + 0.06 0.61 + 0.11 0.6 +/- 0.16 0.57 +/- 0.07
Augmented 0.69 + 0.02 0.14 + 0.05 0.39 + 0.11 0.34 +/- 0.24 0.44 +/- 0.07

(b) Results on Numeracy

Table 5: Test results on (a) CelebA, (b) Numeracy. We select hyperparameters based on IF0.5 value. The utility of
various approaches is measured by balanced accuracy (BA), whereas fairness is measured by differential fairness
(DF) and intersectional fairness (IF0.5) on the False Positive Rate (FPR). For both fairness definitions, lower is
better, while for balanced accuracy, higher is better. The Best Off and Worst Off, in both cases lower is better,
represents the min FPR and max FPR. Results have been averaged over 5 different runs.
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